JP2005021731A - Treatment method for anaerobically digested liquid - Google Patents

Treatment method for anaerobically digested liquid Download PDF

Info

Publication number
JP2005021731A
JP2005021731A JP2003186717A JP2003186717A JP2005021731A JP 2005021731 A JP2005021731 A JP 2005021731A JP 2003186717 A JP2003186717 A JP 2003186717A JP 2003186717 A JP2003186717 A JP 2003186717A JP 2005021731 A JP2005021731 A JP 2005021731A
Authority
JP
Japan
Prior art keywords
liquid
treatment
organic waste
sludge
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003186717A
Other languages
Japanese (ja)
Inventor
Atsushi Kitanaka
敦 北中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003186717A priority Critical patent/JP2005021731A/en
Publication of JP2005021731A publication Critical patent/JP2005021731A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method for an anaerobically digested liquid wherein the addition of organic matter such as acetic acid, methanol or the like is dispensed with when nitrogen is removed from the anaerobically digested liquid of organic waste by biological treatment, an inexpensive substitute may be added in a small amount as compared with a conventional technique, incidental equipment such as a large biological reaction tank or the like is unnecessary, a treatment time is also relatively short, a treatment effect is satisfied sufficiently and nitrogen is biologically removed with a high efficiency of 90% or above. <P>SOLUTION: The anaerobically digested liquid of organic waste is subjected to aeration treatment at a temperature substantially same to or higher than an anaerobic digestion treatment temperature and, after a part of a sludge liquid produced from the aerated treated liquid is treated with ozone, the ozone-treated liquid is introduced into the biologically treated liquid to biologically treat the anaerobically digested liquid of organic waste. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、下水汚泥や工場廃棄物、畜産廃棄物、生ゴミなどの有機性廃棄物の処理、とくに生物的処理に際して使用される新規な水素供与体混合物含有液の調製方法関するものであり、下水汚泥や工場廃棄物、畜産廃棄物、生ゴミなどの有機性廃棄物そのものあるいはそれらへの水添加物を嫌気的条件下に保持してメタン発酵等を利用して有機性廃棄物を消化した後、活性汚泥処理法などの生物学的脱窒工程で使用される新規な水素供与体混合物含有液の調製方法関するものである。さらに、この発明は、下水汚泥や工場廃棄物、畜産廃棄物、生ゴミなどの有機性廃棄物の新規な処理方法に関するものであり、特に下水汚泥や工場廃棄物、畜産廃棄物、生ゴミなどの有機性廃棄物そのものあるいはそれらへの水添加物を嫌気的条件下に保持してメタン発酵等を利用して有機性廃棄物を消化し、次いで活性汚泥処理法などの生物処理することを特徴とする下水汚泥や工場廃棄物、畜産廃棄物、生ゴミなどの有機廃棄物の新規な処理方法に関するものである。
【0002】
【従来の技術】
従来から、下水汚泥や工場廃棄物、畜産廃棄物、生ゴミなどの有機性廃棄物の処理において、有機性廃棄物をメタン発酵し、そのガスエネルギーを有効利用しようとする取り組みがされている。メタン発酵後に生じた汚泥については、コンポスト化や、活性汚泥等の生物的処理がされてきたが、コスト高、流通困難等の様々な課題が残されている。
たとえば、活性汚泥等を利用する生物学的処理法において、脱窒工程に際して水素供与体としてメタノールなどの有機物を添加することが知られているが、この方法はコスト高となってしまう。そこで、排出された余剰汚泥をメタノールなどの有機物の代替物とする技術、すなわち余剰汚泥を熱アルカリで分解し、その可溶化液を脱窒工程に導入する方法が報告されている(特許文献1を参照)。しかし、この方法によれば、余剰汚泥を熱アルカリで分解して可溶化する際、汚泥中の有機物が反応することにより難分解性の有機物が生成し、処理水に残存する等の問題点がある。
その点を改良する技術として、し尿と生ゴミ等とを合併処理する際に発生する発酵汚泥の一部をオゾン処理して有機物を可溶化させ、その可溶化した有機物を酢酸やメタノールなどの有機物の代替物とする技術が報告されている(特許文献2を参照)。確かに、この方法は難分解性の有機物が生成することもなく、その点で優れているのであるが、オゾン処理物を多量に生物反応槽内に投入する必要があり、大きな生物反応槽等の設備が必要となるうえ、処理時間も長く、その効果も満足できるほどではない。また、発生する汚泥量が多く、生物学的に窒素を90%以上の高効率で除去するのは、非常に難しい。
【0003】
【特許文献1】特公昭59−48677号
【特許文献2】特開2001−62495
【0004】
【発明が解決しようとする課題】
そこで本発明の課題は、上記問題点を一挙に解決する新規な方法を提供することにある。すなわち、有機性廃棄物の嫌気的消化液を生物学的脱窒工程で使用する酢酸やメタノールなどの有機物の代替物の添加量が少量ですみ、発生する汚泥量が少なく、大きな生物反応槽やメタノールなどの有機物注入等の付帯設備が不要となり、処理時間も比較的短い新規な処理方法を提供することにある。しかもこの方法は生物学的に窒素を90%以上の高効率で除去できる方法でもある。
とくに高濃度の窒素分を含む嫌気的消化液を生物学的処理する方法における窒素分を除去するために使用する酢酸やメタノールなどの有機物の代替物の添加量が少量ですみ、発生する汚泥量が少く、大きな生物反応槽やメタノールなどの有機物注入等の付帯設備が不要となり、処理時間も比較的短く、それらの効果は十分に満足できるほどである新規な処理方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者は、かかる技術的課題を解決すべく、有機性廃棄物の嫌気性消化液に着目し、鋭意研究する最中に、嫌気性消化液の消化処理温度を維持した状態で嫌気性消化液を曝気処理し、その曝気処理液から生じた汚泥をさらにオゾン処理して得られた可溶化有機物含有液を調製し、その可溶化有機物含有液を生物学的処理する方法における窒素除去時に添加される酢酸やメタノールなどの有機物の代替物として使用すると、上記課題を満足する結果が得られるという知見を得、その知見に基づきさらに研究を重ね、ついに本発明に到達した。
すなわち、本発明の請求項1に係る発明は、有機性廃棄物の嫌気性消化液を嫌気性消化処理温度と実質的に同じ温度あるいはその温度よりも高い温度(以下、嫌気性消化処理温度ということがある)で曝気処理し、その曝気処理液から生じた汚泥液をオゾン処理することを特徴とする有機性廃棄物の嫌気性消化液の生物的処理用水素供与体混合物含有液の調製方法である。
本発明の請求項2に係る発明は、有機性廃棄物の嫌気性消化液の処理方法であって、上記新規な方法で調製された生物的処理用水素供与体混合物含有液を生物的処理液に投入することを特徴とする有機性廃棄物の嫌気性消化液の処理方法である。これを言い換えれば、本発明の請求項2に係る発明は、有機性廃棄物の嫌気性消化液の処理方法であって、有機性廃棄物の嫌気性消化液を嫌気性消化処理温度で曝気処理し、その曝気処理液から生じた汚泥液の一部をオゾン処理した後、そのオゾン処理液を生物学的処理液に投入することを特徴とする有機性廃棄物の嫌気性消化液の処理方法である。
【0006】
なお、畜産排水など高濃度で窒素量の多い排水をメタン発酵処理した発酵液をアンモニアストリッピング処理することにより発酵液内のアンモニア濃度を低減させる技術が特開平10−5789号公報に開示されている。しかし、この公報には高濃度のアンモニアを低減させることによって、次の工程での活性汚泥の活性の阻害を回避する技術が開示されているにすぎないのであり、活性汚泥などの生物処理工程での技術的な工夫・改良については何ら開示されていない。
【0007】
以下、本発明を詳細に説明する。なお、説明中に出てくる数字は、とくに説明されていない限り、図1,2で使用されている数字を示す。
本発明でいう有機性廃棄物とは、人や家畜などの生物が活動して行くうえで必然的に廃棄・排出される有機物をいい、とくに限定されないのであるが、典型的には家庭やビル・工場から捨てられる生活廃水・汚水から生じる汚泥や生ゴミ、工場を稼動したときに生じる廃棄物である工場廃水・排水、畜産業を営む際に生じる有機性廃棄物や家畜の排泄物等の畜産廃棄物が挙げられる。
【0008】
上記有機性廃棄物そのものあるいは必要に応じてそれらに水を加え、嫌気性条件下にて保持・攪拌し、有機性廃棄物を消化する。加える水の量は、有機物が水に溶解・分散されて嫌気的に消化処理されるような量でよい。本発明では嫌気的条件下で有機性廃棄物を消化することが重要であり、その点を達成できるかぎり、公知の方法、手段を利用することができる。嫌気的条件下で有機性廃棄物を消化する具体例として、嫌気的な条件を好む微生物が有機性廃棄物を栄養源として増殖し、メタンを生成するメタン発酵処理が挙げられる。
ここで嫌気的条件とは、できる限り酸素を排除する条件を意味し、酸素が全く存在しない条件をいうが、初期の目的を達成できるかぎり多少の酸素が存在してもよい。
【0009】
嫌気性消化についてより具体的に説明すると、有機性廃棄物は酸性発酵期(第1期)、酸性減退期(第2期)およびアルカリ性発酵期(第3期)を経て分解される。ここで第1期および2期では通性嫌気性菌群により高分子有機物を揮発性有機酸と低級アルコール類とに加水分解する。第1期ではpHが5〜6まで低下し、第2期ではpHが約6.8まで上昇する。
第3期では、絶対嫌気性細菌であるメタン生成菌の作用によって、有機酸等の中間生成物がメタン、二酸化炭素、アンモニアなどの最終生成物に分解される。第3期ではpHが7.0〜7.4程度になる。一般に、加温タイプの嫌気性消化は、加温の温度により中温(30〜37℃)または高温(50〜55℃)発酵に分けられる。
【0010】
本発明では、嫌気性消化液を曝気処理する。ここでの曝気処理される嫌気性消化液とは、嫌気性消化液から生じた汚泥液を含む消化液をいうが、とくに第3期の反応がほぼ終了したときの嫌気性消化液を曝気処理することが望ましい。第3期の反応がほぼ終了したときの嫌気性消化液の一部を引き抜き、曝気処理してもよい。この曝気処理により、消化液中のアンモニア成分を含めた揮発性成分を揮散させることができるのであり、とくに、この処理工程以降の工程での生物的処理における処理液内の窒素分が少なくなるのであるから、窒素処理負荷が軽減され、有利である。
また、通常ならば嫌気性消化処理後の工程では放熱等のため消化液の温度は下がるのであるが、本発明では消化液の温度をその消化処理温度に実質的に保持するか、あるいはその温度以上にて曝気処理を行うのであり、この点が本発明の特徴の一つである。すなわち消化液の温度を消化処理温度または40〜90℃に保温しあるいは加温し、曝気処理する。なお、放熱などのために、曝気処理温度は嫌気性消化処理温度が下がってしまうが、消化処理温度よりも10℃程度低いのであれば本発明の範囲内である。
曝気処理温度が高ければ、アンモニア成分を含めた揮発性成分を多量に揮散させることができるのであり、有利である。
【0011】
曝気処理により嫌気性消化液中に含まれる炭酸成分も揮散するため、pHが酸性からアルカリ性へとシフトし、より多くのアンモニア成分の除去が期待できる。また、消化液にアルカリ性を示す薬剤、とく炭酸塩あるいは重炭酸塩などを加えてアルカリ性に調整すると、上記アンモニア成分の除去がさらに期待できる。
しかし、強アルカリ性に調整しすぎると難水溶性の化合物が生成される恐れがあるので、PHを好ましくは12以下にすることにより、難水溶性化合物の生成も殆どみられず、アンモニア成分を含めた揮発性成分を揮散させることができるので、きわめて有利である。
【0012】
本発明では、曝気処理に使用する曝気槽は嫌気性消化液の温度が保持されるような構造になっていれば、どのような形式の曝気槽を使用してもよい。たとえば、第3期の反応がほぼ終了したときの嫌気性消化液あるいはその消化液の一部を取り出し、曝気槽内に導入し、空気などのガスを槽内に供給して曝気処理することができる。取り出す消化液の量は後の工程である生物処理液の性状、すなわちどの程度の量の水素供与体を必要とするかにより決定されるのであり、一概に規定することができないが、通常曝気槽の処理液の10〜70容量%程度である。
本発明では曝気槽の外側に断熱材からなる保温層を形成させた曝気槽を用いることが普通であるが、曝気槽の外側に管を配置し、温水などを管内に通過させ曝気槽の温度を制御してもよい。曝気槽内に空気、蒸気、窒素ガスなどを吹き込み、曝気する。吹き込まれる空気、窒素ガスなどは予め曝気槽内の温度付近まで加温しておくと曝気槽内の処理液の温度が低くならないので好都合である。吹き込むガス量や曝気処理時間は、嫌気性消化液の消化の程度、有機物の種類と量など多くの要因があり、一概に規定することができないが、たとえば、0.3m/時間〜1.0m/時間程度であり、曝気処理時間は1分〜24時間程度である。
【0013】
曝気により揮散したアンモニアを主成分とするガスは、環境への影響を鑑みて何らかの処理を行い、環境への悪影響がない形で廃棄・放出することが必要である。このガス処理は公知の方法を適用すればよく、たとえば、触媒を使用し処理する方法、次亜塩素酸塩などの薬液による処理法、細菌などの微生物を使用した処理法等が挙げられるが、アンモニアガスを窒素ガスに変える触媒を使用する処理方法が、環境への負荷削減という点から望ましい。上記触媒としては、鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、ジルコニウム、イリジウム、白金、銅、金及びタングステン、並びにこれ等の酸化物、二塩化ルテニウム、二塩化白金等の塩化物、硫化ルテニウム、硫化ロジウム等の硫化物等の水に対し不溶性又は難溶性の化合物が用いられ、担体としてはアルミナ、シリカ、シリカ−アルミナ、チタニア、活性炭等が挙げられる。また、A成分としてチタン及びジルコニウムを含有する二元系複合酸化物、B成分としてバナジウム,タングステン,モリブデンからなる群から選ばれた少なくとも1種の金属の酸化物およびC成分として白金,パラジウム,ロジウム,ルテニウム,イリジウムからなる群から選ばれた少なくとも1種の貴金属またはその化合物を含有する触媒が挙げられる。
担体の形状にも特に制限はないが、球状であることが好ましく、その粒径は3mm以上が好ましい。
【0014】
有機性廃棄物の嫌気性消化液、たとえばメタン発酵液を曝気処理した後では、それら液中にはアンモニアを主成分とするガスは実質的には除去されたが、除去対象である有機物、リン、曝気処理で除去できない窒素分などが残されている。これら有機物は、活性汚泥を構成する微生物の食物となり分解除去されるので、これら有機物を除去するために、曝気処理された液をさらに生物的処理することが必要である。
ここでいう生物的処理とは、微生物の力を利用して除去したい成分を除去する処理をいい、とくに微生物を増殖させ、それら微生物の代謝等を利用して、嫌気性消化液中の有機物を分解する処理をいう。たとえば有機性廃液等の処理に通常使用される活性汚泥法や生物的硝化脱窒素法を挙げることができる。なお、生物的処理を生物学的処理と表現してもよい。
生物的処理液とは、上記生物処理される液をいう。生物的処理液を生物学的処理液と表現してもよい。
これらの処理法では、有機物含有液中に微生物と栄養源を加え、空気を吹き込む工程が必須であり、酸化作用を促進させ、液中の有機物を微生物の代謝等により分解させるのであるが、必要に応じて上記以外の工程が付加される。
本発明においては、生物的処理法であればどのような方法を使用してもよいのであって、たとえば活性汚泥法としては、回分式活性汚泥法、標準活性汚泥法、長時間曝気法、間欠曝気法、2槽式間欠曝気法等が知られているが、本発明ではどのような方法を採用してもよい。
上記活性汚泥法では、様々な種類の微生物が関与して有機性汚泥中の固形物の液化やその低分子化が起こり、有機性汚泥の主要な構成成分である炭水化物は、単糖類や低級脂肪酸に、蛋白質はペプチドやアミノ酸、脂肪酸に、脂肪は脂肪酸やグリセリンに分解される。
【0015】
曝気処理液をたとえば活性汚泥法で処理するときに、その処理条件は、嫌気性消化液の消化の程度や有機性廃棄物の種類や量など多くの要因が影響するのであって一概に規定することができないのであり、被処理液の水質とその処理水などを検査してから定めることが普通であるが、処理時間は通常ならばHRTとして1時間程度から30日程度である。
活性汚泥処理後、その処理液を固液分離槽9に導入して固液分離し、液部は処理水10として外部に放出し、濃縮汚泥はその一部が余剰汚泥11として外部に放出し、残りは返送汚泥12として生物反応槽へ返送され再び処理される。
本発明で用いる生物反応槽8や固液分離槽9は公知の生物反応槽や固液分離槽を利用すればよいのであって、とくに限定されない。
【0016】
本発明では、さらに高効率で窒素分を除去するためには、微生物による脱窒素反応(以下、脱窒反応ということがある)において重要な役割を果たす水素供与体の添加が必要である。
すなわち、処理すべき液中に含まれる窒素分は、そのほとんどが有機態窒素とアンモニア性窒素であり、有機態窒素は脱アミノ反応によりアンモニア性窒素に分解される。これらのアンモニア性窒素は酸素が存在する好気条件で亜硝酸菌によって亜硝酸性窒素に酸化され、更に硝化菌によって硝酸性窒素にまで酸化される。この反応式は
NH +3/2O → NO +HO+2H ・・・・・・・(1)
NO +1/2O → NO ・・・・・・・・・・(2)
と書ける。生成した硝酸性窒素(NO )は酸素が存在しない無酸素条件下で脱窒菌の働きにより窒素ガスに還元される。この反応は、
NO +5H → N+4HO+2OH ・・・・・・・(3)
と書ける。
この際水素供与体が共存されていると、上記各反応が効率的に進み、好都合である。
【0017】
上記水素供与体を調製するため、曝気槽3で処理された液から生じる汚泥をオゾン反応槽13内に導入し、オゾン処理する。このオゾン処理により汚泥を可溶化させた後、必要に応じて膜分離を行い、汚泥液内の固形有機物に由来する可溶化有機物を含有する液、すなわち水素供与体混合物含有液を得ることができる。この水素供与体混合物含有液を構成する低分子量化された可溶化有機物は脱窒反応の際の有機源として適している。しかもすでに曝気処理されており、アンモニア成分が除去され窒素分は減少しているのであるから、次の生物的処理工程においても窒素除去という点での負荷が削減されるのであり、有利である。なお、上記処理される汚泥には、少量の処理液を添加してもよい。ここで、水素供与体混合物含有液は嫌気性消化液の生物学的窒素除去用水素供与体混合物含有液でもある。
オゾン処理槽に導入される処理液の温度を調整することは必須ではないが、生物反応槽8に投入するときに、投入する液を生物反応槽8内の処理液温度にまで下げておくことが望ましい。なお、オゾン反応槽13内に導入する前に、導入液の温度を生物反応槽8内の処理温度にまで下げておいてもよい。
【0018】
以下、オゾン処理条件について説明する。
用いられるオゾン反応槽13は一般的な反応槽を使用することができる。このオゾン反応槽13内に曝気槽3から引き抜いた汚泥を導入させた後、該汚泥にオゾンを注入する。なおこの時のオゾンの注入量など処理条件については、有機性廃棄物の種類や量、嫌気性消化液の消化の程度、消化液の温度やpHなど.曝気処理条件などによりその最適な条件が変動するのであり、被処理汚泥液の性状をみて定めることができるが、通常1分から24時間程度であり、温度は生物的処理温度から60℃程度であり、使用するオゾンガスの濃度は1g/m程度から500g/m程度である。オゾン濃度を濃くすると、反応速度が速くなり、発泡が少なくなる等の利点がある。
【0019】
また、オゾン処理と同時に過酸化水素を共存させてもよい。過酸化水素添加量は各種要因により変動するのであるが、一例として10〜30mg/L程度を挙げることができる。過酸化水素はオゾンに作用して強力な酸化作用を有するOHラジカルの生成を促進する効果がある。
【0020】
本発明においては、曝気槽3で処理された汚泥液の引き抜かれた一部をオゾン反応槽3内でオゾン処理した後、膜分離し、得られた固体部分を嫌気性消化槽1に返送してもよい。この操作により嫌気性消化が促進され単位有機物あたりのガス発生量増加、すなわち有機物分解率の向上が図られる。
【0021】
本発明においては、固液分離槽9で発生する汚泥の一部をオゾン反応槽3に返送してもよい。この操作により、さらに好ましい嫌気性消化液の生物学的窒素除去用水素供与体混合物含有液を調製することができ、有機性廃棄物の嫌気性消化液の生物学的処理を効率よく行うことができる。
【0022】
以上の説明から、本発明は、有機性廃棄物の嫌気性消化液の生物的処理方法において、有機性廃棄物の嫌気性消化液を嫌気性消化処理温度と実質的に同じ温度あるいはその温度よりも高い温度で曝気処理し、その曝気処理液から生じた汚泥液の一部をオゾン処理した後、そのオゾン処理液を生物的処理液に投入することを特徴とする有機性廃棄物の嫌気性消化液の生物的処理方法、
でもある。
また、本発明は、有機性廃棄物の嫌気性消化液の生物的処理方法において、有機性廃棄物の嫌気性消化液を嫌気性消化処理温度と実質的に同じ温度あるいはその温度よりも高い温度で曝気処理し、その曝気処理液から生じた汚泥液の一部を生物的処理液に投入し、かつその曝気処理液から生じた汚泥液の部をオゾン処理した後、そのオゾン処理液を生物的処理液に投入することを特徴とする有機性廃棄物の嫌気性消化液の生物的処理方法、
でもある。
【0023】
【発明の実施の形態】
以下本発明の実施態様を、図を参照しながら説明するが、本発明はこれらに何ら限定されない。
まず、図1を参照しながら一つの実施の態様を説明する。
嫌気性消化槽1から発生する原水2を発酵温度に保持したままで、保温装置4を具備した曝気槽3へ導入した。曝気槽が保温状態のままで曝気装置系5から供給される空気、窒素ガス等により1分〜24時間程度の曝気処理がなされる。この曝気処理により、原水に溶解したアンモニア成分を含む揮発性成分が、ガスとして放散される。放散されたガスは、次いで触媒接触棟6へ導入され、窒素ガスへ変化された後、大気へと放出される。また、曝気槽への供給ガスとしてもよい。
一方、曝気処理後の汚泥を含む処理液は、熱交換器7で後段の生物反応槽8の生物が最適に働く温度域まで下げられる。通常ならば、20℃前後に下げるのがよい。その後、生物反応槽8において、生物的処理がなされる。生物的処理とは、廃液等の処理に通常使用される活性汚泥処理のようなものを指している。生物による処理時間は、被処理液の水質とその処理水を鑑みて定めるが、通常ならばHRTは1時間程度から30日程度である。
その後、固液分離槽9で固液分離が行われ、液部は処理水10となり排出され、濃縮汚泥は一部が余剰汚泥11として排出され、残りは返送汚泥12として生物反応槽へ返送され再び処理をつかさどる。
ここで、熱交換器7で冷却された汚泥液の10〜70容量%を、オゾン反応槽13で処理し、オゾン処理物を生物反応槽8に投入する。このオゾン処理物は生物反応槽8内で進行する生物脱窒反応での水素供与体混合物含有液として機能する。これは溶解性成分のほうが、脱窒反応での水素供与体として適しているからである。オゾン処理の条件については、被処理汚泥の性状をみて定めるが、1分から24時間程度で、使用するオゾンガスの濃度は1g/m程度から500g/m程度のものである。
以上の工程により、嫌気性消化から排出される残渣分の処理、特に窒素分に対する処理をメタノール等の有機物の添加なしに、効率的に行うことが可能となった。
【0024】
以下本発明の異なる実施態様を、図2を参照しながら説明する。
嫌気性消化槽1から発生する原水2を曝気処理し、ついで生物処理し、その後固液分離し、一部の汚泥を返送汚泥12として生物反応槽へ返送したことまでは、上記実施の態様と同様の操作をした。
熱交換器7で冷却された汚泥液の30容量%を、オゾン反応槽13で処理し、オゾン処理物を生物反応槽8に投入する。このオゾン処理物は生物反応槽8内で進行する生物脱窒反応での水素供与体混合物含有液として機能する。これは溶解性成分のほうが、脱窒反応での水素供与体として適しているからである。また、オゾン処理汚泥の1部は膜分離モジュール14に移送されて膜分離され、その固体部分は嫌気性消化槽1に返送されてもよい。これにより、さらに嫌気性消化がなされ単位有機物あたりのガス発生量増加、すなわち有機物分解率の向上が図られる。なおオゾン処理の条件については、被処理汚泥の性状をみて定めるが、1分から24時間程度で、使用するオゾンガスの濃度は1g/m程度から500g/m程度のものである。
本工程により、脱窒に係るメタノールの添加が不要で、さらに有機物あたりの分解率を向上させ、ガス発生量の増加と、発生汚泥量の削減を図ることができた。
【0025】
すなわち、オゾン処理液からの汚泥液の膜分離物を嫌気性消化槽に返送した場合、オゾン未処理液からの汚泥の膜分離物を嫌気性消化槽に返送した場合と比較して、返送される汚泥液内の有機物量あたりのガス発生量が大幅に増加したのであり、約2割も分解率が向上することが判明した。
【0026】
また、表1記載の日数だけ生物的処理を行った後、処理液をサンプリングし、オゾン処理液を投入したときと、オゾン未処理液を投入したときの発生汚泥量を常法により測定した。なお、オゾンガス濃度は100g/mであり、オゾン注入率は0.1g−O/g−ssであった。ここでssは処理液の懸濁固形分を示す。
