JP4200600B2 - Anaerobic digestion treatment method of organic sludge - Google Patents
Anaerobic digestion treatment method of organic sludge Download PDFInfo
- Publication number
- JP4200600B2 JP4200600B2 JP20066699A JP20066699A JP4200600B2 JP 4200600 B2 JP4200600 B2 JP 4200600B2 JP 20066699 A JP20066699 A JP 20066699A JP 20066699 A JP20066699 A JP 20066699A JP 4200600 B2 JP4200600 B2 JP 4200600B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- treatment
- anaerobic digestion
- ozone
- aeration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Treatment Of Sludge (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は有機性汚泥の嫌気性消化処理方法に係り、特に、有機性汚泥をオゾン処理した後嫌気性消化処理する方法において、オゾン処理に先立ち特定の条件下で曝気を行うことにより、オゾン処理におけるオゾン使用量の低減、処理効率の向上を図り、有機性汚泥を効率的に分解する方法に関する。
【0002】
【従来の技術】
従来、有機性汚泥の嫌気性消化処理方法として、メタン醗酵等の嫌気性消化処理を行う方法が知られており、このような処理方法において、汚泥分解効率を向上させる目的で嫌気性消化処理の前処理として、ボールミルや超音波による粉砕ないし破砕、或いはオゾン処理による酸化分解又は熱処理による加熱分解等を行うことが検討されている。
【0003】
例えば、特公昭59−105897号公報には、廃水の生物処理で発生する余剰汚泥をオゾン処理した後嫌気性消化処理する方法が提案されている。このように、前処理としてオゾン処理を行うことにより、有機性汚泥中の難生物分解性物質が酸化分解されて生物分解可能な物質に変換されるため、後段の嫌気性消化処理における汚泥の分解効率が向上する。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の方法では、前処理のためのコストが高いわりには嫌気性消化処理での汚泥の分解率の向上効果が低く、一般的には前処理を行わない場合の嫌気性消化処理による汚泥の分解率は40%程度であるのに対し、オゾン処理等の前処理を行っても、汚泥の分解率は高々50〜60%程度にしかならなかった。
【0005】
本発明は上記従来の問題点を解決し、有機性汚泥を低コストで効率的に分解処理する有機性汚泥の嫌気性消化処理方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の有機性汚泥の嫌気性消化処理方法は、有機性汚泥をオゾン処理した後嫌気性消化処理する方法において、オゾン処理に先立ち、有機性汚泥をpH1〜5の酸性下にて曝気することを特徴とする。
【0007】
有機性汚泥は、通常、運搬、貯留等により腐敗していることが多いため、硫化水素が含まれている。このため、このような硫化水素を含む有機性汚泥を直接オゾン処理に供すると、硫化水素の分解のために多量のオゾンを消費することとなるため、オゾン処理効率が悪い。また、有機性汚泥中の微生物細胞壁や粘質物の存在も、オゾン処理効率を低減する要因となっている。
【0008】
これに対して、pH1〜5の酸性の曝気槽では、汚泥中に含まれる硫化水素が気散して除去される。また、酸性下で汚泥を混合、撹拌することによって汚泥中の粘質物や細胞壁中の多糖類が加水分解される。即ち、酸性下では微生物細胞壁や汚泥粘質物の主成分である多糖類が加水分解され、汚泥の可溶化が促進される。
【0009】
また、40〜90℃の高温の曝気槽では、汚泥中に含まれる硫化水素が高温菌により酸化されて硫酸になる。また、高温下で汚泥を混合、撹拌することによって中温菌が死滅し、中温菌の汚泥粘質物や細胞壁中の有機物が一部加水分解される。
【0010】
本発明では、このような硫化水素の除去効果により後段のオゾン処理における、汚泥分解へのオゾンの利用効率を高めると共に、粘質物や細胞壁等の加水分解効果でオゾン処理効率を向上させることができる。
【0011】
本発明では、このように特定の条件下で曝気処理した後、オゾン処理し、次いで嫌気性消化処理することにより、汚泥の分解率を70%以上に向上させることができる。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の有機性汚泥の嫌気性消化処理方法の実施の形態を詳細に説明する。
【0013】
図1(a),(b)は本発明の有機性汚泥の嫌気性消化処理方法の実施の形態を示す系統図である。
【0014】
本発明において、処理対象となる有機性汚泥は、好気性処理、嫌気性処理又はこれらを組み合わせて各種の有機性排液を処理する際に固液分離により生じる分離汚泥(余剰汚泥)が挙げられるが、これに限らず、固液分離する前の混合液の状態の生物汚泥、或いはこれらの混合汚泥であっても良い。
【0015】
図1(a)の方法では、まず、このような有機性汚泥を曝気槽1に導入して次の(1) 、或いは (1) 及び (2)の条件下で曝気処理する。
(1) pH1〜5の酸性下
(2) 温度40〜90℃の高温下
(1)の酸性条件下での曝気処理において、pHが5を超えると酸性としたことによる前述の硫化水素の気散効果や多糖類等の加水分解効果が十分に得られない。このpHは低い程上記効果が高いが、pH1未満の強酸性条件とすることは、コスト的に不利である。従って、調整pHは1〜5、好ましくは2〜3.5とする。なお、有機性汚泥のpH調整は有機性汚泥に塩酸、硫酸等の酸を添加して行うことができ、このpH調整は曝気槽1内で行っても、曝気槽1の前段で行っても良い。
【0016】
このときの曝気処理時間は長い程効果的であり、硫化水素の気散のためには、通常pH3.5で1時間程度必要である。曝気処理時間はpH条件によっても異なるが、1時間以上好ましくは3〜24時間の曝気時間が確保されるように汚泥の曝気槽1内の滞留時間を調整する。なお、この酸性下の曝気処理において、40〜90℃程度に加温することにより更に加水分解反応を促進することができる。
【0017】
(2)の高温条件下での曝気処理において、槽内温度が40℃未満であると中性菌を死滅させることができず、中性菌の粘質物や細胞壁中の有機物の加水分解がなされない。また、槽内温度が過度に高いと水が沸騰してしまうことから、槽内温度は90℃以下とする。曝気槽1内における高温菌の活性を維持して硫化水素の生物酸化、中性菌に由来する有機物の加水分解を円滑に進行させる点からは、槽内温度は45〜65℃とするのが好ましい。なお、曝気は高温菌が十分に好気性に維持されるように行うことが好ましく、そのためにはDO(溶存酸素)が検出されることが目安となる。このDOが検出されるための通気量は通常の活性汚泥法での計算式がそのまま使用可能である。
【0018】
このときの曝気処理時間は汚泥濃度や曝気槽内温度によっても異なるが、一般的には3時間以上、特に6〜24時間程度となるように汚泥の曝気槽1内の滞留時間を調整する。
【0019】
なお、上記(1)及び(2)の条件は、両方を採用してpH1〜5、温度40〜90℃で曝気処理しても良い。
【0020】
曝気槽1で曝気処理することにより、有機物の一部を加水分解すると共に硫化水素を除去した汚泥は、次いでオゾン処理槽2に導入してオゾン処理する。このオゾン処理は汚泥をオゾンと接触させることにより行う。接触方法としては、図示の如く、オゾン処理槽2に汚泥を導入してオゾンを吹込む方法、機械撹拌による方法、充填層を利用する方法などが採用できる。オゾンとしては、オゾンガスの他、オゾン含有空気、オゾン化空気などが使用できる。
【0021】
曝気処理において、前記(1)の酸性下での曝気処理を行った場合には、このオゾン処理は酸性下でのオゾン処理となり、オゾンの反応効率が高められ、オゾン使用量の低減を図ることができる。この場合のオゾン使用量は、10〜100g−O3/kg−汚泥、特に15〜50g−O3/kg−汚泥とするのが好ましい。オゾン吹込みの場合は、SVを0.25〜4hr-1、特に0.5〜2hr-1とするのが好ましい。
【0022】
オゾン処理により酸化分解を行ったオゾン処理汚泥は、次いで嫌気性消化槽3に導入して嫌気性消化処理する。この嫌気性消化処理においては、汚泥の有機酸醗酵、メタン醗酵で汚泥が可溶化ないし分解される。この嫌気性消化処理温度は30〜60℃とするのが好ましい。このうち、30〜40℃では中温性のメタン醗酵菌が、また45〜60℃では高温性のメタン醗酵菌が働いて有機酸醗酵の結果、生成した酢酸、水素をメタンに変換する。この嫌気性消化処理は、有機酸醗酵とメタン醗酵とを別の反応槽で行う2相方式であっても良く、またこれらの両反応を同じ槽内で行う1相方式であっても良い。また、この嫌気性消化槽3の滞留時間は5〜40日、特に10〜20日とするのが好ましい。
【0023】
なお、嫌気性消化処理においてはpH6〜8の範囲に維持するのが好ましく、従って、曝気処理において前記(1)の酸性下の曝気処理を行った場合のように、汚泥のpHが低い場合には、適宜水酸化ナトリウム、石灰、炭酸ナトリウム等のアルカリを添加することによりpH調整を行う。
【0024】
嫌気性消化槽3からの嫌気性消化処理水は、通常の場合、沈殿槽や加圧浮上槽、精密濾過膜分離装置、限外濾過膜分離装置等の固液分離装置4で固液分離され、分離液が処理水として系外へ排出される。
【0025】
なお、図1(a)に示す方法は、有機性汚泥を順次曝気処理、オゾン処理及び嫌気性消化処理するものであるが、本発明の方法は、嫌気性消化処理に供される汚泥が、曝気処理及びオゾン処理されていれば良く、例えば、図1(b)に示す如く、嫌気性消化槽3の汚泥の一部を抜き出し、前述の(1) の条件下で曝気槽1にて曝気処理し、その後オゾン処理槽2でオゾン処理した後嫌気性消化槽3に戻すものであっても良い。
【0026】
【実施例】
以下に比較例及び実施例を挙げて本発明をより具体的に説明する。
【0027】
比較例1
下水を処理している活性汚泥法の余剰汚泥と最初沈殿池汚泥を1:1で混合した有機性汚泥を濃度1.5%に調整した汚泥(pH6.1,温度22℃)を原泥としてオゾン処理及び嫌気性消化処理を行った。
【0028】
まず、原泥0.5Lを容積1Lの洗浄びんにとり、濃度25g/m3のオゾン含有ガスを10mL/min通気した。流入及び排出オゾン濃度を測定し、オゾン消費量が50g/kg−原泥となった時点でオゾン処理を終了し、オゾン処理汚泥を取り出して嫌気性消化槽に投入し、同量の液を嫌気性消化槽から引き抜き、これを嫌気性消化処理水とし、その一部で汚泥濃度の分析を行った。なお、嫌気性消化槽(メタン発酵槽)としては、有効容積7.5Lで、種汚泥として下水嫌気性消化槽の汚泥を乾燥重量で75g投入したものを用いた。
【0029】
上記操作を1日1回で週に5回、3ヶ月間継続した。なお、嫌気性消化槽のpHは7.2、温度は37℃、滞留時間は20日である。
【0030】
その結果、オゾン処理前の有機性汚泥の濃度は1.5%であったが、嫌気性消化処理水の汚泥濃度(平均値)は0.71%に低減した。
【0031】
実施例1
オゾン処理に先立ち、原泥に塩酸を添加してpH3.0に調整した後、原泥0.5Lに対して1L/hrの曝気量で1hr曝気したこと以外は、比較例1と同様にしてオゾン処理及び嫌気性消化処理を行った。なお、嫌気性消化に先立って、オゾン処理汚泥に水酸化ナトリウムを添加してpH調整を行った。
【0032】
この結果、3ヶ月経過後の嫌気性消化処理水の汚泥濃度(平均値)は0.33g/Lで、比較例1の場合に比べて1/2以下となった。
【0033】
比較例2
実施例1において、pH調整を行わず、pH6.1の原泥をそのまま22℃で曝気したこと以外は同様にして曝気処理、オゾン処理及び嫌気性消化処理を行った。
【0034】
この結果、3ヶ月経過後の嫌気性消化処理水の汚泥濃度(平均値)は0.68g/Lであり、単なる曝気のみでは汚泥分解率の向上効果は認められないことが判明した。
【0035】
【発明の効果】
以上詳述した通り、本発明の有機性汚泥の嫌気性消化処理方法によれば、有機性汚泥をオゾン処理した後嫌気性消化処理して分解する方法において、オゾン処理に先立ち特定の条件下で曝気を行うことにより、オゾン処理におけるオゾン使用量の低減、処理効率の向上を図り、有機性汚泥を低コストで効率的に分解することが可能となる。
【図面の簡単な説明】
【図1】 本発明の有機性汚泥の嫌気性消化処理方法の実施の形態を示す系統図である。
【符号の説明】
1 曝気槽
2 オゾン処理槽
3 嫌気性消化槽
4 固液分離装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anaerobic digestion treatment method for organic sludge, and in particular, in a method of anaerobic digestion treatment after treating organic sludge with ozone, by performing aeration under specific conditions prior to the ozone treatment, The present invention relates to a method for efficiently decomposing organic sludge by reducing ozone usage and improving processing efficiency.
[0002]
[Prior art]
Conventionally, as an anaerobic digestion treatment method of organic sludge, a method of performing anaerobic digestion treatment such as methane fermentation is known, and in such a treatment method, anaerobic digestion treatment is performed for the purpose of improving sludge decomposition efficiency. As pretreatment, it has been studied to perform pulverization or crushing using a ball mill or ultrasonic waves, oxidative decomposition using ozone treatment, or heat decomposition using heat treatment.
[0003]
For example, Japanese Examined Patent Publication No. Sho 59-105897 proposes a method of anaerobic digestion treatment after surplus sludge generated by biological treatment of wastewater is treated with ozone. In this way, by performing ozone treatment as a pre-treatment, the difficult biodegradable substances in the organic sludge are oxidatively decomposed and converted into biodegradable substances. Therefore, the sludge decomposition in the latter-stage anaerobic digestion treatment Efficiency is improved.
[0004]
[Problems to be solved by the invention]
However, in the above conventional method, although the cost for the pretreatment is high, the improvement effect of the sludge decomposition rate in the anaerobic digestion treatment is low, and generally due to the anaerobic digestion treatment when the pretreatment is not performed. While the sludge decomposition rate is about 40%, even when pretreatment such as ozone treatment is performed, the sludge decomposition rate is only about 50 to 60%.
[0005]
The object of the present invention is to solve the above-mentioned conventional problems and to provide an anaerobic digestion treatment method for organic sludge that efficiently decomposes organic sludge at low cost.
[0006]
[Means for Solving the Problems]
Anaerobic digestion treatment method of the organic sludge of the present invention is that in a method of anaerobic digestion process after the organic sludge treated with ozone prior to ozone treatment, aerating the organic sludge Te acidified under pH1~5 It is characterized by.
[0007]
Since organic sludge is usually spoiled by transportation, storage, etc., it contains hydrogen sulfide. For this reason, when such organic sludge containing hydrogen sulfide is directly subjected to ozone treatment, a large amount of ozone is consumed for decomposition of hydrogen sulfide, so that the ozone treatment efficiency is poor. In addition, the presence of microbial cell walls and mucilage in organic sludge is a factor that reduces the efficiency of ozone treatment.
[0008]
On the other hand, in an acidic aeration tank having a pH of 1 to 5, hydrogen sulfide contained in the sludge is diffused and removed. In addition, by mixing and stirring sludge under acidic conditions, mucilage in the sludge and polysaccharides in the cell wall are hydrolyzed. That is, under acidic conditions, polysaccharides, which are the main components of microbial cell walls and sludge mucilage, are hydrolyzed, and solubilization of sludge is promoted.
[0009]
Moreover, in a 40-90 degreeC high temperature aeration tank, the hydrogen sulfide contained in sludge is oxidized by a high temperature microbe and becomes sulfuric acid. Further, by mixing and stirring sludge at a high temperature, mesophilic bacteria are killed, and sludge mucilage of mesophilic bacteria and organic matter in cell walls are partially hydrolyzed.
[0010]
In the present invention, such an effect of removing hydrogen sulfide can increase the efficiency of ozone utilization for sludge decomposition in the subsequent ozone treatment, and can improve the ozone treatment efficiency due to the hydrolysis effect of mucilage, cell walls, and the like. .
[0011]
In the present invention, the aeration treatment under specific conditions as described above, followed by the ozone treatment and then the anaerobic digestion treatment can improve the sludge decomposition rate to 70% or more.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of an anaerobic digestion treatment method for organic sludge according to the present invention will be described in detail with reference to the drawings.
[0013]
1A and 1B are system diagrams showing an embodiment of the organic sludge anaerobic digestion method of the present invention.
[0014]
In the present invention, the organic sludge to be treated includes an aerobic treatment, an anaerobic treatment, or separated sludge (excess sludge) generated by solid-liquid separation when treating various organic waste liquids in combination. However, the present invention is not limited to this, and biological sludge in a mixed solution state before solid-liquid separation or mixed sludge thereof may be used.
[0015]
In the method of FIG. 1 (a), first, aeration under the condition of the following to introduce such organic sludge to the aeration tank 1 (1), or (1) and (2).
(1) Under acidic pH 1-5
(2) High temperature of 40-90 ° C
In the aeration treatment under the acidic condition (1) , when the pH exceeds 5, the above-described hydrogen sulfide gas diffusion effect and polysaccharide hydrolysis effect due to the acidity cannot be sufficiently obtained. The lower the pH is, the higher the effect is. However, it is disadvantageous in terms of cost to use a strongly acidic condition of less than pH 1. Therefore, the adjusted pH is 1 to 5, preferably 2 to 3.5. The pH of the organic sludge can be adjusted by adding an acid such as hydrochloric acid or sulfuric acid to the organic sludge. This pH adjustment can be performed in the aeration tank 1 or in the previous stage of the aeration tank 1. good.
[0016]
In this case, the longer the aeration treatment time, the more effective. In order to disperse hydrogen sulfide, it usually takes about 1 hour at pH 3.5. Although the aeration treatment time varies depending on the pH condition, the residence time of the sludge in the aeration tank 1 is adjusted so as to ensure an aeration time of 1 hour or more, preferably 3 to 24 hours. In this acidic aeration process, the hydrolysis reaction can be further promoted by heating to about 40 to 90 ° C.
[0017]
In the aeration treatment under the high temperature condition of (2), if the temperature in the tank is less than 40 ° C., the neutral bacteria cannot be killed, and the mucilage of the neutral bacteria and the organic matter in the cell wall are not hydrolyzed. Not. Moreover, since water will boil if the temperature in a tank is too high, the temperature in a tank shall be 90 degrees C or less. From the point of maintaining the activity of thermophilic bacteria in the aeration tank 1 and smoothly promoting the biooxidation of hydrogen sulfide and the hydrolysis of organic substances derived from neutral bacteria, the temperature in the tank should be 45 to 65 ° C. preferable. In addition, it is preferable to perform aeration so that thermophilic bacteria may be maintained sufficiently aerobic, and for that purpose, it becomes a standard that DO (dissolved oxygen) is detected. The calculation amount in the normal activated sludge method can be used as it is for the aeration amount for detecting DO.
[0018]
The aeration treatment time at this time varies depending on the sludge concentration and the temperature in the aeration tank, but the residence time of the sludge in the aeration tank 1 is generally adjusted to be 3 hours or more, particularly about 6 to 24 hours.
[0019]
The conditions of the above (1) and (2) is to employ both PH1~5, it may be aeration at a temperature 40 to 90 ° C..
[0020]
The sludge from which a part of the organic matter is hydrolyzed and hydrogen sulfide is removed by aeration treatment in the aeration tank 1 is then introduced into the ozone treatment tank 2 and subjected to ozone treatment. This ozone treatment is performed by bringing sludge into contact with ozone. As a contact method, as shown in the figure, a method of introducing sludge into the ozone treatment tank 2 and blowing ozone, a method of mechanical stirring, a method of using a packed bed, and the like can be employed. As ozone, ozone-containing air, ozonized air, or the like can be used in addition to ozone gas.
[0021]
In the aeration treatment, when the aeration treatment under the acid condition (1) is performed, the ozone treatment becomes an ozone treatment under the acidity, thereby improving the reaction efficiency of ozone and reducing the amount of ozone used. Can do. The amount of ozone used in this case is preferably 10 to 100 g-O 3 / kg-sludge, particularly 15 to 50 g-O 3 / kg-sludge. For inclusive ozone blowing, the SV 0.25~4hr -1, preferably Of particular 0.5~2hr -1.
[0022]
Ozone ozone treatment sludge was oxidative decomposition by the process, then the anaerobic digestion process is introduced into the anaerobic digestion tank 3. In this anaerobic digestion treatment, sludge is solubilized or decomposed by sludge organic acid fermentation and methane fermentation. The anaerobic digestion treatment temperature is preferably 30 to 60 ° C. Among these, mesophilic methane fermentation bacteria work at 30 to 40 ° C, and high temperature methane fermentation bacteria work at 45 to 60 ° C to convert acetic acid and hydrogen produced as a result of organic acid fermentation into methane. This anaerobic digestion treatment may be a two-phase system in which organic acid fermentation and methane fermentation are performed in separate reaction tanks, or may be a single-phase system in which both these reactions are performed in the same tank. The residence time of the anaerobic digester 3 is preferably 5 to 40 days, particularly 10 to 20 days.
[0023]
Incidentally, it is preferred to maintain the range of pH6~8 in anaerobic digestion process, therefore, as if subjected to aeration treatment under acidic said in aeration (1), when the pH of the sludge is low The pH is adjusted by adding an alkali such as sodium hydroxide, lime or sodium carbonate as appropriate.
[0024]
The anaerobic digestion treated water from the anaerobic digester 3 is usually solid-liquid separated by a solid-liquid separator 4 such as a sedimentation tank, a pressurized flotation tank, a microfiltration membrane separator, or an ultrafiltration membrane separator. The separation liquid is discharged out of the system as treated water.
[0025]
In addition, although the method shown to Fig.1 (a) carries out an aeration process, ozone treatment, and anaerobic digestion treatment of organic sludge sequentially, the method of this invention is the sludge provided for anaerobic digestion treatment, For example, as shown in FIG. 1B, a part of sludge in the anaerobic digestion tank 3 is extracted and aerated in the aeration tank 1 under the condition (1) described above. It may be processed and then ozone-treated in the ozone treatment tank 2 and then returned to the anaerobic digestion tank 3.
[0026]
【Example】
Hereinafter, the present invention will be described more specifically with reference to comparative examples and examples.
[0027]
Comparative Example 1
Sludge (pH 6.1, temperature 22 ° C) adjusted to 1.5% concentration of organic sludge mixed with surplus sludge from the activated sludge process treating sewage and the first sedimentation basin sludge at 1: 1 is used as the raw sludge. Ozone treatment and anaerobic digestion treatment were performed.
[0028]
First, 0.5 L of raw mud was placed in a washing bottle having a volume of 1 L, and ozone-containing gas having a concentration of 25 g / m 3 was aerated at 10 mL / min. Inflow and discharge ozone concentrations are measured, and when the ozone consumption reaches 50 g / kg-raw mud, the ozone treatment is terminated, the ozone-treated sludge is taken out and put into an anaerobic digester, and the same amount of liquid is anaerobic. It was pulled out from the digestive digestion tank and used as anaerobic digestion-treated water. As an anaerobic digester (methane fermentation tank), an effective volume of 7.5 L was used, and 75 g of sludge from a sewage anaerobic digester was added as seed sludge by dry weight.
[0029]
The above operation was continued once a day, 5 times a week for 3 months. The pH of the anaerobic digester is 7.2, the temperature is 37 ° C., and the residence time is 20 days.
[0030]
As a result, the concentration of organic sludge before ozone treatment was 1.5%, but the sludge concentration (average value) of anaerobic digestion treated water was reduced to 0.71%.
[0031]
Example 1
Prior to the ozone treatment, hydrochloric acid was added to the raw mud to adjust the pH to 3.0, and then aerated for 1 hr at an aeration rate of 1 L / hr with respect to 0.5 L of the raw mud. Ozone treatment and anaerobic digestion treatment were performed. Prior to anaerobic digestion, the pH was adjusted by adding sodium hydroxide to the ozone-treated sludge.
[0032]
As a result, the sludge concentration (average value) of the anaerobic digestion treated water after the lapse of 3 months was 0.33 g / L, which was ½ or less than that of Comparative Example 1 .
[0033]
The ratio Comparative Examples 2
In Example 1, aeration treatment, ozone treatment and anaerobic digestion treatment were performed in the same manner except that pH adjustment was not performed and the raw mud of pH 6.1 was directly aerated at 22 ° C.
[0034]
As a result, the sludge concentration (average value) of the anaerobic digestion treated water after the lapse of 3 months was 0.68 g / L, and it was found that the effect of improving the sludge decomposition rate was not recognized only by simple aeration.
[0035]
【The invention's effect】
As described in detail above, according to the method of anaerobic digestion treatment of organic sludge of the present invention, in the method of decomposing an organic sludge by anaerobic digestion treatment after ozone treatment, under specific conditions prior to ozone treatment. By performing aeration, it is possible to reduce the amount of ozone used in the ozone treatment, improve the treatment efficiency, and efficiently decompose the organic sludge at a low cost.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of an organic sludge anaerobic digestion method of the present invention.
[Explanation of symbols]
1 Aeration tank 2 Ozone treatment tank 3 Anaerobic digestion tank 4 Solid-liquid separator
Claims (1)
オゾン処理に先立ち、有機性汚泥をpH1〜5の酸性下に曝気することを特徴とする有機性汚泥の嫌気性消化処理方法。In the method of anaerobic digestion after ozone treatment of organic sludge,
An anaerobic digestion method for organic sludge, characterized in that the organic sludge is aerated under an acidic pH of 1 to 5 prior to the ozone treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20066699A JP4200600B2 (en) | 1999-07-14 | 1999-07-14 | Anaerobic digestion treatment method of organic sludge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20066699A JP4200600B2 (en) | 1999-07-14 | 1999-07-14 | Anaerobic digestion treatment method of organic sludge |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001025797A JP2001025797A (en) | 2001-01-30 |
JP4200600B2 true JP4200600B2 (en) | 2008-12-24 |
Family
ID=16428219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20066699A Expired - Fee Related JP4200600B2 (en) | 1999-07-14 | 1999-07-14 | Anaerobic digestion treatment method of organic sludge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4200600B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112299598A (en) * | 2020-10-13 | 2021-02-02 | 安徽国星生物化学有限公司 | Treatment method of heterocyclic wastewater containing tar bipyridine |
CN114506982B (en) * | 2020-10-28 | 2024-04-26 | 中国石油化工股份有限公司 | Sulfur-containing sludge treatment device and method for high-sulfur-content gas field |
-
1999
- 1999-07-14 JP JP20066699A patent/JP4200600B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001025797A (en) | 2001-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5492624A (en) | Waste treatment process employing oxidation | |
JP3275351B2 (en) | Anaerobic treatment of organic wastewater | |
JP3389628B2 (en) | Treatment method for wastewater containing terephthalic acid | |
JP4404976B2 (en) | Organic wastewater treatment method and organic wastewater treatment apparatus | |
JP4200600B2 (en) | Anaerobic digestion treatment method of organic sludge | |
JP3636035B2 (en) | Digestion method of organic sludge | |
JP3959843B2 (en) | Biological treatment method for organic drainage | |
JP3900796B2 (en) | Method and apparatus for treating organic wastewater | |
JP4631162B2 (en) | Organic waste treatment methods | |
JP4200601B2 (en) | Anaerobic digestion treatment method of organic sludge | |
JP4406749B2 (en) | Organic wastewater treatment method and organic wastewater treatment apparatus | |
JPH0679295A (en) | Treatment of organic waste water | |
JP3409728B2 (en) | Organic waste treatment method | |
JP3223145B2 (en) | Organic wastewater treatment method | |
JP4581174B2 (en) | Biological treatment method | |
JP2001025789A (en) | Treatment of organic waste liquid and device therefor | |
JP2006334593A (en) | Method for treating organic waste water | |
JP3969144B2 (en) | Biological treatment method and biological treatment apparatus | |
JPH10128398A (en) | Solubilization treatment of biologically treated sludge | |
JP2005021731A (en) | Treatment method for anaerobically digested liquid | |
ES2228131T3 (en) | PROCEDURE FOR TREATMENT OF THE MUDS FROM THE FACILITIES FOR BIOLOGICAL WATER DEPURATION. | |
JP3697900B2 (en) | Wastewater treatment method and apparatus therefor | |
JP2003311299A (en) | Aerobic digestion device for sludge and method for aerobic digestion of sludge | |
JPH0788495A (en) | Method for aerobic treatment of organic drainage | |
JPH06142685A (en) | Method and device for treating waste fluid containing organic nitrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050630 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070717 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080708 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080822 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080916 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080929 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111017 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111017 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121017 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121017 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131017 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |