JP4423982B2 - Operation method of methane fermentation treatment equipment - Google Patents

Operation method of methane fermentation treatment equipment Download PDF

Info

Publication number
JP4423982B2
JP4423982B2 JP2004019099A JP2004019099A JP4423982B2 JP 4423982 B2 JP4423982 B2 JP 4423982B2 JP 2004019099 A JP2004019099 A JP 2004019099A JP 2004019099 A JP2004019099 A JP 2004019099A JP 4423982 B2 JP4423982 B2 JP 4423982B2
Authority
JP
Japan
Prior art keywords
tank
methane fermentation
activated sludge
methane
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004019099A
Other languages
Japanese (ja)
Other versions
JP2005211727A (en
Inventor
豊 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004019099A priority Critical patent/JP4423982B2/en
Publication of JP2005211727A publication Critical patent/JP2005211727A/en
Application granted granted Critical
Publication of JP4423982B2 publication Critical patent/JP4423982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)
  • Fuel Cell (AREA)

Description

本発明は、牛、豚などの糞尿、また生ゴミなどの有機性廃棄物をメタン発酵処理する装置を運転する方法であって、燃料電池からの電力を利用するメタン発酵処理する装置の運転方法に関する。とくに、牛、豚などの糞尿、また生ゴミなどの有機性廃棄物をメタン発酵処理する装置を運転する方法であって、燃料電池の性能劣化の程度が抑制され燃料電池を効率よく稼動させることができるメタン発酵処理装置の運転方法に関する。 The present invention relates to a method for operating an apparatus for methane fermentation treatment of organic waste such as cattle and pigs, and organic waste such as raw garbage, and an operation method for an apparatus for methane fermentation treatment using electric power from a fuel cell. About. In particular, it is a method of operating a device that treats methane fermentation of organic waste such as cattle and pigs and organic waste such as raw garbage, and the degree of deterioration of the performance of the fuel cell is suppressed and the fuel cell is operated efficiently. The present invention relates to a method for operating a methane fermentation treatment apparatus.

近年、牛、豚などの畜産糞尿や生ゴミ等の有機性廃棄物をメタン発酵し、メタンガスとしてエネルギーを回収する方法が省資源、循環型社会形成の一環とて採用されている。
上記有機性廃棄物のメタン発酵処理を行う場合、発酵処理した後に廃液が発生し、この発酵廃液を処分する必要がある。処分方法としては、堆肥として土壌に散布する方法、もしくは浄化処理を行い河川等に放流する方法などが知られている。後者の発酵廃液を浄化処理する方法としては、下水処理などで用いられる活性汚泥法によって発酵廃液を生物学的処理することが一般的である。
In recent years, a method of fermenting organic waste such as livestock manure such as cattle and pigs and raw garbage and recovering energy as methane gas has been adopted as part of the resource-saving and recycling society formation.
When performing the methane fermentation treatment of the organic waste, a waste liquid is generated after the fermentation treatment, and it is necessary to dispose of this fermentation waste liquid. As a disposal method, there are known a method of spraying the soil as compost or a method of purifying and discharging it to a river or the like. As a method for purifying the latter fermentation waste liquid, it is common to biologically treat the fermentation waste liquid by an activated sludge method used in sewage treatment or the like.

図3に従来行われているメタン発酵処理装置の要部構成の一例を示す。具体的に説明すると、有機性廃棄物1をメタン発酵槽2に投入し、メタン発酵処理する。メタン発酵槽2から排出されるメタン発酵廃液3が、活性汚泥槽4に送られ、浄化処理される。メタン発酵廃液3は有機物に加えてアンモニアを主体とする窒素分を含有している。活性汚泥槽4内では微生物が好気条件下、嫌気条件下に交互におかれ、メタン発酵廃液中の有機物、窒素の除去がなされ、処理水11として排出される。これにより余剰汚泥5の量が削減できる。なお、活性汚泥槽内に空気13を吹き込み好気条件をつくりだす。また余剰汚泥の一部は脱水装置(図示されていない)にて凝集脱水処理され、脱水汚泥として系外に排出される。一方、メタン発酵槽2より排出したメタンガス7が燃料電池設備内にある改質器(図示されていない)により水素に変換され、燃料電池により発電が行われる。メタン発酵槽2から排出されるメタンガス7を利用して燃料電池8が発電を行う。
燃料電池8からの電力はメタン発酵処理装置の稼働動力源として使用でき、余剰分は他の施設の動力源として使用できるほかに売電することもできる。メタン発酵により発生するメタンガスを利用して燃料電池発電を行うシステムは、例えば、特許文献1に示されている。なお、ここでは、複合ラグーン式浄化槽という省エネルギー型(稼働に要する動力が少ない)の浄化槽を採用し、活性汚泥槽で用いられる曝気動力が大きいという問題点を解決する技術が開示されている。
この燃料電池を用いて発電する場合には、メタン発酵槽からできるだけ多くのメタンガスを排出させ、それらのメタンガスを利用して燃料電池にて発電することができれば、それだけ有利である。そこで、例えば有機性廃棄物をメタン発酵処理する際、固形残渣発生量を低減し、高効率的にメタンガスを回収を可能にした技術が報告されている(特許文献2を参照)。
一方、燃料電池を用いて発電する際の技術上の問題点の一つとして、燃料電池に導入されるガスの不純物による悪影響が指摘されている。たとえば、燃料電池に導入されるガス中に含硫黄化合物が含まれていると、その硫黄化合物が燃料電池の性能低下を引き起こすこと、また、メタンガス中に窒素が混入した場合、燃料電池設備内にあるメタンガスから水素を生成させる改質装置において、生成した水素と窒素が反応し、アンモニアが生成するため、このアンモニアによって燃料電池の電極が劣化し、発電性能が低下する問題がある。
この不都合さを解消するために、燃料電池に導入するメタンガスに前処理を施し、それら含硫黄化合物やアンモニアを除去する工程が必須となっている。しかし、その除去工程では、アンモニア以外の窒素成分例えば、窒素ガスや硝酸などまで完全に除去することができず、アンモニア以外の窒素成分がある場合は上述と同様の理由でアンモニアが生成し、燃料電池の性能低下を引き起こす。そこで、メタンガス内に硝酸性窒素などの窒素成分ができるだけ少ないようにする技術の出現が望まれている。とくに硝酸性窒素などアンモニア以外の窒素成分ができるだけ少ないようにする技術の出現が望まれている。
An example of the principal part structure of the methane fermentation processing apparatus conventionally performed in FIG. 3 is shown. If it demonstrates concretely, the organic waste 1 will be thrown into the methane fermentation tank 2, and a methane fermentation process will be carried out. The methane fermentation waste liquid 3 discharged from the methane fermentation tank 2 is sent to the activated sludge tank 4 and purified. The methane fermentation waste liquid 3 contains a nitrogen content mainly composed of ammonia in addition to the organic matter. In the activated sludge tank 4, microorganisms are alternately placed under an aerobic condition and an anaerobic condition, organic matter and nitrogen in the methane fermentation waste liquid are removed, and discharged as treated water 11. Thereby, the quantity of the excess sludge 5 can be reduced. Air 13 is blown into the activated sludge tank to create aerobic conditions. A part of the excess sludge is coagulated and dehydrated by a dehydrator (not shown), and is discharged out of the system as dehydrated sludge. On the other hand, the methane gas 7 discharged from the methane fermentation tank 2 is converted into hydrogen by a reformer (not shown) in the fuel cell facility, and power is generated by the fuel cell. The fuel cell 8 generates power using the methane gas 7 discharged from the methane fermentation tank 2.
The electric power from the fuel cell 8 can be used as an operating power source of the methane fermentation treatment apparatus, and the surplus can be used as a power source for other facilities or sold. A system that performs fuel cell power generation using methane gas generated by methane fermentation is disclosed in Patent Document 1, for example. In addition, here, a technology is disclosed that employs an energy-saving septic tank called a composite lagoon type septic tank (which requires less power for operation) and solves the problem that the aeration power used in the activated sludge tank is large.
In the case of generating power using this fuel cell, it is advantageous if it is possible to discharge as much methane gas as possible from the methane fermenter and use the methane gas to generate power in the fuel cell. Therefore, for example, when organic waste is subjected to methane fermentation, a technique has been reported that reduces the amount of solid residue generated and enables methane gas to be recovered with high efficiency (see Patent Document 2).
On the other hand, as one of the technical problems when generating power using a fuel cell, adverse effects due to impurities of gas introduced into the fuel cell have been pointed out. For example, if a sulfur-containing compound is contained in the gas introduced into the fuel cell, the sulfur compound will cause a drop in the performance of the fuel cell, and if methane gas is mixed with nitrogen, In a reformer that produces hydrogen from a certain methane gas, the produced hydrogen reacts with nitrogen to produce ammonia, so that there is a problem that the electrode of the fuel cell is deteriorated by this ammonia and the power generation performance is lowered.
In order to eliminate this inconvenience, a step of pretreating methane gas introduced into the fuel cell and removing these sulfur-containing compounds and ammonia is essential. However, in the removal process, nitrogen components other than ammonia, such as nitrogen gas and nitric acid, cannot be completely removed. If there are nitrogen components other than ammonia, ammonia is generated for the same reason as described above, and the fuel It causes battery performance degradation. Therefore, the advent of a technique for reducing the nitrogen component such as nitrate nitrogen in the methane gas as much as possible is desired. In particular, the emergence of a technique for reducing nitrogen components other than ammonia such as nitrate nitrogen as much as possible is desired.

:特開2001−212583: JP 2001-212583 :特開2002−316130: JP 2002-316130

本発明は上述の点に鑑みてなされたものであり、その目的はメタン発酵槽より発生するメタンガス中への硝酸性窒素などの窒素成分、とくに硝酸性窒素などのアンモニア成分以外の窒素混入を防止することができるメタン発酵処理装置の運転方法を提供することにある。また、多量のメタンガスを生成させることができるようメタン発酵処理装置の運転方法を提供することにある。さらには、有機性廃棄物をメタン発酵処理し、メタン発酵槽より発生するメタンガス中への硝酸性窒素などの窒素成分、とくに硝酸性窒素などのアンモニア成分以外の窒素混入を防止することができる技術を提供することにある。 The present invention has been made in view of the above points, and its purpose is to prevent nitrogen components other than nitrogen components such as nitrate nitrogen and particularly ammonia components such as nitrate nitrogen into methane gas generated from the methane fermentation tank. It is in providing the operation method of the methane fermentation processing apparatus which can be performed. Moreover, it is providing the operation method of a methane fermentation processing apparatus so that a lot of methane gas can be produced | generated. In addition, organic waste can be treated with methane fermentation to prevent nitrogen components such as nitrate nitrogen, especially nitrogen components other than ammonia components, from entering the methane gas generated from the methane fermenter. Is to provide.

本発明者は上記の課題を解決するためにいろいろと工夫を重ねる最中、メタン発酵槽、活性汚泥槽、前記メタン発酵槽から排出されるメタンガスを利用して発電を行う燃料電池を備えるメタン発酵処理装置を運転する際に、活性汚泥槽から余剰汚泥をメタン発酵槽に送るタイミングを活性汚泥槽の嫌気工程終了時とすると、上記課題を解決できることを見出し、さらに工夫を重ね、本発明に到達した。 In the course of various attempts to solve the above problems, the present inventor is a methane fermentation tank equipped with a methane fermentation tank, an activated sludge tank, and a fuel cell that generates power using methane gas discharged from the methane fermentation tank. When operating the treatment equipment, when the timing of sending the excess sludge from the activated sludge tank to the methane fermentation tank is at the end of the anaerobic process of the activated sludge tank, it is found that the above problems can be solved, and further ingenuity is achieved to reach the present invention. did.