結果を表1に示した。
表1 汚泥発生量

Figure 2005021731
【0027】
この表から、汚泥発生量はオゾン処理した水素供与体混合物含有液を使用すると大幅に減少したことが分かった。
【0028】
【発明の効果】
本発明により、曝気処理によるアンモニアガスの処理と、曝気処理汚泥液へのオゾン処理を組み合わせて、嫌気性消化液の生物的処理における効率的・経済的な窒素除去を可能とした。
すなわち、本発明により生物処理槽内に投入される水素供与体混合物含有液を効率よく調製することができた。また、その水素供与体混合物含有液は窒素分が減少しており、利用しやすい可溶化有機物が含有されているので、該水素供与体混合物含有液を活性汚泥法などの生物的処理法に投入することにより、高価なメタノールなどを添加する必要がなく、水素供与体混合物含有液を少量の添加量ですみ、発生汚泥量が少なく、より効率的に嫌気性消化が行えることなどを可能とした。そのうえ、本発明では生物処理槽に投入される汚泥液も窒素分が減少しており、生物処理槽内で処理される液内の窒素分が少なく、窒素分処理に要する負荷がそれだけ減少するという効果を有する。
すなわち、本発明により生物処理槽内で安価な水素供与体混合物含有液を使用して、汚泥量が少なく、短い処理時間で、大きな生物反応槽や付帯設備等モ必要なく、生物学的に窒素を90%以上の高効率で除去することを可能にしたのであり、より有用な嫌気性消化液の処理方法がもたらされた。
【図面の簡単な説明】
【図1】本発明の「嫌気性消化液の処理方法」を示す概略図である
【図2】本発明の「嫌気性消化液の処理方法」を示す異なる概略図である
【符号の説明】
1.嫌気性消化槽
2.原水(嫌気性消化液)
3.曝気槽
4.保温装置
5.曝気装置系
6.触媒接触棟
7.熱交換器
8.生物反応槽
9.固液分離槽
10.処理水
11.余剰汚泥
12.返送汚泥
13.オゾン反応槽
14.膜分離モジュール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for preparing a novel hydrogen donor mixture-containing liquid used in the treatment of organic waste such as sewage sludge, factory waste, livestock waste, and garbage, particularly biological treatment, Organic waste such as sewage sludge, factory waste, livestock waste, raw garbage, etc., or water additives added to them were kept under anaerobic conditions, and organic waste was digested using methane fermentation etc. The present invention also relates to a method for preparing a novel hydrogen donor mixture-containing liquid used in a biological denitrification step such as an activated sludge treatment method. Furthermore, the present invention relates to a novel method for treating organic waste such as sewage sludge, factory waste, livestock waste, and garbage, and in particular, sewage sludge, factory waste, livestock waste, garbage, etc. It is characterized by digesting organic waste using methane fermentation, etc., and then subjecting it to biological treatment such as activated sludge treatment. The present invention relates to a novel method for treating organic waste such as sewage sludge, factory waste, livestock waste, and garbage.
[0002]
[Prior art]
Conventionally, in the treatment of organic waste such as sewage sludge, factory waste, livestock waste, and garbage, efforts have been made to effectively ferment the organic waste by methane fermentation of the organic waste. The sludge produced after methane fermentation has been subjected to biological treatment such as composting and activated sludge. However, various problems such as high cost and difficulty in distribution remain.
For example, in a biological treatment method using activated sludge or the like, it is known to add an organic substance such as methanol as a hydrogen donor in the denitrification step, but this method is expensive. Therefore, a technique for replacing the discharged excess sludge with an organic substance such as methanol, that is, a method of decomposing the excess sludge with hot alkali and introducing the solubilized liquid into the denitrification step has been reported (Patent Document 1). See). However, according to this method, when the excess sludge is decomposed and solubilized with hot alkali, the organic matter in the sludge reacts to form a hardly decomposable organic matter and remains in the treated water. is there.
As a technology to improve that point, some fermented sludge generated during the combined treatment of human waste and raw garbage is treated with ozone to solubilize the organic matter, and the solubilized organic matter is organic matter such as acetic acid or methanol. There is a report of a technique for substituting (see Patent Document 2). Certainly, this method does not produce persistent organic substances and is excellent in that respect. However, it is necessary to put a large amount of ozone-treated products into the biological reaction tank. Equipment is required, the processing time is long, and the effect is not satisfactory. Moreover, the amount of generated sludge is large, and it is very difficult to biologically remove nitrogen with a high efficiency of 90% or more.
[0003]
[Patent Document 1] Japanese Patent Publication No. 59-48677
[Patent Document 2] JP 2001-62495 A
[0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a novel method for solving the above-mentioned problems all at once. In other words, an organic anaerobic digestion solution used in the biological denitrification process requires only a small amount of organic substitutes such as acetic acid and methanol, and generates a small amount of sludge. It is an object of the present invention to provide a novel processing method that eliminates the need for incidental facilities such as injection of organic substances such as methanol and that has a relatively short processing time. Moreover, this method is also a method that can biologically remove nitrogen with a high efficiency of 90% or more.
The amount of sludge generated is small, with only a small amount of organic substitutes such as acetic acid and methanol used to remove nitrogen in the biological treatment of anaerobic digestive fluids containing particularly high concentrations of nitrogen. Therefore, it is necessary to provide a novel processing method that does not require large biological reaction tanks and incidental facilities such as injection of organic substances such as methanol, has a relatively short processing time, and is sufficiently satisfactory in their effects.
[0005]
[Means for Solving the Problems]
In order to solve such technical problems, the present inventor paid attention to the anaerobic digestion liquid of organic waste, and during the earnest research, the anaerobic digestion was performed while maintaining the digestion treatment temperature of the anaerobic digestion liquid. Prepare a solubilized organic substance-containing liquid obtained by subjecting the liquid to aeration treatment, and further treating the sludge produced from the aeration treatment liquid with ozone, and adding the solubilized organic substance-containing liquid during nitrogen treatment in the biological treatment method. When used as a substitute for organic substances such as acetic acid and methanol, the inventors have obtained the knowledge that results satisfying the above-mentioned problems can be obtained. Based on the knowledge, the present invention has finally been reached.
That is, in the invention according to claim 1 of the present invention, the anaerobic digestion liquid of organic waste is substantially the same temperature as the anaerobic digestion treatment temperature or a temperature higher than that temperature (hereinafter referred to as anaerobic digestion treatment temperature). A method for preparing a hydrogen donor mixture-containing liquid for biological treatment of anaerobic digestion liquid of organic waste, characterized in that the sludge liquid generated from the aeration treatment liquid is subjected to ozone treatment It is.
The invention according to claim 2 of the present invention is a method for treating anaerobic digestion liquid of organic waste, wherein the liquid containing a hydrogen donor mixture for biological treatment prepared by the above novel method is used as the biological treatment liquid. It is the processing method of the anaerobic digestion liquid of the organic waste characterized by throwing in to. In other words, the invention according to claim 2 of the present invention is a method for treating an anaerobic digestion liquid of organic waste, wherein the anaerobic digestion liquid of organic waste is aerated at an anaerobic digestion treatment temperature. And a method for treating anaerobic digestion liquid of organic waste, wherein a part of sludge liquid generated from the aeration treatment liquid is subjected to ozone treatment, and then the ozone treatment liquid is introduced into a biological treatment liquid. It is.
[0006]
Japanese Patent Laid-Open No. 10-5789 discloses a technique for reducing ammonia concentration in a fermentation broth by performing ammonia stripping treatment on a fermentation broth obtained by methane fermentation of wastewater with high concentration and high nitrogen content such as livestock wastewater. Yes. However, this publication only discloses a technique for avoiding the inhibition of the activity of activated sludge in the next step by reducing high concentration of ammonia. In this biological treatment step such as activated sludge, There is no disclosure of any technical ideas or improvements.
[0007]
Hereinafter, the present invention will be described in detail. The numbers appearing in the description are the numbers used in FIGS. 1 and 2 unless otherwise specified.
The organic waste as used in the present invention refers to organic matter that is inevitably discarded and discharged when living organisms such as humans and livestock are active, and is not particularly limited.・ Sewage sludge and garbage generated from domestic wastewater and sewage from the factory, factory wastewater and wastewater that are waste generated when the factory is operated, organic waste and livestock excrement generated when operating the livestock industry, etc. Examples include livestock waste.
[0008]
Water is added to the organic waste itself or as necessary, and the organic waste is maintained and stirred under anaerobic conditions to digest the organic waste. The amount of water to be added may be such that the organic matter is dissolved / dispersed in water and anaerobically digested. In the present invention, it is important to digest organic waste under anaerobic conditions, and known methods and means can be used as long as this point can be achieved. Specific examples of digesting organic waste under anaerobic conditions include methane fermentation treatment in which microorganisms that prefer anaerobic conditions grow using organic waste as a nutrient source to produce methane.
Here, the anaerobic condition means a condition in which oxygen is excluded as much as possible, and refers to a condition in which no oxygen is present. However, some oxygen may be present as long as the initial purpose can be achieved.
[0009]
More specifically, the anaerobic digestion is decomposed through an acidic fermentation period (first period), an acid decline period (second period), and an alkaline fermentation period (third period). Here, in the first and second stages, the macromolecular organic matter is hydrolyzed into volatile organic acids and lower alcohols by facultative anaerobic bacteria. In the first phase, the pH drops to 5-6, and in the second phase, the pH rises to about 6.8.
In the third stage, intermediate products such as organic acids are decomposed into final products such as methane, carbon dioxide, and ammonia by the action of methanogens, which are absolute anaerobic bacteria. In the third period, the pH is about 7.0 to 7.4. In general, warming type anaerobic digestion is divided into medium temperature (30-37 ° C.) or high temperature (50-55 ° C.) fermentation depending on the temperature of warming.
[0010]
In the present invention, anaerobic digestive juice is aerated. The anaerobic digestion liquid to be aerated here refers to a digestive liquid containing sludge liquid generated from the anaerobic digestion liquid, and in particular, the anaerobic digestion liquid when the third reaction is almost completed is aerated. It is desirable to do. A portion of the anaerobic digestion liquid when the third-phase reaction is almost completed may be extracted and aerated. This aeration treatment can volatilize volatile components including the ammonia component in the digestive liquid, and in particular, the nitrogen content in the treatment liquid in the biological treatment in the steps after this treatment step is reduced. Thus, the nitrogen treatment load is reduced, which is advantageous.
In addition, the temperature of the digestive liquid is usually lowered in the process after the anaerobic digestion process due to heat dissipation, etc., but in the present invention, the temperature of the digestive liquid is substantially maintained at the digestion process temperature or the temperature. The aeration process is performed as described above, and this is one of the features of the present invention. That is, the temperature of the digestive fluid is kept at the digestion treatment temperature or 40 to 90 ° C. or heated, and aerated. Note that the anaerobic digestion process temperature is lowered due to heat dissipation or the like, but it is within the scope of the present invention if it is about 10 ° C. lower than the digestion process temperature.
If the aeration treatment temperature is high, a large amount of volatile components including the ammonia component can be volatilized, which is advantageous.
[0011]
Since the carbonic acid component contained in the anaerobic digestion liquid is also volatilized by the aeration treatment, the pH shifts from acidic to alkaline, and more ammonia components can be expected to be removed. Further, when the digestive juice is adjusted to be alkaline by adding an alkaline agent, such as carbonate or bicarbonate, further removal of the ammonia component can be expected.
However, since it is likely that a slightly water-soluble compound may be formed if the alkalinity is adjusted to be too strong, almost no generation of the hardly water-soluble compound is observed when the pH is preferably set to 12 or less. It is extremely advantageous because it can volatilize volatile components.
[0012]
In the present invention, any type of aeration tank may be used as long as the aeration tank used for the aeration treatment has a structure capable of maintaining the temperature of the anaerobic digestion liquid. For example, an anaerobic digestion liquid when the third-phase reaction is almost completed or a part of the digestion liquid is taken out and introduced into an aeration tank, and a gas such as air is supplied into the tank for aeration treatment. it can. The amount of digested liquid to be taken out is determined by the nature of the biological treatment liquid, which is a subsequent process, that is, how much hydrogen donor is required. Is about 10 to 70% by volume of the treatment liquid.
In the present invention, it is normal to use an aeration tank in which a heat insulating layer made of a heat insulating material is formed outside the aeration tank. However, a pipe is disposed outside the aeration tank, and warm water or the like is allowed to pass through the pipe so that the temperature of the aeration tank. May be controlled. Air, steam, nitrogen gas, etc. are blown into the aeration tank. It is advantageous that the air, nitrogen gas, and the like to be blown are heated in advance to near the temperature in the aeration tank because the temperature of the treatment liquid in the aeration tank does not decrease. There are many factors such as the amount of gas blown in and the aeration treatment time, such as the degree of digestion of the anaerobic digestive liquid, the type and amount of organic matter, and cannot be specified in general.3/ Hour-1.0m3/ Hour, and the aeration treatment time is about 1 minute to 24 hours.
[0013]
The gas mainly composed of ammonia volatilized by aeration needs to be subjected to some treatment in view of the impact on the environment, and must be discarded and released without causing any adverse effects on the environment. A known method may be applied to this gas treatment, for example, a method using a catalyst, a treatment method using a chemical such as hypochlorite, a treatment method using microorganisms such as bacteria, etc. A treatment method using a catalyst that converts ammonia gas into nitrogen gas is desirable from the viewpoint of reducing environmental burden. Examples of the catalyst include iron, cobalt, nickel, ruthenium, rhodium, palladium, zirconium, iridium, platinum, copper, gold and tungsten, oxides thereof, chlorides such as ruthenium dichloride and platinum dichloride, ruthenium sulfide. Further, a compound insoluble or hardly soluble in water such as sulfide such as rhodium sulfide is used, and examples of the carrier include alumina, silica, silica-alumina, titania, activated carbon and the like. In addition, a binary composite oxide containing titanium and zirconium as the A component, an oxide of at least one metal selected from the group consisting of vanadium, tungsten, and molybdenum as the B component, and platinum, palladium, rhodium as the C component , Ruthenium, iridium, and a catalyst containing at least one noble metal selected from the group consisting of iridium and compounds thereof.
The shape of the carrier is not particularly limited, but is preferably spherical and the particle size is preferably 3 mm or more.
[0014]
After anaerobic digestion of organic waste, for example, methane fermentation liquid, the gas mainly composed of ammonia was substantially removed in these liquids. Nitrogen content that cannot be removed by aeration is left. Since these organic substances become food of microorganisms constituting the activated sludge and are decomposed and removed, it is necessary to further biologically process the aerated liquid in order to remove these organic substances.
Biological treatment as used herein refers to treatment that removes the components to be removed using the power of microorganisms. In particular, the microorganisms are grown and the metabolism of these microorganisms is used to remove the organic matter in the anaerobic digestive juice. Decompose processing. Examples thereof include an activated sludge method and a biological nitrification denitrification method that are usually used for the treatment of organic waste liquids. In addition, you may express biological treatment as biological treatment.
The biological treatment liquid refers to a liquid that is biologically treated. The biological treatment liquid may be expressed as a biological treatment liquid.
In these treatment methods, it is essential to add microorganisms and nutrients to the organic substance-containing liquid and blow air, which promotes oxidation and decomposes organic substances in the liquid by microbial metabolism. Depending on the above, steps other than the above are added.
In the present invention, any biological treatment method may be used. For example, as an activated sludge method, a batch activated sludge method, a standard activated sludge method, a long-time aeration method, an intermittent method An aeration method, a two-tank intermittent aeration method, and the like are known, but any method may be adopted in the present invention.
In the above activated sludge method, various types of microorganisms are involved and liquefaction of solids in organic sludge and their molecular weight decrease occur. The main constituent components of organic sludge are monosaccharides and lower fatty acids. In addition, proteins are broken down into peptides, amino acids and fatty acids, and fats are broken down into fatty acids and glycerin.
[0015]
For example, when treating an aerated treatment solution by the activated sludge method, the treatment conditions are generally defined as many factors such as the degree of digestion of the anaerobic digestion solution and the type and amount of organic waste are affected. In general, it is determined after examining the quality of the liquid to be treated and its treated water, but the treatment time is usually about 1 hour to 30 days as HRT.
After the activated sludge treatment, the treatment liquid is introduced into the solid-liquid separation tank 9 for solid-liquid separation, and the liquid part is discharged to the outside as treated water 10, and part of the concentrated sludge is discharged to the outside as excess sludge 11. The remainder is returned to the biological reaction tank as return sludge 12 and processed again.
The biological reaction tank 8 and the solid-liquid separation tank 9 used in the present invention may be any known biological reaction tank or solid-liquid separation tank, and are not particularly limited.
[0016]
In the present invention, in order to remove nitrogen with higher efficiency, it is necessary to add a hydrogen donor that plays an important role in the denitrification reaction by microorganisms (hereinafter sometimes referred to as denitrification reaction).
That is, most of the nitrogen content contained in the liquid to be treated is organic nitrogen and ammonia nitrogen, and the organic nitrogen is decomposed into ammonia nitrogen by a deamination reaction. These ammoniacal nitrogens are oxidized to nitrite nitrogen by nitrite bacteria under aerobic conditions in the presence of oxygen, and further oxidized to nitrate nitrogen by nitrifying bacteria. This reaction formula is
NH4 ++ 3 / 2O2  → NO2 + H2O + 2H+  ・ ・ ・ ・ ・ ・ ・ (1)
NO2 + 1 / 2O2  → NO3   (2)
Can be written. Nitrate nitrogen (NO)3 ) Is reduced to nitrogen gas by the action of denitrifying bacteria under oxygen-free conditions. This reaction is
NO3 + 5H2  → N2+ 4H2O + 2OH  .... (3)
Can be written.
In this case, if a hydrogen donor coexists, the above reactions proceed efficiently, which is convenient.
[0017]
In order to prepare the hydrogen donor, sludge generated from the liquid treated in the aeration tank 3 is introduced into the ozone reaction tank 13 and subjected to ozone treatment. After solubilization of sludge by this ozone treatment, membrane separation can be performed as necessary to obtain a liquid containing a solubilized organic substance derived from solid organic substances in the sludge liquid, that is, a hydrogen donor mixture-containing liquid. . The solubilized organic substance having a reduced molecular weight constituting the hydrogen donor mixture-containing liquid is suitable as an organic source in the denitrification reaction. Moreover, since the aeration treatment has already been performed and the ammonia component has been removed and the nitrogen content has been reduced, the load in terms of nitrogen removal is reduced in the next biological treatment step, which is advantageous. A small amount of treatment liquid may be added to the sludge to be treated. Here, the hydrogen donor mixture-containing liquid is also a liquid containing a hydrogen donor mixture for removing biological nitrogen from an anaerobic digestive liquid.
Although it is not essential to adjust the temperature of the treatment liquid introduced into the ozone treatment tank, when the liquid is introduced into the biological reaction tank 8, the liquid to be introduced is lowered to the treatment liquid temperature in the biological reaction tank 8. Is desirable. Note that the temperature of the introduction liquid may be lowered to the treatment temperature in the biological reaction tank 8 before being introduced into the ozone reaction tank 13.
[0018]
Hereinafter, the ozone treatment conditions will be described.
As the ozone reaction tank 13 used, a general reaction tank can be used. After introducing the sludge extracted from the aeration tank 3 into the ozone reaction tank 13, ozone is injected into the sludge. The processing conditions such as the amount of ozone injected at this time include the type and amount of organic waste, the degree of digestion of the anaerobic digestive liquid, the temperature and pH of the digestive liquid, and the like. The optimum conditions vary depending on the aeration treatment conditions, etc., and can be determined by examining the properties of the treated sludge liquid. Usually, it is about 1 minute to 24 hours, and the temperature is about 60 ° C. from the biological treatment temperature. The concentration of ozone gas used is 1 g / m3About 500g / m3Degree. Increasing the ozone concentration has advantages such as a faster reaction rate and less foaming.
[0019]
Further, hydrogen peroxide may coexist simultaneously with the ozone treatment. The amount of hydrogen peroxide added varies depending on various factors, and an example is about 10 to 30 mg / L. Hydrogen peroxide has an effect of promoting the production of OH radicals having a strong oxidizing action by acting on ozone.
[0020]
In the present invention, a portion of the sludge liquid treated in the aeration tank 3 is subjected to ozone treatment in the ozone reaction tank 3, membrane-separated, and the obtained solid part is returned to the anaerobic digestion tank 1. May be. This operation promotes anaerobic digestion and increases the amount of gas generated per unit organic matter, that is, improves the organic matter decomposition rate.
[0021]
In the present invention, a part of the sludge generated in the solid-liquid separation tank 9 may be returned to the ozone reaction tank 3. By this operation, it is possible to prepare a hydrogen donor mixture-containing liquid for biological nitrogen removal of a more preferable anaerobic digestion liquid, and to efficiently perform the biological treatment of the anaerobic digestion liquid of organic waste. it can.
[0022]
From the above description, in the biological treatment method for anaerobic digestion liquid of organic waste, the present invention is configured so that the anaerobic digestion liquid of organic waste is substantially the same temperature as the anaerobic digestion treatment temperature or a temperature thereof. Anaerobic organic waste, characterized by aeration treatment at a high temperature, ozone treatment of a portion of the sludge liquid generated from the aeration treatment solution, and injection of the ozone treatment solution into a biological treatment solution Biological treatment method of digestive juice,
But there is.
Further, the present invention provides a biological treatment method for anaerobic digestion liquid of organic waste, wherein the anaerobic digestion liquid of organic waste is substantially the same temperature as or higher than the anaerobic digestion treatment temperature. After aeration treatment, a part of the sludge liquid generated from the aeration treatment liquid is put into the biological treatment liquid, and the sludge liquid generated from the aeration treatment liquid is ozone treated. Biological treatment method for anaerobic digestion liquid of organic waste, characterized in that
But there is.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
First, one embodiment will be described with reference to FIG.
The raw water 2 generated from the anaerobic digestion tank 1 was introduced into the aeration tank 3 equipped with the heat retaining device 4 while maintaining the fermentation temperature. Aeration treatment is performed for about 1 minute to 24 hours with air, nitrogen gas, or the like supplied from the aeration apparatus system 5 while the aeration tank is kept warm. By this aeration treatment, a volatile component including an ammonia component dissolved in raw water is released as a gas. The diffused gas is then introduced into the catalyst contact building 6 and converted into nitrogen gas, and then released to the atmosphere. Moreover, it is good also as supply gas to an aeration tank.
On the other hand, the treatment liquid containing the sludge after the aeration treatment is lowered by the heat exchanger 7 to a temperature range where the organisms in the biological reaction tank 8 at the subsequent stage work optimally. Normally, it should be lowered to around 20 ° C. Thereafter, biological treatment is performed in the biological reaction tank 8. Biological treatment refers to a kind of activated sludge treatment usually used for treatment of waste liquids and the like. The treatment time by living organisms is determined in view of the water quality of the liquid to be treated and the treated water. Usually, the HRT is about 1 hour to about 30 days.
Thereafter, solid-liquid separation is performed in the solid-liquid separation tank 9, the liquid part is discharged as treated water 10, the concentrated sludge is partially discharged as excess sludge 11, and the rest is returned to the biological reaction tank as return sludge 12. Control the process again.
Here, 10 to 70% by volume of the sludge liquid cooled by the heat exchanger 7 is processed in the ozone reaction tank 13, and the ozone-treated product is put into the biological reaction tank 8. This ozone-treated product functions as a hydrogen donor mixture-containing liquid in a biological denitrification reaction that proceeds in the biological reaction tank 8. This is because the soluble component is more suitable as a hydrogen donor in the denitrification reaction. The conditions for the ozone treatment are determined based on the properties of the sludge to be treated, but the concentration of ozone gas used is about 1 g / m for about 1 minute to 24 hours.3About 500g / m3It is about.
Through the above steps, it has become possible to efficiently perform the treatment of the residue discharged from the anaerobic digestion, particularly the treatment of the nitrogen content, without the addition of an organic substance such as methanol.
[0024]
Hereinafter, different embodiments of the present invention will be described with reference to FIG.
Until the raw water 2 generated from the anaerobic digestion tank 1 is subjected to aeration treatment, then biological treatment, solid-liquid separation, and a part of the sludge is returned to the biological reaction tank as the return sludge 12, The same operation was performed.
30 volume% of the sludge liquid cooled by the heat exchanger 7 is processed in the ozone reaction tank 13, and the ozone-treated product is put into the biological reaction tank 8. This ozone-treated product functions as a hydrogen donor mixture-containing liquid in a biological denitrification reaction that proceeds in the biological reaction tank 8. This is because the soluble component is more suitable as a hydrogen donor in the denitrification reaction. Further, a part of the ozone-treated sludge may be transferred to the membrane separation module 14 and subjected to membrane separation, and the solid portion may be returned to the anaerobic digester 1. As a result, anaerobic digestion is further performed, and the amount of gas generated per unit organic matter is increased, that is, the organic matter decomposition rate is improved. The conditions for the ozone treatment are determined by looking at the properties of the sludge to be treated, but the concentration of ozone gas used is 1 g / m for about 1 minute to 24 hours.3About 500g / m3It is about.
By this process, it was not necessary to add methanol for denitrification, and further, the decomposition rate per organic matter was improved, and the amount of generated gas and the amount of generated sludge could be reduced.
[0025]
That is, when the sludge liquid separation from the ozone treatment liquid is returned to the anaerobic digestion tank, the sludge film separation from the ozone untreated liquid is returned to the anaerobic digestion tank. The amount of gas generated per amount of organic matter in the sludge was greatly increased, and it was found that the decomposition rate was improved by about 20%.
[0026]
Further, after biological treatment was performed for the number of days shown in Table 1, the treatment liquid was sampled, and the amount of sludge generated when the ozone treatment liquid was introduced and when the ozone untreated liquid was introduced was measured by a conventional method. The ozone gas concentration is 100 g / m3The ozone injection rate is 0.1 g-O3/ G-ss. Here, ss represents the suspended solid content of the treatment liquid.
The results are shown in Table 1.
Table 1 Sludge generation amount
Figure 2005021731
[0027]
From this table, it was found that the amount of sludge generated was greatly reduced when the ozone-treated hydrogen donor mixture-containing liquid was used.
[0028]
【The invention's effect】
According to the present invention, it is possible to efficiently and economically remove nitrogen in biological treatment of anaerobic digestion liquid by combining ammonia gas treatment by aeration treatment and ozone treatment to an aeration treatment sludge solution.
That is, the hydrogen donor mixture-containing liquid to be put into the biological treatment tank according to the present invention could be efficiently prepared. Moreover, the hydrogen donor mixture-containing liquid has a reduced nitrogen content and contains solubilized organic substances that are easy to use. Therefore, the hydrogen donor mixture-containing liquid is put into a biological treatment method such as an activated sludge method. By doing so, it is not necessary to add expensive methanol, etc., and the liquid containing the hydrogen donor mixture can be added in a small amount, and the amount of generated sludge is small, making it possible to perform anaerobic digestion more efficiently. . In addition, in the present invention, the sludge liquid put into the biological treatment tank also has a reduced nitrogen content, the nitrogen content in the liquid treated in the biological treatment tank is small, and the load required for the nitrogen treatment is reduced accordingly. Has an effect.
That is, by using an inexpensive hydrogen donor mixture-containing liquid in the biological treatment tank according to the present invention, the amount of sludge is small, the treatment time is short, and there is no need for a large biological reaction tank or ancillary equipment. Can be removed with a high efficiency of 90% or more, resulting in a more useful method for treating anaerobic digestive juices.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a “method for treating anaerobic digestive juice” according to the present invention.
FIG. 2 is a different schematic view showing the “anaerobic digestive fluid treatment method” of the present invention.
[Explanation of symbols]
1. Anaerobic digester
2. Raw water (anaerobic digestive juice)
3. Aeration tank
4). Thermal insulation device
5. Aeration system
6). Catalyst contact building
7). Heat exchanger
8). Biological reaction tank
9. Solid-liquid separation tank
10. Treated water
11. Excess sludge
12 Return sludge
13. Ozone reaction tank
14 Membrane separation module

Claims (6)

有機性廃棄物の嫌気性消化液を嫌気性消化処理温度と実質的に同じ温度あるいはその温度よりも高い温度で曝気処理し、その曝気処理液から生じた汚泥液をオゾン処理することを特徴とする有機性廃棄物の嫌気性消化液の生物的処理用水素供与体混合物含有液の調製方法Anaerobic digestion liquid of organic waste is aerated at a temperature substantially the same as or higher than the anaerobic digestion temperature, and the sludge produced from the aerated liquid is treated with ozone. Of a hydrogen donor mixture-containing liquid for biological treatment of anaerobic digestive liquid of organic waste 有機性廃棄物の嫌気性消化液の処理方法において、請求項1記載の方法で得られた生物的処理用水素供与体混合物含有液を生物的処理液に投入することを特徴とする有機性廃棄物の嫌気性消化液の処理方法A method for treating an anaerobic digestion liquid of organic waste, characterized in that the biological treatment hydrogen donor mixture-containing liquid obtained by the method according to claim 1 is introduced into the biological treatment liquid. Of anaerobic digestive juice of food 曝気処理により揮散したアンモニアを主成分とするガスを、窒素ガスを主成分とするガスに変化させることを特徴とする請求項2記載の有機性廃棄物の嫌気性消化液の処理方法。The method for treating an organic waste anaerobic digestion liquid according to claim 2, wherein a gas mainly composed of ammonia volatilized by aeration treatment is changed to a gas mainly composed of nitrogen gas. オゾン処理液から生じた汚泥の少なくとも一部を嫌気性消化液に返送することを特徴とする請求項2記載の有機性廃棄物の嫌気性消化液の処理方法。3. The method for treating an organic waste anaerobic digestion liquid according to claim 2, wherein at least a part of the sludge generated from the ozone treatment liquid is returned to the anaerobic digestion liquid. 有機性廃棄物の嫌気性消化液が有機性廃棄物含有液のメタン発酵液であることを特徴とする請求項2記載の有機性廃棄物の嫌気性消化液の処理方法。The method for treating an organic waste anaerobic digestive liquid according to claim 2, wherein the anaerobic digestive liquid of the organic waste is a methane fermentation liquid of an organic waste-containing liquid. 生物的処理液から生じた汚泥の少なくとも一部をオゾン処理液に返送することを特徴とする請求項2記載の有機性廃棄物の嫌気性消化液の処理方法。3. The method for treating an organic waste anaerobic digestion liquid according to claim 2, wherein at least a part of the sludge generated from the biological treatment liquid is returned to the ozone treatment liquid.
JP2003186717A 2003-06-30 2003-06-30 Treatment method for anaerobically digested liquid Pending JP2005021731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186717A JP2005021731A (en) 2003-06-30 2003-06-30 Treatment method for anaerobically digested liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186717A JP2005021731A (en) 2003-06-30 2003-06-30 Treatment method for anaerobically digested liquid

Publications (1)

Publication Number Publication Date
JP2005021731A true JP2005021731A (en) 2005-01-27

Family

ID=34185776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186717A Pending JP2005021731A (en) 2003-06-30 2003-06-30 Treatment method for anaerobically digested liquid

Country Status (1)

Country Link
JP (1) JP2005021731A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005087853A (en) * 2003-09-17 2005-04-07 Fuji Electric Systems Co Ltd Method and apparatus for treating methane fermentation waste liquid
JP2009082811A (en) * 2007-09-28 2009-04-23 Fuji Electric Holdings Co Ltd Waste liquid treatment apparatus and method
JP2019025428A (en) * 2017-07-31 2019-02-21 東芝インフラシステムズ株式会社 Organic waste treatment system
CN116102224A (en) * 2022-11-21 2023-05-12 青岛君康洁净科技有限公司 Method for strengthening anaerobic digestion of sludge based on micro-aeration coupling conductive material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005087853A (en) * 2003-09-17 2005-04-07 Fuji Electric Systems Co Ltd Method and apparatus for treating methane fermentation waste liquid
JP2009082811A (en) * 2007-09-28 2009-04-23 Fuji Electric Holdings Co Ltd Waste liquid treatment apparatus and method
JP2019025428A (en) * 2017-07-31 2019-02-21 東芝インフラシステムズ株式会社 Organic waste treatment system
CN116102224A (en) * 2022-11-21 2023-05-12 青岛君康洁净科技有限公司 Method for strengthening anaerobic digestion of sludge based on micro-aeration coupling conductive material

Similar Documents

Publication Publication Date Title
JPH0899098A (en) Waste disposal method by oxidation
JPWO2011043144A1 (en) Plant wastewater treatment method and treatment system
JP2014024002A (en) Organic waste liquid treatment method and organic waste liquid treatment apparatus
JP3275351B2 (en) Anaerobic treatment of organic wastewater
JP4404976B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP2005021731A (en) Treatment method for anaerobically digested liquid
JP3959843B2 (en) Biological treatment method for organic drainage
JP4834942B2 (en) Organic waste processing method and processing apparatus
JP5063269B2 (en) Biogas system
JP4631162B2 (en) Organic waste treatment methods
JP2001347296A (en) Method and apparatus for treating sludge, and method and apparatus for treating sewage by utilizing the same
JP3409728B2 (en) Organic waste treatment method
JP3900796B2 (en) Method and apparatus for treating organic wastewater
JP4406749B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP2006314903A (en) Method and apparatus for treating ammonia anaerobically
JP3814855B2 (en) Anaerobic treatment method for organic drainage
JP2003164840A (en) Method and apparatus for treating organic matter
JP2001025789A (en) Treatment of organic waste liquid and device therefor
JP4812261B2 (en) Method for solubilizing solid content in high-concentration organic substance, and method for treating high-concentration organic substance
JP2005193122A (en) Anaerobic hydrogen fermentation treatment system
JP2001259686A (en) Water treating method, water treating agent and aerobically denitrifying bacterium
JP4200600B2 (en) Anaerobic digestion treatment method of organic sludge
JP4423982B2 (en) Operation method of methane fermentation treatment equipment
Kamenev11 et al. Aerobic bio-oxidation combined with ozonation in the treatment of landfill leachates
JP3697900B2 (en) Wastewater treatment method and apparatus therefor