JP7137901B2 - Sewage treatment equipment and sewage treatment method - Google Patents

Sewage treatment equipment and sewage treatment method Download PDF

Info

Publication number
JP7137901B2
JP7137901B2 JP2018150408A JP2018150408A JP7137901B2 JP 7137901 B2 JP7137901 B2 JP 7137901B2 JP 2018150408 A JP2018150408 A JP 2018150408A JP 2018150408 A JP2018150408 A JP 2018150408A JP 7137901 B2 JP7137901 B2 JP 7137901B2
Authority
JP
Japan
Prior art keywords
sewage
region
partition plate
flow control
contact surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018150408A
Other languages
Japanese (ja)
Other versions
JP2019076887A (en
Inventor
進 石田
亮 張
輝美 円谷
太郎 三好
タン フォン グェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Publication of JP2019076887A publication Critical patent/JP2019076887A/en
Application granted granted Critical
Publication of JP7137901B2 publication Critical patent/JP7137901B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Description

本発明は汚水処理装置及び汚水処理方法に関する。 The present invention relates to a sewage treatment apparatus and a sewage treatment method.

従来より、汚水を生物処理するための反応槽と、反応槽に浸漬され且つ生物処理された汚水から固形物を除去するための膜分離装置と、膜分離装置の下部に設置され且つ膜分離装置に対して空気等の気体を供給する散気管とを備える汚水処理装置が知られ、反応槽における汚水の生物処理は、例えば、微生物を含む有機汚泥、すなわち、いわゆる活性汚泥によって汚水が処理される活性汚泥法に基づいて実行される。具体的に、活性汚泥法においては、酸素存在下(好気状態)でアンモニアを亜硝酸や硝酸に変換する硝化反応が行われる。 Conventionally, a reaction tank for biologically treating sewage, a membrane separation device for removing solids from the sewage immersed in the reaction tank and biologically treated, and a membrane separation device installed at the bottom of the membrane separation device The biological treatment of sewage in the reaction tank is, for example, organic sludge containing microorganisms, that is, so-called activated sludge. It is carried out on the basis of the activated sludge method. Specifically, in the activated sludge process, a nitrification reaction is performed in the presence of oxygen (aerobic conditions) to convert ammonia into nitrous acid or nitric acid.

ところで、汚水を処理して清澄な処理水を得るためには、アンモニアから変換された亜硝酸や硝酸を窒素に変換する脱窒反応を行う必要がある。脱窒反応は酸素存在下(好気状態)で行われる硝化反応と異なり、無酸素状態で行う必要がある。脱窒反応は硝化反応が行われる反応槽と異なる反応槽で行われてもよいが、汚水処理装置の省スペース化を実現するために、単一の反応槽内で硝化反応及び脱窒反応が行われる汚水処理装置が提案されている(例えば、特許文献1参照)。 By the way, in order to treat sewage to obtain clear treated water, it is necessary to perform a denitrification reaction to convert nitrous acid and nitric acid converted from ammonia into nitrogen. Unlike the nitrification reaction which is carried out in the presence of oxygen (aerobic condition), the denitrification reaction must be carried out in the absence of oxygen. The denitrification reaction may be performed in a reaction tank different from the reaction tank in which the nitrification reaction is performed. A sewage treatment apparatus has been proposed (see, for example, Patent Document 1).

図7は従来の汚水処理装置を概略的に示す図である。図7の汚水処理装置は、好気状態での硝化反応及び無酸素状態での脱窒反応を行う反応槽1と、汚水を反応槽1に供給するための原水槽9とを備え、反応槽1は、反応槽1内を複数の区画に仕切るための仕切板7を有する。具体的に、反応槽1は、仕切板7で囲まれる汚水領域Aと、仕切板7及び反応槽1の内壁で囲まれる汚水領域Bとに仕切られ、汚水領域Aは膜分離装置2及び散気管4を有する。また、反応槽1は、原水槽9からの汚水の供給を開始するための汚水供給開始水位LWL(Low water level)と、原水槽9からの汚水の供給を停止するための汚水供給停止水位HWL(High water level)とを有し、仕切板7の上端部は汚水供給開始水位LWLと汚水供給停止水位HWLとの間に位置する。 FIG. 7 is a diagram schematically showing a conventional sewage treatment apparatus. The sewage treatment apparatus of FIG. 7 includes a reaction tank 1 for performing a nitrification reaction under an aerobic condition and a denitrification reaction under an anoxic condition, and a raw water tank 9 for supplying sewage to the reaction tank 1. 1 has a partition plate 7 for partitioning the inside of the reaction tank 1 into a plurality of compartments. Specifically, the reaction tank 1 is partitioned into a sewage area A surrounded by a partition plate 7 and a sewage area B surrounded by the partition plate 7 and the inner wall of the reaction tank 1. It has a trachea 4. In addition, the reaction tank 1 has a sewage supply start water level LWL (Low water level) for starting the supply of sewage from the raw water tank 9 and a sewage supply stop water level HWL for stopping the supply of sewage from the raw water tank 9. (High water level), and the upper end of the partition plate 7 is located between the sewage supply start water level LWL and the sewage supply stop water level HWL.

図7の汚水処理装置においては、反応槽1内の水位が汚水供給開始水位LWLになると原水槽9からの汚水の供給が開始され、水位が汚水供給停止水位HWLになると原水槽9からの汚水の供給が停止されるように設定され、汚水の水位が変化するように構成されている。これにより、汚水の水位は仕切板7の上端部より高い位置(以下、「汚水越流位置」という。)と、仕切板7の上端部より低い位置(以下、「汚水非越流位置」という。)とを往来する。 In the sewage treatment apparatus of FIG. 7, when the water level in the reaction tank 1 reaches the sewage supply start water level LWL, the supply of sewage from the raw water tank 9 is started, and when the water level reaches the sewage supply stop water level HWL, the sewage is discharged from the raw water tank 9. is set so that the supply of water is stopped and the sewage level is configured to vary. As a result, the water level of the sewage is set at a position higher than the upper end of the partition plate 7 (hereinafter referred to as "the sewage overflow position") and a position lower than the upper end of the partition plate 7 (hereafter referred to as the "wastewater non-overflow position"). ) and back and forth.

図8は、図7における反応槽1内の汚水の水位が汚水越流位置のときの汚水の流れを概略的に示す図である。 FIG. 8 is a diagram schematically showing the flow of sewage when the water level of sewage in the reaction tank 1 in FIG. 7 is at the sewage overflow position.

汚水の水位が汚水越流位置にあるとき、散気管4から膜分離装置2に対して供給される空気により、汚水が仕切板7の上端を越流し、仕切板7の周囲を循環する循環流が形成される。この循環流により、汚水領域Aの硝酸等は汚水領域Bに移行し、汚水領域Aの空気の大半は汚水領域Bに移行することなく反応槽1の外部に放出される。すなわち、循環流が形成されると、汚水領域Aでは酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応が進行し、汚水領域Bでは循環流に乗って汚水領域から移動した亜硝酸や硝酸を窒素に変換する脱窒反応が進行する。 When the sewage water level is at the sewage overflow position, sewage overflows the upper end of the partition plate 7 due to the air supplied from the air diffuser 4 to the membrane separation device 2, and the circulation flow circulates around the partition plate 7. is formed. Due to this circulating flow, nitric acid and the like in the sewage area A move to the sewage area B, and most of the air in the sewage area A is released outside the reaction tank 1 without moving to the sewage area B. That is, when the circulation flow is formed, the nitrification reaction that converts ammonia into nitrite and nitric acid proceeds in the presence of oxygen in the sewage area A, and in the sewage area B, the nitrite and nitrite that migrate from the sewage area on the circulation flow. A denitrification reaction that converts nitric acid to nitrogen proceeds.

一方、汚水の水位が汚水非越流位置にあるとき、汚水領域Aと汚水領域Bとの間で汚水の流通が分断されるため、散気管4が膜分離装置2に空気を供給しても、仕切板7の周囲を循環する循環流は形成されない。すなわち、汚水領域Aでは酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応が進行し、汚水領域Bでは汚水の流通が分断される前に汚水領域Aから移動した亜硝酸や硝酸を窒素に変換する脱窒反応が進行する。 On the other hand, when the sewage water level is at the sewage non-overflow position, the flow of sewage is divided between the sewage region A and the sewage region B, so even if the air diffuser 4 supplies air to the membrane separation device 2 , no circulation flow circulating around the partition plate 7 is formed. That is, in the sewage area A, the nitrification reaction that converts ammonia into nitrite and nitric acid proceeds in the presence of oxygen, and in the sewage area B, nitrite and nitric acid that have moved from the sewage area A before the flow of sewage is cut off are converted into nitrogen. The denitrification reaction that converts to progresses.

特開2004-261711号公報Japanese Patent Application Laid-Open No. 2004-261711

しかしながら、仕切板7の上端を越流し、汚水領域Bに移動した汚水の一部には乱流30が発生する(図9)。すなわち、汚水領域Bに存在する汚水のうち、循環流として汚水領域Bから仕切板7の下端を経て汚水領域Aに移動しない汚水が存在する場合がある。 However, turbulent flow 30 occurs in part of the sewage that overflows the upper end of the partition plate 7 and moves to the sewage area B (FIG. 9). That is, among the sewage existing in the sewage area B, sewage that does not move from the sewage area B through the lower end of the partition plate 7 to the sewage area A may exist as a circulating flow.

したがって、汚水が仕切板7の上端を越流し、仕切板7の周囲を循環する循環流が形成されても、乱流30の影響によって仕切板7の周囲を循環しない汚水が存在する。その結果、硝化反応及び脱窒反応が想定通り進行せず、汚水処理を安定して実行できないという問題があった。 Therefore, even if sewage overflows the upper end of the partition plate 7 and a circulation flow circulating around the partition plate 7 is formed, some sewage does not circulate around the partition plate 7 due to the influence of the turbulent flow 30 . As a result, the nitrification reaction and the denitrification reaction do not proceed as expected, and there is a problem that the sewage treatment cannot be stably performed.

本発明は、汚水処理を安定して実行することができる汚水処理装置及び汚水処理方法を提供することを目的とする。 An object of the present invention is to provide a sewage treatment apparatus and a sewage treatment method that can stably carry out sewage treatment.

上記目的を達成するために、本発明の汚水処理装置は、汚水を処理するための反応槽の内部に、前記汚水に含まれる汚染物質を分離する膜分離装置と、前記膜分離装置に気泡を供給する散気管と、前記反応槽の内部を複数の領域に仕切る仕切板とを備える汚水処理装置において、前記仕切板は、前記反応槽の内部を、前記汚水に含まれるアンモニアを亜硝酸又は硝酸に変換する硝化反応が進行する第1の領域と、無酸素状態で前記亜硝酸又は前記硝酸を窒素に変換する脱窒反応が進行する第2の領域とに仕切るとともに、前記第2の領域の汚水が接触する接触面を有し、前記接触面は、前記第2の領域に対して突出する矩形状の制流板を有し、前記制流板の長手方向は鉛直方向に沿うことを特徴とする。
上記目的を達成するために、本発明の汚水処理装置は、汚水を処理するための反応槽の内部に、前記汚水に含まれる汚染物質を分離する膜分離装置と、前記膜分離装置に気泡を供給する散気管と、前記反応槽の内部を複数の領域に仕切る仕切板とを備える汚水処理装置において、前記仕切板は、前記反応槽の内部を前記散気管が配置される第1の領域と、前記第1の領域以外の第2の領域とに仕切るとともに、前記第2の領域の汚水が接触する接触面を有し、前記接触面は、前記第2の領域に対して突出する制流板を有し、前記制流板は前記接触面に螺旋状に固定されていることを特徴とする。
In order to achieve the above object, the sewage treatment apparatus of the present invention comprises a membrane separation device for separating contaminants contained in the sewage, and air bubbles in the membrane separation device inside a reaction tank for treating sewage. In a sewage treatment apparatus comprising an air diffuser for supplying and a partition plate for partitioning the inside of the reaction tank into a plurality of areas, the partition plate divides the inside of the reaction tank into nitrous acid or nitric acid to remove ammonia contained in the sewage. and a second region where the denitrification reaction of converting the nitrous acid or nitric acid to nitrogen proceeds in the absence of oxygen. It has a contact surface with which sewage contacts, the contact surface has a rectangular flow control plate protruding toward the second region, and the longitudinal direction of the flow control plate extends along the vertical direction. and
In order to achieve the above object, the sewage treatment apparatus of the present invention comprises a membrane separation device for separating contaminants contained in the sewage, and air bubbles in the membrane separation device inside a reaction tank for treating sewage. A sewage treatment apparatus comprising an air diffuser to supply air and a partition plate that partitions the interior of the reaction tank into a plurality of regions, wherein the partition plate divides the interior of the reaction tank into a first region where the air diffuser is arranged , and a second region other than the first region, and have a contact surface with which the sewage in the second region contacts, the contact surface projecting to the second region. A plate is provided, and the flow control plate is spirally fixed to the contact surface.

上記目的を達成するために、本発明の汚水処理方法は、汚水を処理するための反応槽の内部に、前記汚水に含まれる汚染物質を分離する膜分離装置と、前記膜分離装置に気泡を供給する散気管と、前記反応槽の内部を複数の領域に仕切る仕切板とを備え、前記仕切板は、前記反応槽の内部を、前記汚水に含まれるアンモニアを亜硝酸又は硝酸に変換する硝化反応が進行する第1の領域と、無酸素状態で前記亜硝酸又は前記硝酸を窒素に変換する脱窒反応が進行する第2の領域とに仕切るとともに、前記第2の領域の汚水が接触する接触面を有し、前記接触面は、前記第2の領域に対して突出する矩形状の制流板を有し、前記制流板の長手方向は鉛直方向に沿っている汚水処理装置を用いた汚水処理方法において、前記汚水が前記仕切板を越える越流ステップと、前記仕切板を越えた汚水が前記制流板に沿って流れる制流ステップとを有することを特徴とする。
上記目的を達成するために、本発明の汚水処理方法は、汚水を処理するための反応槽の内部に、前記汚水に含まれる汚染物質を分離する膜分離装置と、前記膜分離装置に気泡を供給する散気管と、前記反応槽の内部を複数の領域に仕切る仕切板とを備え、前記仕切板は、前記反応槽の内部を前記散気管が配置される第1の領域と、前記第1の領域以外の第2の領域とに仕切るとともに、前記第2の領域の汚水が接触する接触面を有し、前記接触面は、前記第2の領域に対して突出する制流板を有し、前記制流板は前記接触面に螺旋状に固定されている汚水処理装置を用いた汚水処理方法において、前記汚水が前記仕切板を越える越流ステップと、前記仕切板を越えた汚水が前記制流板に沿って流れる制流ステップとを有することを特徴とする。
In order to achieve the above object, the sewage treatment method of the present invention comprises a membrane separation device for separating contaminants contained in the sewage, and air bubbles in the membrane separation device inside a reaction tank for treating sewage. and a partition plate that partitions the inside of the reaction tank into a plurality of areas, the partition plate divides the inside of the reaction tank into nitrite or nitric acid to convert ammonia contained in the sewage into nitrous acid or nitric acid. A first zone where the reaction proceeds and a second zone where the denitrifying reaction that converts the nitrous acid or the nitric acid into nitrogen in the absence of oxygen is partitioned, and in contact with the sewage in the second zone. A sewage treatment apparatus having a contact surface, the contact surface having a rectangular flow control plate protruding toward the second region, and the longitudinal direction of the flow control plate extending along the vertical direction . The above sewage treatment method is characterized by comprising an overflow step in which the sewage flows over the partition plate, and a flow control step in which the sewage flow over the partition plate flows along the flow control plate.
In order to achieve the above object, the sewage treatment method of the present invention comprises a membrane separation device for separating contaminants contained in the sewage, and air bubbles in the membrane separation device inside a reaction tank for treating sewage. and a partition plate that partitions the interior of the reaction vessel into a plurality of regions, the partition plate dividing the interior of the reaction vessel into a first region where the air diffusion pipe is arranged and the first region where the air diffuser is arranged. and a second region other than the region, and has a contact surface with which the sewage in the second region comes into contact, and the contact surface has a flow control plate that protrudes with respect to the second region a sewage treatment method using a sewage treatment apparatus in which the flow control plate is spirally fixed to the contact surface, wherein the sewage overflows the partition plate; and a restricting step for flowing along the restricting plate.

本発明によれば、汚水処理を安定して実行することができる。 ADVANTAGE OF THE INVENTION According to this invention, sewage treatment can be performed stably.

本発明の実施の形態に係る汚水処理装置を概略的に示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows schematically the sewage treatment apparatus which concerns on embodiment of this invention. 図1における反応槽が有する仕切板の周辺を概略的に示す斜視図である。FIG. 2 is a perspective view schematically showing the periphery of a partition plate of the reaction vessel in FIG. 1; 図1の汚水処理装置の上面図である。2 is a top view of the sewage treatment apparatus of FIG. 1; FIG. 図2における制流板の第1の変形例を概略的に示す斜視図である。FIG. 3 is a perspective view schematically showing a first modification of the flow control plate in FIG. 2; 図2における制流板の第2の変形例を概略的に示す斜視図である。FIG. 3 is a perspective view schematically showing a second modification of the flow control plate in FIG. 2; 図5における膜分離装置、仕切板及び制流板を備えた反応槽の上面図である。FIG. 6 is a top view of a reaction tank provided with the membrane separation device, partition plate and flow control plate in FIG. 5; 従来の汚水処理装置を概略的に示す図である。It is a figure which shows the conventional sewage treatment apparatus roughly. 図7における反応槽内の汚水の流れを概略的に示す側面図である。FIG. 8 is a side view schematically showing the flow of sewage in the reaction tank in FIG. 7; 図7における反応槽内の汚水の流れを概略的に示す斜視図である。FIG. 8 is a perspective view schematically showing the flow of sewage in the reaction tank in FIG. 7;

以下、本発明の実施の形態について図面を参照しながら詳述する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施の形態に係る汚水処理装置を概略的に示す図である。 FIG. 1 is a diagram schematically showing a sewage treatment apparatus according to an embodiment of the invention.

図1の汚水処理装置は、汚水を処理するための単槽式の反応槽1を備え、反応槽1は、汚水に含まれる汚染物質を分離する膜分離装置2と、膜分離装置2に気泡状の空気を供給する散気管4と、反応槽1の内部を複数の領域に仕切る仕切板7とを有する。膜分離装置2は反応槽1の外部の吸引ポンプ3に接続されている。吸引ポンプ3が駆動すると、生物処理された汚水は膜分離装置2によってろ過され、ろ過された水は反応槽1の槽外に取り出される。 The sewage treatment apparatus of FIG. 1 includes a single tank type reaction tank 1 for treating sewage. and a partition plate 7 that partitions the interior of the reactor 1 into a plurality of regions. The membrane separation device 2 is connected to a suction pump 3 outside the reactor 1 . When the suction pump 3 is driven, the biologically treated sewage is filtered by the membrane separator 2 and the filtered water is taken out of the reaction tank 1 .

散気管4は、膜分離装置2の下部に設置されるとともに、反応槽1の外部のブロワ5に接続され、ブロワ5は散気管4に空気を供給している。膜分離装置2は汚水をろ過するため、膜分離装置2の膜面には汚水中の汚泥物質等が付着し、膜分離装置2の膜面に付着した汚水中の汚泥物質等を放置すると、膜分離装置2が目詰まりして適切に汚水をろ過することができなくなる。したがって、散気管4が空気を膜分離装置2の膜面に供給し、汚泥物質等が膜分離装置2の膜面に付着するのを防止している。 The diffuser pipe 4 is installed in the lower part of the membrane separation device 2 and connected to a blower 5 outside the reaction vessel 1 , and the blower 5 supplies air to the diffuser pipe 4 . Since the membrane separation device 2 filters sewage, sludge substances and the like in the sewage adhere to the membrane surface of the membrane separation device 2. The membrane separation device 2 becomes clogged and cannot properly filter sewage. Therefore, the diffuser pipe 4 supplies air to the membrane surface of the membrane separator 2 and prevents sludge substances and the like from adhering to the membrane surface of the membrane separator 2 .

反応槽1は原水ポンプ8を介して汚水を格納する不図示の原水槽に接続され、原水ポンプ8が駆動すると、処理される汚水は原水槽から反応槽1に供給される。反応槽1は底部1a及び底部1aの縁部から起立する槽壁1bによって構成されている。 The reaction tank 1 is connected via a raw water pump 8 to a raw water tank (not shown) that stores sewage. When the raw water pump 8 is driven, sewage to be treated is supplied from the raw water tank to the reaction tank 1 . The reaction vessel 1 is composed of a bottom portion 1a and a vessel wall 1b standing from the edge of the bottom portion 1a.

図2は、図1における反応槽1が有する仕切板7の周辺を概略的に示す斜視図であり、図3は、図1の汚水処理装置の上面図である。 2 is a perspective view schematically showing the periphery of the partition plate 7 of the reaction tank 1 in FIG. 1, and FIG. 3 is a top view of the sewage treatment apparatus in FIG.

図2及び図3における仕切板7は、4枚の矩形状の板状部材からなり、2枚の仕切板7は、その長手方向が反応槽1の底部1aから反応槽1を満たす汚水の水面に関する方向(以下、「上下方向」という。)に一致し、膜分離装置2を介して対向している。また、他の2枚の仕切板7は、その長手方向が上下方向に直交する方向(以下、「横方向」という。)に一致し、膜分離装置2を介して対向している。各仕切板7は隣接する仕切板7と直交するように接続され、膜分離装置2及び散気管4を囲むように配置されるとともに、反応槽1の底部1aから離間して配置されている。このように仕切板7を配置することにより、反応槽1の内部は、仕切板7で囲まれ且つ散気管4が配置されている内部領域11(第1の領域)と、内部領域11以外の外部領域12(第2の領域)とに仕切られる。 The partition plate 7 in FIGS. 2 and 3 is composed of four rectangular plate members, and the two partition plates 7 extend from the bottom 1a of the reaction tank 1 to the water surface of the sewage filling the reaction tank 1 in the longitudinal direction. (hereinafter referred to as “vertical direction”) and are opposed to each other via the membrane separation device 2 . The other two partition plates 7 have their longitudinal directions aligned in a direction perpendicular to the vertical direction (hereinafter referred to as "lateral direction") and are opposed to each other with the membrane separation device 2 interposed therebetween. Each partition plate 7 is connected to the adjacent partition plate 7 so as to be perpendicular to each other, is arranged so as to surround the membrane separator 2 and the air diffuser 4, and is arranged apart from the bottom portion 1a of the reaction vessel 1. By arranging the partition plate 7 in this way, the interior of the reaction vessel 1 is divided into an internal region 11 (first region) surrounded by the partition plate 7 and in which the diffuser pipe 4 is arranged, and an area other than the internal region 11 It is partitioned into an external area 12 (second area).

反応槽1内の汚水の水位が汚水越流位置にあるとき、散気管4から膜分離装置2に空気が供給されることにより、汚水は内部領域11から仕切板7の上端を越流して仕切板7の外部の外部領域12に移行する。その後、汚水は外部領域12内を下降し、仕切板7よりも下の領域を経て仕切板7の内部領域11に戻る。すなわち、汚水の水位が汚水越流位置にあり、汚水が仕切板7を越流するとき、仕切板7の周囲を循環する循環流が形成される。循環流が形成されると、内部領域11の硝酸等は外部領域12に移行するが、散気管4から供給される空気の大半は内部領域11を経由して外部領域12に移行することなく反応槽1の外部に放出される。すなわち、循環流が形成されたとき、内部領域11では酸素存在下でアンモニアを亜硝酸や硝酸に変換する硝化反応が進行し、外部領域12では循環流に乗って汚水領域から移動した亜硝酸や硝酸を窒素に変換する脱窒反応が進行する。 When the water level of the sewage in the reaction tank 1 is at the sewage overflow position, air is supplied from the air diffuser 4 to the membrane separation device 2, so that the sewage overflows the upper end of the partition plate 7 from the internal region 11 and is partitioned. There is a transition to the outer region 12 outside the plate 7 . After that, the sewage descends in the outer area 12 and returns to the inner area 11 of the partition plate 7 via the area below the partition plate 7 . That is, when the sewage water level is at the sewage overflow position and the sewage overflows the partition plate 7, a circulation flow circulating around the partition plate 7 is formed. When the circulation flow is formed, nitric acid and the like in the inner region 11 move to the outer region 12, but most of the air supplied from the air diffuser 4 does not move to the outer region 12 via the inner region 11 and reacts. It is discharged outside the tank 1 . That is, when the circulation flow is formed, the nitrification reaction that converts ammonia into nitrite and nitric acid proceeds in the inner region 11 in the presence of oxygen, and the nitrite and nitrite that migrate from the sewage region along the circulation flow progress in the outer region 12. A denitrification reaction that converts nitric acid to nitrogen proceeds.

仕切板7は、外部領域12に存在する汚水が接触する接触面7aを有し、接触面7aは、外部領域12に対して突出する制流板10を有する。制流板10は矩形状の板状部材であり、制流板10の長手方向が上下方向に一致するように、例えば、溶接、ボルト、両面テープ又は接着剤等によって接触面7aに固定される。本実施の形態では、制流板10は、反応槽1の底部1a及び固定される仕切板7のいずれにも直交するように接触面7aに固定されている。具体的に、仕切板7のうち、長手方向と上下方向とが一致する仕切板7には2枚の制流板10が仕切板7の横方向に関する両端部から突出するように固定される。また、仕切板7のうち、長手方向と横方向とが一致する仕切板7には3枚の制流板10が横方向に関する両端部及びその中央から突出するように等間隔に固定されている。 The partition plate 7 has a contact surface 7a with which dirty water present in the outer region 12 contacts, and the contact surface 7a has a baffle plate 10 projecting with respect to the outer region 12 . The flow control plate 10 is a rectangular plate-like member, and is fixed to the contact surface 7a by, for example, welding, bolts, double-sided tape, or an adhesive so that the longitudinal direction of the flow control plate 10 is aligned with the vertical direction. . In this embodiment, the flow control plate 10 is fixed to the contact surface 7a so as to be perpendicular to both the bottom portion 1a of the reaction vessel 1 and the partition plate 7 to which it is fixed. Specifically, two flow control plates 10 are fixed so as to protrude from both ends of the partition plate 7 in the horizontal direction. Among the partition plates 7, the partition plate 7 whose longitudinal direction and lateral direction are aligned has three flow control plates 10 fixed at equal intervals so as to protrude from both ends in the lateral direction and the center thereof. .

各制流板10の上端部は、仕切板7の上端部とほぼ同じ位置となるように設置される。また、各制流板10の下端部は、仕切板7の下端部とほぼ同じ位置となるように反応槽1の底部1aから離間して設置される(図1)。制流板10の上下方向長さは仕切板7の上下方向長さとほぼ同一である。なお、制流板10の厚みは、汚水の流れに耐える強度を有する厚みであればよい。 The upper end portion of each flow control plate 10 is installed so as to be at approximately the same position as the upper end portion of the partition plate 7 . In addition, the lower end of each flow control plate 10 is placed apart from the bottom 1a of the reaction tank 1 so as to be positioned substantially at the same position as the lower end of the partition plate 7 (FIG. 1). The vertical length of the flow control plate 10 is substantially the same as the vertical length of the partition plate 7 . In addition, the thickness of the flow control plate 10 may be any thickness as long as it has the strength to withstand the flow of sewage.

また、本実施の形態では、各仕切板7に2~3枚の制流板10が固定されているが、各仕切板7に固定される制流板10の数や各制流板10の間隔は、仕切板7の大きさや反応槽1の大きさに応じて適宜決定すればよい。 In addition, in the present embodiment, two or three flow control plates 10 are fixed to each partition plate 7, but the number of flow control plates 10 fixed to each partition plate 7 and the number of flow control plates 10 The interval may be appropriately determined according to the size of the partition plate 7 and the size of the reaction vessel 1 .

さらに、本実施の形態では、制流板10が反応槽1の底部1a及び仕切板7のそれぞれに直交するように固定されているが、反応槽1の底部1a又は仕切板7に対し傾斜するように固定されてもよい。 Furthermore, in the present embodiment, the flow control plate 10 is fixed so as to be perpendicular to the bottom 1a of the reaction vessel 1 and the partition plate 7, respectively. may be fixed as

また、本実施の形態では、仕切板7が膜分離装置2の全周囲を囲包している場合について説明したが、仕切板7と反応槽1の槽壁1bとによって膜分離装置2の周囲を取り囲んでもよい。具体的に、反応槽1の対向する2つの槽壁1bと2枚の矩形状の仕切板7によって膜分離装置2を囲包し、又は反応槽1の3つの槽壁1bと1枚の矩形状の仕切板7によって膜分離装置2を囲包してもよい。また、反応槽1が大型の場合には、単位時間当たりの処理量を大きくするために、散気管4を配置する内部領域11を複数設けてもよい。 In addition, in the present embodiment, the case where the partition plate 7 surrounds the entire circumference of the membrane separation device 2 was described, but the partition plate 7 and the tank wall 1b of the reaction tank 1 allow the circumference of the membrane separation device 2 to may surround the Specifically, the membrane separation device 2 is surrounded by two opposing tank walls 1b of the reaction tank 1 and two rectangular partition plates 7, or three tank walls 1b of the reaction tank 1 and one rectangular partition plate 7 are enclosed. The membrane separation device 2 may be surrounded by a shaped partition plate 7 . Moreover, when the reaction vessel 1 is large, a plurality of internal regions 11 in which the air diffusion pipes 4 are arranged may be provided in order to increase the throughput per unit time.

さらに、本実施の形態の汚水処理装置に、反応槽1内の水位を調節するための水位制御手段を有していてもよい。水位制御手段としては、例えば、反応槽1内の水位、すなわち、液表面の位置を調べる液面センサーがある。液面センサーが汚水の水位を検出すると、原水ポンプ8が反応槽1に供給する原水の水量を自動的に制御する。 Further, the sewage treatment apparatus of this embodiment may have water level control means for adjusting the water level in the reaction tank 1 . As the water level control means, for example, there is a liquid level sensor for checking the water level in the reaction tank 1, that is, the position of the liquid surface. When the liquid level sensor detects the level of sewage, the raw water pump 8 automatically controls the amount of raw water supplied to the reaction tank 1 .

次に、反応槽1の内部に、膜分離装置2と、散気管4と、仕切板7とを備える汚水処理装置によって実行される汚水処理方法について説明する。 Next, a sewage treatment method performed by a sewage treatment apparatus including a membrane separator 2, an air diffuser 4, and a partition plate 7 inside the reaction tank 1 will be described.

上述したように、本実施の形態の汚水処理装置は、反応槽1の内部に、膜分離装置2と、散気管4と、仕切板7とを備える。膜分離装置2は、反応槽1の外で吸引ポンプ3に接続されるとともに、散気管4は反応槽1の外部でブロワ5に接続される(図1)。 As described above, the sewage treatment apparatus of this embodiment includes the membrane separator 2 , the air diffuser 4 , and the partition plate 7 inside the reaction tank 1 . The membrane separation device 2 is connected to a suction pump 3 outside the reaction vessel 1, and the air diffuser 4 is connected to a blower 5 outside the reaction vessel 1 (Fig. 1).

仕切板7は、膜分離装置2の横方向の周囲を囲包し、反応槽1の内部を散気管4が配置される内部領域11と、内部領域11以外の外部領域12とに仕切る。仕切板7は、外部領域12(仕切板7の外部)に存在する汚水が接触する接触面7aを有し、接触面7aは、外部領域12に対して突出する複数の制流板10を有する。制流板10は、反応槽1の底面及び仕切板7のそれぞれに直交するように固定されている。反応槽1には、微生物を含有する活性汚泥が収容され、この微生物が、汚水中の有機物を分解する。 The partition plate 7 surrounds the lateral periphery of the membrane separation device 2 and partitions the interior of the reaction vessel 1 into an internal region 11 in which the diffuser pipe 4 is arranged and an external region 12 other than the internal region 11 . The partition plate 7 has a contact surface 7a with which sewage existing in an external area 12 (outside the partition plate 7) contacts, and the contact surface 7a has a plurality of flow control plates 10 protruding with respect to the external area 12. . The flow control plate 10 is fixed so as to be perpendicular to the bottom surface of the reaction vessel 1 and the partition plate 7 . The reaction tank 1 contains activated sludge containing microorganisms, and the microorganisms decompose organic matter in the sewage.

ブロワ5が駆動すると膜分離装置2の下部に設置された散気管4から気泡状の空気が供給される。原水ポンプ8により供給された汚水は、反応槽1内で処理される。吸引ポンプ3が駆動すると、膜分離装置2によって生物処理された汚水がろ過され、ろ過水が吸引ポンプ3により吸引されて反応槽1の外部に取り出される。このとき、散気管4から膜分離装置2に供給される空気が、膜分離装置2の膜面に衝突し、その膜面に汚泥物質等が付着するのを防止する。 When the blower 5 is driven, bubbly air is supplied from the diffuser pipe 4 installed at the bottom of the membrane separator 2 . Sewage supplied by the raw water pump 8 is treated in the reaction tank 1 . When the suction pump 3 is driven, the sewage that has been biologically treated by the membrane separation device 2 is filtered, and the filtered water is sucked by the suction pump 3 and taken out of the reaction tank 1 . At this time, the air supplied from the diffuser pipe 4 to the membrane separation device 2 collides with the membrane surface of the membrane separation device 2 to prevent sludge substances and the like from adhering to the membrane surface.

反応槽1においては、水位が仕切板7の上端部より高状態(以下、「越流状態」という。)と、水位が仕切板7の上端部より低状態とが交互に作り出される。 In the reaction vessel 1, a state in which the water level is higher than the upper end of the partition plate 7 (hereinafter referred to as "overflow state") and a state in which the water level is lower than the upper end of the partition plate 7 are alternately created.

本実施の形態では、汚水が越流状態にある場合、散気管4からの空気により内部領域11において形成された汚水の上向流が、仕切板7の上端を越えて外部領域12に越流する(越流ステップ)。越流ステップにおける汚水の越流速度は、ブロワ5から散気管4に供給される空気の風量を変化させることにより調節することができる。 In this embodiment, when the sewage is in an overflow state, the sewage upward flow formed in the inner region 11 by the air from the air diffuser 4 overflows the upper end of the partition plate 7 and overflows into the outer region 12. (overflow step). The sewage overflow speed in the overflow step can be adjusted by changing the air volume supplied from the blower 5 to the diffuser pipe 4 .

外部領域12に越流した汚水は、制流板10により流路が規制され、外部領域12内を制流板10に沿って下降する(制流ステップ)。図2における制流板10の場合には、外部領域12の汚水の流れは上下方向に制流される。そのため、汚水は、外部領域12内を下降するときに乱流が発生し且つその乱流の影響を受けても拡散することなく外部領域12内を下降し、仕切板7よりも下の領域を経て内部領域11に戻り、循環流が形成される。 The sewage overflowing the external area 12 has its flow path regulated by the flow control plate 10, and descends along the flow control plate 10 in the external region 12 (flow control step). In the case of the flow control plate 10 in FIG. 2, the flow of sewage in the outer region 12 is restricted in the vertical direction. Therefore, when the sewage descends in the outer region 12, a turbulent flow is generated, and even if it is affected by the turbulent flow, it descends in the outer region 12 without diffusing, and flows through the region below the partition plate 7. Afterwards, it returns to the inner region 11 and a circulation flow is formed.

すなわち、本実施の形態によれば、汚水が越流状態にある場合において、外部領域12(仕切板7の外部)に存在する汚水は、乱流による移動エネルギーの散逸のような損失を発生することなく下降し、その後、内部領域11に戻るため、循環流の勢いは向上する。これにより、循環流の影響が反応槽1全体に及び、外部領域12において、汚水の大部分が循環流の影響を受け、内部領域11での硝化反応及び外部領域12での脱窒反応が想定通り進行する。 That is, according to this embodiment, when the sewage is in an overflow state, the sewage existing in the external area 12 (outside the partition plate 7) generates losses such as dissipation of transfer energy due to turbulent flow. Since it descends without stopping and then returns to the inner region 11, the vigor of the circulating flow increases. As a result, the entire reaction tank 1 is affected by the circulation flow, most of the wastewater is affected by the circulation flow in the external region 12, and the nitrification reaction in the internal region 11 and the denitrification reaction in the external region 12 are assumed. go through the street.

また、循環流の影響が反応槽1全体に及ぶため、反応槽1内に汚泥の停滞又は偏在や沈降が生じることがなく、反応槽1内における活性汚泥濃度や溶存酸素濃度の分布を均一にすることができる。 In addition, since the circulation flow affects the entire reaction tank 1, there is no stagnation, uneven distribution, or sedimentation of sludge in the reaction tank 1, and the distribution of the activated sludge concentration and dissolved oxygen concentration in the reaction tank 1 is uniform. can do.

図1乃至図3の汚水処理装置によれば、汚水を処理するための反応槽1を備え、反応槽1は膜分離装置2及び散気管4を有するとともに、膜分離装置2及び散気管4を囲むように配置される仕切板7を有する。仕切板7は、反応槽1の内部を散気管4が配置される内部領域11と、内部領域11以外の外部領域12とに仕切るとともに、反応槽1の底部1aからは離間している。これにより、反応槽1内の汚水の水位が汚水越流位置にあるとき、散気管4から膜分離装置2に空気が供給されると、汚水が仕切板7の周囲を循環する循環流が発生する。 According to the sewage treatment apparatus of FIGS. 1 to 3, a reaction tank 1 for treating sewage is provided, and the reaction tank 1 has a membrane separator 2 and an air diffuser 4, and the membrane separator 2 and the air diffuser 4 It has a partition plate 7 arranged so as to surround it. The partition plate 7 divides the inside of the reaction vessel 1 into an internal area 11 where the air diffuser 4 is arranged and an external area 12 other than the internal area 11, and is separated from the bottom portion 1a of the reaction vessel 1. As a result, when the water level of the sewage in the reaction tank 1 is at the sewage overflow position, when air is supplied from the diffuser pipe 4 to the membrane separation device 2, a circulation flow is generated in which the sewage circulates around the partition plate 7. do.

このとき、仕切板7は外部領域12の汚水が接触する接触面7aを有し、接触面7aは、外部領域12に対して突出する制流板10を有するので、仕切板7の上端を越えて外部領域12に越流した汚水は、接触面7a及び制流板10に沿って仕切板7の下端に移動する。これにより、仕切板7の上端を越えた汚水が仕切板7の下端に移動する間に乱流が発生し、その乱流の影響を受けた一部の汚水が仕切板7の下端に到達せず、汚水の一部が循環流の規模が縮小することを防止することができる。 At this time, the partition plate 7 has a contact surface 7a with which the sewage in the external area 12 contacts, and the contact surface 7a has the flow control plate 10 projecting to the external area 12, so that the upper end of the partition plate 7 is exceeded. The sewage overflowing to the external area 12 moves to the lower end of the partition plate 7 along the contact surface 7a and the flow control plate 10. As shown in FIG. As a result, a turbulent flow occurs while the sewage that has passed over the upper end of the partition plate 7 moves to the lower end of the partition plate 7, and a part of the sewage affected by the turbulent flow does not reach the lower end of the partition plate 7. Therefore, it is possible to prevent a reduction in the scale of the circulating flow of part of the sewage.

すなわち、外部領域12に越流した汚水は、乱流による移動エネルギーの散逸などの損失を起こすことなく内部領域11に戻るため、循環流の勢いが向上する。これにより、循環流の影響が反応槽1全体に及び、外部領域12の汚水の大部分が循環流の影響を受けるため、内部領域11での硝化反応及び外部領域12での脱窒反応を確実に進行させることができ、もって、汚水処理を安定して実行することができる。 That is, the sewage overflowing the outer region 12 returns to the inner region 11 without causing loss such as dissipation of movement energy due to turbulent flow, thereby improving the vigor of the circulating flow. As a result, the entire reaction tank 1 is affected by the circulation flow, and most of the sewage in the external area 12 is affected by the circulation flow, so that the nitrification reaction in the internal area 11 and the denitrification reaction in the external area 12 are ensured. It is possible to proceed to the next step, and thus the sewage treatment can be stably performed.

また、反応槽1の全体に勢いが向上した循環流の影響が及ぶことにより、汚泥が反応槽1内の一部に停滞し、偏在し、又は反応槽1の底部1aに沈降することがなく、反応槽1内における活性汚泥濃度や溶存酸素濃度の分布が均一となるので、安定した汚水処理を行うことができる。 In addition, since the circulation flow with increased momentum affects the entire reaction tank 1, the sludge does not stagnate in a part of the reaction tank 1, is unevenly distributed, or does not settle on the bottom 1a of the reaction tank 1. Since the distribution of activated sludge concentration and dissolved oxygen concentration in the reaction tank 1 becomes uniform, stable wastewater treatment can be performed.

図4は、図2における制流板10の第1の変形例を概略的に示す斜視図である。図4における制流板40は、その構成、作用が図2における制流板10と基本的に同じであり、制流板40の下端部が反応槽1の底部1aに当接している点で図2における制流板10と異なる。以下、重複した構成、作用については説明を省略し、異なる構成、作用についての説明を行う。 FIG. 4 is a perspective view schematically showing a first modification of the flow restricting plate 10 in FIG. The flow control plate 40 shown in FIG. 4 is basically the same as the flow control plate 10 shown in FIG. It is different from the flow control plate 10 in FIG. Hereinafter, descriptions of duplicate configurations and actions will be omitted, and different configurations and actions will be described.

図4において、各制流板40はその下端部が反応槽1の底部1aに当接するように設置される。すなわち、図4における制流板40の下端部は、図2における制流板10の下端部よりも、反応槽1の底部1aまで延長されている。そのため、仕切板7より下の領域においても、汚水が越流状態にある場合に汚水の流路が規制され、汚水が乱流による拡散を起こすことなく内部領域11に移行する。したがって、図4における制流板40を用いることにより、仕切板7の下端部付近において、汚水の移動エネルギーの損失を防ぐことができるため、反応槽1の全体に及ぶ循環流の勢いがさらに向上し、さらに安定した汚水処理を行うことができる。 In FIG. 4, each flow control plate 40 is installed so that its lower end portion abuts against the bottom portion 1a of the reaction vessel 1. As shown in FIG. That is, the lower end of the flow control plate 40 in FIG. 4 extends to the bottom 1a of the reaction tank 1 than the lower end of the flow control plate 10 in FIG. Therefore, even in the area below the partition plate 7, when the sewage is in an overflow state, the flow path of the sewage is regulated, and the sewage moves to the inner area 11 without being diffused by turbulent flow. Therefore, by using the flow control plate 40 in FIG. 4, the loss of the wastewater transfer energy can be prevented in the vicinity of the lower end of the partition plate 7, so that the momentum of the circulating flow throughout the reaction tank 1 is further improved. and more stable sewage treatment.

図5は、図2における制流板10の第2の変形例を概略的に示す斜視図であり、図6は、図5における膜分離装置2、仕切板7及び制流板50を備えた反応槽1の上面図である。 FIG. 5 is a perspective view schematically showing a second modification of the flow control plate 10 in FIG. 2, and FIG. 2 is a top view of the reaction tank 1; FIG.

図5及び図6における制流板50は、その構成、作用が図2における制流板10と基本的に同じであり、制流板50が仕切板7の接触面7aに螺旋状に固定されている点で図2における制流板10と異なる。以下、重複した構成、作用については説明を省略し、異なる構成、作用についての説明を行う。 The restrictor plate 50 in FIGS. 5 and 6 is basically the same in configuration and function as the restrictor plate 10 in FIG. It differs from the flow control plate 10 in FIG. Hereinafter, descriptions of duplicate configurations and actions will be omitted, and different configurations and actions will be described.

図5及び図6においては、複数枚の制流板50が1枚ずつ順に連結され、外部領域12の汚水が接触する仕切板7の接触面7aに螺旋状に固定される。 5 and 6, a plurality of flow control plates 50 are connected one by one and fixed spirally to the contact surface 7a of the partition plate 7 with which the sewage in the external area 12 contacts.

図2及び図4における制流板10は、汚水が越流状態にある場合にいずれも内部領域11から外部領域12に越流した汚水の流れを上下方向に規制し、外部領域12において上下方向の流れを形成する。これに対し、図5における制流板50は、汚水が越流状態にある場合に外部領域12に越流した汚水の流れを螺旋状に下降するように規制し、外部領域12において螺旋状の流れを形成する。 The flow control plate 10 in FIGS. 2 and 4 regulates the flow of sewage overflowing from the inner region 11 to the outer region 12 in the vertical direction when the sewage is in an overflow state, and in the outer region 12 form a flow of On the other hand, the flow control plate 50 in FIG. form a flow.

制流板50により流路を規制された汚水は、乱流が発生しても、その影響を受けることなく、制流板50に沿って螺旋状に外部領域12内を下降する。その後、仕切板7の下端部に到達した汚水は、仕切板7よりも下の領域を経て内部領域11に戻り、循環流が形成される。 Even if turbulence occurs, the sewage whose flow path is regulated by the flow control plate 50 spirally descends inside the external region 12 along the flow control plate 50 without being affected by the turbulence. After that, the sewage that has reached the lower end of the partition plate 7 returns to the inner region 11 through the region below the partition plate 7 to form a circulation flow.

図5の制流板50を接触面7aに固定すると、外部領域12において渦流が形成される。これにより、外部領域12の汚水は、渦流の影響を受け、均一に撹拌された後に内部領域11に戻るので、反応槽1において汚水処理をさらに安定して実行することができる。また、汚泥は渦流と共に撹拌され反応槽1内を循環するため、反応槽1の底部1aにおける槽壁1b周辺に滞留し難くなり、反応槽1の底部1aに沈降するのを防止することができる。なお、接触面7aに固定される制流板50の数や各制流板10の間隔は、仕切板7の大きさや反応槽1の大きさに応じて適宜決定すればよい。 A vortex is formed in the outer region 12 when the baffle plate 50 of FIG. 5 is fixed to the contact surface 7a. As a result, the sewage in the outer region 12 is affected by the swirling current and returns to the inner region 11 after being uniformly agitated. In addition, since the sludge is agitated with the swirling current and circulates in the reaction tank 1, it becomes difficult for the sludge to stay around the tank wall 1b in the bottom part 1a of the reaction tank 1, and it is possible to prevent the sludge from settling on the bottom part 1a of the reaction tank 1. . The number of flow control plates 50 fixed to the contact surface 7 a and the intervals between the flow control plates 10 may be appropriately determined according to the size of the partition plate 7 and the size of the reaction vessel 1 .

以上、本発明について、上述した実施の形態を用いて説明したが、本発明は上述した実施の形態に限定されるものではない。 Although the present invention has been described using the above-described embodiments, the present invention is not limited to the above-described embodiments.

本発明は、汚水処理を安定して実行することができる汚水処理装置及び方法を提供することができる。 INDUSTRIAL APPLICABILITY The present invention can provide a sewage treatment apparatus and method that can stably carry out sewage treatment.

1 反応槽
2 膜分離装置
4 散気管
7 仕切板
7a 接触面
10,40,50 制流板
11 内部領域
12 外部領域
1 Reaction Tank 2 Membrane Separator 4 Air Diffuser 7 Partition Plate 7a Contact Surface 10, 40, 50 Control Plate 11 Internal Area 12 External Area

Claims (6)

汚水を処理するための反応槽の内部に、前記汚水に含まれる汚染物質を分離する膜分離装置と、前記膜分離装置に気泡を供給する散気管と、前記反応槽の内部を複数の領域に仕切る仕切板とを備える汚水処理装置において、
前記仕切板は、前記反応槽の内部を、前記汚水に含まれるアンモニアを亜硝酸又は硝酸に変換する硝化反応が進行する第1の領域と、無酸素状態で前記亜硝酸又は前記硝酸を窒素に変換する脱窒反応が進行する第2の領域とに仕切るとともに、前記第2の領域の汚水が接触する接触面を有し、
前記接触面は、前記第2の領域に対して突出する矩形状の制流板を有し、
前記制流板の長手方向は鉛直方向に沿うことを特徴とする汚水処理装置。
A membrane separation device for separating contaminants contained in the sewage, an air diffuser for supplying air bubbles to the membrane separation device, and a plurality of regions inside the reaction vessel for treating sewage. In a sewage treatment device comprising a partition plate,
The partition plate divides the interior of the reaction tank into a first region where a nitrification reaction that converts ammonia contained in the sewage into nitrous acid or nitric acid proceeds, and a first region where the nitrous acid or nitric acid is converted into nitrogen in an oxygen-free state. It is divided into a second region where the denitrification reaction to be converted progresses , and has a contact surface with which the sewage in the second region comes into contact,
The contact surface has a rectangular flow control plate that protrudes with respect to the second region ,
A sewage treatment apparatus , wherein the longitudinal direction of the flow control plate is along the vertical direction .
前記制流板は、前記反応槽の底面及び前記仕切板のそれぞれに直交していることを特徴とする請求項1記載の汚水処理装置。 2. The sewage treatment apparatus according to claim 1, wherein the flow control plate is perpendicular to the bottom surface of the reaction tank and the partition plate. 前記制流板は、前記反応槽の底部に当接していることを特徴とする請求項2記載の汚水処理装置。 3. A sewage treatment apparatus according to claim 2, wherein said flow control plate is in contact with the bottom of said reaction tank. 汚水を処理するための反応槽の内部に、前記汚水に含まれる汚染物質を分離する膜分離装置と、前記膜分離装置に気泡を供給する散気管と、前記反応槽の内部を複数の領域に仕切る仕切板とを備える汚水処理装置において、
前記仕切板は、前記反応槽の内部を前記散気管が配置される第1の領域と、前記第1の領域以外の第2の領域とに仕切るとともに、前記第2の領域の汚水が接触する接触面を有し、
前記接触面は、前記第2の領域に対して突出する制流板を有し、
前記制流板は前記接触面に螺旋状に固定されていることを特徴とする汚水処理装置。
A membrane separation device for separating contaminants contained in the sewage, an air diffuser for supplying air bubbles to the membrane separation device, and a plurality of regions inside the reaction vessel for treating sewage. In a sewage treatment device comprising a partition plate,
The partition plate partitions the interior of the reaction tank into a first region where the air diffuser is arranged and a second region other than the first region, and the second region contacts sewage. having a contact surface,
The contact surface has a flow control plate projecting with respect to the second region,
The sewage treatment apparatus, wherein the flow control plate is spirally fixed to the contact surface.
汚水を処理するための反応槽の内部に、前記汚水に含まれる汚染物質を分離する膜分離装置と、前記膜分離装置に気泡を供給する散気管と、前記反応槽の内部を複数の領域に仕切る仕切板とを備え、前記仕切板は、前記反応槽の内部を、前記汚水に含まれるアンモニアを亜硝酸又は硝酸に変換する硝化反応が進行する第1の領域と、無酸素状態で前記亜硝酸又は前記硝酸を窒素に変換する脱窒反応が進行する第2の領域とに仕切るとともに、前記第2の領域の汚水が接触する接触面を有し、前記接触面は、前記第2の領域に対して突出する矩形状の制流板を有し、前記制流板の長手方向は鉛直方向に沿っている汚水処理装置を用いた汚水処理方法において、
前記汚水が前記仕切板を越える越流ステップと、
前記仕切板を越えた汚水が前記制流板に沿って流れる制流ステップと
を有することを特徴とする汚水処理方法。
A membrane separation device for separating contaminants contained in the sewage, an air diffuser for supplying air bubbles to the membrane separation device, and a plurality of regions inside the reaction vessel for treating sewage. and a partition plate that divides the interior of the reaction tank into a first region where a nitrification reaction that converts ammonia contained in the sewage into nitrous acid or nitric acid proceeds, and a first region where the nitrification reaction proceeds in an oxygen-free state. It is partitioned into a second region where nitric acid or a denitrification reaction that converts the nitric acid into nitrogen proceeds , and has a contact surface with which the sewage in the second region contacts, the contact surface being the second region. In a sewage treatment method using a sewage treatment apparatus having a rectangular flow control plate projecting against the
an overflow step in which the sewage exceeds the partition plate;
and a regulating step in which sewage that has passed over the partition plate flows along the regulating plate .
汚水を処理するための反応槽の内部に、前記汚水に含まれる汚染物質を分離する膜分離装置と、前記膜分離装置に気泡を供給する散気管と、前記反応槽の内部を複数の領域に仕切る仕切板とを備え、前記仕切板は、前記反応槽の内部を前記散気管が配置される第1の領域と、前記第1の領域以外の第2の領域とに仕切るとともに、前記第2の領域の汚水が接触する接触面を有し、前記接触面は、前記第2の領域に対して突出する制流板を有し、前記制流板は前記接触面に螺旋状に固定されている汚水処理装置を用いた汚水処理方法において、A membrane separation device for separating contaminants contained in the sewage, an air diffuser for supplying air bubbles to the membrane separation device, and a plurality of regions inside the reaction vessel for treating sewage. a partition plate that partitions the interior of the reaction vessel into a first region in which the air diffuser is arranged and a second region other than the first region; a contact surface with which sewage in the area of the contact surface contacts the second area, the contact surface having a flow control plate protruding toward the second area, the flow control plate being spirally fixed to the contact surface In the sewage treatment method using the sewage treatment equipment,
前記汚水が前記仕切板を越える越流ステップと、an overflow step in which the sewage exceeds the partition plate;
前記仕切板を越えた汚水が前記制流板に沿って流れる制流ステップとa restricting step in which sewage that has crossed the partition plate flows along the restricting plate;
を有することを特徴とする汚水処理方法。A sewage treatment method characterized by having
JP2018150408A 2017-10-23 2018-08-09 Sewage treatment equipment and sewage treatment method Active JP7137901B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017204164 2017-10-23
JP2017204164 2017-10-23

Publications (2)

Publication Number Publication Date
JP2019076887A JP2019076887A (en) 2019-05-23
JP7137901B2 true JP7137901B2 (en) 2022-09-15

Family

ID=66627007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018150408A Active JP7137901B2 (en) 2017-10-23 2018-08-09 Sewage treatment equipment and sewage treatment method

Country Status (1)

Country Link
JP (1) JP7137901B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112473068A (en) * 2020-12-04 2021-03-12 中核建中核燃料元件有限公司 High-activity material digestion device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001321791A (en) 2000-05-17 2001-11-20 Sekisui Chem Co Ltd Method for storing waste sludge
JP2004261711A (en) 2003-02-28 2004-09-24 Yoshikimi Watanabe Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP2005169241A (en) 2003-12-10 2005-06-30 Sumitomo Heavy Ind Ltd Aeration equipment
JP2007268415A (en) 2006-03-31 2007-10-18 Toray Ind Inc Immersion type membrane separation apparatus and water producing method
JP2009261994A (en) 2008-04-22 2009-11-12 Hitachi Plant Technologies Ltd Treatment method and treatment apparatus of drainage

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5641834Y2 (en) * 1976-08-14 1981-09-30

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001321791A (en) 2000-05-17 2001-11-20 Sekisui Chem Co Ltd Method for storing waste sludge
JP2004261711A (en) 2003-02-28 2004-09-24 Yoshikimi Watanabe Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP2005169241A (en) 2003-12-10 2005-06-30 Sumitomo Heavy Ind Ltd Aeration equipment
JP2007268415A (en) 2006-03-31 2007-10-18 Toray Ind Inc Immersion type membrane separation apparatus and water producing method
JP2009261994A (en) 2008-04-22 2009-11-12 Hitachi Plant Technologies Ltd Treatment method and treatment apparatus of drainage

Also Published As

Publication number Publication date
JP2019076887A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
JP5665307B2 (en) Organic waste water treatment apparatus and organic waste water treatment method
JP5217159B2 (en) Sewage treatment apparatus and method
JP7105162B2 (en) Organic wastewater treatment equipment
EP3851417B1 (en) Method for treating organic wastewater, and device for treating organic wastewater
JP5260417B2 (en) Sewage treatment facilities and methods for renovating sewage treatment facilities
JP7137901B2 (en) Sewage treatment equipment and sewage treatment method
JP7132682B2 (en) Sewage treatment equipment and sewage treatment method
JP2008246357A (en) Membrane separation method and apparatus
JP7016623B2 (en) Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method
KR100889377B1 (en) A wastewater transaction appratus
US6773596B2 (en) Activated sludge method and device for the treatment of effluent with nitrogen and phosphorus removal
KR101367229B1 (en) Operating method of advanced treatment process use of submerged membrane and advanced treatment apparatus thereof
WO2010101152A1 (en) Device for membrane separation type activated-sludge treatment and method therefor
JP2014113511A (en) Membrane separation apparatus, and operation method of membrane separation apparatus
JP6624926B2 (en) Organic wastewater treatment apparatus and organic wastewater treatment method
JP2019150820A (en) Sewage treatment apparatus and sewage treatment method
JP2008212930A (en) Membrane separator
JP3169117B2 (en) Biological wastewater treatment equipment
WO2023074681A1 (en) Wastewater treatment apparatus, and waste water treatment method
WO2023276996A1 (en) Waste water treatment device, and waste water treatment method
JPH10165984A (en) Nitrogen removing apparatus
WO2020031684A1 (en) Water purifier tank
JP2023008037A (en) Wastewater treatment apparatus and wastewater treatment method
JP2011050905A (en) Apparatus for active treatment of sewage
JP6775364B2 (en) Sewage treatment equipment and sewage treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220422

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220902

R150 Certificate of patent or registration of utility model

Ref document number: 7137901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150