JP4653963B2 - Processing method of livestock waste - Google Patents

Processing method of livestock waste Download PDF

Info

Publication number
JP4653963B2
JP4653963B2 JP2004097076A JP2004097076A JP4653963B2 JP 4653963 B2 JP4653963 B2 JP 4653963B2 JP 2004097076 A JP2004097076 A JP 2004097076A JP 2004097076 A JP2004097076 A JP 2004097076A JP 4653963 B2 JP4653963 B2 JP 4653963B2
Authority
JP
Japan
Prior art keywords
ammonia
liquid
solid
facility
livestock waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004097076A
Other languages
Japanese (ja)
Other versions
JP2005279442A (en
Inventor
幹雄 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004097076A priority Critical patent/JP4653963B2/en
Publication of JP2005279442A publication Critical patent/JP2005279442A/en
Application granted granted Critical
Publication of JP4653963B2 publication Critical patent/JP4653963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Description

本発明は、畜産廃棄物の処理方法、並びにかかる処理方法により得られる水素及びその使用方法に関する。   The present invention relates to a method for treating livestock waste, hydrogen obtained by such a method, and a method for using the same.

畜産廃棄物は全国的に見た場合、約9000万トンであり、例えば群馬県だけでも350万トンと推定されている。一般に用いられている畜産廃棄物処理法は、固液分離後、固形分は堆肥化処理が行われ、液分は好気的処理に基づく活性汚泥処理若しくは嫌気的処理に基づくメタン発酵処理が行われている。   Livestock waste is estimated to be about 90 million tons when viewed nationwide. For example, Gunma Prefecture alone is estimated at 3.5 million tons. Commonly used livestock waste treatment methods include solid-liquid separation followed by composting for solids, and activated sludge treatment based on aerobic treatment or methane fermentation treatment based on anaerobic treatment. It has been broken.

従来の堆肥化と好気的曝気処理法を組み合わせた養豚における畜産廃棄物処法においては、例えば、スノコの上で養豚し、その糞尿を緩やかなスロープを持つ床上に落下させる。固形分は床上に付着し、液分は固形分の間を抜け、スロープの底部に細工された溝に流れ込み、地下の原液貯留槽へと導かれる。固形分はスクレーパーで掻きとり、残留している固形分(糞)は水で洗浄し、その洗浄水は原液貯留槽へ導かれる。固形分はそのまま高速堆肥化し、熟成後、堆肥として利用される。他方、糞が混入している原液貯留槽の液分は一定量になると自動的にポンプで曝気槽に送り、好気処理され、BODやCODが基準値以下になったところで河川に放流されている。   In the livestock waste treatment method in pig farming that combines conventional composting and aerobic aeration treatment methods, for example, pigs are raised on snowboards and the manure is dropped on a floor with a gentle slope. The solid matter adheres to the floor, the liquid component passes through the solid content, flows into a groove crafted at the bottom of the slope, and is led to the underground stock solution storage tank. The solid content is scraped off with a scraper, the remaining solid content (feces) is washed with water, and the washing water is guided to the stock solution storage tank. The solid content is converted into high-speed compost as it is, and is used as compost after aging. On the other hand, when the liquid content in the stock solution tank containing feces becomes a certain amount, it is automatically sent to the aeration tank by a pump and aerobic processed, and discharged to the river when BOD and COD are below the standard value. Yes.

ところで、飼料中に含まれるたんぱく質は、家畜により消化されアミノ酸に変化するが、過剰なアミノ酸は肝臓、腎臓で尿素に変換され、尿中に排泄される。排泄された尿素は糞中に存在するバクテリアが作り出すウレアーゼ(尿素分解酵素)でアンモニアに変化する。実際、液分を曝気処理した場合、処理施設の近傍では2000ppmを超えるアンモニアが発生し、悪臭の発生源となっている。そして、アンモニアが曝気処理によりアンモニア酸化酵素で硝酸となる。   By the way, proteins contained in the feed are digested by livestock and converted into amino acids, but excess amino acids are converted into urea in the liver and kidneys and excreted in the urine. The excreted urea is converted into ammonia by urease (urea degrading enzyme) produced by bacteria present in the feces. In fact, when the liquid component is aerated, ammonia exceeding 2000 ppm is generated in the vicinity of the treatment facility, which is a source of malodor. And ammonia turns into nitric acid by ammonia oxidase by aeration treatment.

上記処理法においては、液中の炭素分は除去できるが、河川の富栄養化をもたらす窒素分や燐などの除去は困難である。特に、処理水から硝酸イオンを取り除くには多大のコストを要する。   In the above treatment method, the carbon content in the liquid can be removed, but it is difficult to remove nitrogen, phosphorus, and the like that cause eutrophication of the river. In particular, a great deal of cost is required to remove nitrate ions from the treated water.

他方、堆肥化においては、固形分中の未消化たんぱく質類が、バクテリアによって分解される時、大量のアンモニアが発生し、悪臭発生源となるため、その除去設備が必要である。   On the other hand, in composting, when undigested proteins in the solid content are decomposed by bacteria, a large amount of ammonia is generated and becomes a source of malodor, so a removal facility is necessary.

また、嫌気的メタン発酵法は主にヨーロッパで開発、完成された技術で、畜産廃棄物中の炭素分を大部分メタンとして取り出し、エネルギー源として利用できるため、日本でも各社がその技術導入を行い、各地で実施試験とその改良が進められている。その方法は、基本的に固液分離後、液分をメタン発酵させる。 しかしながら、このメタン発酵法も次のような問題点を有する。
(a)メタン発酵は pH 調節が不可欠でメンテナンスが非常に大変である。すなわち、アンモニアの大量発生による pH の上昇を抑えるのに、多量の塩酸を用いる必要がある。
(b)多大な電気量と人件費がかかる。
(c)消化液を好気処理する時、液のC/N比が極端に低く、廃糖蜜など炭素源を加える必要がある。
In addition, anaerobic methane fermentation is a technology developed and completed mainly in Europe. Most of the carbon content in livestock waste can be extracted as methane and used as an energy source. Implementation tests and improvements are ongoing in various locations. In the method, basically, after the solid-liquid separation, the liquid component is subjected to methane fermentation. However, this methane fermentation method also has the following problems.
(A) In methane fermentation, pH adjustment is indispensable and maintenance is very difficult. That is, it is necessary to use a large amount of hydrochloric acid to suppress the increase in pH due to the large amount of ammonia generated.
(B) A large amount of electricity and labor costs are required.
(C) When the digestive liquid is aerobically treated, the C / N ratio of the liquid is extremely low, and it is necessary to add a carbon source such as waste molasses.

そして、上記のような嫌気的メタン発酵法を利用した畜産廃棄物の処理方法としては、例えば、含アンモニア廃棄物中の炭素化合物をメタンガスに還元して炭素化合物の含有率が低下した廃棄物を得るメタン発酵工程と、前記炭素化合物の含有率が低下した廃棄物から固形分を分離して液状廃棄物を得る固液分離工程と、生物を利用して前記液状廃棄物を分解処理して被生物処理液を得る生物処理工程とを備えた含アンモニア廃棄物の処理方法において、前記生物処理工程の前段又は後段に、前記液状廃棄物からアンモニアを除去するためのアンモニア除去工程を備え、さらに液状廃棄物からリン化合物を回収するためのリン回収工程を備えた含アンモニア廃棄物の処理方法がある。(例えば、特許文献1参照。)。   And, as a method of processing livestock waste using the anaerobic methane fermentation method as described above, for example, a waste in which the carbon compound content is reduced by reducing the carbon compound in the ammonia-containing waste to methane gas. A methane fermentation step to obtain, a solid-liquid separation step to obtain a liquid waste by separating solids from the waste having a reduced content of the carbon compound, a biological waste to decompose the liquid waste and cover it And a biological treatment process for obtaining a biological treatment liquid, comprising an ammonia removal process for removing ammonia from the liquid waste before or after the biological treatment process. There is a method for treating ammonia-containing waste, which includes a phosphorus recovery step for recovering phosphorus compounds from waste. (For example, refer to Patent Document 1).

しかしながら、この方法においては、アンモニア除去工程とは別にリン化合物を除去するリン回収工程が設けられており、処理工程及び処理設備が複雑となる。しかも、アンモニア除去工程がメタン発酵工程の後に設けられているので、上記のようにC/N比が極端に低くなるという問題がある。
特開2002−79299号公報
However, in this method, a phosphorus recovery step for removing the phosphorus compound is provided separately from the ammonia removal step, and the processing steps and processing facilities become complicated. And since the ammonia removal process is provided after the methane fermentation process, there exists a problem that C / N ratio becomes extremely low as mentioned above.
JP 2002-79299 A

本発明は上記問題点に鑑みてなされたものであり、本発明の課題は、アンモニア回収工程において、糞尿を含有する畜産廃棄物の窒素成分を十分にアンモニアに変換して悪臭の原因となるアンモニアを十分に除去すると同時にリン成分を除去することが可能な畜産廃棄物の処理方法、並びにかかる処理方法により得られる水素及びその使用方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to sufficiently convert the nitrogen component of livestock waste containing feces and urine into ammonia in the ammonia recovery process and cause malodor. It is an object of the present invention to provide a method for treating livestock waste capable of removing phosphorus components at the same time as well as hydrogen obtained by such a treatment method and a method for using the same.

有効な畜産廃棄物処理は、河川汚染や地下水汚染という環境悪化を防ぐ上で重要な研究課題であり、基礎研究および実施研究が数多く報告されている。とくに液分処理については好気的曝気法や、メタン発酵法などによる方法が一般的である。本発明者は、現在までの研究報告書を検討した結果、好気処理にせよメタン発酵処理にせよ、悪臭除去の鍵となる物質はアンモニアであり、いずれの処理を行う場合でも、まず、糞尿分離をできるだけ厳密に行い、液分中の尿素をアンモニアに変え、十分に除去した後に液分処理を行うことが重要であると判断し、畜産廃棄物からのアンモニアを効率よく十分に除去する研究を始めた。その結果、アンモニア除去工程において、糞由来のウレアーゼの活性が得られる温度に保持すると共に水酸化カルシウム及び酸化カルシウムから選ばれる少なくとも1種を添加することにより、効率よく十分にアンモニアを回収できると共に、リン成分も同時に効率よく回収できることを見い出し、本発明を完成するに至った。   Effective livestock waste treatment is an important research issue in preventing environmental degradation such as river pollution and groundwater pollution, and many basic and implementation studies have been reported. In particular, liquid treatment is generally performed by an aerobic aeration method or a methane fermentation method. As a result of examining the research reports up to now, the present inventor has found that ammonia is a key substance for removing malodor, whether it is an aerobic treatment or a methane fermentation treatment. Research to remove ammonia from livestock waste efficiently and sufficiently, considering separation as strictly as possible, changing urea in the liquid to ammonia, and sufficiently removing it after removing it sufficiently. Started. As a result, in the ammonia removal step, ammonia can be efficiently and sufficiently recovered by adding at least one selected from calcium hydroxide and calcium oxide while maintaining the temperature at which the activity of urease derived from feces is obtained. It was found that the phosphorus component can be efficiently recovered at the same time, and the present invention has been completed.