本発明の請求項1に係る発明は、メタン発酵槽、活性汚泥槽、燃料電池を備え、メタン発酵槽においてメタンガスを生成させ、燃料電池により発電を行い、メタン発酵廃液は活性汚泥槽へ流入させ、好気状態及び嫌気状態として処理するメタン発酵処理装置の運転方法において、上記活性汚泥槽からの活性汚泥中の硝酸性窒素や亜硝酸性窒素が窒素ガスとして気中に放出され、亜硝酸性窒素あるいは硝酸性窒素が実質的に含まれない余剰汚泥を上記活性汚泥槽から上記メタン発酵槽に送ることを特徴とする運転方法である。
本発明の請求項2に係る発明は、有機性廃棄物をメタン発酵するメタン発酵槽、メタン発酵廃液を活性汚泥処理する活性汚泥槽、前記メタン発酵槽から排出されるメタンガスを利用して発電を行う燃料電池を備えるメタン発酵処理装置の運転方法において、上記活性汚泥槽からの活性汚泥中の硝酸性窒素や亜硝酸性窒素が窒素ガスとして気中に放出された余剰汚泥を上記メタン発酵槽に送るタイミングを活性汚泥槽の嫌気工程終了時とすることを特徴とするメタン発酵処理装置の運転方法に関する。また、請求項3に係る発明は、請求項2に係る発明において活性汚泥槽が嫌気槽と好気槽を有、嫌気槽よりの余剰汚泥をメタン発酵槽に送ることを特徴とする発明である。
The invention according to claim 1 of the present invention includes a methane fermentation tank, an activated sludge tank, and a fuel cell, generates methane gas in the methane fermentation tank, generates power by the fuel cell, and causes the methane fermentation waste liquid to flow into the activated sludge tank. In the operation method of the methane fermentation treatment apparatus for treating as an aerobic state and an anaerobic state , nitrate nitrogen and nitrite nitrogen in the activated sludge from the activated sludge tank are released into the air as nitrogen gas , The operation method is characterized in that surplus sludge substantially free of nitrogen or nitrate nitrogen is sent from the activated sludge tank to the methane fermentation tank.
The invention according to claim 2 of the present invention uses a methane fermentation tank for methane fermentation of organic waste, an activated sludge tank for activated sludge treatment of methane fermentation waste liquid, and methane gas discharged from the methane fermentation tank for power generation. In the operation method of a methane fermentation treatment apparatus equipped with a fuel cell to perform , excess sludge in which nitrate nitrogen or nitrite nitrogen in the activated sludge from the activated sludge tank is released into the air as nitrogen gas is supplied to the methane fermentation tank. It is related with the operating method of the methane fermentation processing apparatus characterized by making sending timing into the time of the end of the anaerobic process of an activated sludge tank. The invention according to claim 3, in the invention the activated sludge tank in the invention according to claim 2 have a anaerobic tank and an aerobic tank, and wherein the sending the excess sludge from the anaerobic tank to the methane fermentation tank is there.

以下、図1、2を参照しながら本発明を説明する。
本発明のメタン発酵装置はメタン発酵槽2、活性汚泥槽4、燃料電池8を備えている。さらに可溶化装置6を備えていてもよい。
上記メタン発酵槽内で有機性廃棄物をメタン発酵処理する。具体的には、有機性廃棄物を好ましくは粉砕・スラリー化し、このスラリーを発酵槽に投入し、嫌気性条件下でメタン菌を主体とする嫌気性微生物により発酵処理して有機性廃棄物をメタンガスと水とに分解する処理方法である。この処理方法は、有機性廃棄物を大幅に減量することができると共に、副産物として生成するメタンガスをエネルギーとして回収できる点で有用である。また、嫌気性条件下で処理が進むため曝気処理が不要であり、曝気のための動力が不要であるため省エネルギー的な処理法であるともいえる。なお、有機性廃棄物としては牛、豚などの糞尿、また生ゴミなどの有機性廃棄物を示すことができるが、これらに何ら制限されない。
The present invention will be described below with reference to FIGS.
The methane fermentation apparatus of the present invention includes a methane fermentation tank 2, an activated sludge tank 4, and a fuel cell 8. Further, a solubilizer 6 may be provided.
Organic waste is subjected to methane fermentation in the methane fermentation tank. Specifically, the organic waste is preferably pulverized and slurried, the slurry is put into a fermenter, and the organic waste is treated by anaerobic microorganisms mainly composed of methane bacteria under anaerobic conditions. It is a treatment method that decomposes into methane gas and water. This treatment method is useful in that organic waste can be significantly reduced and methane gas generated as a by-product can be recovered as energy. In addition, since the process proceeds under anaerobic conditions, aeration processing is unnecessary, and power for aeration is unnecessary, so it can be said that this is an energy-saving processing method. Examples of organic waste include feces and urine such as cows and pigs, and organic waste such as raw garbage, but are not limited thereto.

