JP2004209452A - Biological treatment tank and biological treatment method for wastewater - Google Patents

Biological treatment tank and biological treatment method for wastewater Download PDF

Info

Publication number
JP2004209452A
JP2004209452A JP2003028659A JP2003028659A JP2004209452A JP 2004209452 A JP2004209452 A JP 2004209452A JP 2003028659 A JP2003028659 A JP 2003028659A JP 2003028659 A JP2003028659 A JP 2003028659A JP 2004209452 A JP2004209452 A JP 2004209452A
Authority
JP
Japan
Prior art keywords
biological treatment
carrier
treatment tank
water
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003028659A
Other languages
Japanese (ja)
Other versions
JP4328102B2 (en
Inventor
Takeshi Oda
剛 織田
Akira Ishiyama
明 石山
Hiroyuki Mizuguchi
弘幸 水口
Shozo Watanabe
昌造 渡辺
Yasuhiro Taketomi
康宏 武富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003028659A priority Critical patent/JP4328102B2/en
Publication of JP2004209452A publication Critical patent/JP2004209452A/en
Application granted granted Critical
Publication of JP4328102B2 publication Critical patent/JP4328102B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological treatment tank for wastewater which requires no supply of motive power than necessary from outside for prevention of carrier settling and aeration, forms a circulation flow in the treatment tank, prevents clogging by smoothly separating carriers and a screen, and enables a sufficient carrier return, and a biological treatment method. <P>SOLUTION: A carrier separation screen 7 is installed on the outflow side of the biological treatment tank for the wastewater, containing the carriers, on which microorganisms have been immobilized, in suspension. Circulation ducts 17, 17a for the carrier return are installed along both the bottom sides of the treatment tanks 1a-1c from the bottom of a duct wall surface 4f disposed on the front side of the screen 7 and having a partition plate 19 and movable partition members 20, 20a. A suction flow of water to be treated, flowing in from ejector pipes 8, 8a installed on the inflow wall surface 2, forms an ejector type mixing region of the water to be treated and the return flow of the carriers. As a result, the carriers can be separated by a downflow on the front side of the screen 7 to prevent the clogging, and carrier stagnation in the circulation ducts 17, 17a can be prevented. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、微生物固定化担体を利用して生物学的に汚水処理を行なう排水の生物処理槽およびこの処理槽を用いた排水の生物処理方法に関する。
【0002】
【従来の技術】
排水の新しい生物処理法の一つとして、担体に微生物を固定し、窒素やりん等の富栄養化成分を除去する微生物包括固定法が開発されている。この方法では、一例を図12に示すように、一般に、排水等の被処理水が充満した処理槽21に、ペレット状の担体Aが投入され、この担体Aに排水を処理する微生物が固定され、処理槽21中への微生物が高濃度に維持されるようになっている(例えば、特許文献1参照)。
【0003】
図12に示した処理槽21では、その底部に空気供給源に連通した曝気装置22が配設され、また、その内部には、傾斜したスクリーン23を有する担体分離装置が設けられ、スクリーン23の目詰まりを効果的に抑制するために、スクリーン23に対向してほぼ並行に、モータ24の駆動軸に連結されたプーリ25、25aに、無端状のベルト26を巻き掛けた移動壁装置27が設けられている。
【0004】
前記曝気装置22から細やかに散気された空気により被処理水が攪拌されると、担体に固定された微生物に酸素が供給され、かつ、被処理水と担体Aとが混合した状態で流動し、被処理水中の窒素などが生物学的に処理され、被処理水は移動壁装置27の上端を越えてスクリーン23とベルト26の対向面26Aとの間を下降し、このスクリーンを通過して、流出口28から排水される。この過程で、移動壁装置27のベルト26の周回移動により、スクリーン23に与える被処理水の平行流の流速が大きくなり、スクリーン23の洗浄効果が高められる。
【0005】
また、他の例では、図13に示すように、上部と下部に開口を設けた阻流板32を配置し、下部開口に、支柱33に支持されてプロペラ式攪拌機34をそれぞれ配備した汚水処理槽31が開示されている(例えば、特許文献2参照)。この汚水処理槽31では、プロペラ式攪拌機34を作動させることにより、阻流板32によって区分された区画ごとに、阻流板32を挟んで上下に、流入口35から流入した被処理水の循環流が形成されるため、担体Aが流出口36に偏らずに、処理槽31の全体に分散される。また、ブロワ37を運転し、曝気装置38から散気させることにより、阻流板32によって区分された区画ごとに旋回流が発生し、充分に生物学的に処理された被処理水が、スクリーンを備えた流出口36から流出する。
【0006】
さらに、スクリーンに付着した担体を分離する装置として、水中攪拌曝気装置による吸引動力および循環ポンプにより誘起したスクリーン全面の下降流によるせん断力で、前記担体を除去する装置も開発されている(例えば、非特許文献3参照)。
【0007】
【特許文献1】
特開2002−86177号公報([0006]〜[0026])
【特許文献2】
特開平7−136679号公報([0005]〜[0015])
【非特許文献3】
第36回下水道研究発表会講演集(1999)、P.577〜P.579
【0008】
【発明が解決しようとする課題】
しかし、特開2002−86177号公報に開示された汚水処理槽21では、被処理水の下降流にさらに強制流動を与えて、スクリーン23の洗浄効果を高めるために、スクリーン23の前面側に対向して、モータ駆動の移動壁装置27を設けており、一方、特開平7−136679号公報では、汚水処理槽31内に阻流板32を設け、被処理水の循環流を形成し、担体Aの偏在防止のために、阻流板32の下部開口にプロペラ式攪拌機34を設けている。このため、いずれの場合でも、担体の沈降を防止するために必要な攪拌や担体に固定された微生物に酸素を供給する曝気に必要な動力以上の動力を余分に必要とし、スクリーン閉塞防止し、前記処理槽への担体の戻りや分散を良好にするために前記装置類を新たに設置することでイニシャルコストが増大し、それらの運転・管理を行なうことでランニングコストが増大するなど、設備コストおよびエネルギ消費の観点から問題がある。また、担体分離のために水中曝気装置を用いる場合でも、曝気に必要な動力以外に、循環ポンプによる攪拌動力が必要である。
【0009】
また、停電が発生した場合、非常電源が起動するまでに数秒から数十秒の時間を必要とするため、この間にスクリーンから担体を除去する被処理水の流れがなくなると、上記いずれの場合も、瞬時にスクリーンの目詰まりが発生して処理槽から汚水と担体とが溢れ出すおそれがある。
【0010】
そこで、この発明の課題は、外部から担体沈降防止および曝気以外には動力供給を必要とせずに、処理槽内に循環流を形成して担体とスクリーンとを円滑に分離でき、スクリーンに目詰まりが発生せず、担体の戻りが良好な排水の生物処理槽および生物処理方法を提供することである。
【0011】
【課題を解決するための手段】
前記の課題を解決するためにこの発明では以下の構成を採用したのである。
【0012】
即ち、微生物を固定した担体を浮遊状態で含む排水生物処理槽の被処理水の流出側に設置した担体分離用のスクリーンと、このスクリーンの前面側に対向するダクト壁面と、このダクト壁面の下端側から前記処理槽の底部に沿って流入側に至る担体の戻り用のダクト壁面とにより形成される循環ダクトとを備えた排水生物処理槽であって、前記処理槽の流入側に、流入した被処理水の吸引流れを形成するように上流側との水位差に基づく位置エネルギを運動エネルギに変換する手段を設けて排水の生物処理槽を構成したのである。
【0013】
前記生物処理槽は、通常、複数直列に配置されて汚水等の被処理水が生物処理され、上流側の処理槽の方の水位が高いため、例えば、図1に示すように、通常、隣接する処理槽間には水位差Δhが存在する。この水位差Δhにより、生物処理槽1の流入側壁面2に設けた下部開口3から、隣接する上流側の生物処理槽1aの被処理水が流入する。その際に、上流側処理槽1aの持つ位置エネルギが下部開口3を通過する際に運動エネルギに変換され、被処理水の運動量が、処理槽1内の周囲の流体を引き込む吸引流れが形成される。
【0014】
このように、生物処理槽1に着目すれば、その流入側に、流入した被処理水の吸引流れが、流入側壁面2と仕切り板Tとで形成される流路で上方向に生じることにより、流入側にエジェクタ型混合域Mが形成される。そして、この被処理水は、循環ダクト4の外壁面4a、4b、4cで形成された反応域5で水中攪拌機6により攪拌されながら、前記担体Aと混合接触して生物処理され、スクリーン7の前面側では、担体Aが混合した被処理水の下降流が形成される。この下降流により、電力などの外部エネルギを供給しなくても、スクリーン7から担体Aを取り除いて目詰まりを防止することができ、生物処理された被処理水がスクリーン7を通過して下流側の処理槽1bの方へ流出するとともに、被処理水の一部が循環ダクト4の戻り流となって、担体Aを処理槽1の流入側まで流動させることができる。このように、流入側に形成されたエジェクタ型混合域Mで被処理水と返送された担体Aとが混合され、処理槽内に循環流が形成される。
【0015】
なお、前記水位差Δhは、前記下部開口3の断面積、即ちエジェクタ部の面積と被処理水の処理流量から決まり、処理槽内での循環流の形成に必要な吸引流れが発生するように、処理流量に対応して、エジェクタ部断面積が設計される。また、上流側の処理槽から横方向に被処理水を導入して、吸引流れを生じさせることもできる。
【0016】
そして、前記循環ダクト4内を処理槽1の上流側まで流動してきた担体Aを含む戻り流は、流入側での吸引流れの作用、即ちエジェクタ効果により形成されるエジェクタ型混合域で、被処理水と混合されて前記反応域5に送られ、このエジェクタ型混合域Mでの被処理水と担体Aとの混合効果により、前記反応域5での被処理水の生物処理が効果的に行なわれる。
【0017】
ここで、前記循環ダクト内での担体を返送する戻り流の流動性について検討すると、エジェクタ型混合域での運動量保存式は、
ρ(W +W )+(W+W)(p−Δp)=ρW +Wp−−(1)
となり、循環ダクト内での担体を含む戻り流の圧力損失Δpは、
Δp=λL[(W+W)/(2W)]×ρV/2 −−−−−−−−−−−−(2)
となる。
ここに、W:スクリーンの幅 W〜W:図1に示した各位置での流路高さ(m) V〜V:同各位置での流速(m/s) λ:圧力損失係数
L:処理槽底部の循環ダクト長さ(m) ρ:密度(1000kg/m
Δh:処理槽間の水位差、である。
式(1)と式(2)とを連立させると、
Δp=λL[(W+W)/(2W)]×ρV/2=ρ[W/W ](V −V −−−−−−−−−−−−−−−−−−−(3)
流入する被処理水の流速Vは、被処理水の流量Qおよび下部開口部3の面積、即ちエジェクタ部面積から求めることができるので、式(3)はVに関する2次式となって、
=[α±(α×β)0.5]×V/(α−β) −−−−−−−−−−−−−−−−−−−−−−−(4)
となる。
ここで、α=W/W β=λL[(W+W)/(4W )]×W である。
【0018】