すなわち本発明は、糞尿を含有する畜産廃棄物を固液分離する固液分離工程と、前記固液分離工程において分離された尿素を含有する液分からアンモニアを除去するアンモニア除去工程とを有する畜産廃棄物の処理方法であって、前記アンモニア除去工程において、固液分離工程において分離された固形分の発酵時に発生する熱によって、尿素を含有する液分を糞由来のウレアーゼ活性が得られる温度まで加温し、保持してアンモニア及び炭酸アンモニウムを生成すると共に、水酸化カルシウム及び酸化カルシウムから選ばれる少なくとも1種を添加して、液分中の炭酸アンモニウムをアンモニアに変換し、かつリン酸イオンをリン酸カルシウムに変換することを特徴とする畜産廃棄物の処理方法に関する。 That is, the present invention is a livestock waste having a solid-liquid separation step for solid-liquid separation of livestock waste containing manure and an ammonia removal step for removing ammonia from the liquid containing urea separated in the solid-liquid separation step. In the ammonia removal step, the urea-containing liquid component is heated to a temperature at which fecal-derived urease activity is obtained by heat generated during fermentation of the solid component separated in the solid-liquid separation step. Heat and hold to produce ammonia and ammonium carbonate, add at least one selected from calcium hydroxide and calcium oxide, convert ammonium carbonate in the liquid to ammonia, and convert phosphate ions to calcium phosphate It relates to how to process the livestock waste and converting the.

本発明の畜産廃棄物の処理方法によれば、糞尿を含有する畜産廃棄物の窒素成分を十分にアンモニアに変換して悪臭の原因となるアンモニアを十分に除去すると同時にリン成分を除去することができる。   According to the method for treating livestock waste of the present invention, the nitrogen component of livestock waste containing manure can be sufficiently converted to ammonia to sufficiently remove ammonia that causes malodor and simultaneously remove the phosphorus component. it can.

本発明の畜産廃棄物の処理方法としては、糞尿を含有する畜産廃棄物を固液分離する固液分離工程と、前記固液分離工程において分離された液分からアンモニアを除去するアンモニア除去工程とを有する処理方法であって、前記アンモニア除去工程において、固液分離工程において分離された尿素を含有する液分を糞由来のウレアーゼの活性が得られる温度に保持してアンモニア及び炭酸アンモニウムを生成させると共に、水酸化カルシウム(消石灰)及び酸化カルシウム(生石灰)から選ばれる少なくとも1種を添加して、液分中の炭酸アンモニウムをアンモニアに変換し、かつリン酸イオンをリン酸カルシウムに変換する処理方法であれば特に制限されるものではなく、本発明の畜産廃棄物の処理方法によれば、アンモニア除去工程において、糞由来のウレアーゼの活性が得られる温度に保持すると共に水酸化カルシウム及び酸化カルシウムから選ばれる少なくとも1種を添加するので、下記反応式(1)〜(4)に示されるように、畜産廃棄物の窒素成分を十分にアンモニアに変換して、悪臭の原因となるアンモニアを十分に除去すると同時にリン成分を除去することができる。すなわち、水酸化カルシウム及び/又は酸化カルシウムは、下記反応が十分に生じる程度に添加する。   The method for treating livestock waste of the present invention includes a solid-liquid separation step for solid-liquid separation of livestock waste containing manure and an ammonia removal step for removing ammonia from the liquid component separated in the solid-liquid separation step. In the ammonia removal step, the liquid containing urea separated in the solid-liquid separation step is maintained at a temperature at which the activity of urease derived from feces is obtained, and ammonia and ammonium carbonate are generated. If it is the processing method which adds at least 1 sort (s) chosen from calcium hydroxide (slaked lime) and calcium oxide (quick lime), converts ammonium carbonate in a liquid into ammonia, and converts phosphate ion into calcium phosphate The method for treating livestock waste according to the present invention is not particularly limited. In addition, since at least one selected from calcium hydroxide and calcium oxide is added while maintaining the temperature at which the activity of feces-derived urease is obtained, as shown in the following reaction formulas (1) to (4), livestock production It is possible to sufficiently convert the nitrogen component of the waste into ammonia and sufficiently remove ammonia that causes malodor, and at the same time remove the phosphorus component. That is, calcium hydroxide and / or calcium oxide is added to such an extent that the following reaction occurs sufficiently.

Figure 0004653963
Figure 0004653963

Figure 0004653963
本発明の畜産廃棄物の処理方法におけるアンモニア除去工程は、固液分離工程において分離された液分を連続的に導入して処理する方法(連続式)であってもよいし、一定量の液分を一時に処理した後に次の液分を処理する方法(バッチ式)であってもよい。また、固液分離工程とアンモニア除去工程の間に他の工程を有していてもよいが、メタン発酵工程を有する場合には、メタン発酵工程におけるC/N比の調整が不要又は容易になることから、メタン発酵工程はアンモニア除去工程の後(本明細書において、工程の後とは、その工程の直後のみならずその間に他の工程を有する場合も含む。)であることが好ましい。
Figure 0004653963
The ammonia removal step in the livestock waste processing method of the present invention may be a method (continuous type) in which the liquid component separated in the solid-liquid separation step is continuously introduced and processed, or a certain amount of liquid A method (batch type) in which the next liquid component is processed after the minute is processed at one time may be used. In addition, other steps may be provided between the solid-liquid separation step and the ammonia removal step, but when the methane fermentation step is included, adjustment of the C / N ratio in the methane fermentation step is unnecessary or easy. Therefore, the methane fermentation process is preferably after the ammonia removal process (in the present specification, the term "after the process" includes not only immediately after the process but also other processes in between).

また、アンモニア除去工程においては、通常の蒸留法によりアンモニアを回収することも可能であるが、減圧下でアンモニアをガスとして回収することが、低温でガス化できボイラー等の大がかりな設備が不要になることから好ましい。この減圧時の液圧としては、4000〜80000Paであることが好ましく、1000〜50000Paであることがより好ましい。   In the ammonia removal process, it is possible to recover ammonia by a normal distillation method. However, it is possible to recover ammonia as a gas under reduced pressure, which can be gasified at a low temperature, eliminating the need for large equipment such as a boiler. This is preferable. The liquid pressure during this decompression is preferably 4000 to 80000 Pa, and more preferably 1000 to 50000 Pa.

また、アンモニア除去工程における糞由来のウレアーゼの活性が得られる温度としては、通常、27〜50℃であり、35〜50℃であることが好ましいが、減圧の度合い等に応じて適宜選択することができ、必ずしも加温する必要はない。そして、加温する場合、固液分離工程において分離された固形分の発酵時に発生する熱や、メタン発酵工程で発生するメタン消化ガスの燃焼熱や、後述する水素変換工程において回収した水素の燃焼熱によって加温することが、エネルギーの効率利用の観点から好ましい。   In addition, the temperature at which the activity of feces-derived urease is obtained in the ammonia removal step is usually 27 to 50 ° C. and preferably 35 to 50 ° C., but should be appropriately selected according to the degree of decompression and the like. It is not necessary to heat. And, when heating, heat generated during fermentation of the solid content separated in the solid-liquid separation process, combustion heat of methane digestion gas generated in the methane fermentation process, and combustion of hydrogen recovered in the hydrogen conversion process described later Heating by heat is preferable from the viewpoint of efficient use of energy.

また、この固形分から発生するアンモニアも本発明のアンモニア除去工程における回収槽に同時に回収することが好ましい。すなわち、高速堆肥化に伴う固形分からのアンモニアは、従来は排ガスとして微生物処理後に屋外に放出されていたが、これを有効利用することができる。   In addition, it is preferable that ammonia generated from the solid content is simultaneously recovered in the recovery tank in the ammonia removal step of the present invention. That is, ammonia from the solid content accompanying high-speed composting has been conventionally released outdoors as a waste gas after microbial treatment, but this can be used effectively.

また、本発明の畜産廃棄物の処理方法においては、アンモニア除去工程の後に、アンモニア除去工程において回収されたアンモニアを熱分解して水素に変換する水素回変換工程を有することが好ましい。従来、畜産廃棄物からのアンモニアは全て微生物処理などで廃棄され水質汚染の原因のひとつとなっていたが、このアンモニアを水素に変換して回収することにより、この水素を燃料電池用水素源や水素燃料として利用することができ、アンモニアは常温で35気圧程度の低圧で液化するため、運搬が容易で、可動型の水素燃料電池の水素ガス原料として特に好適に用いることができる。   Moreover, in the livestock waste processing method of the present invention, it is preferable that after the ammonia removal step, there is a hydrogen conversion step in which the ammonia recovered in the ammonia removal step is thermally decomposed and converted into hydrogen. Conventionally, all ammonia from livestock waste has been discarded due to microbial treatment and has been one of the causes of water pollution. By converting this ammonia into hydrogen and recovering it, this hydrogen can be recovered as a hydrogen source for fuel cells. It can be used as a hydrogen fuel, and ammonia is liquefied at a low pressure of about 35 atm at room temperature. Therefore, it can be easily transported and can be particularly suitably used as a hydrogen gas raw material for a movable hydrogen fuel cell.

すなわち、水素の燃焼に伴う発熱量は、
2+1/2O2 → H2O−ΔH=285.83kJ
であり、1.0kWh=3.6×106Jであるから、1モルの水素は燃料電池としてみたとき0.08kWhとなる。
That is, the calorific value associated with hydrogen combustion is
H 2 + 1 / 2O 2 → H 2 O−ΔH = 285.83 kJ
Since 1.0 kWh = 3.6 × 10 6 J, 1 mol of hydrogen is 0.08 kWh when viewed as a fuel cell.

アンモニアの分解反応は2モルのアンモニアから3モルの水素と1モルの窒素が生成するから、アンモニア液1Lより得られる水素は、アンモニアの比重が0.64であるから、(1.5/17)×1000×0.64=56.5モルとなり、したがって、1Lのアンモニア液は4.52kWhの出力をもつことになる。   Since the ammonia decomposition reaction generates 3 moles of hydrogen and 1 mole of nitrogen from 2 moles of ammonia, the hydrogen obtained from 1 liter of the ammonia liquid has a specific gravity of 0.64. ) × 1000 × 0.64 = 56.5 mol, so 1 L of ammonia liquid has an output of 4.52 kWh.

豚一頭あたり、一日平均尿中に15グラムのアンモニアが排出されるので、例えば、1000頭飼っている畜産農家の場合、15キログラムのアンモニアが発生し、約23.4Lとなる。したがって、その出力は106kWhとなる。一般に水素燃料電池の発電効率は40%であるから、42kWhとなる。これに、前記のように、固形分からのアンモニアが加わるとすると、この値以上の出力が期待できる。アンモニアの熱分解反応は吸熱的であるが、そのΔG0は16.5kJで、水素燃焼に伴う発熱と比較するときわめて小さい。以上の点から、アンモニア分解により発生する水素はエネルギー的に価値が高いものと考えられる。 Since 15 grams of ammonia is excreted in the average daily urine per pig, for example, in the case of a livestock farmer having 1000 heads, 15 kilograms of ammonia is generated, which is about 23.4L. Therefore, the output is 106 kWh. In general, the power generation efficiency of a hydrogen fuel cell is 40%, which is 42 kWh. As described above, when ammonia from the solid content is added, an output exceeding this value can be expected. The thermal decomposition reaction of ammonia is endothermic, but its ΔG 0 is 16.5 kJ, which is very small compared to the heat generated by hydrogen combustion. From the above points, hydrogen generated by ammonia decomposition is considered to have high energy value.

上記水素変換工程においては金属触媒が使用され、かかる金属触媒としてはアンモニアを水素に変換できる触媒であれば特に制限されるものではなく、例えば、ルテニウム、鉄、タングステン、ニッケル、パラジウム、白金、オスミウム、ロジウム、イリジウム等が挙げられる。また、熱分解時の触媒温度としては、その用いる触媒にもよるが、本発明においてはアンモニア濃度が高く特に高温を用いる必要がなく、ルテニウムを用いた場合、300℃〜600℃程度が好ましく、400〜500℃がより好ましく、450〜500℃程度が好ましい。   In the hydrogen conversion step, a metal catalyst is used, and the metal catalyst is not particularly limited as long as it can convert ammonia into hydrogen. For example, ruthenium, iron, tungsten, nickel, palladium, platinum, osmium , Rhodium, iridium and the like. Further, the catalyst temperature at the time of thermal decomposition depends on the catalyst used, but in the present invention, the ammonia concentration is high and it is not necessary to use a particularly high temperature. When ruthenium is used, about 300 ° C. to 600 ° C. is preferable, 400-500 degreeC is more preferable, and about 450-500 degreeC is preferable.

以下、図面を参照して本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to the drawings. However, the technical scope of the present invention is not limited to these examples.

図1は本発明の畜産廃棄物の処理方法を適用可能な処理施設の概略説明図であり、図2は図1に示す処理施設におけるアンモニア除去設備の概略説明図であり、図3は図1に示す処理施設における水素変換設備の概略説明図である。   FIG. 1 is a schematic explanatory view of a treatment facility to which the livestock waste treatment method of the present invention can be applied, FIG. 2 is a schematic explanatory view of an ammonia removal facility in the treatment facility shown in FIG. 1, and FIG. It is a schematic explanatory drawing of the hydrogen conversion equipment in the processing facility shown in FIG.

図1に示すように、本発明の畜産廃棄物の処理方法を適用可能な処理施設10は、糞尿を含有する畜産廃棄物を固液分離する固形分離設備12と、固形分離設備12で分離された固形分を堆肥化する堆肥化設備14と、固形分離設備12で分離された液分のアンモニアを除去するアンモニア除去設備16と、アンモニア除去設備16で処理されたアンモニア除去液を最終的な処理水まで処理する最終処理設備18と、アンモニア除去設備16から除去されたアンモニアを回収するアンモニア回収設備20と、アンモニア回収設備20で回収されたアンモニアを水素に変換する水素変換設備22とを備えている。   As shown in FIG. 1, a treatment facility 10 to which the livestock waste treatment method of the present invention can be applied is separated by a solid separation facility 12 for solid-liquid separation of livestock waste containing manure and a solid separation facility 12. The composting facility 14 for composting the solid content, the ammonia removal facility 16 for removing ammonia from the liquid separated by the solid separation facility 12, and the final treatment of the ammonia removal liquid treated by the ammonia removal facility 16 A final treatment facility 18 that treats up to water, an ammonia recovery facility 20 that recovers ammonia removed from the ammonia removal facility 16, and a hydrogen conversion facility 22 that converts the ammonia recovered by the ammonia recovery facility 20 into hydrogen are provided. Yes.

固形分離設備12は、例えばスクリュープレスを備えており、かかるスクリュープレスにより畜産廃棄物を固液分離し、固体分は堆肥化設備14へ導き堆肥化すると共に、液分はアンモニア除去設備16へと導く。   The solid separation facility 12 includes, for example, a screw press, and the livestock waste is separated into solid and liquid by the screw press, the solid content is guided to the composting facility 14 and composted, and the liquid component is passed to the ammonia removal facility 16. Lead.

図2に示すように、アンモニア除去設備16は、気密状態のアンモニア除去槽17と、アンモニア除去槽17を攪拌する攪拌手段24と、堆肥化設備14から発生する熱を利用したヒーター26と、消石灰を所定量添加するためのバルブ28を有した消石灰添加部30と、図示しない減圧装置とを備えている。また、アンモニア除去設備16の入口部及び出口部には、液分の流出入を制御するバルブ32及びバルブ34がそれぞれ設けられている。   As shown in FIG. 2, the ammonia removal equipment 16 includes an airtight ammonia removal tank 17, a stirring means 24 for stirring the ammonia removal tank 17, a heater 26 using heat generated from the composting equipment 14, and slaked lime. Is provided with a slaked lime addition section 30 having a valve 28 for adding a predetermined amount of a pressure reducing device (not shown). In addition, a valve 32 and a valve 34 for controlling the inflow and outflow of the liquid component are provided at the inlet and the outlet of the ammonia removal facility 16, respectively.

かかるアンモニア除去設備16においては、固形分離設備12で分離された液分をアンモニア除去槽17に一定量流入した後、アンモニア除去槽17を減圧装置で減圧する。その後、消石灰を加え、攪拌手段24で攪拌しつつ、ヒーター26により加熱して液温を30度程度に保つ。この操作で、ウレアーゼが尿素に作用して、アンモニアと一部は炭酸アンモニウムを作り出し、炭酸アンモニウムはアンモニアへと変換される。また、同時に、液中のリン酸イオンがリン酸カルシウムとして沈殿する。液中のアンモニアはアンモニアガスとなり、アンモニア回収設備20へと導かれる。なお、堆肥化設備14で発生するアンモニアガスもアンモニア回収設備20へ導く。   In the ammonia removal facility 16, after a certain amount of the liquid separated by the solid separation facility 12 has flowed into the ammonia removal tank 17, the ammonia removal tank 17 is decompressed by a decompression device. Thereafter, slaked lime is added and heated by the heater 26 while being stirred by the stirring means 24 to keep the liquid temperature at about 30 degrees. In this operation, urease acts on urea to produce ammonia and some ammonium carbonate, which is converted to ammonia. At the same time, phosphate ions in the liquid are precipitated as calcium phosphate. The ammonia in the liquid becomes ammonia gas and is led to the ammonia recovery facility 20. Note that ammonia gas generated in the composting facility 14 is also led to the ammonia recovery facility 20.

また、アンモニアを回収した後のアンモニア除去液は最終処理設備18に導き、メタン発酵法あるいは好気的曝気処理等により、COD及びBODを環境基準値以下にして処理水とする。   Further, the ammonia removal liquid after recovering the ammonia is led to the final treatment facility 18 and treated with COD and BOD below the environmental standard values by methane fermentation method or aerobic aeration treatment.

アンモニア回収設備20においては、化学的処理法又は物理的処理法によってアンモニアガスのみを回収する。すなわち、アンモニア除去設備16から回収されたガスには、アンモニア以外に空気や炭酸ガスを含むので、アンモニアガスのみを回収できるようにする。化学的処理法としては、例えば、硫酸酸性液でアンモニアだけを捕集し硫安とし、さらに消石灰で分解して、アンモニアガスだけを取り出し水素変換設備22に導く。また、物理的処理法としては、アンモニアを含むガスを加圧し、ガス吸収剤(活性炭等)の存在下でアンモニアのみを吸収させ、その後、減圧下でアンモニアをガスとして取り出し水素変換設備22に導く。このようにして取り出したアンモニアガスは室温で35気圧程度に加圧し、液体アンモニアとして保存することもできる。   In the ammonia recovery facility 20, only ammonia gas is recovered by a chemical processing method or a physical processing method. That is, since the gas recovered from the ammonia removal facility 16 includes air and carbon dioxide in addition to ammonia, only the ammonia gas can be recovered. As the chemical treatment method, for example, only ammonia is collected with an acidic sulfuric acid solution to make ammonium sulfate, and further decomposed with slaked lime, and only ammonia gas is taken out and led to the hydrogen conversion facility 22. As a physical treatment method, a gas containing ammonia is pressurized, and only ammonia is absorbed in the presence of a gas absorbent (activated carbon or the like). Thereafter, ammonia is taken out as a gas under reduced pressure and led to the hydrogen conversion facility 22. . The ammonia gas thus taken out can be pressurized to about 35 atm at room temperature and stored as liquid ammonia.

図3に示すように、水素変換設備22は、アンモニアガスの流量を調整するための流量計36と、アンモニアガスを熱分解する電気炉38とを備えている。電気炉38には、金属触媒が収納された触媒塔40が設置され、温度制御装置42を備えた熱電対44で所定の温度に保たれている。なお、符号46はArガス又はN2ガスの流量を調整する流量計を示し、符号48は圧力計を示し、符号50は冷却塔を示し、符合52は流量計を示す。 As shown in FIG. 3, the hydrogen conversion facility 22 includes a flow meter 36 for adjusting the flow rate of ammonia gas and an electric furnace 38 for thermally decomposing ammonia gas. The electric furnace 38 is provided with a catalyst tower 40 in which a metal catalyst is accommodated, and is maintained at a predetermined temperature by a thermocouple 44 provided with a temperature control device 42. Reference numeral 46 denotes a flow meter for adjusting the flow rate of Ar gas or N 2 gas, reference numeral 48 denotes a pressure gauge, reference numeral 50 denotes a cooling tower, numeral 52 indicates a flowmeter.

水素変換設備22においては、まず、電気炉38の中に設置された触媒塔40の触媒活性化のためにArガス又はN2ガスを流通させながら加熱して所定温度にする。次いで、アンモニアガスに切り替え、触媒塔40を通過させることによりアンモニアを熱分解させ、水素ガスとして回収する。この際、内部加熱型の触媒塔を用いることも可能である。 In the hydrogen conversion facility 22, first, the catalyst tower 40 installed in the electric furnace 38 is heated to a predetermined temperature while circulating Ar gas or N 2 gas in order to activate the catalyst tower 40. Next, the gas is switched to ammonia gas, and the ammonia is thermally decomposed by passing through the catalyst tower 40 to be recovered as hydrogen gas. At this time, it is also possible to use an internal heating type catalyst tower.

このように、本発明においては、畜産廃棄物から水素を回収することができ、これをエネルギー源として使用することが可能となる。   Thus, in this invention, hydrogen can be collect | recovered from livestock waste and it becomes possible to use this as an energy source.

上記のような畜産廃棄物処理施設を用いて水素の回収を行った。   Hydrogen was recovered using the livestock waste treatment facility as described above.

水素変換設備においては温度を450度に設定し、100cc/minの流速でアンモニア分解をおこなった。   In the hydrogen conversion facility, the temperature was set to 450 ° C., and ammonia decomposition was performed at a flow rate of 100 cc / min.

生成したガスを分析したところ、未分解アンモニアの量は123ppm(cc/L)であった。したがって、アンモニア分解率は97.5%と求められた。用いた触媒は、4Φのアルミナに2%のルテニウムを担持したものである。また、水素変換設備における触媒温度を変化させて同様の実験を行った。その結果、触媒温度が500℃のときアンモニア分解率は99.0%であり、触媒温度が400℃のときアンモニア分解率は85.0%であった。   When the generated gas was analyzed, the amount of undecomposed ammonia was 123 ppm (cc / L). Therefore, the ammonia decomposition rate was determined to be 97.5%. The catalyst used was 2% ruthenium supported on 4Φ alumina. Moreover, the same experiment was conducted by changing the catalyst temperature in the hydrogen conversion facility. As a result, the ammonia decomposition rate was 99.0% when the catalyst temperature was 500 ° C, and the ammonia decomposition rate was 85.0% when the catalyst temperature was 400 ° C.

このように、本発明の畜産廃棄物の処理方法を用いれば水素を回収することができ、これを有効利用できることが判明した。   As described above, it has been found that hydrogen can be recovered by using the livestock waste processing method of the present invention and can be effectively used.

本発明の畜産廃棄物の処理方法を適用可能な処理施設の概略説明図である。It is a schematic explanatory drawing of the processing facility which can apply the processing method of livestock waste of this invention. 図1に示す処理施設におけるアンモニア除去設備の概略説明図である。It is a schematic explanatory drawing of the ammonia removal equipment in the processing facility shown in FIG. 図1に示す処理施設における水素変換設備の概略説明図である。It is a schematic explanatory drawing of the hydrogen conversion equipment in the processing facility shown in FIG.

符号の説明Explanation of symbols

10 処理施設
12 固形分離設備
14 堆肥化設備
16 アンモニア除去設備
17 アンモニア除去槽
18 最終処理設備
20 アンモニア回収設備
22 水素変換設備
24 攪拌手段
26 ヒーター
28,32,34 バルブ
30 消石灰添加部
36,46,52 流量計
38 電気炉
40 触媒塔
42 温度制御装置
44 熱電対
48 圧力計
50 冷却塔
DESCRIPTION OF SYMBOLS 10 Treatment facility 12 Solid separation facility 14 Composting facility 16 Ammonia removal facility 17 Ammonia removal tank 18 Final treatment facility 20 Ammonia recovery facility 22 Hydrogen conversion facility 24 Stirring means 26 Heater 28, 32, 34 Valve 30 Slaked lime addition part 36, 46, 52 Flow meter 38 Electric furnace 40 Catalyst tower 42 Temperature control device 44 Thermocouple 48 Pressure gauge 50 Cooling tower

Claims (1)

糞尿を含有する畜産廃棄物を固液分離する固液分離工程と、前記固液分離工程において分離された尿素を含有する液分からアンモニアを除去するアンモニア除去工程とを有する畜産廃棄物の処理方法であって、
前記アンモニア除去工程において、固液分離工程において分離された固形分の発酵時に発生する熱によって、尿素を含有する液分を糞由来のウレアーゼ活性が得られる温度まで加温し、保持してアンモニア及び炭酸アンモニウムを生成すると共に、水酸化カルシウム及び酸化カルシウムから選ばれる少なくとも1種を添加して、液分中の炭酸アンモニウムをアンモニアに変換し、かつリン酸イオンをリン酸カルシウムに変換することを特徴とする畜産廃棄物の処理方法。
A method for treating livestock waste comprising a solid-liquid separation step for solid-liquid separation of livestock waste containing manure and an ammonia removal step for removing ammonia from the liquid containing urea separated in the solid-liquid separation step. There,
In the ammonia removing step, the heat generated during fermentation of the solid content separated in the solid-liquid separation step is heated to a temperature at which the urease activity derived from feces is obtained and held to hold ammonia and ammonia. In addition to producing ammonium carbonate, at least one selected from calcium hydroxide and calcium oxide is added to convert ammonium carbonate in the liquid into ammonia, and phosphate ions into calcium phosphate. Processing method for livestock waste.
JP2004097076A 2004-03-29 2004-03-29 Processing method of livestock waste Expired - Fee Related JP4653963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097076A JP4653963B2 (en) 2004-03-29 2004-03-29 Processing method of livestock waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097076A JP4653963B2 (en) 2004-03-29 2004-03-29 Processing method of livestock waste

Publications (2)

Publication Number Publication Date
JP2005279442A JP2005279442A (en) 2005-10-13
JP4653963B2 true JP4653963B2 (en) 2011-03-16

Family

ID=35178397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097076A Expired - Fee Related JP4653963B2 (en) 2004-03-29 2004-03-29 Processing method of livestock waste

Country Status (1)

Country Link
JP (1) JP4653963B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4233502B2 (en) * 2004-08-30 2009-03-04 三洋電機株式会社 Urine processing method
JP4793829B2 (en) * 2007-06-15 2011-10-12 三菱化工機株式会社 Livestock manure processing equipment
CN103073089A (en) * 2013-02-05 2013-05-01 中国环境科学研究院 Method for removing ammonia nitrogen from landfill leachate by using P1 type fly ash molecular sieve
JP6979848B2 (en) * 2017-10-16 2021-12-15 清水建設株式会社 Ammonia-containing wastewater treatment method and treatment equipment
KR102148919B1 (en) * 2018-08-29 2020-08-28 김민성 Environment-friendly resource production equipment
CN114308987B (en) * 2022-01-06 2023-03-24 兰州大学 Method for in-situ passivation of heavy metals in solid waste generated in mining

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263097A (en) * 1999-03-17 2000-09-26 Mitsubishi Heavy Ind Ltd Treatment of livestock excreta
JP2000288590A (en) * 1999-04-12 2000-10-17 Shigetaka Hayashida Treatment system of sludge liquid, deodorizing method of sludge liquid and treatment method of animal primitive urine
JP2001070915A (en) * 1999-09-01 2001-03-21 Sumitomo Heavy Ind Ltd Device and method for organic waste disposal
JP2001275279A (en) * 2000-03-24 2001-10-05 Matsushita Seiko Co Ltd Power supply system for cattle stall
JP2002113494A (en) * 2000-10-06 2002-04-16 Mitsubishi Heavy Ind Ltd Method and apparatus for treating livestock waste
JP2003154343A (en) * 2001-11-22 2003-05-27 Mitsubishi Heavy Ind Ltd Treatment method for organic waste and system therefor
JP2004024929A (en) * 2002-06-21 2004-01-29 Mitsubishi Heavy Ind Ltd Methane fermentation method and system for the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263097A (en) * 1999-03-17 2000-09-26 Mitsubishi Heavy Ind Ltd Treatment of livestock excreta
JP2000288590A (en) * 1999-04-12 2000-10-17 Shigetaka Hayashida Treatment system of sludge liquid, deodorizing method of sludge liquid and treatment method of animal primitive urine
JP2001070915A (en) * 1999-09-01 2001-03-21 Sumitomo Heavy Ind Ltd Device and method for organic waste disposal
JP2001275279A (en) * 2000-03-24 2001-10-05 Matsushita Seiko Co Ltd Power supply system for cattle stall
JP2002113494A (en) * 2000-10-06 2002-04-16 Mitsubishi Heavy Ind Ltd Method and apparatus for treating livestock waste
JP2003154343A (en) * 2001-11-22 2003-05-27 Mitsubishi Heavy Ind Ltd Treatment method for organic waste and system therefor
JP2004024929A (en) * 2002-06-21 2004-01-29 Mitsubishi Heavy Ind Ltd Methane fermentation method and system for the same

Also Published As

Publication number Publication date
JP2005279442A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
US6783679B1 (en) Waste treatment process
WO2009059615A1 (en) Method for producing a nitrogenous fertilizer from nitrogen-containing material of biogenous and industrial origin
EP2927197A1 (en) System for treating coal gasification wastewater, and method for treating coal gasification wastewater
JP2004042043A (en) Method of treating waste by oxidation
KR20140070544A (en) Microbial production of nitrous oxide coupled with chemical reaction of gaseous nitrous oxide including phosphorus recovery and nitrite reduction to nitrous oxide
CN101081398A (en) Apparatus and method for treatment of food waste
CA2754100A1 (en) Method for producing non-putrescible sludge and energy and corresponding plant
JP2005095783A (en) Method and system for desulfurization
JP2003039036A (en) Method for converting organic waste into biogas
JP2006218429A (en) Solid organic waste treatment method and its apparatus
JP4653963B2 (en) Processing method of livestock waste
KR100599554B1 (en) Organic waste sludge volume reduction method using by combined thermophilic aerobic and mesophilic anaerobic digestion and electro-destruction system and apparatus thereof
JP2002079299A (en) Method for treating ammonia-containing waste
EP2279153B1 (en) Method for treating and/or pretreating liquid manure or biogas plant reject for the elimination of harmful substances, particularly nitrogen, phosphorus, and odor molecules
KR100750502B1 (en) Organic livestock sewage treatment apparatus and organic livestock sewage treatment method
JP2000117273A (en) Waste water treatment
JP5063269B2 (en) Biogas system
KR200417043Y1 (en) Organic waste sludge volume reduction apparatus using by combined thermophilic aerobic and mesophilic anaerobic digestion and electro-destruction system
JP5773381B2 (en) Ammonia removing apparatus, organic waste processing apparatus and processing method using the same
JP2002113494A (en) Method and apparatus for treating livestock waste
JP4248375B2 (en) Organic sludge treatment method and apparatus
JP2001137888A (en) Method for treating organic waste water
JP2009195783A (en) Organic wastewater treatment method
JP5223836B2 (en) Organic matter processing method and processing apparatus
JP4423982B2 (en) Operation method of methane fermentation treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees