JPH06254583A - Aerobic treatment of nitrogen and/or phosphorus-deficient organic waste liquid - Google Patents
Aerobic treatment of nitrogen and/or phosphorus-deficient organic waste liquidInfo
- Publication number
- JPH06254583A JPH06254583A JP4262893A JP4262893A JPH06254583A JP H06254583 A JPH06254583 A JP H06254583A JP 4262893 A JP4262893 A JP 4262893A JP 4262893 A JP4262893 A JP 4262893A JP H06254583 A JPH06254583 A JP H06254583A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- nitrogen
- ozone
- treatment
- phosphorus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は窒素および/またはリン
が欠乏する有機性排液を好気的に処理する窒素および/
またはリン欠乏有機性排液の好気性処理方法に関する。FIELD OF THE INVENTION The present invention is directed to the aerobic treatment of nitrogen and / or phosphorus deficient organic effluents.
Or, it relates to a method for aerobic treatment of phosphorus-deficient organic drainage.
【0002】[0002]
【従来の技術】従来、窒素および/またはリンが欠乏す
る有機性排液は活性汚泥法などの好気性処理法により処
理されており、この場合好気性微生物の生育に必要な窒
素やリンが被処理液に添加されている。一般に排液の好
気性処理法は微生物を利用して処理する方法であるの
で、処理に際しては好気性微生物が十分に生育し、活動
する条件において処理する必要がある。例えば栄養の点
では、窒素は排液中のBODの1/20倍程度、炭素の
1/15倍程度、リンは排液中のBODの1/100倍
程度、炭素の1/50倍程度は必要であるとされてい
る。2. Description of the Related Art Conventionally, organic effluent deficient in nitrogen and / or phosphorus has been treated by an aerobic treatment method such as an activated sludge method. In this case, nitrogen and phosphorus necessary for the growth of aerobic microorganisms are not covered. It is added to the processing liquid. Generally, the aerobic treatment method of waste liquid is a method of treating by utilizing microorganisms, and therefore, it is necessary to treat under the condition that aerobic microorganisms grow sufficiently and are active. For example, in terms of nutrition, nitrogen is about 1/20 times BOD in the effluent, about 1/15 times the carbon, phosphorus is about 1/100 times the BOD in the effluent, and about 1/50 times the carbon. It is said to be necessary.
【0003】このため窒素および/またはリンが欠乏す
る有機性排液を処理する場合、従来は上記値となるよう
にアンモニウム塩やリン酸塩などの化合物を窒素および
/またはリン源として排液に添加している。しかし、こ
のような従来の方法では、窒素やリン源のコストがかか
り、また必要充分な窒素やリンを添加することが難し
く、過剰に添加すると処理水中に窒素やリンがリーク
し、水質悪化の原因になる場合がある。Therefore, when treating an organic drainage deficient in nitrogen and / or phosphorus, conventionally, a compound such as ammonium salt or phosphate is used as a nitrogen and / or phosphorus source in the drainage so as to attain the above value. I am adding. However, in such a conventional method, the cost of nitrogen and phosphorus sources is high, and it is difficult to add necessary and sufficient nitrogen and phosphorus. If added excessively, nitrogen and phosphorus will leak into the treated water, resulting in poor water quality. May cause.
【0004】一方特公昭57−19719号には、余剰
汚泥を超音波による破壊、ホモジナイザーによる磨砕、
ミキサーによる磨砕、高圧と瞬間的な減圧膨張による破
壊またはオゾンガスによる酸化分解を行って微生物体細
胞を破壊し、得られた液を好気性消化する余剰汚泥の処
理方法が開示されている。On the other hand, Japanese Examined Patent Publication No. 57-19719 discloses that excess sludge is destroyed by ultrasonic waves, ground by a homogenizer,
Disclosed is a method for treating excess sludge in which microbial somatic cells are destroyed by milling with a mixer, destruction by high-pressure and instantaneous decompression expansion, or oxidative decomposition by ozone gas, and the obtained liquid is aerobically digested.
【0005】しかしこの方法は、余剰汚泥を減容化する
ための方法であり、微生物体細胞を破壊した液を窒素お
よび/またはリン源として用い、このような液を窒素お
よび/またはリンの欠乏した被処理液に添加して排液を
好気性処理することは開示されていない。However, this method is a method for reducing the volume of excess sludge, and a liquid obtained by destroying microbial somatic cells is used as a nitrogen and / or phosphorus source, and such liquid is deficient in nitrogen and / or phosphorus. It is not disclosed that the waste liquid is aerobically treated by adding it to the treated liquid.
【0006】また特公昭49−11813号には、有機
性排液の好気性処理により生成する余剰汚泥に、アルカ
リを添加して加熱することにより加水分解し、分解液を
中和後好気性処理装置に戻すようにした余剰汚泥の処理
方法が提案されている。In Japanese Patent Publication No. Sho 49-11813, excess sludge produced by aerobic treatment of organic waste liquid is hydrolyzed by adding an alkali and heating, and the decomposed liquid is neutralized and aerobic treated. A method for treating excess sludge that is returned to the device has been proposed.
【0007】しかしこの方法も、余剰汚泥を減容化する
ための方法であり、アルカリ分解液を窒素および/また
はリン源として用い、このような液を窒素および/また
はリンの欠乏した被処理液に添加して排液を好気性処理
することは開示されていない。However, this method is also a method for reducing the volume of excess sludge, and an alkali decomposition solution is used as a nitrogen and / or phosphorus source, and such solution is deficient in nitrogen and / or phosphorus. To treat the effluent aerobically by adding to the above is not disclosed.
【0008】[0008]
【発明が解決しようとする課題】本発明の目的は、窒素
および/またはリンが欠乏する有機性排液を処理する
際、添加する窒素やリン源の量を低減化でき、条件によ
っては窒素やリン源を添加しなくても処理可能な窒素お
よび/またはリン欠乏有機性排液の好気性処理方法を提
案することである。SUMMARY OF THE INVENTION An object of the present invention is to reduce the amount of nitrogen or phosphorus source to be added when treating an organic drainage deficient in nitrogen and / or phosphorus. It is to propose a method for aerobic treatment of nitrogen- and / or phosphorus-deficient organic effluent that can be treated without adding a phosphorus source.
【0009】[0009]
【課題を解決するための手段】本発明は、好気性微生物
を含む活性汚泥の存在下に、窒素および/またはリン欠
乏有機性排液を好気性処理する方法において、好気性処
理系から活性汚泥を引抜き、この引抜汚泥を可溶化処理
したのち、好気性処理系に導入することを特徴とする窒
素および/またはリン欠乏有機性排液の好気性処理方法
である。The present invention provides a method for aerobically treating nitrogen- and / or phosphorus-deficient organic effluent in the presence of activated sludge containing aerobic microorganisms. Is extracted, and the extracted sludge is solubilized, and then introduced into an aerobic treatment system, which is an aerobic treatment method for nitrogen- and / or phosphorus-deficient organic waste liquid.
【0010】本発明で処理の対象となる排液は、窒素ま
たはリン、あるいはこれらの両者が欠乏した有機性排液
であり、一般的には窒素含有量が排液中のBODの1/
20倍以下または炭素の1/15倍以下、リン含有量が
排液中のBODの1/100倍以下または炭素の1/5
0倍以下の有機性排液である。The effluent to be treated in the present invention is an organic effluent deficient in nitrogen or phosphorus, or both of them. Generally, the nitrogen content is 1 / BOD of the effluent.
20 times or less or 1/15 times or less of carbon, phosphorus content is 1/100 times or less of BOD in the drainage or 1/5 of carbon
It is an organic drainage of 0 times or less.
【0011】本発明は汚泥を可溶化処理し、この可溶化
処理汚泥を窒素および/またはリン源として用いる好気
性処理方法である。好気性処理としては公知の方法が採
用でき、例えば曝気槽および汚泥分離部を備えた好気性
処理系において、有機性排液を曝気槽に導入し、返送汚
泥および曝気槽内の活性汚泥と混合して曝気処理し、曝
気槽の混合液を汚泥分離部に導いて固液分離し、分離汚
泥の一部を曝気槽に返送する標準活性汚泥法、およびそ
の種々の変法などが採用できる。The present invention is an aerobic treatment method in which sludge is solubilized and the solubilized sludge is used as a nitrogen and / or phosphorus source. A known method can be adopted as the aerobic treatment.For example, in an aerobic treatment system equipped with an aeration tank and a sludge separation unit, organic waste liquid is introduced into the aeration tank and mixed with return sludge and activated sludge in the aeration tank. Then, the standard activated sludge method in which the mixed liquid in the aeration tank is guided to the sludge separation section for solid-liquid separation, and a part of the separated sludge is returned to the aeration tank, and various modifications thereof can be adopted.
【0012】可溶化する汚泥は曝気槽から引抜いてもよ
いし、汚泥分離部から引抜いてもよい。後者の場合、余
剰汚泥を可溶化処理することに相当する。可溶化処理汚
泥は曝気槽に導入するのが好ましいが、これに限定され
ない。The sludge to be solubilized may be withdrawn from the aeration tank or the sludge separation section. In the latter case, it corresponds to solubilizing the excess sludge. The solubilized sludge is preferably introduced into the aeration tank, but not limited to this.
【0013】汚泥の可溶化の方法としては、オゾン、過
酸化水素等の酸化剤による酸化分解、すりつぶし、酸溶
解、アルカリ溶解、加熱分解、酸/アルカリ添加加熱分
解などがあげられる。これらの中ではオゾンによる酸化
分解(以下、オゾン処理という)が好ましい。Examples of the method for solubilizing sludge include oxidative decomposition with an oxidizing agent such as ozone and hydrogen peroxide, mashing, acid dissolution, alkali dissolution, heat decomposition, and acid / alkali addition heat decomposition. Of these, oxidative decomposition with ozone (hereinafter referred to as ozone treatment) is preferable.
【0014】オゾン処理は汚泥をオゾンと接触させるこ
とにより可溶化する方法であり、例えば汚泥にオゾン含
有空気を接触させることにより可溶化できる。過酸化水
素による酸化分解は汚泥を過酸化水素と接触させること
により可溶化する方法であり、例えば過酸化水素が存在
する状態で汚泥を放置することにより可溶化できる。Ozone treatment is a method of solubilizing sludge by contacting it with ozone, and can be solubilized, for example, by contacting ozone-containing air with sludge. Oxidative decomposition with hydrogen peroxide is a method of solubilizing sludge by contacting it with hydrogen peroxide, and can be solubilized by leaving sludge in the presence of hydrogen peroxide, for example.
【0015】すりつぶしは汚泥をボールミルなどにより
破壊して可溶化する方法である。酸溶解は汚泥を酸と接
触させることにより可溶化する方法であり、酸として
は、例えば塩酸、硫酸などが使用できる。アルカリ溶解
は汚泥をアルカリと接触させることにより可溶化する方
法であり、アルカリとしては、例えば水酸化ナトリウ
ム、水酸化カリウムなどが使用できる。加熱分解は汚泥
を加熱して可溶化する方法である。これらの方法は組合
せることができ、例えば酸/アルカリ添加加熱分解は酸
溶解、アルカリ溶解および加熱分解を組合せて可溶化す
る方法である。Grinding is a method of solubilizing sludge by breaking it with a ball mill or the like. The acid dissolution is a method of solubilizing sludge by contacting it with an acid, and as the acid, for example, hydrochloric acid, sulfuric acid or the like can be used. Alkali dissolution is a method of solubilizing sludge by bringing it into contact with alkali, and as the alkali, for example, sodium hydroxide, potassium hydroxide or the like can be used. Thermal decomposition is a method of heating sludge to solubilize it. These methods can be combined, and for example, the acid / alkali addition thermal decomposition is a method of solubilizing by combining acid dissolution, alkali dissolution and thermal decomposition.
【0016】次にオゾン処理について詳しく説明する。
図1は汚泥に対するオゾン注入率と有機物の残存率(重
量%)との関係を示すグラフ、図2はオゾン処理汚泥を
好気性処理した場合のケルダール窒素量とアンモニア態
窒素量との関係を示すグラフである。Next, the ozone treatment will be described in detail.
Fig. 1 is a graph showing the relationship between the ozone injection rate to sludge and the residual rate (% by weight) of organic matter, and Fig. 2 shows the relationship between the Kjeldahl nitrogen amount and the ammoniacal nitrogen amount when ozone-treated sludge is aerobically treated. It is a graph.