上記嫌気性生物を用いた発酵槽においては、細菌と有機性廃棄物を十分に接触させ、メタンガスの発生を促進させるために発酵槽内を攪拌する必要がある。また、この攪拌によって、発酵槽内の温度やpHが均一になるので発酵条件が一定となり、安定したメタンガスの発生が可能となる。本発明では、メタン発酵槽は一般的な発酵槽を使用することができる。
活性汚泥槽4内では、主に、窒素成分を含めた有機物の除去を好気条件下あるいは嫌気条件下で行ういわゆる生物学的処理がなされる。活性汚泥を構成する微生物がメタン発酵廃液中の有機物を栄養源として炭酸ガスと水に分解し、除去される。とくに窒素成分は好気性の条件下で硝化菌の働きによりNH−N(アンモニア性窒素)がNO−N(亜硝酸性窒素)に酸化され、さらにNO−NがNO−N(硝酸性窒素)に酸化され、ついで嫌気性の条件下で脱窒菌の働きによりNO−NがN(窒素ガス)に還元されて除去される。なお、NO−Nの一部は酸化されずに残ることがある。硝化・脱窒の関係を整理すると次のようになる。
反応 窒素の形態変化 反応条件 微生物
硝化反応 アンモニア性窒素→亜硝酸性窒素 好気性(溶存酸素あり) 硝化菌
→硝酸性窒素
脱窒反応 硝酸性窒素、亜硝酸性窒素→窒素ガス 嫌気性(溶存酸素なし) 脱窒菌
In the fermenter using the above anaerobic organisms, it is necessary to stir the inside of the fermenter in order to bring bacteria and organic waste into sufficient contact and promote the generation of methane gas. Moreover, since the temperature and pH in the fermenter are made uniform by this stirring, the fermentation conditions are constant, and stable methane gas can be generated. In the present invention, a general fermenter can be used as the methane fermenter.
In the activated sludge tank 4, a so-called biological treatment is performed in which organic substances including nitrogen components are mainly removed under aerobic conditions or anaerobic conditions. Microorganisms constituting activated sludge are decomposed and removed into carbon dioxide and water using organic matter in methane fermentation wastewater as nutrient sources. In particular, the nitrogen component is oxidized by NH 4 -N (ammonia nitrogen) to NO 2 -N (nitrite nitrogen) by the action of nitrifying bacteria under aerobic conditions, and NO 2 -N is further converted to NO 3 -N ( It is oxidized to (nitric nitrogen), and then NO 3 -N is reduced to N 2 (nitrogen gas) and removed by the action of denitrifying bacteria under anaerobic conditions. Note that a part of NO 2 —N may remain without being oxidized. The relationship between nitrification and denitrification can be summarized as follows.
Reaction Nitrogen transformation Reaction conditions Microbial nitrification Reaction Ammonia nitrogen → Nitrite nitrogen Aerobic (with dissolved oxygen) Nitrification bacteria
→ Nitrate nitrogen denitrification reaction Nitrate nitrogen, nitrite nitrogen → Nitrogen gas Anaerobic (no dissolved oxygen) Denitrifying bacteria

このように、嫌気性条件の終了時点においては、活性汚泥中の硝酸性窒素や亜硝酸性窒素は窒素ガスとして気中に放出され、硝酸性窒素あるいは亜硝酸性窒素が実質的に含まれなくなるので、このタイミングで余剰汚泥をメタン発酵槽に返送することが極めて重要である。ここで、硝酸性窒素あるいは亜硝酸性窒素が実質的に含まれなくなるとは、硝酸性窒素あるいは亜硝酸性窒素が含まれないとき、または本発明の所期の効果を達成できる範囲の微量の硝酸性窒素あるいは亜硝酸性窒素が含まれるときを言う。この返送処理により、メタン発酵槽から排出されるメタンガスには窒素成分の混入量が少なくなり、とくに硝酸性窒素等の混入を防止することができる。上記メタン発酵槽に返送する余剰汚泥の量は、メタン発酵槽内へ投入される有機性廃棄物の種類や量、活性汚泥槽などの性状など多くの要因により影響を受けるので、一概に規定することができないが、通常、活性汚泥槽から引き出される量の20%程度から全量である。
ここで、嫌気性条件の終了時点、すなわち脱窒が実質的に終了し硝酸性窒素等が実質的に含まれなくなる時点、あるいは嫌気工程終了時を知る方法としては、たとえばpHや酸化還元電位(OPR)を測定して硝酸性窒素等が実質的に含まれないことを知る方法、あるいは硝酸性窒素濃度計にて硝酸性窒素濃度を測定し、硝酸性窒素等が実質的に含まれないことを知る方法などが挙げられる。
Thus, at the end of the anaerobic condition, nitrate nitrogen and nitrite nitrogen in the activated sludge are released into the air as nitrogen gas, and nitrate nitrogen or nitrite nitrogen is substantially not contained. Therefore, it is extremely important to return the excess sludge to the methane fermentation tank at this timing. Here, the fact that nitrate nitrogen or nitrite nitrogen is substantially not included means that when nitrate nitrogen or nitrite nitrogen is not included, or a trace amount within a range in which the intended effect of the present invention can be achieved. The time when nitrate nitrogen or nitrite nitrogen is contained. By this return processing, the amount of nitrogen components mixed in the methane gas discharged from the methane fermentation tank is reduced, and in particular, mixing of nitrate nitrogen and the like can be prevented. The amount of excess sludge to be returned to the methane fermentation tank is affected by many factors such as the type and amount of organic waste introduced into the methane fermentation tank and the properties of the activated sludge tank. However, the total amount is usually from about 20% of the amount drawn from the activated sludge tank.
Here, as a method of knowing the end point of the anaerobic condition, that is, the point of time when the denitrification is substantially finished and the nitrate nitrogen is not substantially contained, or the end of the anaerobic process, the pH or oxidation-reduction potential (for example) OPR) method to know that nitrate nitrogen is not substantially contained, or nitrate nitrogen concentration is measured by nitrate nitrogen concentration meter, and nitrate nitrogen is not substantially contained The method of knowing.

本発明では、微生物が好気条件下および嫌気条件下に交互におかれる、いわゆる間欠曝気法で窒素成分を含む有機物の除去がなされることが好ましいが、槽を分割して無酸素の状態を置くいわゆるA2O法(嫌気−無酸素−好気法)や循環式硝化脱窒法などを採用してもよい。上記間欠曝気法は、好気工程および嫌気工程の比率を時間的に設定でき、しかも従来から使用されている施設を使用すればよいのであって、それらの点から有利な方法ということができる。
本発明では、活性汚泥中の汚泥をメタン発酵槽に返送する際、活性汚泥槽4での嫌気工程の終了時点に、活性汚泥中の汚泥をメタン発酵槽に返送することが特徴の一つである。活性汚泥中の嫌気工程の終了時点での汚泥としては、上記方法により嫌気工程の終了時点を知り、そのときの汚泥を取り出せばよい。上記間欠曝気法の場合には、曝気処理していない嫌気工程から曝気処理する好気工程に移行するときの活性汚泥槽からの汚泥を取り出せばよい。また、活性汚泥槽が嫌気槽と好気槽とから構成されている場合には、嫌気槽からの汚泥をメタン発酵槽に送ればよい。なお、本発明では活性汚泥槽は一般的な活性汚泥槽を使用すればよい。
In the present invention, it is preferable that organic substances containing nitrogen components are removed by a so-called intermittent aeration method in which microorganisms are alternately placed under an aerobic condition and an anaerobic condition. A so-called A 2 O method (anaerobic-anoxic-aerobic method) or a circulating nitrification denitrification method may be employed. In the intermittent aeration method, the ratio of the aerobic process and the anaerobic process can be set in time, and a conventionally used facility may be used, and it can be said to be an advantageous method from these points.
In the present invention, when the sludge in the activated sludge is returned to the methane fermentation tank, the sludge in the activated sludge is returned to the methane fermentation tank at the end of the anaerobic process in the activated sludge tank 4. is there. As the sludge at the end of the anaerobic process in the activated sludge, the end point of the anaerobic process may be known by the above method, and the sludge at that time may be taken out. In the case of the intermittent aeration method, it is only necessary to take out sludge from the activated sludge tank when shifting from an anaerobic process that is not aerated to an aerobic process that is aerated. Moreover, what is necessary is just to send the sludge from an anaerobic tank to a methane fermentation tank, when the activated sludge tank is comprised from the anaerobic tank and the aerobic tank. In the present invention, a general activated sludge tank may be used as the activated sludge tank.

燃料電池は一般的な燃料電池を採用すればよい。また、該燃料電池を備える発電設備は、燃料電池本体に、さらに下水汚泥からメタン発酵処理により得られる消化ガスを導く原燃料供給配管、この原燃料供給配管を通して供給されるメタンガス中に含まれる硫黄成分を除去する脱硫装置、この脱硫装置からのメタンガスを水蒸気で触媒反応させて一酸化炭素と水素ガスに改質する改質装置、この改質装置から出力される一酸化炭素および水素ガスを水蒸気などで触媒反応させて二酸化炭素と水素ガスに変成する変成装置などが設けられていてもよい。
この燃料電池は、燃料極および空気極を有し、上記変成装置から出力される水素ガス(H2 )に大気中の酸素ガス(O2 )を反応させて燃料極側から直流電力を取り出す構成を有しており、さらには当該直流電力をインバータにて交流電力に変換し、出力することができる。
A general fuel cell may be adopted as the fuel cell. In addition, the power generation facility including the fuel cell includes a fuel cell main body, a raw fuel supply pipe for introducing digestion gas obtained from sewage sludge by methane fermentation, and sulfur contained in the methane gas supplied through the raw fuel supply pipe. Desulfurization device for removing components, reformer for reforming carbon monoxide and hydrogen gas by catalytic reaction of methane gas from the desulfurization device with steam, and carbon monoxide and hydrogen gas output from the reformer for steam For example, a conversion device that converts it into carbon dioxide and hydrogen gas through a catalytic reaction may be provided.
This fuel cell has a fuel electrode and an air electrode, and reacts hydrogen gas (H 2 ) output from the transformation device with oxygen gas (O 2 ) in the atmosphere to extract DC power from the fuel electrode side. Furthermore, the DC power can be converted into AC power by an inverter and output.

本発明では、さらに、可溶化装置6を備えていてもよい。可溶化装置6に、活性汚泥槽4からの余剰汚泥の一部を導入し、余剰汚泥を可溶化処理する。可溶化処理された余剰汚泥はメタン発酵槽に返送される。可溶化装置は機械的処理、生物的処理、化学的処理及び物理的処理の各種処理方法を用いて、余剰汚泥可溶化処理することができる。たとえば、超臨界水、超音波、オゾン、高圧パルス放電などに代表される物理処理方法あるいは好気的微生物を用いて処理する方法がある。その中でもとくにオゾン等の酸化性物質を汚泥に接触させることにより行う方法が有効である。これら可溶化装置での処理条件は、その処理対象である有機性固形廃棄物の種類及び濃度及び当該固形廃棄物を分解しうる微生物の可溶化至適温度等に依存して変動可能である。   In the present invention, a solubilizer 6 may be further provided. A part of the excess sludge from the activated sludge tank 4 is introduced into the solubilizer 6 to solubilize the excess sludge. The solubilized surplus sludge is returned to the methane fermentation tank. The solubilizing apparatus can perform solubilization treatment of excess sludge using various treatment methods such as mechanical treatment, biological treatment, chemical treatment, and physical treatment. For example, there is a physical processing method represented by supercritical water, ultrasonic waves, ozone, high-pressure pulse discharge, or a method using aerobic microorganisms. Among them, a method of bringing an oxidizing substance such as ozone into contact with sludge is particularly effective. The treatment conditions in these solubilizers can vary depending on the type and concentration of organic solid waste to be treated, the optimum temperature for solubilization of microorganisms capable of decomposing the solid waste, and the like.

本発明ではこの余剰汚泥返送により硝酸性窒素がメタン発酵槽内に混入することを防止するものであり、メタンの回収効率を高めると共に、固形残滓の発生量を格段に削減することができる。また、本発明によりメタン発酵槽への硝酸性窒素の混入量を大幅に減らすことを可能とし、メタン発酵槽からのメタンガスには窒素分などの不純物含有量が低減された。これにより、メタンガスを利用して発電する燃料電池の性能低下を防ぐことができるのである。 In the present invention, the return of excess sludge prevents nitrate nitrogen from being mixed into the methane fermenter, so that the recovery efficiency of methane can be improved and the amount of solid residue generated can be significantly reduced. Further, the present invention makes it possible to greatly reduce the amount of nitrate nitrogen mixed into the methane fermenter, and the content of impurities such as nitrogen is reduced in the methane gas from the methane fermenter. Thereby, it is possible to prevent a decrease in performance of the fuel cell that generates power using methane gas.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施の形態を説明する。
(実施の形態1)
有機性廃棄物1をメタン発酵槽2に投入し、メタン発酵処理を施し、メタンガス7を生成させる。生成したメタンガス7を燃料電池8に送り、メタンガスのエネルギーを利用した発電を行う。
メタン発酵処理後のメタン発酵廃液3は、活性汚泥槽4に送られ、好気性処理と嫌気性処理が施され、廃液中の有機物及び窒素が除去される。活性汚泥槽4では、空気を送り込む時間と空気の送り込みを止める時間を交互に繰り返す運転を行い、好気性処理工程と嫌気性処理工程を作り出している。好気性処理工程と嫌気性処理工程の合計時間(1サイクル時間)は1〜4時間で運転する。好気性処理工程時間と嫌気性処理工程時間の比率は1:1程度とするが、メタン発酵廃液の性状によって上記比率を見直すこともある。活性汚泥槽4で増殖した活性汚泥は、余剰汚泥5として活性汚泥槽4の嫌気性処理工程終了のタイミングで活性汚泥槽4から一部がメタン発酵槽2へ送られ、余剰汚泥5の一部が可溶化装置6に送られる。可溶化装置6で余剰汚泥5中の微生物の細胞膜が破壊されことによりメタン発酵し易い性状にまで可溶化処理され、メタン発酵槽2に送られる。可溶化処理の方法は、オゾンを注入する方法、熱処理する方法など一般に知られている方法の何れを用いてもよい。なお、可溶化装置6を設置せず、直接余剰汚泥をメタン発酵槽へ送ってもよい。残りの余剰汚泥は凝集脱水処理を行い排出される。
以上により、メタン発酵槽2への余剰汚泥からの硝酸性窒素の流入が無くなり、燃料電池設備における改質器でのアンモニアの生成を防止することができ、燃料電池の性能低下を防ぐことができる。
Embodiments of the present invention will be described below.
(Embodiment 1)
The organic waste 1 is put into the methane fermentation tank 2 and subjected to methane fermentation treatment to generate methane gas 7. The generated methane gas 7 is sent to the fuel cell 8 to generate power using the energy of the methane gas.
The methane fermentation waste liquid 3 after the methane fermentation treatment is sent to the activated sludge tank 4, where aerobic treatment and anaerobic treatment are performed, and organic substances and nitrogen in the waste liquid are removed. In the activated sludge tank 4, an operation in which the time for sending air and the time for stopping the air feeding are alternately repeated is performed to create an aerobic treatment step and an anaerobic treatment step. The total time (one cycle time) of the aerobic treatment process and the anaerobic treatment process is 1 to 4 hours. The ratio between the aerobic treatment process time and the anaerobic treatment process time is about 1: 1, but the ratio may be reconsidered depending on the properties of the methane fermentation waste liquid. A part of the activated sludge propagated in the activated sludge tank 4 is sent as surplus sludge 5 from the activated sludge tank 4 to the methane fermentation tank 2 at the end of the anaerobic treatment process of the activated sludge tank 4, and a part of the excess sludge 5 is obtained. Is sent to the solubilizer 6. The solubilization device 6 solubilizes the cell membrane of the microorganisms in the excess sludge 5 to a property that facilitates methane fermentation, and sends it to the methane fermentation tank 2. As a solubilization method, any of generally known methods such as a method of injecting ozone and a method of heat treatment may be used. In addition, you may send surplus sludge directly to a methane fermentation tank, without installing the solubilization apparatus 6. FIG. The remaining excess sludge is discharged after coagulation dehydration.
By the above, inflow of nitrate nitrogen from the excess sludge to the methane fermentation tank 2 is eliminated, generation of ammonia in the reformer in the fuel cell facility can be prevented, and deterioration in the performance of the fuel cell can be prevented. .

(実施の形態2)
以下、図2を参照しながら、本発明を説明する。
活性汚泥槽4が図1とは異なるが、それ以外は図1と同様である。この実施の形態2では活性汚泥槽が二つに分割して好気性処理工程(好気槽)、嫌気性処理工程(嫌気槽)を作る循環式硝化脱窒法の運転の場合である。
図2は図1と基本的構成は同様であるが、図1における活性汚泥槽4が嫌気槽14、好気槽15に分割されている点、好気槽15から嫌気槽14へ活性汚泥を循環させる返送汚泥9の経路がある点が異なる。
メタン発酵廃液3は嫌気槽14へ流入し、嫌気性処理が行われ、ついで好気槽15に流入し、好気性処理が行われる。好気槽15では好気状態を保つために空気の送り込みを常時行う。返送汚泥9は好気槽15から嫌気槽14へ常時循環させる。循環量は多くすれば窒素除去率は向上するが、循環量が大きすぎると嫌気槽14の嫌気条件が維持できなくなるため好ましくない。このため循環量は流入するメタン発酵廃液量の1〜2倍程度で運転する。嫌気槽14及び好気槽15で増殖した汚泥は嫌気槽14より余剰汚泥を引き抜く。以下可溶化装置6や残りの余剰汚泥の処理に関しては実施例1と同様であるため省略する。
(Embodiment 2)
Hereinafter, the present invention will be described with reference to FIG.
The activated sludge tank 4 is different from that shown in FIG. In the second embodiment, the activated sludge tank is divided into two to perform an aerobic treatment process (aerobic tank) and an anaerobic treatment process (anaerobic tank) in the operation of the circulation nitrification denitrification method.
FIG. 2 has the same basic configuration as FIG. 1, but the activated sludge tank 4 in FIG. 1 is divided into an anaerobic tank 14 and an aerobic tank 15, and activated sludge is transferred from the aerobic tank 15 to the anaerobic tank 14. The difference is that there is a route for returning sludge 9 to be circulated.
The methane fermentation waste liquid 3 flows into the anaerobic tank 14 and is subjected to anaerobic treatment, and then flows into the aerobic tank 15 and is subjected to aerobic treatment. In the aerobic tank 15, air is constantly fed to maintain an aerobic state. The return sludge 9 is constantly circulated from the aerobic tank 15 to the anaerobic tank 14. If the circulation rate is increased, the nitrogen removal rate is improved. However, if the circulation rate is too large, the anaerobic conditions of the anaerobic tank 14 cannot be maintained, which is not preferable. For this reason, the circulation amount is operated at about 1 to 2 times the amount of methane fermentation waste liquid flowing in. The sludge grown in the anaerobic tank 14 and the aerobic tank 15 draws excess sludge from the anaerobic tank 14. Hereinafter, the solubilization device 6 and the remaining surplus sludge treatment are the same as those in the first embodiment, and the description thereof will be omitted.

上記に基づき本発明を次のようにも記載することができる。
(1)メタン発酵槽、活性汚泥槽、燃料電池を備え、メタン発酵槽においてメタンガスを生成させ、燃料電池により発電を行い、メタン発酵廃液は活性汚泥槽へ流入させ、好気状態及び嫌気状態として処理するメタン発酵処理装置の運転方法において、活性汚泥槽からの余剰汚泥をメタン発酵槽に送るタイミングを活性汚泥槽の嫌気工程終了時とすることを特徴とする運転方法。
(2)上記活性汚泥槽が嫌気槽と好気槽を有する構造の場合、嫌気槽より余剰汚泥をメタン発酵槽に送ることを特徴とする運転方法。
(3)メタン発酵させるメタン発酵槽、浄化処理を行う活性汚泥槽、前記メタン発酵槽から排出されるメタンガスを利用して発電を行う燃料電池を備えるメタン発酵処理装置を使用して有機性廃棄物を処理する方法において、活性汚泥槽での浄化処理の嫌気処理工程終了時での活性汚泥槽からの余剰汚泥をメタン発酵槽に送るタイミングをとすることを特徴とするメタン発酵処理装置を使用して有機性廃棄物を処理する方法。
Based on the above, the present invention can also be described as follows.
(1) Equipped with a methane fermentation tank, activated sludge tank, and fuel cell, generating methane gas in the methane fermentation tank, generating electricity with the fuel cell, and letting the methane fermentation waste liquid flow into the activated sludge tank, as an aerobic state and an anaerobic state The operation method of the methane fermentation processing apparatus to process WHEREIN: The operation method characterized by making the timing which sends the excess sludge from an activated sludge tank to a methane fermentation tank be the end of the anaerobic process of an activated sludge tank.
(2) In the case where the activated sludge tank has a structure having an anaerobic tank and an aerobic tank, the surplus sludge is sent from the anaerobic tank to the methane fermentation tank.
(3) Organic waste using a methane fermentation treatment apparatus comprising a methane fermentation tank for methane fermentation, an activated sludge tank for purification treatment, and a fuel cell for generating electricity using methane gas discharged from the methane fermentation tank In the method for treating the wastewater, using a methane fermentation treatment apparatus characterized by the timing of sending surplus sludge from the activated sludge tank to the methane fermentation tank at the end of the anaerobic treatment process of the purification treatment in the activated sludge tank To treat organic waste.

本発明の実施例1が適用されるメタン発酵処理装置の要部構成を示す模式図The schematic diagram which shows the principal part structure of the methane fermentation processing apparatus with which Example 1 of this invention is applied. 本発明の実施例2が適用されるメタン発酵処理装置の要部構成を示す模式図The schematic diagram which shows the principal part structure of the methane fermentation processing apparatus with which Example 2 of this invention is applied. 従来行われているメタン発酵処理装置の要部構成を示す模式図Schematic diagram showing the main configuration of a conventional methane fermentation treatment apparatus

符号の説明Explanation of symbols

1 有機性廃棄物
2 メタン発酵槽
3 メタン発酵廃液
4 活性汚泥槽
5 余剰汚泥
6 可溶化装置
7 メタンガス
8 燃料電池
9 返送汚泥
11 処理水
14 嫌気槽
15 好気槽


DESCRIPTION OF SYMBOLS 1 Organic waste 2 Methane fermentation tank 3 Methane fermentation waste liquid 4 Activated sludge tank 5 Surplus sludge 6 Solubilizer 7 Methane gas 8 Fuel cell 9 Return sludge 11 Treated water 14 Anaerobic tank 15 Aerobic tank


Claims (3)

メタン発酵槽、活性汚泥槽、燃料電池を備え、メタン発酵槽においてメタンガスを生成させ、燃料電池により発電を行い、メタン発酵廃液は活性汚泥槽へ流入させ、好気状態及び嫌気状態として処理するメタン発酵処理装置の運転方法において、上記活性汚泥槽からの活性汚泥中の硝酸性窒素や亜硝酸性窒素が窒素ガスとして気中に放出され、亜硝酸性窒素あるいは硝酸性窒素が実質的に含まれない余剰汚泥を上記活性汚泥槽から上記メタン発酵槽に送ることを特徴とする運転方法。Methane that has a methane fermentation tank, activated sludge tank, and fuel cell, generates methane gas in the methane fermentation tank, generates power with the fuel cell, and flows the methane fermentation waste liquid into the activated sludge tank for treatment as an aerobic state and an anaerobic state In the operation method of the fermentation treatment apparatus, nitrate nitrogen and nitrite nitrogen in the activated sludge from the activated sludge tank are released into the air as nitrogen gas, and nitrite nitrogen or nitrate nitrogen is substantially contained. The operation method characterized by sending the non-excess sludge from the said activated sludge tank to the said methane fermentation tank. メタン発酵槽、活性汚泥槽、前記メタン発酵槽から排出されるメタンガスを利用して発電を行う燃料電池を備えるメタン発酵処理装置の運転方法において、上記活性汚泥槽からの活性汚泥中の硝酸性窒素や亜硝酸性窒素が窒素ガスとして気中に放出された余剰汚泥を上記メタン発酵槽に送るタイミングを活性汚泥槽の嫌気工程終了時とすることを特徴とするメタン発酵処理装置の運転方法。In an operation method of a methane fermentation treatment apparatus comprising a methane fermentation tank, an activated sludge tank, and a fuel cell that generates power using methane gas discharged from the methane fermentation tank , nitrate nitrogen in the activated sludge from the activated sludge tank A method of operating a methane fermentation treatment apparatus, characterized in that the timing of sending excess sludge released into the air as nitrogen gas or nitrogenous nitrogen to the methane fermentation tank is at the end of the anaerobic process of the activated sludge tank. 上記活性汚泥槽が嫌気槽と好気槽を有、嫌気槽よりの余剰汚泥をメタン発酵槽に送ることを特徴とする請求項2記載のメタン発酵処理装置の運転方法。The activated sludge tank have a anaerobic tank and an aerobic tank, operating method of methane fermentation treatment apparatus according to claim 2, wherein the sending the excess sludge from the anaerobic tank to the methane fermentation tank.
JP2004019099A 2004-01-27 2004-01-27 Operation method of methane fermentation treatment equipment Expired - Lifetime JP4423982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004019099A JP4423982B2 (en) 2004-01-27 2004-01-27 Operation method of methane fermentation treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004019099A JP4423982B2 (en) 2004-01-27 2004-01-27 Operation method of methane fermentation treatment equipment

Publications (2)

Publication Number Publication Date
JP2005211727A JP2005211727A (en) 2005-08-11
JP4423982B2 true JP4423982B2 (en) 2010-03-03

Family

ID=34903417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004019099A Expired - Lifetime JP4423982B2 (en) 2004-01-27 2004-01-27 Operation method of methane fermentation treatment equipment

Country Status (1)

Country Link
JP (1) JP4423982B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353664B2 (en) * 2009-11-27 2013-11-27 株式会社明電舎 Hydrogen / methane fermentation method and system
JPWO2023176161A1 (en) * 2022-03-14 2023-09-21

Also Published As

Publication number Publication date
JP2005211727A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
JP4729718B2 (en) Organic waste treatment methods
US10556816B2 (en) Wastewater treatment apparatus
JPH10500611A (en) In particular, a method and apparatus for treating wastewater containing organic matter by wet oxidation with internal recirculation of solid residue, and a purification facility therefor
JP2005066381A (en) Method and apparatus for treating organic waste water
KR100599554B1 (en) Organic waste sludge volume reduction method using by combined thermophilic aerobic and mesophilic anaerobic digestion and electro-destruction system and apparatus thereof
KR101003482B1 (en) Disposal method of high concentration organic matter waste water
JP3653427B2 (en) Tofu drainage treatment method and equipment
JP4576845B2 (en) Nitrogen-containing waste liquid treatment method
JP4631162B2 (en) Organic waste treatment methods
JP4423982B2 (en) Operation method of methane fermentation treatment equipment
JP3959843B2 (en) Biological treatment method for organic drainage
JP4517075B2 (en) Ammonia treatment method and apparatus by anaerobic treatment
JP4834942B2 (en) Organic waste processing method and processing apparatus
JP2004148242A (en) Waste water treatment method and waste water treatment equipment
JP3645513B2 (en) Organic wastewater treatment method and apparatus
JP4653963B2 (en) Processing method of livestock waste
JP3409728B2 (en) Organic waste treatment method
JP2007007620A (en) Method for treating nitrogen-containing liquid waste
JP2009195783A (en) Organic wastewater treatment method
JP2002059190A (en) Method of treating sewage and sludge
JP2000117289A (en) Treatment of dehydration-separated liquid from anaerobic-digested sludge and equipment therefor
JP2005238185A (en) High-efficiency general organic drainage and waste treatment system and device of the same
JPH047099A (en) Waste water treatment apparatus for simultaneously removing organic matter, nitrogen and phosphorus
JP4765931B2 (en) Nitrogen-containing waste liquid treatment method
JP2006035094A (en) Method and apparatus for treating high concentration waste water

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

R150 Certificate of patent or registration of utility model

Ref document number: 4423982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term