例えば、被処理水の流量Q=1260m/hの場合、W=4(m)、W=0.088(m)、W=0.2(m)、W=0.2(m)、L=5(m)、Δh=50(mm)、圧力損失係数λは、担体が含まれるため粘性が大きくなることを考慮して、λ=0.2と見積もると、式(4)により、戻り流の流速Vが求まり、このVの値から、式(3)により、処理槽底部の循環ダクト内での圧力損失Δpが求まり、式(2)を用いて循環ダクト4内での戻り流の流速Vが求まる。この流速Vが算出されると、担体Aを含む戻り流の流量Q=V×W×W×3600=817m/hとなる。いま、担体Aの処理槽への投入率(槽内水量に対する比率)を10%とすると、循環ダクト内の戻り流に含まれる担体の比率Rは、概略、
R=(1260+817)×0.1/817≒0.25
となる。即ち、戻り流の担体Aの含有率は25%程度となって、良好な流動性が保たれ、処理槽内に循環流が円滑に形成される。
【0019】
微生物を固定した担体を浮遊状態で含む複数の排水の生物処理槽が、被処理水の通過部を設けた隔壁を介して直列に連結され、最下流の生物処理槽の流出側に設置した担体分離用のスクリーンと、前記スクリーンの前面側に対向するダクト壁面と、このダクト壁面の下端側から前記処理槽の底部に沿い、前記隔壁を貫通して最上流の生物処理槽の流入側に至る担体の戻り用のダクト壁面とにより形成される循環ダクトとを備えた排水の生物処理槽であって、前記処理槽の流入側に、流入した被処理水の吸引流れを形成するように上流側との水位差に基づく位置エネルギを運動エネルギに変換する手段を設けて排水の生物処理槽を構成することができる。
【0020】
このような装置構成では、最上流の処理槽の流入側で、位置エネルギを運動エネルギに変換する手段により吸引流れを生じさせるために必要な水位差Δhは、この最上流の処理槽とこの最上流の処理槽に隣接する上流側処理槽との間で確保できればよいため、処理槽全体の水位差を低く抑えることができる。また、前記スクリーンは、最下流の処理槽にのみ設ければよく、前記エジェクタ混合域も、最上流の処理槽の流入側のみに設ければよいため、生物処理槽を連結した場合の装置構成が簡便となり、経済的である。さらに、循環ダクトにより、最下流の処理槽1hから最上流の処理槽1fに担体Aが返送されるので、下流側の処理槽への担体の偏在が防止される。
【0021】
前記位置エネルギを運動エネルギに変換する手段が、前記処理槽の流入側壁面の下部に設けたエジェクタ管であり、このエジェクタ管の効果による吸引流れにより、上流側から流入する被処理水と循環ダクトからの担体の戻り流とを混合するエジェクタ型混合域が形成されるようにすることが望ましい。
【0022】
このようにすれば、上記流入管から処理槽内に流出する被処理水の流速が、流入側壁面に処理槽の幅に亘って流入口を設けた場合よりも大きくなり、エジェクタ型混合域での被処理水と、最下流の処理槽から循環ダクトを介して戻された担体との混合がより効果的に行なわれる。
【0023】
前記スクリ−ン前面側に対向したダクト壁面と流入側のダクト壁面とを連結管により接続して循環ダクトを形成することもできる。
【0024】
このようにすれば、連結管の断面が軸対象形状であるため、ダクト高さを大きくとれるので、夾雑物によるダクト閉塞の危険性がより少なくなる。また、処理槽の底面からの循環ダクトを形成する連結管として、既存の市販の管材を用いることができるため、経済的である。
【0025】
前記処理槽の流入側に形成されたエジェクタ型混合域に曝気装置を組み入れることが望ましい。
【0026】
このようにすれば、曝気装置により、エジェクタ型混合域に供給される空気が、本来の曝気作用に加えて、エアリフト効果を発揮するため、所要の水位差Δhを確保できない場合などでも、前記吸引流れを生じさせるに必要な吸引力を補うことができる。
【0027】
前記スクリーンの前面側に対向するダクト壁面が、前記処理槽の底部両側に分岐し、この分岐したダクト壁面の下端側から流路が前記処理槽の両側の底部に沿って流入側に至り、さらにそれぞれの流路が流入側壁面に沿って上方に延びるようにして担体の戻り用の循環ダクトが形成され、この上方に延びた循環ダクトの内部に、前記エジェクタ管をそれぞれ設けて排水の生物処理槽を構成することもできる。
【0028】
前記排水生物処理槽では、通常、担体の堆積を防止するために、底部両側は、長手方向に沿って、側面から底面にかけ下方へ傾斜した斜面状に形成されている。上記のように、前記処理槽の両側底部に、その流出側から流入側へ至る長手方向に流路を設けるようにすれば、斜面状に形成された処理槽の両側底部のスペースを有効に利用することができる。それにより、循環ダクトを処理槽内に設けずに済み、生物処理の反応域が実質的に広くなるなど、処理槽内の容積をより有効利用できる。
【0029】
前記エジェクタ管が流量調整手段を備えていることが望ましい。
【0030】
前記担体を返送する循環ダクト内の流速は、ダクト内の圧力損失を防止する観点から30mm/s以下に、担体がダクト内に沈降し、滞留することを防止する観点から10cm/s以上にする必要があることから、通常、10〜30cm/sと低速であり、排水中の繊維質などの異物や微生物が分泌する膜などによって循環ダクト内が閉塞する危険性がある。前記流量調整手段により、一方のエジェクタ管を閉じると、閉じた方の循環ダクトも流動が停止するため、処理槽の流入側での水位差(Δh)が増加する。この水位差(Δh)の増加により、他方のエジェクタ管から流出する被処理水が増加し、それに伴って循環ダクト内の流速も増加するため、ダクト内面に付着している前記異物や分泌膜の除去が可能となる。
【0031】
前記スクリーンの前面側に対向するダクト壁面のスクリーン側に形成された内部空間が、仕切り板により分割され、その下端側がそれぞれ、前記処理槽の両側底部に沿って流入側に至る流路に接続されて前記循環ダクトが形成され、前記ダクト壁面の上部に、分割された内部空間のそれぞれに対応して、前記処理槽からの担体の流入を防止するための可動仕切り部材を設けることが望ましい。
【0032】
前記排水処理槽の設計処理流量よりも、排水流量がかなり低い場合には、それぞれの循環ダクトでの戻り流の流速は小さく、循環ダクトの底部に担体が沈降し、滞留する危険性がある。このため、前記可動部仕切り部材を前記ダクト壁面に取り付けて、仕切り板により分割した一方の内部空間への担体の流入を防止すれば、エジェクタ管による吸引流れは継続しているため、この一方の内部空間の下端側から延びた循環ダクトには、分割した他方の内部空間のスクリーンを通過した担体を含まない処理水が流入し、循環ダクト内での担体の沈降や滞留を防止することができる。
【0033】
前記循環ダクトに、処理水および/または担体を投入していない上流側の水槽中の被処理水を供給する配管を設けることもできる。
【0034】
このようにすれば、上流側水槽の方が高水位であるため、ポンプを必要とせず、循環ダクトに被処理水を導入し、ダクト底部への担体の沈降や滞留を防止することができる。また、この場合、循環ダクトに導入される被処理水中の汚泥の長時間にわたる堆積を防止するため、当該処理槽からの処理水の一部を循環ダクトに供給すると効果的である。なお、前記上流側水槽は、担体を投入していない排水貯留槽および担体を投入した前記処理槽の両方を含む。
【0035】
前記処理槽の底部に沿って循環ダクトに、一端側がこの循環ダクトに連通し、他端側が処理槽内の水面から突出するように空気抜き管を設けることが望ましい。
【0036】
このようにすれば、循環ダクト内での空気溜まりの発生を防止できるため、戻り流が円滑に流動し、担体の返送が阻害されずに済む。
【0037】
【発明の実施の形態】
以下に、この発明の実施形態を添付の図2〜図11に基づいて説明する。
【0038】
図2(a)および(b)は、第1の実施形態を示したもので、生物処理槽1cは、複数の生物処理槽を直列に配置した連結型の生物処理槽で、中間に位置する生物処理槽である。この生物処理槽1cの流出側には、担体分離用のスクリーン7が、この処理槽1cの全幅にわたり、かつ、その高さが処理槽1c内の汚水などの被処理水の水位Hよりも高くなるように設置されている。前記処理槽1cの流入側壁面2の下部の幅方向に、隣接する上流側の生物処理槽1dからの被処理水が流入し、一例として、上方に流れるように複数のエジェクタ管8が設けられている。前記スクリーン7の前面側には、所要の間隔Sをもって、その上部から下方に延び、処理槽1cの全幅にわたるダクト壁面4aが対向して設けられ、同様に処理槽1cの流入側にも、前記エジェクタ管8と所要の間隔Sをもって、流入側の下部から上方に延び、処理槽1dの全幅にわたるダクト壁面4bが設けられている。
【0039】
図2(b)に示したように、処理槽1cとその上流側の処理槽1dとの間には、水位差Δhが存在し、この水位差Δhは、被処理水の流量とエジェクタ部の面積、即ちエジェクタ管8の断面積の総和から決まるため、被処理水の吸引流れの作用により、処理槽1c内に循環流を生じる所要の水位差となるように、被処理水の流量に対応して、エジェクタ部の面積が設計されている。
【0040】
前記ダクト壁面4a、4bは、いずれもその高さが、処理槽1cの水位Hよりも低くなるように設けられ、それぞれの下部で、図2(c)に示すような連結管9で接続されて、流入側と流出側とが連通した循環ダクト4が形成されている。前記処理槽1cの流出側壁面10の下部には、流入側壁面2の場合と同様に、その幅方向に複数の開口部3bが設けられ、それぞれの開口部3bに、隣接する下流側の処理槽1e側に突出した、前記エジェクタ管8と同様のエジェクタ管8aが設けられ、このエジェクタ管8aは、下流側の処理槽1eの流入側のエジェクタ管となっている。また、前記処理槽1cの底部は、図2(c)に示したダクト壁4aの底部形状のように、その中央部から両側面部にかけて上方に傾斜し、担体Aの堆積を防止するように形成されている。
【0041】
前記ダクト壁面4a、4b、処理槽1cの側壁11、11aおよび連結管9の外表面で形成される反応域5に、硝酸菌などの微生物が固定された、PEG(ポリエチレングリコール)などのペレット状の担体Aが投入され、処理槽1cの側壁11に設けた水中攪拌機6により攪拌されて沈降が防止され、かつ、曝気されて、担体Aが被処理水中に浮遊状態で混合されている。
【0042】
この発明の第1の実施形態は以上のような構成であり、以下にその機能について説明する。
【0043】
前記生物処理槽1cとその上流側の生物処理槽1dとの間には、図2に示したように、水位差Δhが存在するため、この水位差Δhにより、生物処理槽1dの流入側壁面2に設けたエジェクタ管8により、上流側の処理槽1dから被処理水が流入する。その際に、前述のように、上流側処理槽1aの持つ位置エネルギがエジェクタ管8を通過する際に運動エネルギに変換され、被処理水の運動量が、処理槽1内の周囲の流体を引き込む吸引流れが生じる。
【0044】
この吸引流れの作用、即ちエジェクタ効果により、前記処理槽1cの流入側と流出側との間に循環流が形成され、スクリーン7の前面側に生じる下降流により、このスクリーン7への担体Aの付着が防止され、停電が発生しても、スクリーン7に目詰まりが発生しない。そして、前記エジェクタ混合域Mで、循環ダクト4を介して流入側へ戻された担体Aと被処理水とが混合され、この混合流体が前記反応域5へ供給されて、処理槽1内での担体の分布を均一にすることができ、被処理水の生物処理を効果的に行なうことができる。
【0045】
図3(a)および(b)は、第2の実施形態を示したもので、3槽の排水生物処理槽1f、1g、1hが、図示していない被処理水の通過部を設けた隔壁12、12aを介して直列に連結され、最下流の生物処理槽1hの流出側にのみ担体分離用のスクリーン7が設置され、最上流の生物処理槽1fの流入側壁面2の下部のみ、処理槽1fの幅方向に、複数のエジェクタ管8が設けられている。そして、前記スクリーン7の前面側には、所要の間隔Sをもって、その上部から下方に延び、処理槽1hの全幅にわたるダクト壁面4dが対向して設けられ、同様に処理槽1fの流入側にも、前記エジェクタ管8と所要の間隔Sをもって、流入側の下部から上方に延び、処理槽1dの全幅にわたるダクト壁面4eが設けられている。
【0046】
前記ダクト壁面4d、4eは、いずれもその高さが、処理槽1f、1hの水位Hよりも低くなるように設けられ、それぞれの下部で、隔壁12、12aを貫通した連結管9aで接続されて、流入側と流出側とが連通した循環ダクト4が形成されている。そして、流入側では、エジェクタ管8とダクト壁面4eとにより、流入した被処理水と、前記循環ダクト4内を戻されてきた担体Aとが、前記エジェクタ管8からの吸引流れにより混合されるエジェクタ型混合域Mが形成されている。
【0047】
このような装置構成では、最上流の処理槽1fの流入側で、前記吸引流れを生じさせるために必要な水位差Δhは、この最上流の処理槽1fと隣接する上流側の処理槽1jとの間で確保できればよいため、処理槽1f〜1h間では全水位差を低く抑えることができる。また、前記スクリーン7は、最下流の処理槽1hにのみ設ければよく、前記エジェクタ混合域Mも、最上流の処理槽1fの流入側にのみに形成すればよいため、生物処理槽を複数連結した場合の装置構成が簡便となり、経済的である。
【0048】
なお、図4に示すように、前記エジェクタ型混合域Mの下部、即ち、エジェクタ管8の下部に曝気装置13を設けるようにすれば、そのエアリフト効果により、所要の水位差Δhを確保しにくい場合に、被処理水の流入側への吸引力を補うことができる。
【0049】
図5は、第3の実施形態を示したもので、図3に示した生物処理槽と同様に、3つの生物処理槽1a、1b、1cが、被処理水の通過口14、14aをそれぞれ設けた隔壁12、12aを介して直列に連結されており、この場合は、最下流の処理槽1cに設けたスクリーン7の前面側に対向する下方に延びたダクト壁面4fが、この処理槽1cの底部両側に分岐してダクト壁面4g、4hが形成されている。この分岐したダクト壁面4g、4hの前端側から、処理槽1cの両側の底部に沿って傾斜して設けたダクト壁面4j、4kと処理槽1a〜1cの両側底部の内壁面によりそれぞれ形成される流路が流入側に至り、さらに処理槽1aの流入側壁面2および側壁面11b、11cにそれぞれ沿って上方に延びるようにダクト壁面4m、4nを設けてそれぞれ流路が形成され、これらのダクト壁面4f、4j、4mおよび4g、4k、4nによる流路で担体の戻り用の循環ダクト4が形成されている。そして、この両側の循環ダクト4、4の上方に延びる部分の内部に、前記エジェクタ管8、8がそれぞれ挿入されている。そして、処理槽1bの両側の底部に沿った循環ダクト4の中程に、一端側がこの循環ダクト4に連通し、他端側が処理槽内の水面から突出した空気抜き管15がそれぞれ設けられている。
【0050】
通常、排水生物処理槽の底部の両側には、担体の堆積を防止するために、側面側から底面側へ傾斜した斜面が、長手方向に沿って形成されている。上記のように、各処理槽1a〜1cの底部両側に、長手方向にそって斜面状のダクト壁面4j、4kを設ければ、このダクト壁面4j、4kが担体の堆積防止機能を有するため、各処理槽1a〜1cの両側底部のスペースを有効に使用することができ、各処理槽内に循環ダクトを通さずに済む。それにより、担体による被処理水との生物処理の反応域がより大きくとれるなど、処理槽内の容積をより有効に利用することができる。
【0051】
また、担体の戻り流が循環ダクト4を通過する過程で、空気抜き管15から処理槽外に排気されるため、処理槽1a〜1cに大量の微細気泡が滞留せず、空気溜まりの発生を防止できるため、戻り流が円滑に流動し、担体の返送が阻害されずに済む。さらに、エジェクタ管8を、流入側の循環ダクト4の上方に延びた部分の内部に設けたので、循環ダクト4内を戻された担体とエジェクタ管8から流出する被処理水との混合が効果的になされる。そして、処理槽1aの流入側下部に、図4に示したように、曝気装置を設けることもでき、そのエアリフト効果により、処理槽1aに戻された担体の均一混合が促進される。
【0052】
図6は第4の実施形態を示したもので、最下流の生物処理槽1cに設けたスクリーン7の前面側に対向した、両側に側板を有するダクト壁面4fの下端側から生物処理槽1a、1b、1cの底部両側に分岐したダクト壁面4g、4hに、この底部両側に沿って設けた連結管9b、9cの一端側がそれぞれ接続され、この連結管9b、9cの他端側が、流入側壁面2に沿って上方に延びた混合管16、16aにそれぞれ接続されて循環ダクト17、17aが形成されている。この混合管16、16a、即ち上方に延びた循環ダクトの内部に設けたエジェクタ管8、8aの入側に流量調節手段、即ちバルブ18、18aが設けられている。このバルブ18、18aとしては、仕切り弁、蝶型弁、扁心鋳造弁などを用いることができる。また、処理槽1aの流入側に、図4に示したように、曝気装置を設けることもでき、図5の場合と同様の効果が得られる。さらに、図5に示したように、連結管9b、9cの中程に、一端側がこの連結管9b、9cにそれぞれ連通し、他端側が処理槽内の水面から突出した空気抜き管をそれぞれ設けることもできる。
【0053】
このように、エジェクタ管8、8aの入側にバルブ18、18aを設けることにより、例えば、バルブ18を全閉にして、エジェクタ管8からの生物処理槽1a内への流れおよび循環ダクト17内での戻り流を停止させると、流入側壁面2での水位差は4倍に増加する。それにより、バルブ18aが開放しているエジェクタ管8aからの処理槽1a内への流速が増加し、このエジェクタ効果による吸引流れによって、循環ダクト17a内の流速も増加するため、循環ダクト17aの内面に付着している繊維質や微生物が分泌する膜などの異物の除去が可能となる。同様の操作により、循環ダクト17内面の清掃も行なうことができる。
【0054】
なお、前記循環ダクトは、上述のように、処理槽1a〜1cの底部両側にそれぞれ沿った合計2本のみならず、複数本設けることができ、従って、エジェクタ管も複数本設けることができる。一般に、n組の循環ダクトとエジェクタ管とを設ける場合、前記バルブ操作により、1本のエジェクタ管を閉じると、流入側壁面2での水位差は、[n/(n−1)]となる。この水位差の増加に伴って、開放しているエジェクタ管から処理槽内への流速が増加するため、循環ダクト内の流速が上昇し、ダクト内面の清掃効果が高まる。
【0055】
ここで、処理流量、即ち処理槽1aへの被処理水の流入流量と、流入側での水位差および循環ダクト17、17a内の流速との関係について定量的に考えると以下のようになる。図7は、処理流量1110m/hに設計された生物処理槽(図6参照)で、エジェクタ管8、8aの内径がそれぞれ320mm、循環ダクト17、17aの内径がそれぞれ750mmの場合の、流入流量と水位差および循環ダクト内流速との関係についての実験結果を示したものである。
【0056】
前記バルブ18、18aを全開にした両肺運転では、水位差が300mmの場合、循環ダクト17、17a内の流速は31cm/s程度となる。このとき、循環流量に対する流入流量の比は、およそ0.8である。ここで、一方のバルブ、例えば、バルブ18を閉じた片肺運転を行なうと、水位差は1200mmに増加し、それに伴って、循環ダクト内流速を51cm/s程度にまで、一時的に増加させることができる。この状態では、循環流量に対する流入流量の比は0.65程度に低下するため、スクリーン7の表面に付着する担体を除去する性能が低下し、スクリーン7が閉塞し始める。しかし、バルブ18の操作により、エジェクタ管8の全閉時間を短時間にし、かつ、この短時間の全閉操作を繰り返すことにより、スクリーン7の閉塞が進行しない間に、51cm/s程度の流速で循環ダクト内壁面に付着した前記の異物や膜を除去することが可能となる。なお、生物処理槽によっては、水位差1200mmを確保できない場合がある。そのような場合には、前記の短時間の全閉操作とその間の部分閉鎖操作などのバルブ操作により、循環ダクト内での単位時間当たりの平均流速を上昇させて循環ダクト内壁面の清掃を行ない、循環ダクト壁内面に付着した異物や膜を除去することが可能である。
【0057】
図8は第5の実施形態を示したもので、スクリーン7の前面側に対向した、両側に側板を有するダクト壁面4fのスクリーン7側の内部空間が仕切り板19により分割され、前記ダクト壁面4fの下端側から処理槽1cの底部両側に分岐したダクト壁面4g、4hが、生物処理槽1a、1b、1cの底部両側に沿って設けた連結管9b、9cに接続されている。そして、分割された内部空間のそれぞれに対して、処理槽1cからの担体の流入を防止するための、可動仕切り部材20、20aを備えている。この可動仕切り部材20、20aは、ダクト壁面4fに取り付けたときに、その上端が被処理水面よりも高くなるように形成されている。これらの他は、図6に示した排水生物処理槽と同様の構成であり、前述のように、エジェクタ管8、8aの内径はそれぞれ320mm、循環ダクト17、17aの内径はそれぞれ750mmである。なお、図6の排水生物処理槽の場合と同様に、処理槽1aの流入側に曝気装置を設けることができ、前述の効果が得られる。
【0058】
前記可動仕切り部材20、20aを用いて、循環ダクト17、17a内での担体の沈降や滞留を防止する方法について、実験結果に基づいて以下に説明する。被処理水の流入流量が1110m/hとなるように設計された生物処理槽では、例えば、流入流量が300m/hと少ない場合には、循環ダクト17、17a内の流速は8cm/s程度にしか達せず、この程度の戻り流の流速では、循環ダクト17、17a内に担体が沈降し、滞留するおそれが大きい。この沈降・滞留を避けるために、一方の可動仕切り部材、例えば、可動仕切り部材20をダクト壁面4fにはめ込む。このはめ込んだ可動仕切り部材20の上端は、被処理水の水面よりも高いため、担体は可動仕切り部材20をはめ込んだ方の内部空間には流入せず、従って、循環ダクト17内にも流入しない。
【0059】
前記バルブ18、18aは全開であり、エジェクタ管8から被処理水が処理槽1aに流入し、前述のように、エジェクタ効果による吸引流れを生じるため、仕切り板19により分割された、可動仕切り部材20aをはめ込んでいない方の内部空間からスクリーン7を通過した処理水が、図9に示すように、スクリーン7を逆方向に通過して循環ダクト17内に流入する。この状態を続けることにより、循環ダクト17内を、担体を含まない処理水により置換できる。この置換の終了後に、バルブ18を全閉としてエジェクタ管8からの被処理水の流入を停止させた片肺運転を行なうと、もう一方の循環ダクト17aでは、戻り流の流速が14cm/s程度に上昇し、担体の沈降・滞留を防止することができる。なお、図10は、可動仕切り部材20をはめ込んでいない通常時の処理状況を示したもので、仕切り部材で分割されたそれぞれの内部空間から、被処理水はスクリーン7を透過し、担体Aは循環ダクト17、17aを通って、吸引流れにより混合管16、16aから処理槽内に戻される。前記図9は、可動仕切り部材20をはめ込むことにより、スクリーン7を透過した処理水が、逆方向に再透過することにより、循環ダクト17を通過して戻される担体Aを、この処理水で置換した状態を示したものである。同様にして、可動仕切り部材20aの方をダクト壁面4fにはめ込むことにより、循環ダクト17aの方を処理水で置換し、もう一方の循環ダクト17の戻り流の流速を前述の14cm/s程度に上昇させ、担体の沈降・滞留を防止する片肺運転を行なうことができる。
【0060】
図11は第6の実施形態を示したもので、図9に示したように、スクリーン7を透過した担体を含まない処理水がスクリーン7を逆方向に透過して循環ダクト内に流入させる代わりに、供給管21により、上流側水槽から被処理水をスクリ−ン7を逆方向に透過させて、循環ダクト17内に導くようにした状態を示したものである。上流側水槽の方が高水位であるため、被処理水の供給を、ポンプを必要とせず簡便に行なうことができる。この場合、被処理水中に含まれる汚泥が循環ダクト17内に堆積するのを防止するため、スクリーン7を透過した処理水の一部を、供給管21aから循環ダクト17に戻すようにすることが望ましい。この供給管21、21aは、循環ダクト17aについても同様に設置することができる。
【0061】
【発明の効果】
以上のように、この発明によれば、微生物を固定した担体を用いて排水処理を行なう排水生物処理槽の流入側に、上流側の排水生物処理槽との被処理水の水位差によって流入した被処理水の周りの流体を引き込む吸引流れを発生させ、前記処理槽の流入側にエジェクタ型混合域を形成し、かつ、処理槽内に循環流を形成するようにしたので、電力などの外部エネルギを供給しなくても、担体分離用のスクリーンへの担体の付着を防止でき、停電発生時でもスクリーンの目詰まりを回避できる。また、循環流の形成に外部エネルギを用いないため、装置構成を簡素化でき、経済的である。
【0062】
さらに、前記吸引流れの作用、即ちエジェクタ効果により、流入側へ、循環ダクト内を沈降・滞留せずに戻された担体と被処理水とが混合されるので、これらの混合流が処理槽の反応域へ供給されて、処理槽内での担体の分布を均一にすることができ、生物処理が効果的に行なわれる。
【図面の簡単な説明】
【図1】この発明の実施形態の排水の生物処理槽での吸引流れについての説明図
【図2】(a)第1の実施形態の生物処理槽の平面図
(b)(a)の生物処理槽の縦断側面図
(c)(a)の生物処理槽の要部を示す斜視図
【図3】(a)第2の実施形態の排水の生物処理槽の平面図
(b)(a)の生物処理槽の縦断側面図
【図4】図3に示した排水の生物処理槽の流入側の要部を示す縦断側面図
【図5】第3の実施形態の排水の生物処理槽の斜視図
【図6】第4の実施形態の一部を切り欠いた排水の生物処理槽の斜視図
【図7】図6の排水生物処理槽での流入流量と水位差および循環ダクト内流速との関係を示す説明図
【図8】第5の実施形態の一部を切り欠いた排水の生物処理槽の斜視図
【図9】図7の排水の生物処理槽の通常運転時の担体と被処理水の流れを示す説明図
【図10】図7の排水の生物処理槽の可動仕切り部材をはめ込んで担体の流入を防止した状態を示す説明図
【図11】第6の実施形態の一部を切り欠いた排水の生物処理槽の斜視図
【図12】従来技術の排水の生物処理槽の断面図
【図13】他の従来技術の排水の生物処理槽の断面図
【符号の説明】
1、1a〜1h:生物処理槽 2、2a:流入側壁面 3:下部開口
4:循環ダクト 4a〜4n:ダクト壁面 5:反応域
6:水中攪拌機 7:スクリーン 8、8a:エジェクタ管
9、9a、9b、9c:連結管 10:流出側壁面
11、11a〜11c:側壁 12、12a:隔壁 13:曝気装置
14、14a:通過口 15:空気抜き管 16、16a:混合管
17、17a:循環ダクト18、18a、18b:バルブ 19:仕切り板
20、20a:可動仕切り部材 21、21a:供給管
A:担体 H:水位 M:エジェクタ混合域
、S:間隔 T:仕切り板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a biological treatment tank for wastewater that biologically performs sewage treatment using a microorganism-immobilized carrier, and a biological treatment method for wastewater using the treatment tank.
[0002]
[Prior art]
As one of new biological treatment methods for wastewater, a microorganism-fixing method for fixing microorganisms on a carrier and removing eutrophic components such as nitrogen and phosphorus has been developed. In this method, as shown in FIG. 12 as an example, generally, a pellet-shaped carrier A is charged into a treatment tank 21 filled with water to be treated such as wastewater, and microorganisms for treating wastewater are fixed to the carrier A. The microorganisms in the treatment tank 21 are maintained at a high concentration (for example, see Patent Document 1).
[0003]
In the processing tank 21 shown in FIG. 12, an aeration device 22 communicating with an air supply source is provided at the bottom, and a carrier separation device having an inclined screen 23 is provided inside the processing tank 21. In order to effectively suppress clogging, a moving wall device 27 in which an endless belt 26 is wound around pulleys 25 and 25a connected to a drive shaft of a motor 24 substantially in parallel with the screen 23 is provided. Is provided.
[0004]
When the water to be treated is stirred by the air finely diffused from the aeration device 22, oxygen is supplied to the microorganisms fixed to the carrier, and the water to be treated and the carrier A flow in a mixed state. The nitrogen in the water to be treated is biologically treated, and the water to be treated descends between the screen 23 and the facing surface 26A of the belt 26 over the upper end of the moving wall device 27, and passes through the screen. , From the outlet 28. In this process, due to the orbital movement of the belt 26 of the moving wall device 27, the flow velocity of the parallel flow of the water to be treated given to the screen 23 increases, and the cleaning effect of the screen 23 is enhanced.
[0005]
In another example, as shown in FIG. 13, a baffle plate 32 having upper and lower openings is disposed, and a sewage treatment system in which a propeller-type agitator 34 supported by a column 33 is provided at a lower opening. A tank 31 is disclosed (for example, see Patent Document 2). In the sewage treatment tank 31, by operating the propeller type stirrer 34, the circulation of the water to be treated flowing from the inflow port 35 vertically above and below the baffle plate 32 for each section divided by the baffle plate 32. Since the flow is formed, the carrier A is dispersed throughout the processing tank 31 without being biased toward the outlet 36. In addition, by operating the blower 37 and diffusing air from the aeration device 38, a swirling flow is generated in each section divided by the baffle plate 32, and the sufficiently biologically treated water is screened. Flows out of the outlet 36 provided with a.
[0006]
Further, as an apparatus for separating the carrier adhered to the screen, an apparatus for removing the carrier by a suction power of a submerged stirring aeration apparatus and a shearing force caused by a downward flow over the entire screen induced by a circulation pump has been developed (for example, Non-Patent Document 3).
[0007]
[Patent Document 1]
JP-A-2002-86177 ([0006] to [0026])
[Patent Document 2]
JP-A-7-136679 ([0005] to [0015])
[Non-Patent Document 3]
Proceedings of the 36th Sewerage Research Conference (1999), 577-P. 579
[0008]
[Problems to be solved by the invention]
However, in the sewage treatment tank 21 disclosed in Japanese Patent Application Laid-Open No. 2002-86177, the sewage treatment tank 21 faces the front side of the screen 23 in order to further apply a forced flow to the downward flow of the water to be treated and enhance the cleaning effect of the screen 23. A moving wall device 27 driven by a motor is provided. On the other hand, in Japanese Unexamined Patent Publication No. Hei 7-136679, a baffle plate 32 is provided in a sewage treatment tank 31 to form a circulating flow of water to be treated. In order to prevent the uneven distribution of A, a propeller type stirrer 34 is provided at the lower opening of the baffle plate 32. For this reason, in any case, it requires extra power more than the power required for stirring and aeration to supply oxygen to microorganisms fixed to the carrier to prevent sedimentation of the carrier, and to prevent screen clogging, Equipment costs, such as initial costs increasing by installing the above-mentioned devices in order to improve the return and dispersion of the carrier to the processing tank, and running costs increasing by operating and managing them. And there is a problem in terms of energy consumption. Further, even when using an underwater aeration device for carrier separation, stirring power by a circulation pump is required in addition to the power required for aeration.
[0009]
In addition, when a power failure occurs, it takes several seconds to several tens of seconds before the emergency power supply starts, and during this time, when there is no flow of the water to be removed from the screen to remove the carrier, any of the above cases The screen may be instantaneously clogged and the wastewater and the carrier may overflow from the treatment tank.
[0010]
Therefore, an object of the present invention is to form a circulating flow in a treatment tank and smoothly separate a carrier and a screen without requiring power supply other than prevention of carrier sedimentation and aeration from the outside, and clogging of the screen. It is an object of the present invention to provide a biological treatment tank and a biological treatment method for wastewater in which no carrier is generated and the carrier is returned well.
[0011]
[Means for Solving the Problems]
In order to solve the above problem, the present invention employs the following configuration.
[0012]
That is, a screen for separating the carrier installed on the outflow side of the water to be treated in the wastewater treatment tank containing the microorganism-fixed carrier in a floating state, a duct wall facing the front side of the screen, and a lower end of the duct wall And a circulation duct formed by a return duct wall surface of the carrier from the side to the inflow side along the bottom of the treatment tank, and the wastewater treatment biological treatment tank, which flows into the inflow side of the treatment tank. Means for converting potential energy based on the water level difference with the upstream side to kinetic energy so as to form a suction flow of the water to be treated was provided to constitute a biological treatment tank for wastewater.
[0013]
The biological treatment tanks are usually arranged in series, and water to be treated such as sewage is biologically treated. Since the water level in the treatment tank on the upstream side is higher, for example, as shown in FIG. There is a water level difference Δh between the treatment tanks. Due to the water level difference Δh, the water to be treated in the adjacent upstream biological treatment tank 1a flows from the lower opening 3 provided in the inflow side wall surface 2 of the biological treatment tank 1. At this time, the potential energy of the upstream processing tank 1a is converted into kinetic energy when passing through the lower opening 3, and the momentum of the water to be treated forms a suction flow that draws in the surrounding fluid in the processing tank 1. You.
[0014]
As described above, when attention is paid to the biological treatment tank 1, the suction flow of the inflowing water to be treated is generated upward in the flow path formed by the inflow side wall surface 2 and the partition plate T on the inflow side thereof. An ejector type mixing zone M is formed on the inflow side. The water to be treated is mixed with the carrier A while being stirred by the underwater stirrer 6 in the reaction zone 5 formed by the outer wall surfaces 4a, 4b, and 4c of the circulation duct 4, and biologically treated. On the front side, a downward flow of the water to be treated mixed with the carrier A is formed. By this downward flow, the clogging can be prevented by removing the carrier A from the screen 7 without supplying external energy such as electric power, and the biologically treated water passes through the screen 7 and flows downstream. Out of the treatment tank 1b, and a part of the water to be treated becomes the return flow of the circulation duct 4 so that the carrier A can flow to the inflow side of the treatment tank 1. In this way, the water to be treated and the returned carrier A are mixed in the ejector-type mixing area M formed on the inflow side, and a circulating flow is formed in the treatment tank.
[0015]
The water level difference Δh is determined by the cross-sectional area of the lower opening 3, that is, the area of the ejector section and the processing flow rate of the water to be processed, and is determined so that a suction flow required for forming a circulating flow in the processing tank is generated. The cross-sectional area of the ejector unit is designed in accordance with the processing flow rate. Further, the water to be treated can be introduced laterally from the upstream treatment tank to generate a suction flow.
[0016]
Then, the return flow including the carrier A flowing to the upstream side of the processing tank 1 in the circulation duct 4 is subjected to the action of the suction flow on the inflow side, that is, the ejected type mixing area formed by the ejector effect. The water is mixed with water and sent to the reaction zone 5. Due to the mixing effect of the water to be treated and the carrier A in the ejector type mixing zone M, the biological treatment of the water to be treated in the reaction zone 5 is effectively performed. It is.
[0017]
Here, when examining the fluidity of the return flow returning the carrier in the circulation duct, the momentum conservation equation in the ejector-type mixing zone is:
ρ (W1V1 2+ W2V2 2) + (W1+ W2) (P−Δp) = ρW3V3 2+ W3p ---- (1)
And the pressure loss Δp of the return flow including the carrier in the circulation duct is
Δp = λL [(W0+ W4) / (2W0W4)] × ρV4/ 2-------------(-)
Becomes
Where W0: Screen width W1~ W4: Channel height (m) V at each position shown in FIG.1~ V4: Flow velocity at each position (m / s) λ: Pressure loss coefficient
L: Length of circulation duct at bottom of treatment tank (m) ρ: Density (1000 kg / m)3)
Δh: water level difference between treatment tanks.
When equation (1) and equation (2) are made simultaneous,
Δp = λL [(W0+ W4) / (2W0W4)] × ρV4/ 2 = ρ [W1W2/ W3 2] (V1 2-V2)2  −−−−−−−−−−−−−−−−−−−− (3)
Flow velocity V of the incoming treated water1Is the flow rate Q of the water to be treated0And the area of the lower opening 3, that is, the area of the ejector, the equation (3) is2Is a quadratic equation for
V2= [Α ± (α × β)0.5] × V1/ (Α-β)---------------------(-)
Becomes
Where α = W1W2/ W3, β = λL [(W0+ W4) / (4W0W4 3)] × W2 2It is.
[0018]
For example, the flow rate Q of the water to be treated0= 1260m3/ H, W0= 4 (m), W1= 0.088 (m), W2= 0.2 (m), W4= 0.2 (m), L = 5 (m), Δh = 50 (mm), and the pressure loss coefficient λ is estimated to be λ = 0.2 in consideration of the fact that the viscosity increases due to the inclusion of the carrier. And equation (4), the return flow velocity V2Is found and this V2From equation (3), the pressure loss Δp in the circulation duct at the bottom of the processing tank is obtained from equation (3), and the flow velocity V of the return flow in the circulation duct 4 is calculated using equation (2).4Is found. This flow velocity V4Is calculated, the flow rate Q of the return flow including the carrier A4= V4× W4× W0× 3600 = 817m3/ H. Now, assuming that the charging rate of the carrier A into the treatment tank (the ratio to the amount of water in the tank) is 10%, the ratio R of the carrier contained in the return flow in the circulation duct is roughly as follows:
R = (1260 + 817) × 0.1 / 817 ≒ 0.25
Becomes That is, the content of the carrier A in the return stream is about 25%, good fluidity is maintained, and a circulating flow is smoothly formed in the treatment tank.
[0019]
A plurality of wastewater biological treatment tanks containing a carrier in which microorganisms are immobilized in a floating state are connected in series via a partition wall provided with a passage portion for the water to be treated, and the carrier is provided on the outflow side of the lowest biological treatment tank. A screen for separation, a duct wall facing the front side of the screen, and a bottom end of the processing tank from a lower end side of the duct wall, and penetrates the partition wall to reach an inflow side of the most upstream biological treatment tank. A biological treatment tank for drainage comprising a circulation duct formed by a return duct wall surface of a carrier, and an upstream side for forming a suction flow of inflowing water to be treated on an inflow side of the treatment tank. A means for converting potential energy based on the difference in water level to kinetic energy can be provided to constitute a biological treatment tank for wastewater.
[0020]
In such an apparatus configuration, at the inflow side of the most upstream processing tank, the water level difference Δh required to generate a suction flow by means of converting potential energy into kinetic energy is determined by the most upstream processing tank and the most upstream processing tank. Since it is only necessary to secure the difference between the upstream processing tank and the upstream processing tank, the difference in water level of the entire processing tank can be suppressed. Also, the screen may be provided only in the most downstream processing tank, and the ejector mixing area may be provided only on the inflow side of the most upstream processing tank. Is simple and economical. Further, the carrier A is returned from the lowermost processing tank 1h to the uppermost processing tank 1f by the circulation duct, so that uneven distribution of the carrier in the downstream processing tank is prevented.
[0021]
The means for converting the potential energy into kinetic energy is an ejector pipe provided at a lower portion of the inflow side wall surface of the treatment tank. The water to be treated flowing from the upstream side and the circulation duct are sucked by the effect of the ejector pipe. It is desirable to form an ejector-type mixing zone for mixing the return flow of the carrier from the substrate.
[0022]
According to this configuration, the flow rate of the water to be treated flowing out of the inflow pipe into the treatment tank becomes larger than when the inflow port is provided on the inflow side wall surface across the width of the treatment tank. And the carrier returned from the most downstream processing tank via the circulation duct are more effectively mixed.
[0023]
A circulation duct may be formed by connecting a duct wall facing the screen front side and a duct wall on the inflow side by a connecting pipe.
[0024]
In this case, since the cross section of the connecting pipe has an axially symmetrical shape, the duct height can be increased, so that the risk of blockage of the duct by contaminants is further reduced. Further, as a connecting pipe for forming a circulation duct from the bottom of the processing tank, an existing commercially available pipe material can be used, which is economical.
[0025]
It is desirable to incorporate an aeration device in an ejector-type mixing area formed on the inflow side of the processing tank.
[0026]
With this configuration, the air supplied to the ejector-type mixing area by the aeration device exerts an air lift effect in addition to the original aeration effect. Therefore, even when the required water level difference Δh cannot be secured, The suction force necessary to generate the flow can be supplemented.
[0027]
A duct wall facing the front side of the screen branches to both sides of the bottom of the processing tank, and a flow path extends from a lower end of the branched duct wall to an inflow side along the bottom on both sides of the processing tank. A circulation duct for returning the carrier is formed such that each flow path extends upward along the inflow side wall surface, and the ejector pipes are respectively provided inside the circulation duct extending upward to perform biological treatment of wastewater. A tank can also be configured.
[0028]
In the wastewater biological treatment tank, both bottom portions are generally formed in a slope shape that is inclined downward from the side surface to the bottom surface along the longitudinal direction in order to prevent accumulation of carriers. As described above, by providing a flow path in the longitudinal direction from the outflow side to the inflow side at the bottoms on both sides of the processing tank, the space at the bottoms on both sides of the processing tank formed in a slope can be effectively used. can do. Thereby, the circulation duct does not need to be provided in the processing tank, and the reaction zone for biological treatment is substantially widened, so that the volume in the processing tank can be more effectively used.
[0029]
It is desirable that the ejector tube has a flow rate adjusting means.
[0030]
The flow velocity in the circulation duct for returning the carrier is 30 mm / s or less from the viewpoint of preventing pressure loss in the duct, and 10 cm / s or more from the viewpoint of preventing the carrier from sinking and staying in the duct. Because of the necessity, the speed is usually as low as 10 to 30 cm / s, and there is a risk that the inside of the circulation duct may be blocked by foreign substances such as fibers in the drainage or a membrane secreted by microorganisms. When one of the ejector tubes is closed by the flow rate adjusting means, the flow of the closed circulation duct also stops, so that the water level difference (Δh) on the inflow side of the processing tank increases. Due to the increase in the water level difference (Δh), the amount of water to be treated flowing out of the other ejector pipe increases, and the flow velocity in the circulation duct also increases. Removal is possible.
[0031]
An internal space formed on the screen side of the duct wall facing the front side of the screen is divided by a partition plate, and the lower ends thereof are respectively connected to flow paths reaching the inflow side along the bottoms on both sides of the processing tank. Preferably, the circulation duct is formed, and a movable partition member for preventing the carrier from flowing from the processing tank is provided at an upper portion of the duct wall corresponding to each of the divided internal spaces.
[0032]
If the flow rate of the wastewater is considerably lower than the designed flow rate of the wastewater treatment tank, the flow velocity of the return flow in each circulation duct is small, and there is a risk that the carrier may settle at the bottom of the circulation duct and stay there. For this reason, if the movable part partition member is attached to the duct wall surface to prevent the carrier from flowing into one of the internal spaces divided by the partition plate, the suction flow by the ejector tube is continued. Into the circulation duct extending from the lower end side of the internal space, treated water containing no carrier that has passed through the screen of the other divided internal space flows in, and sedimentation and accumulation of the carrier in the circulation duct can be prevented. .
[0033]
The circulation duct may be provided with a pipe for supplying the water to be treated in the upstream water tank into which the treated water and / or the carrier is not charged.
[0034]
With this configuration, since the upstream water tank has a higher water level, the water to be treated is introduced into the circulation duct without the need for a pump, and the sedimentation or stagnation of the carrier at the bottom of the duct can be prevented. In this case, it is effective to supply a part of the treatment water from the treatment tank to the circulation duct in order to prevent the sludge in the water to be treated introduced into the circulation duct from being accumulated for a long time. The upstream-side water tank includes both a drainage storage tank into which the carrier is not charged and the treatment tank into which the carrier is charged.
[0035]
It is desirable to provide an air vent pipe along the bottom of the processing tank so that one end communicates with the circulation duct and the other end projects from the water surface in the processing tank.
[0036]
In this case, since the generation of air traps in the circulation duct can be prevented, the return flow smoothly flows, and the return of the carrier is not hindered.
[0037]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the attached FIGS.
[0038]
FIGS. 2A and 2B show the first embodiment, in which a biological treatment tank 1c is a connected biological treatment tank in which a plurality of biological treatment tanks are arranged in series, and is located at an intermediate position. It is a biological treatment tank. On the outflow side of the biological treatment tank 1c, a screen 7 for separating the carrier extends over the entire width of the treatment tank 1c and its height is higher than the level H of the water to be treated such as sewage in the treatment tank 1c. It is installed to become. A plurality of ejector tubes 8 are provided in the width direction below the inflow side wall surface 2 of the treatment tank 1c so that water to be treated flows from the adjacent upstream biological treatment tank 1d and flows upward, for example. ing. On the front side of the screen 7, a required interval S1A duct wall 4a extending downward from the upper portion and extending over the entire width of the processing tank 1c is provided to face the same. Similarly, a required distance S from the ejector pipe 8 is also provided on the inflow side of the processing tank 1c.2Thus, a duct wall surface 4b extending upward from the lower portion on the inflow side and extending over the entire width of the processing tank 1d is provided.
[0039]
As shown in FIG. 2 (b), there is a water level difference Δh between the processing tank 1c and the processing tank 1d on the upstream side thereof. Since it is determined from the area, that is, the sum of the cross-sectional areas of the ejector pipes 8, the flow rate of the water to be treated is adjusted so that the suction flow of the water to be treated causes a required water level difference to generate a circulating flow in the treatment tank 1c. Thus, the area of the ejector unit is designed.
[0040]
Each of the duct wall surfaces 4a and 4b is provided so that its height is lower than the water level H of the processing tank 1c, and is connected at its lower part by a connecting pipe 9 as shown in FIG. 2 (c). Thus, a circulation duct 4 in which the inflow side and the outflow side communicate with each other is formed. As in the case of the inflow side wall surface 2, a plurality of openings 3b are provided in the width direction below the outflow side wall surface 10 of the processing tank 1c, and each of the openings 3b is adjacent to the downstream processing side. An ejector tube 8a similar to the ejector tube 8 protruding toward the tank 1e is provided, and this ejector tube 8a is an ejector tube on the inflow side of the processing tank 1e on the downstream side. Further, the bottom of the processing tank 1c is formed so as to incline upward from the center to the both sides, as shown in the bottom shape of the duct wall 4a shown in FIG. Have been.
[0041]
Pellets such as PEG (polyethylene glycol) in which microorganisms such as nitric acid bacteria are immobilized in a reaction zone 5 formed by the duct wall surfaces 4a and 4b, the side walls 11 and 11a of the processing tank 1c, and the outer surface of the connecting pipe 9. Of the carrier A is stirred by the underwater stirrer 6 provided on the side wall 11 of the processing tank 1c to prevent sedimentation, and is aerated so that the carrier A is mixed in a suspended state in the water to be treated.
[0042]
The first embodiment of the present invention is configured as described above, and its function will be described below.
[0043]
As shown in FIG. 2, there is a water level difference Δh between the biological treatment tank 1c and the biological treatment tank 1d on the upstream side, and the water level difference Δh causes the inflow side wall surface of the biological treatment tank 1d. The to-be-processed water flows in from the processing tank 1d on the upstream side by the ejector pipe 8 provided in 2. At that time, as described above, the potential energy of the upstream processing tank 1a is converted into kinetic energy when passing through the ejector pipe 8, and the momentum of the water to be treated draws in the surrounding fluid in the processing tank 1. A suction flow occurs.
[0044]
The circulation flow is formed between the inflow side and the outflow side of the processing tank 1c by the action of the suction flow, that is, the ejector effect, and the carrier A is transferred to the screen 7 by the downward flow generated on the front side of the screen 7. Adhesion is prevented, and even if a power failure occurs, clogging of the screen 7 does not occur. Then, in the ejector mixing area M, the carrier A returned to the inflow side through the circulation duct 4 and the water to be treated are mixed, and this mixed fluid is supplied to the reaction area 5 and Of the carrier can be made uniform, and the biological treatment of the water to be treated can be effectively performed.
[0045]
FIGS. 3A and 3B show a second embodiment, in which three drainage biological treatment tanks 1f, 1g, and 1h are provided with a partition wall provided with a passage portion of the untreated water. A screen 7 for carrier separation is installed only on the outflow side of the most downstream biological treatment tank 1h, and only the lower part of the inflow side wall surface 2 of the most upstream biological treatment tank 1f is treated. A plurality of ejector tubes 8 are provided in the width direction of the tank 1f. A required interval S is provided on the front side of the screen 7.1A duct wall 4d extending downward from the upper portion and extending over the entire width of the processing tank 1h is provided to face the same. Similarly, on the inflow side of the processing tank 1f, a required distance S from the ejector pipe 8 is also provided.2A duct wall surface 4e extending upward from the lower portion on the inflow side and extending over the entire width of the processing tank 1d is provided.
[0046]
Each of the duct wall surfaces 4d and 4e is provided so that its height is lower than the water level H of the processing tanks 1f and 1h, and is connected at its lower part by a connecting pipe 9a penetrating the partition walls 12 and 12a. Thus, a circulation duct 4 in which the inflow side and the outflow side communicate with each other is formed. Then, on the inflow side, the treated water that has flowed in and the carrier A that has returned in the circulation duct 4 are mixed by the suction flow from the ejector tube 8 by the ejector tube 8 and the duct wall surface 4e. An ejector type mixing area M is formed.
[0047]
In such an apparatus configuration, on the inflow side of the most upstream processing tank 1f, the water level difference Δh required to generate the suction flow is equal to the upstream processing tank 1j adjacent to the most upstream processing tank 1f. Therefore, the total water level difference can be suppressed low between the processing tanks 1f to 1h. The screen 7 may be provided only in the most downstream processing tank 1h, and the ejector mixing area M may be formed only on the inflow side of the most upstream processing tank 1f. The device configuration when connected is simple and economical.
[0048]
As shown in FIG. 4, if the aeration device 13 is provided below the ejector type mixing area M, that is, below the ejector pipe 8, it is difficult to secure a required water level difference Δh due to the air lift effect. In this case, the suction force to the inflow side of the water to be treated can be supplemented.
[0049]
FIG. 5 shows a third embodiment, in which three biological treatment tanks 1a, 1b, and 1c respectively provide passage ports 14 and 14a of the water to be treated, similarly to the biological treatment tank shown in FIG. In this case, the duct wall 4f extending downward facing the front side of the screen 7 provided in the most downstream processing tank 1c is connected to the processing tank 1c through the provided partition walls 12 and 12a. The duct wall surfaces 4g and 4h are formed to be branched to both sides of the bottom. From the front ends of the branched duct walls 4g, 4h, they are formed by duct walls 4j, 4k provided inclining along the bottoms on both sides of the processing tank 1c and the inner walls at both bottoms of the processing tanks 1a-1c. Duct walls 4m and 4n are provided so that the flow path reaches the inflow side and further extends upward along the inflow side wall surface 2 and the side wall surfaces 11b and 11c, respectively, of the processing tank 1a. A circulation duct 4 for returning the carrier is formed by a flow path formed by the wall surfaces 4f, 4j, 4m and 4g, 4k, 4n. The ejector tubes 8, 8 are inserted into the portions extending above the circulation ducts 4, 4 on both sides, respectively. In the middle of the circulation duct 4 along the bottoms on both sides of the processing tank 1b, there are provided air vent pipes 15 each having one end communicating with the circulation duct 4 and the other end projecting from the water surface in the processing tank. .
[0050]
Usually, on both sides of the bottom of the wastewater biological treatment tank, a slope inclined from the side surface to the bottom surface is formed along the longitudinal direction in order to prevent accumulation of carriers. As described above, if the duct wall surfaces 4j and 4k having a slope shape are provided along the longitudinal direction on both sides of the bottom of each of the processing tanks 1a to 1c, the duct wall surfaces 4j and 4k have a function of preventing the accumulation of carriers. The space at both bottoms of each of the processing tanks 1a to 1c can be effectively used, and the circulation duct does not need to be passed through each processing tank. Thereby, the reaction zone for biological treatment with the water to be treated by the carrier can be made larger, and the volume in the treatment tank can be used more effectively.
[0051]
In addition, since the return flow of the carrier passes through the circulation duct 4 and is exhausted out of the processing tank from the air vent pipe 15, a large amount of fine air bubbles do not stay in the processing tanks 1a to 1c, and the occurrence of air pockets is prevented. As a result, the return flow smoothly flows, and the return of the carrier is not hindered. Furthermore, since the ejector pipe 8 is provided inside the portion extending above the circulation duct 4 on the inflow side, mixing of the carrier returned in the circulation duct 4 and the water to be treated flowing out of the ejector pipe 8 is effective. Is done. As shown in FIG. 4, an aerator may be provided below the inflow side of the processing tank 1a, and uniform mixing of the carrier returned to the processing tank 1a is promoted by the air lift effect.
[0052]
FIG. 6 shows a fourth embodiment, in which the biological treatment tanks 1a, 1a, and 2b are arranged from the lower end of a duct wall surface 4f having side plates on both sides, facing the front side of a screen 7 provided in the most downstream biological treatment tank 1c. One ends of connecting pipes 9b and 9c provided along both sides of the bottom are connected to duct wall surfaces 4g and 4h branched on both sides of the bottoms of 1b and 1c, respectively. Circulation ducts 17 and 17a are formed connected to the mixing pipes 16 and 16a extending upward along 2, respectively. Flow control means, ie, valves 18 and 18a, are provided on the inlet sides of the mixing tubes 16, 16a, ie, the ejector tubes 8, 8a provided inside the upwardly extending circulation duct. As the valves 18 and 18a, a gate valve, a butterfly valve, an eccentric cast valve, or the like can be used. Further, as shown in FIG. 4, an aeration device can be provided on the inflow side of the processing tank 1a, and the same effect as in FIG. 5 can be obtained. Further, as shown in FIG. 5, an air vent pipe having one end communicating with the connecting pipes 9b and 9c and the other end projecting from the water surface in the processing tank is provided in the middle of the connecting pipes 9b and 9c. You can also.
[0053]
Thus, by providing the valves 18 and 18a on the entrance sides of the ejector tubes 8 and 8a, for example, the valve 18 is fully closed, and the flow from the ejector tube 8 into the biological treatment tank 1a and the circulation duct 17 Is stopped, the difference in water level at the inflow side wall surface 2 increases fourfold. Thereby, the flow velocity from the ejector pipe 8a with the valve 18a opened to the inside of the processing tank 1a increases, and the flow velocity in the circulation duct 17a also increases due to the suction flow by the ejector effect. It is possible to remove foreign substances such as fibers adhering to the membrane and films secreted by microorganisms. By the same operation, the inner surface of the circulation duct 17 can be cleaned.
[0054]
As described above, a plurality of circulation ducts can be provided, as described above, in addition to a total of two along the bottom sides of the processing tanks 1a to 1c, and a plurality of ejector tubes can be provided. Generally, when n sets of circulation ducts and ejector pipes are provided, when one ejector pipe is closed by the valve operation, the water level difference at the inflow side wall surface 2 becomes [n / (n-1)].2Becomes With the increase in the water level difference, the flow velocity from the open ejector pipe into the treatment tank increases, so that the flow velocity in the circulation duct increases, and the effect of cleaning the inner surface of the duct increases.
[0055]
Here, the relationship between the treatment flow rate, that is, the flow rate of the water to be treated into the treatment tank 1a, the difference in water level on the inflow side, and the flow velocity in the circulation ducts 17 and 17a is quantitatively considered as follows. FIG. 7 shows a processing flow rate of 1110 m3/ H in the biological treatment tank (see FIG. 6), the inner diameter of each of the ejector tubes 8 and 8a is 320 mm, and the inner diameter of each of the circulation ducts 17 and 17a is 750 mm. 9 shows the results of an experiment on the relationship with the flow velocity.
[0056]
In the two-lung operation in which the valves 18 and 18a are fully opened, when the water level difference is 300 mm, the flow velocity in the circulation ducts 17 and 17a is about 31 cm / s. At this time, the ratio of the inflow flow rate to the circulation flow rate is approximately 0.8. Here, when one-lung operation in which one valve, for example, the valve 18 is closed, is performed, the water level difference increases to 1200 mm, and accordingly, the flow velocity in the circulation duct is temporarily increased to about 51 cm / s. be able to. In this state, the ratio of the inflow flow rate to the circulation flow rate is reduced to about 0.65, so that the performance of removing the carrier adhering to the surface of the screen 7 is reduced, and the screen 7 starts to close. However, by operating the valve 18, the total closing time of the ejector tube 8 is shortened, and by repeating the short-time full closing operation, the flow rate of about 51 cm / s is obtained while the closing of the screen 7 does not progress. This makes it possible to remove the foreign matter and the film attached to the inner wall surface of the circulation duct. In some biological treatment tanks, a water level difference of 1200 mm cannot be secured. In such a case, by performing a valve operation such as the above-described short-time full closing operation and a partial closing operation therebetween, the average flow velocity per unit time in the circulation duct is increased to clean the inner wall of the circulation duct. In addition, it is possible to remove foreign substances and films attached to the inner surface of the circulation duct wall.
[0057]
FIG. 8 shows a fifth embodiment, in which the internal space on the screen 7 side of the duct wall 4f having side plates on both sides facing the front side of the screen 7 is divided by a partition plate 19, The duct walls 4g, 4h branched from the lower end to both sides of the bottom of the treatment tank 1c are connected to connecting pipes 9b, 9c provided along both sides of the bottom of the biological treatment tanks 1a, 1b, 1c. Movable partition members 20 and 20a are provided for preventing the carrier from flowing from the processing tank 1c into each of the divided internal spaces. The movable partition members 20 and 20a are formed such that when mounted on the duct wall surface 4f, the upper ends thereof are higher than the water surface to be treated. Other than these, it has the same configuration as the drainage biological treatment tank shown in FIG. 6. As described above, the inner diameters of the ejector pipes 8 and 8a are each 320 mm, and the inner diameters of the circulation ducts 17 and 17a are each 750 mm. In addition, similarly to the case of the wastewater biological treatment tank in FIG. 6, an aeration device can be provided on the inflow side of the treatment tank 1a, and the above-described effects can be obtained.
[0058]
A method for preventing the sedimentation and stagnation of the carrier in the circulation ducts 17 and 17a using the movable partition members 20 and 20a will be described below based on experimental results. The inflow rate of the water to be treated is 1110m3/ H, in a biological treatment tank designed to have a flow rate of 300 m / h, for example.3/ H, the flow velocity in the circulation ducts 17 and 17a reaches only about 8 cm / s, and at such a flow velocity of the return flow, the carrier may settle and stay in the circulation ducts 17 and 17a. Is big. In order to avoid this settling and stagnation, one movable partition member, for example, the movable partition member 20 is fitted into the duct wall surface 4f. Since the upper end of the fitted movable partition member 20 is higher than the surface of the water to be treated, the carrier does not flow into the internal space into which the movable partition member 20 is fitted, and therefore does not flow into the circulation duct 17. .
[0059]
The valves 18 and 18a are fully opened, and the water to be treated flows into the treatment tank 1a from the ejector pipe 8 to generate the suction flow by the ejector effect as described above. The treated water that has passed through the screen 7 from the internal space into which the 20a has not been fitted passes through the screen 7 in the reverse direction and flows into the circulation duct 17 as shown in FIG. By continuing this state, the inside of the circulation duct 17 can be replaced with treated water containing no carrier. After completion of the replacement, when the valve 18 is fully closed and the one-lung operation is performed in which the inflow of the water to be treated from the ejector tube 8 is stopped, the flow rate of the return flow is about 14 cm / s in the other circulation duct 17a. And the sedimentation / retention of the carrier can be prevented. FIG. 10 shows a normal processing state in which the movable partition member 20 is not fitted. From each internal space divided by the partition member, the water to be treated passes through the screen 7 and the carrier A is After passing through the circulation ducts 17 and 17a, they are returned from the mixing pipes 16 and 16a into the processing tank by a suction flow. FIG. 9 shows that the treated water that has passed through the screen 7 is re-permeated in the opposite direction by inserting the movable partition member 20, and the carrier A returned through the circulation duct 17 is replaced with the treated water. FIG. Similarly, by inserting the movable partition member 20a into the duct wall surface 4f, the circulation duct 17a is replaced with treated water, and the flow velocity of the return flow of the other circulation duct 17 is reduced to about 14 cm / s described above. It is possible to perform one-lung operation in which the carrier is raised to prevent sedimentation / retention of the carrier.
[0060]
FIG. 11 shows a sixth embodiment. As shown in FIG. 9, instead of the treated water containing no carrier having passed through the screen 7 permeating the screen 7 in the opposite direction and flowing into the circulation duct, as shown in FIG. Further, a state is shown in which water to be treated is allowed to permeate the screen 7 in the reverse direction from the upstream water tank by the supply pipe 21 and is guided into the circulation duct 17. Since the upstream water tank has a higher water level, the water to be treated can be easily supplied without the need for a pump. In this case, in order to prevent the sludge contained in the water to be treated from accumulating in the circulation duct 17, a part of the treatment water transmitted through the screen 7 may be returned from the supply pipe 21 a to the circulation duct 17. desirable. The supply pipes 21 and 21a can be similarly installed on the circulation duct 17a.
[0061]
【The invention's effect】
As described above, according to the present invention, water flows into the inflow side of the wastewater treatment tank for performing wastewater treatment using the carrier on which microorganisms are immobilized, due to the difference in water level of the water to be treated with the upstream wastewater treatment tank. A suction flow that draws in the fluid around the water to be treated is generated, an ejector-type mixing area is formed on the inflow side of the treatment tank, and a circulating flow is formed in the treatment tank. Even without supplying energy, it is possible to prevent the carrier from adhering to the carrier separation screen, and to avoid clogging of the screen even when a power failure occurs. In addition, since no external energy is used for forming the circulation flow, the apparatus configuration can be simplified, and it is economical.
[0062]
Further, by the action of the suction flow, that is, the ejector effect, the carrier and the water to be treated are returned to the inflow side without settling or staying in the circulation duct, and the mixed water is mixed in the treatment tank. The carrier is supplied to the reaction zone, and the distribution of the carrier in the treatment tank can be made uniform, so that the biological treatment is effectively performed.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a suction flow of wastewater in a biological treatment tank according to an embodiment of the present invention.
FIG. 2A is a plan view of the biological treatment tank according to the first embodiment.
(B) A longitudinal side view of the biological treatment tank of (a).
(C) A perspective view showing a main part of the biological treatment tank of (a).
FIG. 3A is a plan view of a wastewater biological treatment tank according to a second embodiment.
(B) A longitudinal side view of the biological treatment tank of (a).
FIG. 4 is a longitudinal sectional side view showing a main part on the inflow side of the biological treatment tank for wastewater shown in FIG. 3;
FIG. 5 is a perspective view of a biological treatment tank for wastewater according to a third embodiment.
FIG. 6 is a perspective view of a biological treatment tank for drainage with a part of the fourth embodiment cut out.
FIG. 7 is an explanatory diagram showing a relationship between an inflow flow rate, a water level difference, and a flow velocity in a circulation duct in the wastewater biological treatment tank in FIG. 6;
FIG. 8 is a perspective view of a biological treatment tank for drainage with a part of the fifth embodiment cut out.
FIG. 9 is an explanatory diagram showing the flow of the carrier and the water to be treated during the normal operation of the wastewater biological treatment tank in FIG. 7;
FIG. 10 is an explanatory view showing a state in which the movable partition member of the biological treatment tank for drainage of FIG. 7 is fitted to prevent the inflow of carriers.
FIG. 11 is a perspective view of a biological treatment tank for drainage in which a part of the sixth embodiment is cut away.
FIG. 12 is a cross-sectional view of a conventional biological treatment tank for wastewater.
FIG. 13 is a cross-sectional view of another prior art wastewater biological treatment tank.
[Explanation of symbols]
1, 1a to 1h: biological treatment tank 2, 2a: inflow side wall 3: lower opening
4: Circulation duct 4a to 4n: Duct wall surface 5: Reaction zone
6: Underwater stirrer 7: Screen 8, 8a: Ejector tube
9, 9a, 9b, 9c: connecting pipe 10: outflow side wall surface
11, 11a to 11c: side wall 12, 12a: partition 13: aeration device
14, 14a: passage opening 15: air vent tube 16, 16a: mixing tube
17, 17a: Circulation duct 18, 18a, 18b: Valve 19: Partition plate
20, 20a: movable partition member 21, 21a: supply pipe
A: Carrier H: Water level M: Ejector mixing area
S1, S2: Interval T: Partition plate

Claims (13)

微生物を固定した担体を浮遊状態で含む排水生物処理槽の被処理水の流出側に設置した担体分離用のスクリーンと、このスクリーンの前面側に対向するダクト壁面と、このダクト壁面の下端側から前記処理槽の底部に沿って流入側に至る担体の戻り用のダクト壁面とにより形成される循環ダクトとを備えた排水の生物処理槽であって、前記処理槽の流入側に流入した被処理水の吸引流れを形成するように、上流側との水位差に基づく位置エネルギを運動エネルギに変換する手段を設けたことを特徴とする排水の生物処理槽。A screen for separating the carrier installed on the outflow side of the water to be treated in the wastewater treatment tank containing the microorganism-fixed carrier in a floating state, a duct wall facing the front side of the screen, and a lower end of the duct wall And a circulation duct formed by a return duct wall surface of the carrier reaching the inflow side along the bottom of the processing tank, wherein the biological treatment tank for drainage is provided. A biological treatment tank for wastewater, comprising means for converting potential energy based on a water level difference with an upstream side into kinetic energy so as to form a suction flow of water. 微生物を固定した担体を浮遊状態で含む複数の排水生物処理槽が、被処理水の通過部を設けた隔壁を介して直列に連結され、最下流の生物処理槽の流出側に設置した担体分離用のスクリーンと、前記スクリーンの前面側に対向するダクト壁面と、このダクト壁面の下端側から前記処理槽の底部に沿い、前記隔壁を貫通して最上流の生物処理槽の流入側に至る担体の戻り用のダクト壁面とにより形成される循環ダクトとを備えた排水生物処理槽であって、前記処理槽の流入側に流入した被処理水の吸引流れを形成するように、上流側との水位差に基づく位置エネルギを運動エネルギに変換する手段を設けたことを特徴とする排水の生物処理槽。A plurality of wastewater biological treatment tanks containing a carrier in which microorganisms are fixed in a suspended state are connected in series via a partition wall provided with a passage section for the water to be treated, and the carrier separation tank is installed at the outflow side of the lowest biological treatment tank. Screen, a duct wall facing the front side of the screen, and a carrier extending from the lower end of the duct wall along the bottom of the processing tank, penetrating the partition and reaching the inflow side of the most upstream biological treatment tank. A wastewater treatment tank provided with a circulation duct formed by a return duct wall surface and an upstream side so as to form a suction flow of water to be treated flowing into an inflow side of the treatment tank. A biological treatment tank for wastewater, comprising means for converting potential energy based on a water level difference into kinetic energy. 前記位置エネルギを運動エネルギに変換する手段が、前記処理槽の流入側壁面の下部に設けたエジェクタ管であり、このエジェクタ管の効果による吸引流れにより、上流側から流入する被処理水と循環ダクトからの担体の戻り流とを混合するエジェクタ型混合域が形成されるようにしたことを特徴とする請求項1または2に記載の排水の生物処理槽。The means for converting the potential energy into kinetic energy is an ejector pipe provided at a lower portion of the inflow side wall surface of the treatment tank. The water to be treated flowing from the upstream side and the circulation duct are sucked by the effect of the ejector pipe. The wastewater biological treatment tank according to claim 1 or 2, wherein an ejector-type mixing zone for mixing the return flow of the carrier from the wastewater is formed. 前記スクリ−ン前面側に対向したダクト壁面と流入側のダクト壁面とを連結管により接続して循環ダクトを形成したことを特徴とする請求項1から3のいずれかに記載の排水の生物処理槽。4. The biological treatment of wastewater according to claim 1, wherein a circulation duct is formed by connecting a duct wall facing the screen front side and an inflow side duct wall with a connecting pipe. Tank. 前記処理槽の流入側に形成されたエジェクタ型混合域に曝気装置を組み入れたことを特徴とする請求項1から4のいずれかに記載の排水の生物処理槽。The wastewater biological treatment tank according to any one of claims 1 to 4, wherein an aeration device is incorporated in an ejector-type mixing area formed on an inflow side of the treatment tank. 前記スクリーンの前面側に対向するダクト壁面が、前記処理槽の底部両側に分岐し、この分岐したダクト壁面の下端側から流路が前記処理槽の両側底部に沿って流入側に至り、さらにそれぞれの流路が流入側壁面に沿って上方に延びるようにして担体の戻り用の循環ダクトが形成され、この上方に延びた循環ダクトの内部に、前記エジェクタ管をそれぞれ設けたことを特徴とする請求項3に記載の排水の生物処理槽。A duct wall facing the front side of the screen branches to both sides of the bottom of the processing tank, and a flow path extends from a lower end of the branched duct wall to an inflow side along the bottoms on both sides of the processing tank. Is formed to extend upward along the inflow side wall surface, and a circulation duct for returning the carrier is formed, and the ejector tubes are provided inside the circulation duct extending upward. The wastewater biological treatment tank according to claim 3. 前記エジェクタ管が流量調整手段を備えていることを特徴とする請求項6に記載の排水の生物処理槽。The wastewater biological treatment tank according to claim 6, wherein the ejector pipe includes a flow rate adjusting unit. 前記スクリーンの前面側に対向するダクト壁面のスクリーン側に形成された内部空間が、仕切り板により分割され、その下端側がそれぞれ、前記処理槽の両側底部に沿って流入側に至る流路に接続されて前記循環ダクトが形成され、前記ダクト壁面の上部に、分割された内部空間のそれぞれに対応して、前記処理槽からの担体の流入を防止するための可動仕切り部材を設けたことを特徴とする請求項6または7に記載の排水の生物処理槽。An internal space formed on the screen side of the duct wall facing the front side of the screen is divided by a partition plate, and the lower ends thereof are respectively connected to flow paths reaching the inflow side along the bottoms on both sides of the processing tank. Wherein the circulation duct is formed, and a movable partition member for preventing inflow of the carrier from the processing tank is provided at an upper portion of the duct wall, corresponding to each of the divided internal spaces. The wastewater biological treatment tank according to claim 6 or 7. 前記循環ダクトに、処理水および/または担体を投入していない上流側の水槽中の被処理水を供給する配管を設けたことを特徴とする請求項1から8のいずれかに記載の排水の生物処理槽。The drainage system according to any one of claims 1 to 8, wherein the circulation duct is provided with a pipe for supplying treated water and / or water to be treated in an upstream water tank into which a carrier is not charged. Biological treatment tank. 前記処理槽の底部に沿った循環ダクトに、一端側がこの循環ダクトに連通し、他端側が処理槽内の水面から突出するように空気抜き管を設けたことを特徴とする請求項1から9のいずれかに記載の排水の生物処理槽。10. A circulation duct along the bottom of the processing tank, wherein an air vent pipe is provided such that one end communicates with the circulation duct and the other end projects from the water surface in the processing tank. A biological treatment tank for wastewater according to any of the above. 微生物を固定した担体を用いて排水を生物学的に処理する排水生物処理法であって、被処理水の流出側に設けたスクリーンにより分離された担体の、流入側への戻り用の循環ダクトを設けた排水生物処理槽で、前記流入側に被処理水の吸引流れを発生させ、この吸引流れによるエジェクタ効果により、前記処理槽の流入側と流出側との間に循環流を形成して前記スクリーンへの担体の付着を防止し、かつ、前記担体を、循環ダクトを介して流入側へ戻し、被処理水と混合するようにしたことを特徴とする排水の生物処理方法。A wastewater biological treatment method for biologically treating wastewater using a carrier on which microorganisms are fixed, wherein a circulation duct for returning the carrier separated by a screen provided on the outflow side of the water to be treated to the inflow side In the drainage biological treatment tank provided with, a suction flow of the water to be treated is generated on the inflow side, and a circulating flow is formed between the inflow side and the outflow side of the treatment tank by an ejector effect due to the suction flow. A biological treatment method for wastewater, wherein the carrier is prevented from adhering to the screen, and the carrier is returned to an inflow side through a circulation duct and mixed with water to be treated. 前記吸引流れを、請求項1から10のいずれかに記載の排水生物処理槽を用いて、発生させるようにしたことを特徴とする請求項11に記載の排水の生物処理方法。The wastewater biological treatment method according to claim 11, wherein the suction flow is generated using the wastewater biological treatment tank according to any one of claims 1 to 10. 前記吸引流れを排水生物処理槽間の被処理水の水位差により形成するようにしたことを特徴とする請求項11または12に記載の排水の生物処理方法。13. The biological treatment method for wastewater according to claim 11, wherein the suction flow is formed by a difference in water level of the water to be treated between the wastewater biological treatment tanks.
JP2003028659A 2002-11-12 2003-02-05 Wastewater biological treatment tank and biological treatment method Expired - Lifetime JP4328102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003028659A JP4328102B2 (en) 2002-11-12 2003-02-05 Wastewater biological treatment tank and biological treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002328799 2002-11-12
JP2003028659A JP4328102B2 (en) 2002-11-12 2003-02-05 Wastewater biological treatment tank and biological treatment method

Publications (2)

Publication Number Publication Date
JP2004209452A true JP2004209452A (en) 2004-07-29
JP4328102B2 JP4328102B2 (en) 2009-09-09

Family

ID=32828420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028659A Expired - Lifetime JP4328102B2 (en) 2002-11-12 2003-02-05 Wastewater biological treatment tank and biological treatment method

Country Status (1)

Country Link
JP (1) JP4328102B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155184A (en) * 2008-12-26 2010-07-15 Nishihara Environment Technology Inc Support feeding type biological reaction apparatus
JP2010172843A (en) * 2009-01-30 2010-08-12 Kobelco Eco-Solutions Co Ltd Water treatment apparatus and water treatment method
JP2016179438A (en) * 2015-03-24 2016-10-13 Jfeエンジニアリング株式会社 Carrier charging type sewage treatment apparatus
JP2016179437A (en) * 2015-03-24 2016-10-13 Jfeエンジニアリング株式会社 Carrier charging type sewage treatment apparatus
JP2016203086A (en) * 2015-04-21 2016-12-08 Jfeエンジニアリング株式会社 Carrier-charging type sewage treatment apparatus
CN113304664A (en) * 2021-05-31 2021-08-27 广州蓝涛水处理有限公司 Emulsification device optimized through high-frequency ultrasonic action and laminar flow sedimentation
CN114644393A (en) * 2022-02-17 2022-06-21 华中农业大学 Sewage COD purification device and purification method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155184A (en) * 2008-12-26 2010-07-15 Nishihara Environment Technology Inc Support feeding type biological reaction apparatus
JP2010172843A (en) * 2009-01-30 2010-08-12 Kobelco Eco-Solutions Co Ltd Water treatment apparatus and water treatment method
JP2016179438A (en) * 2015-03-24 2016-10-13 Jfeエンジニアリング株式会社 Carrier charging type sewage treatment apparatus
JP2016179437A (en) * 2015-03-24 2016-10-13 Jfeエンジニアリング株式会社 Carrier charging type sewage treatment apparatus
JP2016203086A (en) * 2015-04-21 2016-12-08 Jfeエンジニアリング株式会社 Carrier-charging type sewage treatment apparatus
CN113304664A (en) * 2021-05-31 2021-08-27 广州蓝涛水处理有限公司 Emulsification device optimized through high-frequency ultrasonic action and laminar flow sedimentation
CN113304664B (en) * 2021-05-31 2023-09-05 广州兰德环保资源科技有限公司 Emulsifying device optimized through high-frequency ultrasonic action and laminar sedimentation
CN114644393A (en) * 2022-02-17 2022-06-21 华中农业大学 Sewage COD purification device and purification method

Also Published As

Publication number Publication date
JP4328102B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
JP5665307B2 (en) Organic waste water treatment apparatus and organic waste water treatment method
JP5217159B2 (en) Sewage treatment apparatus and method
US4303516A (en) Orbital wastewater treatment system with integral clarification
JP5803293B2 (en) Air diffuser
KR101951202B1 (en) Sludge collecting device for sedimentation basin
JP2004209452A (en) Biological treatment tank and biological treatment method for wastewater
EP0558745A1 (en) Sewage purifying device of filter material circulation type
JP4438529B2 (en) Biological treatment tank and biological treatment method
FI57578B (en) ANALYSIS OF BIOLOGICAL TRAINING AV AVAILABLE
WO2010101152A1 (en) Device for membrane separation type activated-sludge treatment and method therefor
RU1836301C (en) Installation for waste-water-cleaning
JP2014113511A (en) Membrane separation apparatus, and operation method of membrane separation apparatus
KR20080105445A (en) Improved secondary sedimentation basins of biological sewage and waste water treatment plant
JP4374885B2 (en) Membrane separator
JP3468166B2 (en) Sewage treatment equipment
JPH11290882A (en) Nitrogen removing apparatus
CA1283983C (en) Side channel clarifier
JP7137901B2 (en) Sewage treatment equipment and sewage treatment method
JP2001047046A (en) Membrane separation type water treatment apparatus
JP2008212930A (en) Membrane separator
CN216337041U (en) Efficient sewage treatment air supporting device
JP2003039090A (en) Membrane separation type oxidation ditch
CN213446429U (en) Three-phase separation device in sewage treatment system and water quality purification equipment
JP2021137708A (en) Inclined plate device cleaning method and precipitation equipment
JPS6221360Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4328102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

EXPY Cancellation because of completion of term