【0017】図1に示されているように、汚泥自体はオ
ゾン処理により無機化されないので、汚泥の元素構成比
(C118H170N17O5P)より、オゾン処理汚泥のSS
/N比は約8、C/N比は約6、SS/P比は約60、
C/P比は約44になる。また図2に示されているよう
に、オゾン処理汚泥を好気性処理した場合、その後に残
存するケルダール窒素とアンモニア態窒素の量はほぼ等
比であり、ケルダール窒素のほとんどがアンモニア態窒
素であることがわかる。従って、オゾン処理汚泥は難分
解性な有機態窒素をほとんど含まない良好な窒素源であ
ることがわかる。As shown in FIG. 1, since the sludge itself is not mineralized by the ozone treatment, the SS of ozone-treated sludge is determined from the elemental composition ratio of the sludge (C 118 H 170 N 17 O 5 P).
/ N ratio is about 8, C / N ratio is about 6, SS / P ratio is about 60,
The C / P ratio becomes about 44. Further, as shown in FIG. 2, when the ozone-treated sludge is aerobically treated, the amounts of Kjeldahl nitrogen and ammonia nitrogen remaining after that are almost equal, and most of the Kjeldahl nitrogen is ammonia nitrogen. I understand. Therefore, it can be seen that the ozone-treated sludge is a good nitrogen source containing almost no persistent organic nitrogen.
【0018】従って、オゾン処理汚泥中には窒素が汚泥
当り約13重量%、炭素当り約17重量%、リンが汚泥
当り約1.6重量%、炭素当り約2.2重量%含有され
ていることがわかる。このようにオゾン処理汚泥中には
一定量の窒素およびリンが含まれているので、オゾン処
理汚泥を窒素および/またはリン源として用いることが
できる。Therefore, the ozone-treated sludge contains about 13% by weight of nitrogen, about 17% by weight of carbon, about 1.6% by weight of phosphorus, and about 2.2% by weight of carbon in the sludge. I understand. Since the ozone-treated sludge contains a certain amount of nitrogen and phosphorus as described above, the ozone-treated sludge can be used as a nitrogen and / or phosphorus source.
【0019】次に、好気性処理系から活性汚泥を引抜い
てオゾン処理する場合の好気性処理系の全汚泥量に対す
る引抜汚泥量の割合(オゾン処理割合)θについて説明
する。 オゾン処理汚泥を窒素源として用いる場合のオゾン処理
割合:θn(day-1) オゾン処理汚泥をリン源として用いる場合のオゾン処理
割合:θp(day-1) 被処理液のC/N比:Rn(g−C/g−N) 被処理液のC/P比:Rp(g−C/g−P) 有機物の分解に必要な窒素の割合:En(g−N/g−
C)=0.07(g−N/g−C) 有機物の分解に必要なリンの割合:Ep(g−P/g−
C)=0.02(g−P/g−C) オゾン処理汚泥の窒素含有率:Cn(g−N/g−S
S)=0.13(g−N/g−SS) オゾン処理汚泥のリン含有率:Cp(g−P/g−S
S)=0.016(g−P/g−SS) 曝気槽内汚泥濃度:X(g−SS/liter) 炭素換算槽負荷:LV(g−C/liter/day) と置くと、1日に必要な窒素量は、(En−1/Rn)
LVで表される。従って、窒素源として用いる場合に必
要なオゾン処理汚泥量は、(En−1/Rn)LV=C
nθnXで表される。この式を変形すると、 θn=(En−1/Rn)LV/X/Cn 〔1〕 となり、オゾン処理割合θnが求められる。また1日に
必要なリン量は、(Ep−1/Rp)LVで表される。
従って、リン源として用いる場合に必要なオゾン処理汚
泥量は、(Ep−1/Rp)LV=CpθpXで表され
る。この式を変形すると、 θp=(Ep−1/Rp)LV/X/Cp 〔2〕 となり、オゾン処理割合θpが求められる。Next, the ratio (ozone treatment ratio) θ of the amount of extracted sludge to the total amount of sludge in the aerobic treatment system when the activated sludge is withdrawn from the aerobic treatment system and subjected to ozone treatment will be described. Ozone treatment ratio when ozone-treated sludge is used as a nitrogen source: θn (day -1 ) Ozone treatment ratio when ozone-treated sludge is used as a phosphorus source: θp (day -1 ) C / N ratio of treated liquid: Rn (G-C / g-N) C / P ratio of liquid to be treated: Rp (g-C / g-P) Ratio of nitrogen necessary for decomposition of organic matter: En (g-N / g-
C) = 0.07 (g-N / g-C) Ratio of phosphorus required for decomposition of organic matter: Ep (g-P / g-)
C) = 0.02 (g-P / g-C) Nitrogen content of ozone-treated sludge: Cn (g-N / g-S)
S) = 0.13 (g-N / g-SS) Phosphorus content rate of ozone-treated sludge: Cp (g-P / g-S)
S) = 0.016 (g-P / g-SS) Sludge concentration in aeration tank: X (g-SS / liter) Carbon conversion tank load: LV (g-C / liter / day) The amount of nitrogen required for (En-1 / Rn)
It is represented by LV. Therefore, the amount of ozone-treated sludge required when used as a nitrogen source is (En-1 / Rn) LV = C
It is represented by nθnX. If this equation is modified, θn = (En−1 / Rn) LV / X / Cn [1], and the ozone treatment ratio θn can be obtained. The amount of phosphorus required for one day is represented by (Ep-1 / Rp) LV.
Therefore, the amount of ozone-treated sludge required when used as a phosphorus source is represented by (Ep-1 / Rp) LV = CpθpX. When this equation is modified, θp = (Ep−1 / Rp) LV / X / Cp [2], and the ozone treatment ratio θp is obtained.
【0020】従って、式〔1〕または〔2〕のオゾン処
理割合θn、θpでオゾン処理を行えば、有機物を好気
性処理するために必要な窒素およびリンの量は充分であ
るので、他の窒素および/またはリン源を添加すること
なく、好気性処理が可能である。一方、式〔1〕または
〔2〕のオゾン処理割合より小さい値でオゾン処理を行
う場合は、有機物を好気性処理するために必要な窒素ま
たはリンの量が不足するので、アンモニア、アンモニウ
ム塩、リン酸またはリン酸塩などの他の窒素および/ま
たはリン源の添加が必要になる。いずれの場合も処理開
始の初期には汚泥を形成するのに充分な窒素および/ま
たはリン源を添加する必要がある。Therefore, if the ozone treatment is carried out at the ozone treatment ratios θn and θp of the formula [1] or [2], the amounts of nitrogen and phosphorus necessary for aerobically treating the organic matter are sufficient, Aerobic treatment is possible without the addition of nitrogen and / or phosphorus sources. On the other hand, when the ozone treatment is carried out at a value smaller than the ozone treatment ratio of the formula [1] or [2], the amount of nitrogen or phosphorus necessary for aerobically treating the organic substance is insufficient, so that ammonia, ammonium salt, Addition of other nitrogen and / or phosphorus sources such as phosphoric acid or phosphate is required. In either case, it is necessary to add sufficient nitrogen and / or phosphorus sources to form sludge at the beginning of treatment.
【0021】このためθn=θpの場合はθnまたはθ
pをオゾン処理割合θとすることができる。θn≠θp
の場合で、大きい方の値をθとして、他方の分解生成物
である窒素またはリンが過剰に生成しても問題がない場
合はその値をθとすることができる。過剰に生成した窒
素またはリンが悪影響を及ぼす場合は、影響のない範囲
で可能な限り大きい値をθとし、不足する窒素またはリ
ンを添加することができる。Therefore, when θn = θp, θn or θ
p can be an ozone treatment ratio θ. θn ≠ θp
In the above case, the larger value can be taken as θ, and if there is no problem even if the other decomposition product, nitrogen or phosphorus, is overproduced, that value can be taken as θ. When the excessively generated nitrogen or phosphorus has a bad effect, the largest possible value can be set as θ within a range without any adverse effect, and the insufficient nitrogen or phosphorus can be added.
【0022】式〔1〕からわかるように、オゾン処理割
合θnの値は被処理液のC/N比(Rn)と設定汚泥負
荷(LV/X)に応じて調節すればよい。また式〔2〕
からわかるように、オゾン処理割合θpの値も被処理液
のC/P比(Rp)と設定汚泥負荷(LV/X)に応じ
て調節すればよい。As can be seen from the equation [1], the value of the ozone treatment ratio θn may be adjusted according to the C / N ratio (Rn) of the liquid to be treated and the set sludge load (LV / X). Also, the formula [2]
As can be seen from the above, the value of the ozone treatment ratio θp may be adjusted according to the C / P ratio (Rp) of the liquid to be treated and the set sludge load (LV / X).
【0023】図3はオゾン処理割合θと汚泥活性との関
係を示すグラフ、図4はオゾン注入率とオゾン処理汚泥
の生分解速度との関係を示すグラフである。図3に示さ
れているように、オゾン処理割合θは0.5day-1程
度までは汚泥活性に影響を与えない。このことは1日あ
たり、好気性処理系に保持された活性汚泥の1/2以下
を引抜汚泥としてオゾン処理すれば、好気性処理系の汚
泥活性が維持されることを意味している。従ってオゾン
処理割合θの上限は0.5day-1程度とされる。FIG. 3 is a graph showing the relationship between the ozone treatment ratio θ and the sludge activity, and FIG. 4 is a graph showing the relationship between the ozone injection rate and the biodegradation rate of the ozone treated sludge. As shown in FIG. 3, the ozone treatment rate θ does not affect the sludge activity up to about 0.5 day −1 . This means that if one half or less of the activated sludge retained in the aerobic treatment system is treated with ozone as drawn-out sludge per day, the sludge activity of the aerobic treatment system will be maintained. Therefore, the upper limit of the ozone treatment ratio θ is about 0.5 day −1 .
【0024】オゾン処理割合θの上限が0.5day-1
程度という値は充分実用的な値である。すなわち、前記
式〔1〕および〔2〕からわかるように、オゾン処理割
合θと汚泥負荷とは比例するから、汚泥負荷を低く設定
してやれば、オゾン処理割合θの値を低く、すなわち
0.5day-1以下に制御することができる。例えば、
窒素を全く含有しない排液を処理する場合に必要なオゾ
ン処理割合θnは前記式〔1〕から、θn=(En/C
n)LV/Xとなる。汚泥負荷は通常の好気性処理では
0.3kg−C/kg−SS/day程度で運転される
のが一般的であるので、この場合のオゾン処理割合θn
の値は0.07/0.13×0.3=0.16day-1
となり、充分に実用的である。またリンを全く含有しな
い排液を処理する場合に必要なオゾン処理割合θpは前
記式〔2〕から、θp=(Ep/Cp)LV/Xとな
り、汚泥負荷を0.3kg−C/kg−SS/day程
度で運転するとすると、オゾン処理割合θpの値は0.
02/0.016×0.3=0.38day-1となり、
充分に実用的である。The upper limit of the ozone treatment ratio θ is 0.5 day -1.
The value of degree is a sufficiently practical value. That is, as can be seen from the above equations [1] and [2], since the ozone treatment ratio θ is proportional to the sludge load, if the sludge load is set low, the value of the ozone treatment ratio θ becomes low, that is, 0.5 day. -1 can be controlled below. For example,
The ozone treatment ratio θn required when treating the waste liquid containing no nitrogen is calculated from the above formula [1] by θn = (En / C
n) It becomes LV / X. Since the sludge load is generally operated at about 0.3 kg-C / kg-SS / day in normal aerobic treatment, the ozone treatment ratio θn in this case is
The value of is 0.07 / 0.13 × 0.3 = 0.16day -1
And is practical enough. Further, the ozone treatment ratio θp required when treating the waste liquid containing no phosphorus is θp = (Ep / Cp) LV / X from the above formula [2], and the sludge load is 0.3 kg-C / kg-. When operating at about SS / day, the value of the ozone treatment ratio θp is 0.
02 / 0.016 × 0.3 = 0.38day −1 ,
Practical enough.
【0025】図4に示されているように、オゾン処理し
た汚泥の生分解性は汚泥に対するオゾン注入率が低い領
域では悪化する傾向にあり、0.02g−O3/g−S
S未満では著しく低下する。従ってオゾン処理は、対引
抜汚泥当りのオゾン注入率を0.02mg−O3/mg
−SS以上、好ましくは0.05mg−O3/mg−S
S以上で行うのが望ましい。一方オゾン注入率の上限は
制限されないが、コスト的な面から0.2g−O3/g
−SS以下、好ましくは0.1g−O3/g−SS以下
とするのが望ましい。このようなオゾン注入率でオゾン
処理することにより、好気性微生物の細胞壁の糖鎖長が
小さくなって生分解性が非常に向上する。As shown in FIG. 4, the biodegradability of the ozone-treated sludge tends to deteriorate in a region where the ozone injection rate into the sludge is low, and 0.02 g-O 3 / g-S is present.
If it is less than S, it is significantly reduced. Therefore, in the ozone treatment, the ozone injection rate per extracted sludge was 0.02 mg-O 3 / mg.
-SS or more, preferably 0.05mg-O 3 / mg-S
It is desirable to carry out at S or higher. On the other hand, although the upper limit of the ozone injection rate is not limited, it is 0.2 g-O 3 / g in terms of cost.
-SS or less, preferably it is desirable to less 0.1g-O 3 / g-SS . By performing ozone treatment at such an ozone injection rate, the sugar chain length of the cell wall of the aerobic microorganism is reduced and biodegradability is greatly improved.
【0026】オゾン処理以外の可溶化処理を採用する場
合は、Cn、Cpに相当する値を予備試験などにより求
め、これらの値を用いて式〔1〕、〔2〕と同様にして
可溶化処理割合を求めることができる。When a solubilization treatment other than ozone treatment is adopted, the values corresponding to Cn and Cp are obtained by preliminary tests and the like, and the solubilization is carried out using these values in the same manner as in formulas [1] and [2]. The processing rate can be calculated.
【0027】[0027]
【実施例】以下、本発明の実施例について説明する。図
5および図6はそれぞれ実施例の窒素および/またはリ
ン欠乏有機性排液の好気性処理装置を示すフローシート
であり、図5は曝気槽から汚泥を引抜いてオゾン処理す
る例、図6は汚泥分離部から汚泥を引抜いてオゾン処理
する例を示している。EXAMPLES Examples of the present invention will be described below. FIG. 5 and FIG. 6 are flow sheets showing an aerobic treatment device for nitrogen- and / or phosphorus-deficient organic waste liquids of Examples, respectively. FIG. 5 shows an example of drawing sludge from an aeration tank to perform ozone treatment, and FIG. An example is shown in which sludge is drawn from the sludge separation section and ozone treatment is performed.
【0028】図5および図6において、好気性処理系1
は曝気槽11および汚泥分離部12から構成されてい
る。曝気槽11には被処理液路13および返送汚泥路1
4が連絡し、また底部には散気装置15が設けられて、
空気供給路16が連絡している。曝気槽11から汚泥分
離部12に連絡路17が連絡している。汚泥分離部12
の上部には処理液路18が連絡し、下部には汚泥引出路
19が連絡している。この汚泥引出路19は、図5の場
合はポンプP1を備えた返送汚泥路14と余剰汚泥排出
路20に分岐し、図6の場合はポンプP1を備えた返送
汚泥路14と余剰汚泥排出路20とポンプP2を備えた
引抜汚泥路22とに分岐している。In FIGS. 5 and 6, the aerobic treatment system 1
Is composed of an aeration tank 11 and a sludge separation unit 12. The aeration tank 11 has a liquid passage 13 to be treated and a return sludge passage 1
4 is in contact with the air diffuser 15 at the bottom,
The air supply path 16 is in communication. A communication path 17 connects the aeration tank 11 to the sludge separation unit 12. Sludge separation unit 12
The treatment liquid passage 18 communicates with the upper part of the sludge, and the sludge withdrawal passage 19 communicates with the lower part. In the case of FIG. 5, the sludge withdrawal path 19 branches into the return sludge path 14 having the pump P 1 and the excess sludge discharge path 20, and in the case of FIG. 6, the return sludge path 14 having the pump P 1 and the excess sludge. It branches into a discharge passage 20 and a drawn-out sludge passage 22 provided with a pump P 2 .
【0029】オゾン処理系2はオゾン処理槽21を有
し、ポンプP2を備えた引抜汚泥路22と排オゾン路2
3が上部に連絡し、オゾン供給路24およびオゾン処理
汚泥路25が下部に連絡している。引抜汚泥路22は、
図5では曝気槽11から、図6では汚泥分離部12の汚
泥引出路19からオゾン処理槽21に連絡している。オ
ゾン処理汚泥路25は図5、図6のいずれも、オゾン処
理槽21から曝気槽11に連絡している。The ozone treatment system 2 has an ozone treatment tank 21, and a drainage sludge passage 22 equipped with a pump P 2 and an exhaust ozone passage 2
3 communicates with the upper portion, and the ozone supply passage 24 and the ozone treatment sludge passage 25 communicate with the lower portion. The drawn sludge path 22 is
In FIG. 5, the aeration tank 11 is connected, and in FIG. 6, the sludge extraction passage 19 of the sludge separation unit 12 is connected to the ozone treatment tank 21. 5 and 6, the ozone treatment sludge passage 25 communicates with the aeration tank 11 from the ozone treatment tank 21.
【0030】上記の処理装置による有機性排液の処理方
法は、図5、図6いずれの場合も、好気性処理系1で
は、被処理液路13から被処理液を曝気槽11に導入
し、返送汚泥路14から返送される返送汚泥および曝気
槽11内の活性汚泥と混合し、空気供給路16から供給
される空気を散気装置15から散気して曝気を行い、好
気性処理を行う。曝気槽11の混合液の一部は連絡路1
7から汚泥分離部12に導き、固液分離を行う。ここで
分離した分離液は処理液として処理液路18から排出
し、分離汚泥は汚泥引出路19から引出し、その一部は
ポンプP1により返送汚泥路14から曝気槽11に返送
する。残部は、図5の場合は余剰汚泥排出路20から系
外へ排出し、図6の場合は引抜汚泥路22からオゾン処
理系2に導入し、さらに残部は余剰汚泥排出路20から
系外へ排出する。In the method for treating organic waste liquid by the above-mentioned treatment apparatus, in both cases of FIG. 5 and FIG. 6, in the aerobic treatment system 1, the treatment liquid is introduced from the treatment liquid passage 13 into the aeration tank 11. , Mixed with the return sludge returned from the return sludge passage 14 and the activated sludge in the aeration tank 11, and aerating the air supplied from the air supply passage 16 from the air diffuser 15 to perform aerobic treatment. To do. Part of the mixed liquid in the aeration tank 11 is the communication path 1
7 is led to the sludge separation part 12, and solid-liquid separation is performed. The separated liquid separated here is discharged as a processing liquid from the processing liquid path 18, the separated sludge is drawn out from the sludge drawing path 19, and a part thereof is returned to the aeration tank 11 from the returning sludge path 14 by the pump P 1 . In the case of FIG. 5, the rest is discharged from the excess sludge discharge passage 20 to the outside of the system, in the case of FIG. 6, it is introduced from the extracted sludge passage 22 into the ozone treatment system 2, and the rest is discharged from the excess sludge discharge passage 20 to the outside of the system. Discharge.
【0031】オゾン処理系2では、図5の場合は曝気槽
11から、図6の場合は汚泥引出路19から、それぞれ
ポンプP2により引抜汚泥路22を通して引抜汚泥をオ
ゾン処理槽21に循環し、オゾン供給路24より供給さ
れるオゾンと接触させてオゾン処理を行う。オゾン処理
汚泥はオゾン処理汚泥路25から窒素および/またはリ
ン源として曝気槽11に戻され、好気性処理される。In the ozone treatment system 2, the extracted sludge is circulated to the ozone treatment tank 21 from the aeration tank 11 in the case of FIG. 5 and from the sludge extraction passage 19 in the case of FIG. 6 through the extraction sludge passage 22 by the pump P 2 , respectively. The ozone treatment is performed by contacting the ozone supplied from the ozone supply path 24. The ozone-treated sludge is returned from the ozone-treated sludge passage 25 to the aeration tank 11 as a nitrogen and / or phosphorus source and subjected to aerobic treatment.
【0032】図5、図6の実施例では、汚泥分離部12
として、沈殿槽を図示したが、膜分離装置、その他の汚
泥分離装置でもよい。また好気性処理系1としては標準
活性汚泥処理に限らず、他の好気性処理装置を採用する
ことができる。In the embodiment shown in FIGS. 5 and 6, the sludge separating section 12
Although the settling tank is shown as an example, a membrane separation device or another sludge separation device may be used. Further, the aerobic treatment system 1 is not limited to the standard activated sludge treatment, and other aerobic treatment devices can be adopted.
【0033】以下、試験結果について説明する。 比較例1 グルコースを有機物源とし、窒素源としてのアンモニア
を炭素源の5重量%になるように添加して有機性排液を
調製した。この有機性排液を被処理液とし、曝気槽の槽
負荷0.6kg−C/m3/day、SRT=10日間
の条件で活性汚泥処理した。その結果、余剰汚泥の生成
量は0.38kg−SS/m3/day、曝気槽内汚泥
濃度は4000mg/lであった。The test results will be described below. Comparative Example 1 An organic waste liquid was prepared by using glucose as an organic material source and adding ammonia as a nitrogen source so as to be 5% by weight of the carbon source. Using this organic waste liquid as the liquid to be treated, activated sludge treatment was carried out under the conditions of a tank load of 0.6 kg-C / m 3 / day and SRT = 10 days. As a result, the amount of excess sludge produced was 0.38 kg-SS / m 3 / day, and the sludge concentration in the aeration tank was 4000 mg / l.
【0034】比較例2 槽負荷と汚泥負荷を比較例1と同等の条件に設定し、有
機性排液に窒素源を加えないで比較例1と同様にして活
性汚泥処理した。その結果、処理開始後1週間で汚泥は
分離解体し、処理できなくなった。Comparative Example 2 The activated sludge treatment was carried out in the same manner as in Comparative Example 1 except that the tank load and the sludge load were set to the same conditions as in Comparative Example 1 and no nitrogen source was added to the organic waste liquid. As a result, the sludge was separated and dismantled one week after the treatment was started, and the treatment could not be performed.
【0035】実施例1 図5の処理装置により窒素を含まない有機性排液を活性
汚泥処理した。オゾン処理の条件はオゾン注入率0.0
5mg−O3/mg−SS、θn=0.3day-1とし
た。槽負荷、汚泥負荷、SRTは比較例1と同様にし
た。その結果、曝気槽内汚泥濃度は4000mg/lで
安定し、他の窒素源を全く添加しなくても3か月間の処
理期間中、処理液は悪化しなかった。Example 1 The organic effluent containing no nitrogen was treated with activated sludge by the treatment apparatus shown in FIG. Ozone treatment condition is ozone injection rate 0.0
Was 5mg-O 3 /mg-SS,θn=0.3day -1. The tank load, sludge load, and SRT were the same as in Comparative Example 1. As a result, the sludge concentration in the aeration tank was stable at 4000 mg / l, and the treatment liquid did not deteriorate during the treatment period of 3 months without adding any other nitrogen source.
【0036】比較例3 グルコースを有機物源とし、リン源としてのリン酸を炭
素源の1重量%になるように添加して有機性排液を調製
した。この有機性排液を被処理液とし、曝気槽の槽負荷
0.6kg−C/m3/day、SRT=10日間の条
件で活性汚泥処理した。その結果、余剰汚泥の生成量は
0.38kg−SS/m3/day、槽内汚泥濃度は4
000mg/lであった。Comparative Example 3 Glucose was used as an organic substance source, and phosphoric acid as a phosphorus source was added so as to be 1% by weight of the carbon source to prepare an organic drainage liquid. Using this organic waste liquid as the liquid to be treated, activated sludge treatment was carried out under the conditions of a tank load of 0.6 kg-C / m 3 / day and SRT = 10 days. As a result, the amount of excess sludge produced was 0.38 kg-SS / m 3 / day, and the sludge concentration in the tank was 4
It was 000 mg / l.
【0037】比較例4 槽負荷と汚泥負荷を比較例3と同等の条件に設定し、有
機性排液にリン源を加えないで比較例3と同様にして活
性汚泥処理した。その結果、処理開始後1週間で汚泥は
分離解体し、処理できなくなった。Comparative Example 4 The activated sludge treatment was carried out in the same manner as in Comparative Example 3 except that the tank load and the sludge load were set to the same conditions as in Comparative Example 3, and no phosphorus source was added to the organic waste liquid. As a result, the sludge was separated and dismantled one week after the treatment was started, and the treatment could not be performed.
【0038】実施例2 図5の処理装置によりリンを含まない有機性排液を活性
汚泥処理した。オゾン処理の条件はオゾン注入率0.0
5mg−O3/mg−SS、θp=0.3day-1とし
た。槽負荷、汚泥負荷、SRTは比較例3と同様にし
た。その結果、曝気槽内汚泥濃度は4000mg/lで
安定し、他のリン源を全く添加しなくても3か月間の処
理期間中、処理液は悪化しなかった。Example 2 An organic sludge containing no phosphorus was treated with activated sludge by the treatment apparatus shown in FIG. Ozone treatment condition is ozone injection rate 0.0
Was 5mg-O 3 /mg-SS,θp=0.3day -1. The tank load, sludge load, and SRT were the same as in Comparative Example 3. As a result, the sludge concentration in the aeration tank was stable at 4000 mg / l, and the treatment liquid did not deteriorate during the treatment period of 3 months without adding any other phosphorus source.
【0039】比較例5 石油化学系排水(BOD 1000mg/l、窒素5m
g/l、リンなし)を被処理液とし、図5の処理装置に
より窒素およびリンが欠乏する有機性排液を活性汚泥処
理した。曝気槽の槽負荷0.6kg−C/m3/da
y、初期槽内汚泥濃度4000mg/l、SRT=10
日間の条件で処理を開始したところ、1週間後から処理
液中に有機酸(酢酸と酪酸)が100〜200mg/l
検出され、BOD除去率は次第に低下して1か月後には
汚泥が解体し、処理ができなくなった。Comparative Example 5 Petrochemical wastewater (BOD 1000 mg / l, nitrogen 5 m
(g / l, no phosphorus) was used as the liquid to be treated, and the organic waste liquid deficient in nitrogen and phosphorus was treated with activated sludge by the treatment device of FIG. Tank load of aeration tank 0.6kg-C / m 3 / da
y, sludge concentration in the initial tank 4000 mg / l, SRT = 10
When the treatment was started under the conditions of one day, 100 to 200 mg / l of organic acids (acetic acid and butyric acid) were contained in the treatment liquid after 1 week.
After detection, the BOD removal rate gradually decreased, and one month later, the sludge was dismantled and the treatment could not be performed.
【0040】実施例3 図5の処理装置により、オゾン処理を実施例2と同様に
行い、他の処理条件は比較例5と同様に行った。その結
果、曝気槽汚泥濃度は4000mg/lで安定し、他の
窒素源やリン源を添加しなくても3か月間の処理期間
中、処理液は悪化しなかった。Example 3 Ozone treatment was performed in the same manner as in Example 2 using the treatment apparatus of FIG. 5, and other treatment conditions were the same as in Comparative Example 5. As a result, the sludge concentration in the aeration tank was stable at 4000 mg / l, and the treatment liquid did not deteriorate during the treatment period of 3 months without adding any other nitrogen source or phosphorus source.
【0041】実施例4 実施例3において、オゾン処理の代りに引抜汚泥を90
℃で4時間加熱溶解処理し、他の処理条件は比較例5と
同様にしたところ、槽内汚泥濃度は6000mg/lで
安定し、他の窒素源やリン源を添加しなくても3か月間
の処理期間中、処理液は悪化しなかった。Example 4 In Example 3, 90% of extracted sludge was used instead of ozone treatment.
When the solution was heated and dissolved at 4 ° C. for 4 hours and the other processing conditions were the same as in Comparative Example 5, the sludge concentration in the tank was stable at 6000 mg / l, and it was 3 or more without adding other nitrogen source or phosphorus source. The treatment liquid did not deteriorate during the monthly treatment period.
【0042】実施例5 実施例4において、引抜汚泥を加熱溶解処理する時に硫
酸を添加し、pH2.8に設定して可溶化処理を行った
のち中和して曝気槽に戻した。他の処理条件は比較例5
と同様にしたところ、槽内汚泥濃度は4000mg/l
で安定し、他の窒素源やリン源を添加しなくても3か月
間の処理期間中、処理液は悪化しなかった。Example 5 In Example 4, sulfuric acid was added when the drawn sludge was heated and dissolved, the pH was set to 2.8, the solution was solubilized, and then neutralized and returned to the aeration tank. Other processing conditions are Comparative Example 5
The sludge concentration in the tank was 4000 mg / l.
The treatment liquid did not deteriorate during the treatment period of 3 months without adding any other nitrogen source or phosphorus source.
【0043】実施例6 実施例4において、引抜汚泥を加熱溶解処理する時に水
酸化ナトリウムを添加し、pH12に設定して可溶化処
理を行ったのち中和して曝気槽に戻した。他の処理条件
は比較例5と同様にしたところ、槽内汚泥濃度は400
0mg/lで安定し、他の窒素源やリン源を添加しなく
ても3か月間の処理期間中、処理液は悪化しなかった。Example 6 In Example 4, sodium hydroxide was added when the drawn sludge was heat-dissolved, the pH was set to 12, the solubilization was performed, and then the sludge was neutralized and returned to the aeration tank. Other treatment conditions were the same as in Comparative Example 5, and the sludge concentration in the tank was 400.
It was stable at 0 mg / l, and the treatment liquid did not deteriorate during the treatment period of 3 months even if no other nitrogen source or phosphorus source was added.
【0044】[0044]
【発明の効果】以上の通り、本発明によれば、窒素およ
び/またはリン欠乏有機性排液の好気性処理において、
好気性処理系から引抜いた活性汚泥を可溶化処理したの
ち好気性処理系に導入するようにしたので、窒素および
/またはリン欠乏有機性排液を好気性処理する際、添加
する窒素やリン源の量を低減化でき、また条件によって
は窒素やリン源を添加しなくても処理することができ
る。As described above, according to the present invention, in aerobic treatment of nitrogen- and / or phosphorus-deficient organic wastewater,
Since the activated sludge drawn from the aerobic treatment system was solubilized and then introduced into the aerobic treatment system, the nitrogen and / or phosphorus source added during aerobic treatment of the nitrogen- and / or phosphorus-deficient organic waste liquid. Can be reduced, and depending on the conditions, the treatment can be performed without adding a nitrogen or phosphorus source.
【図1】汚泥に対するオゾン注入率と有機物の残存率と
の関係を示すグラフである。FIG. 1 is a graph showing the relationship between the ozone injection rate to sludge and the residual rate of organic substances.
【図2】オゾン処理汚泥を好気性処理した場合のケルダ
ール窒素量とアンモニア態窒素量との関係を示すグラフ
である。FIG. 2 is a graph showing the relationship between the amount of Kjeldahl nitrogen and the amount of ammonia nitrogen in the case of aerobically treating ozone-treated sludge.
【図3】オゾン処理割合と汚泥活性との関係を示すグラ
フである。FIG. 3 is a graph showing the relationship between ozone treatment ratio and sludge activity.
【図4】オゾン注入率と生分解速度との関係を示すグラ
フである。FIG. 4 is a graph showing a relationship between an ozone injection rate and a biodegradation rate.
【図5】実施例の処理装置を示すフローシートである。FIG. 5 is a flow sheet showing the processing apparatus of the embodiment.
【図6】別の実施例の処理装置を示すフローシートであ
る。FIG. 6 is a flow sheet showing a processing apparatus of another embodiment.
1 好気性処理系 2 オゾン処理系 11 曝気槽 12 汚泥分離部 13 被処理液路 14 返送汚泥路 15 散気装置 16 空気供給路 17 連絡路 18 処理液路 19 汚泥引出路 20 余剰汚泥排出路 21 オゾン処理槽 22 引抜汚泥路 23 排オゾン路 24 オゾン供給路 25 オゾン処理汚泥路 1 Aerobic treatment system 2 Ozone treatment system 11 Aeration tank 12 Sludge separation part 13 Liquid passage to be treated 14 Returned sludge passage 15 Air diffuser 16 Air supply passage 17 Connecting passage 18 Treatment liquid passage 19 Sludge extraction passage 20 Excess sludge discharge passage 21 Ozone treatment tank 22 Extraction sludge passage 23 Exhaust ozone passage 24 Ozone supply passage 25 Ozone treatment sludge passage
Claims (1)
に、窒素および/またはリン欠乏有機性排液を好気性処
理する方法において、 好気性処理系から活性汚泥を引抜き、この引抜汚泥を可
溶化処理したのち、好気性処理系に導入することを特徴
とする窒素および/またはリン欠乏有機性排液の好気性
処理方法。1. A method for aerobically treating nitrogen- and / or phosphorus-deficient organic effluent in the presence of activated sludge containing aerobic microorganisms, in which the activated sludge is drawn from the aerobic treatment system and the extracted sludge can be treated. A method for aerobic treatment of nitrogen- and / or phosphorus-deficient organic effluent, which comprises introducing into aerobic treatment system after solubilization treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4262893A JP3348455B2 (en) | 1993-03-03 | 1993-03-03 | Aerobic treatment of nitrogen and / or phosphorus deficient organic effluent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4262893A JP3348455B2 (en) | 1993-03-03 | 1993-03-03 | Aerobic treatment of nitrogen and / or phosphorus deficient organic effluent |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06254583A true JPH06254583A (en) | 1994-09-13 |
JP3348455B2 JP3348455B2 (en) | 2002-11-20 |
Family
ID=12641286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4262893A Expired - Lifetime JP3348455B2 (en) | 1993-03-03 | 1993-03-03 | Aerobic treatment of nitrogen and / or phosphorus deficient organic effluent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3348455B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08132095A (en) * | 1994-11-04 | 1996-05-28 | Kurita Water Ind Ltd | Water treating device |
WO1999062833A1 (en) * | 1998-06-04 | 1999-12-09 | New Zealand Forest Research Institute Limited | Wastewater treatment process |
JP2002018471A (en) * | 2000-07-05 | 2002-01-22 | Japan Sewage Works Agency | Method for treating organic wasteliquid |
-
1993
- 1993-03-03 JP JP4262893A patent/JP3348455B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08132095A (en) * | 1994-11-04 | 1996-05-28 | Kurita Water Ind Ltd | Water treating device |
WO1999062833A1 (en) * | 1998-06-04 | 1999-12-09 | New Zealand Forest Research Institute Limited | Wastewater treatment process |
JP2002018471A (en) * | 2000-07-05 | 2002-01-22 | Japan Sewage Works Agency | Method for treating organic wasteliquid |
Also Published As
Publication number | Publication date |
---|---|
JP3348455B2 (en) | 2002-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3351047B2 (en) | Treatment method of biological sludge | |
JP2004042043A (en) | Method of treating waste by oxidation | |
JP3763439B2 (en) | Waste water ozone treatment method and ozone treatment apparatus | |
JP2973761B2 (en) | Aerobic treatment of organic wastewater | |
JP3383498B2 (en) | Organic wastewater treatment method | |
KR100546991B1 (en) | Organic wastewater treatment method and apparatus | |
JPH1110191A (en) | Device for biologically removing phosphorus | |
JP2001162297A (en) | Method and apparatus for treating organic waste water | |
JPH05277486A (en) | Anaerobic treatment of organic waste water | |
JP3348455B2 (en) | Aerobic treatment of nitrogen and / or phosphorus deficient organic effluent | |
JP3064960B2 (en) | Method of treating wastewater containing hydrogen peroxide | |
JP4631162B2 (en) | Organic waste treatment methods | |
JP3736397B2 (en) | Method for treating organic matter containing nitrogen component | |
JP3645513B2 (en) | Organic wastewater treatment method and apparatus | |
JP2000117279A (en) | Water treatment | |
JPH08103786A (en) | Aerobic treating method for organic waste liquid | |
JP4581174B2 (en) | Biological treatment method | |
JP3442204B2 (en) | Organic wastewater phosphorus removal and recovery method | |
JP3311925B2 (en) | Organic wastewater treatment method | |
JP3493783B2 (en) | Aerobic treatment of organic wastewater | |
JPH02222798A (en) | Pretreatment of sludge | |
JP3961246B2 (en) | Method and apparatus for treating organic wastewater | |
JP2002059200A (en) | Method of treating sewage and sludge | |
JP4200600B2 (en) | Anaerobic digestion treatment method of organic sludge | |
JP2001149981A (en) | Method for treating sewage and sludge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080913 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090913 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090913 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100913 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110913 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120913 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130913 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |