JP4248375B2 - Organic sludge treatment method and apparatus - Google Patents

Organic sludge treatment method and apparatus Download PDF

Info

Publication number
JP4248375B2
JP4248375B2 JP2003399717A JP2003399717A JP4248375B2 JP 4248375 B2 JP4248375 B2 JP 4248375B2 JP 2003399717 A JP2003399717 A JP 2003399717A JP 2003399717 A JP2003399717 A JP 2003399717A JP 4248375 B2 JP4248375 B2 JP 4248375B2
Authority
JP
Japan
Prior art keywords
sludge
tank
treatment
acid
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003399717A
Other languages
Japanese (ja)
Other versions
JP2005161110A (en
Inventor
美子 宍戸
雅之 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Environment Co Ltd
Original Assignee
Sumitomo Heavy Industries Environment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Environment Co Ltd filed Critical Sumitomo Heavy Industries Environment Co Ltd
Priority to JP2003399717A priority Critical patent/JP4248375B2/en
Publication of JP2005161110A publication Critical patent/JP2005161110A/en
Application granted granted Critical
Publication of JP4248375B2 publication Critical patent/JP4248375B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Treatment Of Sludge (AREA)

Description

本発明は、下水処理場、し尿処理場及び食品工場や化学工場などの水処理工程から排出され
る有機性汚泥を減量化する有機性汚泥の処理方法及び装置に関する。
The present invention is discharged from water treatment processes such as sewage treatment plants, human waste treatment plants and food factories and chemical factories.
The present invention relates to an organic sludge treatment method and apparatus for reducing the amount of organic sludge.

下水、し尿、産業廃水などの有機性廃水を生物学的に処理する方法では、大量の有機性汚泥(余剰汚泥)が発生する。また、生物処理の前段で固形物を予め分離する場合等にも有機性汚泥(生汚泥)が発生する。
従来からこれらの有機性汚泥は、脱水機で脱水処理された後、埋立て処分されるか、焼却処理されている。しかし、埋め立てを行うには用地の確保が必要であり、焼却を行う場合には多大のエネルギーが必要である。また、焼却灰の処理やダイオキシン等の有害物質の排出といった問題がある。
In the method of biologically treating organic wastewater such as sewage, human waste and industrial wastewater, a large amount of organic sludge (excess sludge) is generated. In addition, organic sludge (raw sludge) is also generated when solids are separated in advance before biological treatment.
Conventionally, these organic sludges have been dehydrated with a dehydrator and then disposed of in landfills or incinerated. However, it is necessary to secure land for landfill, and a large amount of energy is required for incineration. In addition, there are problems such as incineration ash treatment and discharge of harmful substances such as dioxins.

以上のことから活性汚泥法等の廃水処理工程において発生する有機性の余剰汚泥等をオゾン処理、アルカリ処理、酸処理、加熱処理あるいは超音波処理等で汚泥を易生物分解性に改質した後、活性汚泥処理等の生物処理槽に戻して処理する汚泥の減量化が可能な廃水処理方法が検討されている。
しかし、通常の活性汚泥法などの生物処理で生成する有機性の余剰汚泥は沈殿槽による通常の固液分離では汚泥濃度が約1%程度と低く、沈殿槽の引き抜き汚泥を直接、改質処理等を施して減量化する場合、大量の薬品や電気・熱エネルギー等が必要になり、非効率的である。
使用する反応器なども大きなものになる。
From the above, after the sludge is easily biodegradable by ozone treatment, alkali treatment, acid treatment, heat treatment or ultrasonic treatment of organic excess sludge generated in the wastewater treatment process such as the activated sludge method In addition, wastewater treatment methods capable of reducing the amount of sludge to be returned to the biological treatment tank such as activated sludge treatment are being studied.
However, organic surplus sludge produced by biological treatment such as the normal activated sludge method has a sludge concentration as low as about 1% in normal solid-liquid separation using a sedimentation tank, and the sludge extracted from the sedimentation tank is directly modified. When the amount is reduced by applying, etc., a large amount of chemicals and electric / thermal energy are required, which is inefficient.
The reactor used will also be large.

また、活性汚泥法等の廃水処理において、砂等の無機質粒子を共存させて汚泥を凝集させ、曝気槽内の汚泥濃度を高くして有機性廃水を効率的に処理し、固液分離した余剰汚泥はオゾン、アルカリまたは酸で易生物分解性に改質して、曝気槽に戻して汚泥の減量化を図る廃水処理方法が提案されている(例えば特許文献1参照)。
この方法では沈殿槽の引き抜き汚泥の濃度が通常の活性汚泥の引き抜き汚泥の濃度より高くなるので、汚泥の改質を小型の装置で行えるという利点を有しているが、砂などの無機質粒子がアルカリ処理、酸処理あるいはオゾン処理等によって溶解したり、あるいは変質して汚泥の凝集力が低下するという問題や使用する薬剤が高価であるという問題を有している。
Also, in wastewater treatment such as activated sludge process, sludge is agglomerated by coexisting inorganic particles such as sand, the sludge concentration in the aeration tank is increased, organic wastewater is efficiently treated, and solid-liquid separated surplus A wastewater treatment method has been proposed in which sludge is modified to be readily biodegradable with ozone, alkali or acid, and returned to the aeration tank to reduce the sludge (see, for example, Patent Document 1).
This method has the advantage that the sludge concentration in the settling tank is higher than the normal activated sludge extraction sludge concentration, so that the sludge can be reformed with a small device. It has a problem that it is dissolved by alkali treatment, acid treatment, ozone treatment, or the like, or is deteriorated and the cohesive force of sludge is reduced, and the chemical used is expensive.

また、汚泥の濃度を高める方法として、無機質粒子の代わりに、嫌気性微生物を含むグラニュール汚泥を添加して廃水処理する方法が提案されている(例えば特許文献2参照)。
しかし、この方法は添加物質によって曝気槽内の汚泥濃度を高くして、効率的に廃水を処理することを目的にしたもので、汚泥を易生物分解性に改質することなく単に曝気槽に戻すだけで汚泥の減量化を図るものではない。
Moreover, as a method for increasing the concentration of sludge, a method of treating wastewater by adding granular sludge containing anaerobic microorganisms instead of inorganic particles has been proposed (for example, see Patent Document 2).
However, the purpose of this method is to increase the sludge concentration in the aeration tank with the added substances and to efficiently treat the wastewater, so that the sludge can be simply put into the aeration tank without being easily biodegradable. It is not intended to reduce sludge by simply returning it.

特開平9−38681号JP-A-9-38681 特開2002−336885号JP 2002-336885 A

本発明は、活性汚泥法などの生物処理で生成する余剰汚泥等の有機性汚泥の濃度を、簡単な操作により高め、かつ、薬品などを必要としない生物的方法によって、汚泥を低コストで効率よく処理することができる有機性汚泥の処理方法及び装置を提案することを目的とする。 The present invention increases the concentration of organic sludge such as excess sludge produced by biological treatment such as activated sludge process by simple operation, and makes sludge efficient at low cost by a biological method that does not require chemicals. It aims at proposing the processing method and apparatus of the organic sludge which can be processed well.

本発明は、上述した課題を達成するためになされたもので、以下の手段で解決された。
有機性汚泥の処理方法であって、水処理工程等で発生する有機性汚泥を好気性微生物と結合する担体が投入された好気性生物処理槽に供給して、有機物を分解すると共に担体に汚泥を担持させ、担持された汚泥を担体と共に分離して、嫌気性条件下、酸生成菌による改質処理を施した後、前記好気性生物処理槽に戻して処理するようにした。
The present invention has been made to achieve the above-described problems, and has been solved by the following means.
A method for treating organic sludge, in which organic sludge generated in a water treatment process or the like is supplied to an aerobic biological treatment tank in which a carrier that binds aerobic microorganisms is introduced to decompose organic matter and sludge is used as a carrier. The loaded sludge was separated together with the carrier, subjected to modification treatment with acid-producing bacteria under anaerobic conditions, and then returned to the aerobic biological treatment tank for treatment.

有機性汚泥を予め嫌気性条件下、酸生成菌による改質処理を施した後、好気性微生物と結合する担体が添加された好気性生物処理槽に供給すること、嫌気性条件下、酸生成菌による汚泥の改質処理で得られる処理物を固液分離して液側を生物的脱窒脱リン工程における有機質原料として利用し、固形物は前記好気性生物処理槽に戻して処理すること、好気性微生物と結合する担体が嫌気性グラニュール汚泥や石炭フライアッシュ、アルミナ、シリカ、ゼオライト、酸化鉄、二酸化チタン、炭素あるいは多孔性のセラミックス等の無機質粒子であることも特徴とする。   Organic sludge is subjected to modification treatment with acid-producing bacteria under anaerobic conditions in advance, and then supplied to an aerobic biological treatment tank to which a carrier that binds to aerobic microorganisms is added. Acid generation under anaerobic conditions The treated product obtained by the sludge modification treatment with bacteria is solid-liquid separated and the liquid side is used as an organic raw material in the biological denitrification and dephosphorization process, and the solid is returned to the aerobic biological treatment tank for treatment. The carrier that binds to the aerobic microorganisms is also characterized by inorganic particles such as anaerobic granular sludge, coal fly ash, alumina, silica, zeolite, iron oxide, titanium dioxide, carbon or porous ceramics.

有機性汚泥の処理装置であって、水処理工程等で発生する有機性汚泥が投入される好気性微生物と結合する担体が投入された曝気槽、担体に担持され汚泥を担体と共に分離する固液分離槽、固液分離槽で分離された汚泥を嫌気性条件下、酸生成菌で改質処理する酸生成槽、それらを繋ぐ送液管及び酸生成槽の改質処理で得られる処理物を前記曝気槽に返送する送液管を備えた。   An organic sludge treatment apparatus, an aeration tank into which a carrier that binds to aerobic microorganisms into which organic sludge generated in a water treatment process or the like is introduced, a solid liquid that is supported on the carrier and separates the sludge together with the carrier Separation tank, acid generation tank that reforms sludge separated in solid-liquid separation tank with an acid-producing bacterium under anaerobic conditions, liquid feed pipe that connects them, and processed product obtained by modification treatment of acid generation tank A liquid feeding pipe for returning to the aeration tank was provided.

有機性汚泥を予め嫌気性条件下、酸生成菌による改質処理を施す酸生成槽を設けること、嫌気性条件下、酸生成菌による汚泥の改質処理で得られる処理物を固液分離する固液分離装置、固液分離装置で分離された液側を生物的脱窒脱リン工程に供給する送液管、分離された固形物を前記曝気槽に供給する汚泥送液管を備えることも特徴とする。 An organic acid sludge is prepared in advance under anaerobic conditions, and an acid generation tank is provided for modification with acid-producing bacteria. Under anaerobic conditions, processed liquid obtained by sludge modification with acid-producing bacteria is solid-liquid separated. A solid-liquid separator, a liquid feed pipe for supplying the liquid side separated by the solid-liquid separator to the biological denitrification and dephosphorization process, and a sludge liquid feed pipe for supplying the separated solid matter to the aeration tank. Features.

本発明によれば、好気性微生物担体としての嫌気性グラニュール汚泥あるいは石炭フライアッシュ等の無機質粒子が投入された曝気槽へ生物汚泥等の有機性汚泥を供給することにより、汚泥を担体に担持でき、沈降性のよい汚泥として固液分離することができる。このため汚泥の濃度が高められ、汚泥の改質処理等を効率よく行うことができる。しかも汚泥を易生物分解性にする改質処理が、嫌気性条件下での酸生成菌による生物処理のため、オゾンやアルカリ剤等による改質処理の場合に必要な高価な薬品や、加熱処理、超音波処理といったような場合に必要な熱・電気エネルギーを必要としない。 According to the present invention, sludge is supported on a carrier by supplying organic sludge such as biological sludge to an aeration tank in which inorganic particles such as anaerobic granule sludge or coal fly ash as an aerobic microorganism carrier is charged. And can be solid-liquid separated as sludge with good sedimentation. For this reason, the density | concentration of sludge is raised and the modification | reformation process of sludge etc. can be performed efficiently. In addition, the modification treatment that makes sludge readily biodegradable is a biological treatment with acid-producing bacteria under anaerobic conditions, so expensive chemicals and heat treatment required for modification treatment with ozone, alkaline agents, etc. It does not require the heat and electrical energy required for sonication.

また、改質処理の条件が穏やかな生物処理のため、使用される担体が安定した状態であり、循環使用することができる。また、酸生成処理で得られる有機酸等は下水処理等の生物的脱窒、脱リン工程に必要な添加物質として有効利用することができる。 In addition, because the biological treatment is mild in the conditions of the reforming treatment, the carrier used is in a stable state and can be recycled. Moreover, the organic acid obtained by an acid production | generation process can be effectively utilized as an additive substance required for biological denitrification, such as a sewage treatment, and a phosphorus removal process.

以下、本発明の実施形態について詳細に説明する。なお、同一の要素には同一の符号を付し、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。
図1は本発明による有機性汚泥の処理装置の好適な一実施形態を模式的に示す構成図である。
Hereinafter, embodiments of the present invention will be described in detail. In addition, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.
FIG. 1 is a block diagram schematically showing a preferred embodiment of an organic sludge treatment apparatus according to the present invention.

活性汚泥法等の生物処理工程で発生する余剰の引き抜き汚泥(沈殿槽等の固液分離装置より排出される高含水の生物汚泥)や水処理工程における初沈引き抜き汚泥(高含水の有機性生汚泥)が汚泥供給管100を介して、嫌気性グラニュール汚泥又は無機質粒子の担体Pが投入された曝気槽1に供給される。曝気槽1内のエアリフト管6の下部に送気管101を介して酸素ガスあるいは空気などの酸素含有ガスが供給される。好気性条件の曝気槽1内では投入された汚泥が活性汚泥により分解される。
曝気槽1内で投入された生物汚泥や新たに生成した生物汚泥は曝気槽1内に存在する担体Pの表面に結合して担体Pを核として凝集やグラニュール化(造粒)が起こる。
Surplus extraction sludge generated in biological treatment processes such as the activated sludge method (biological sludge with high water content discharged from solid-liquid separators such as sedimentation tanks) and first sedimentation sludge in the water treatment process (organic water with high water content) Sludge) is supplied through the sludge supply pipe 100 to the aeration tank 1 in which the anaerobic granular sludge or the carrier P of inorganic particles is introduced. An oxygen-containing gas such as oxygen gas or air is supplied to the lower part of the air lift pipe 6 in the aeration tank 1 via the air feed pipe 101. In the aeration tank 1 under the aerobic condition, the introduced sludge is decomposed by the activated sludge.
Biological sludge charged in the aeration tank 1 or newly generated biological sludge is bonded to the surface of the carrier P existing in the aeration tank 1 and aggregates or granulates (granulates) using the carrier P as a nucleus.

曝気槽1の流出液は送液管102を介して沈殿槽2に導入され、固液分離が行われる。固液分離後の液側は送液管103を介して、別途設けられた有機物、窒素、リン等を処理する水処理工程(図示されていない)に導かれて処理される。
担体Pに結合した汚泥は沈降性がよいため、沈殿槽2の底部より引き抜かれる汚泥の濃度(約2〜5%)は高く、通常の活性汚泥などの有機性汚泥に比べて約2〜5倍になる。このため沈殿槽2の底部より引き抜かれる汚泥は通常の引き抜き汚泥の量に比べて約1/2〜1/5に減量化される。
The effluent from the aeration tank 1 is introduced into the precipitation tank 2 via the liquid feeding pipe 102, and solid-liquid separation is performed. The liquid side after the solid-liquid separation is guided and processed through a liquid supply pipe 103 to a water treatment step (not shown) for treating separately provided organic matter, nitrogen, phosphorus and the like.
Since the sludge bonded to the carrier P has good sedimentation, the concentration (about 2 to 5%) of the sludge drawn out from the bottom of the settling tank 2 is high, and about 2 to 5 compared to organic sludge such as normal activated sludge. Double. For this reason, the sludge withdrawn from the bottom of the settling tank 2 is reduced to about ½ to 1/5 of the amount of ordinary drawn sludge.

沈殿槽2で分離された汚泥は汚泥送液管104を介して引き抜かれ、必要に応じて一部は汚泥送液管Rを介して曝気槽1へ返送され、また、一部は汚泥排出管105を介して系外に排出される。
残部は汚泥送液管106を介して、嫌気性条件に保たれた酸生成菌を含む酸生成槽3に供給され、嫌気性グラニュール汚泥や無機質粒子の担体表面に結合した汚泥は有機酸等に分解されて改質される。
生成した有機酸等の溶解物及び未分解を含む処理物は担体Pと共に送液管107を介して曝気槽1へ戻され、有機酸等の可溶化物及び未分解物は曝気槽1内で処理される。また、嫌気性グラニュール汚泥や無機質粒子は生物汚泥を凝集させる担体Pとして再利用される。
The sludge separated in the sedimentation tank 2 is drawn out through the sludge feed pipe 104, and partly returned to the aeration tank 1 through the sludge feed pipe R as necessary, and part of the sludge discharge pipe. It is discharged out of the system through 105.
The remainder is supplied to the acid generation tank 3 containing acid-producing bacteria kept under anaerobic conditions via the sludge feed pipe 106, and the sludge bound to the carrier surface of the anaerobic granular sludge or inorganic particles is organic acid or the like It is decomposed and modified.
The generated dissolved product such as organic acid and the processed product containing undecomposed are returned to the aeration tank 1 together with the carrier P through the liquid feeding pipe 107, and the solubilized product and undecomposed product such as the organic acid are contained in the aeration tank 1. It is processed. Anaerobic granular sludge and inorganic particles are reused as a carrier P for agglomerating biological sludge.

なお、酸生成槽3では酸生成菌を含む汚泥によって嫌気性条件下、有機物が有機酸等に変換されるので、有機酸の生成に伴って酸性となるが、そのまま曝気槽1へ供給してもよく、あるいは、アルカリ剤を用いて酸生成槽内のpHを約6前後に保持して反応を促進させてから、曝気槽1へ供給してもよい。
また、酸生成の温度条件としては、中温酸生成菌を利用する場合は約30〜40℃、高温酸生成菌を利用する場合には約50〜60℃が適している。酸生成槽での好ましい汚泥滞留時間としては3〜10日程度である。酸生成を常温、例えば、20℃程度で行う場合には、汚泥滞留時間として7〜20日間程度が好ましい。
In the acid generation tank 3, the organic matter is converted into an organic acid or the like under anaerobic conditions by the sludge containing acid-producing bacteria. Therefore, the acid generation tank 3 becomes acidic with the generation of the organic acid, but is supplied to the aeration tank 1 as it is. Alternatively, it may be supplied to the aeration tank 1 after promoting the reaction by maintaining the pH in the acid generation tank at about 6 using an alkali agent.
Moreover, as temperature conditions for acid production, about 30 to 40 ° C. is suitable when using a medium temperature acid producing bacterium, and about 50 to 60 ° C. when using a high temperature acid producing bacterium. The preferable sludge residence time in the acid generation tank is about 3 to 10 days. When acid generation is performed at room temperature, for example, about 20 ° C., the sludge residence time is preferably about 7 to 20 days.

また、曝気槽1内に投入される嫌気性グラニュール汚泥としては通常のUASB(Upflow Anaerobic Sludge Blanket:上向流嫌気性汚泥床)やEGSB(Expanded Granular Sludge Blanket:膨張粒状汚泥床)などのメタン醗酵処理工程で使用されているものを利用することができる。この嫌気性グラニュール汚泥は通常、粒径が約1〜7mm程度で沈降性がよく、好気性微生物と結合する性質を有しているので、曝気槽1に投入すると嫌気性グラニュール汚泥の表面に好気性の微生物汚泥が付着してより大きな沈降性のよいグラニュール汚泥に成長する。 Also, as anaerobic granulated sludge thrown into the aeration tank 1, methane such as normal UASB (Upflow Anaerobic Sludge Blanket) and EGSB (Expanded Granular Sludge Blanket) What is used in the fermentation treatment process can be utilized. This anaerobic granule sludge usually has a particle size of about 1 to 7 mm, has a good sedimentation property, and has a property of binding to aerobic microorganisms. The aerobic microbial sludge adheres to the granulated sludge with better sedimentation.

この成長したグラニュール汚泥は酸生成槽3内に投入されると、嫌気性グラニュール汚泥の表面に結合した好気性微生物は酸生成菌等の作用により分解する。担体Pである嫌気性グラニュール汚泥は改質処理によって変質することがほとんどないので、曝気槽1に戻して再利用される。なお、嫌気性グラニュール汚泥の添加量としては0.1〜100g/L、より好ましくは1〜10g/L程度である。また、嫌気性グラニュール汚泥以外に石炭フライアッシュ、アルミナ、シリカ、ゼオライト、酸化鉄、二酸化チタン、炭素(活性炭、活性コークス、コークス、チャー等)、多孔性セラミックス(例えば粘土鉱物等を焼成して得られる焼成物)等の無機質粒子を担体として利用することができる。 When the grown granule sludge is put into the acid generation tank 3, the aerobic microorganisms bonded to the surface of the anaerobic granule sludge are decomposed by the action of acid producing bacteria and the like. Since the anaerobic granule sludge as the carrier P is hardly altered by the reforming treatment, it is returned to the aeration tank 1 and reused. In addition, as addition amount of anaerobic granule sludge, it is about 0.1-100 g / L, More preferably, it is about 1-10 g / L. In addition to anaerobic granular sludge, coal fly ash, alumina, silica, zeolite, iron oxide, titanium dioxide, carbon (activated carbon, activated coke, coke, char, etc.), porous ceramics (eg clay minerals, etc.) are calcined. Inorganic particles such as a fired product obtained can be used as a carrier.

これらの無機質粒子も好気性微生物汚泥と結合して汚泥を凝集させる効果が大きいという性質を有している。無機質粒子の担体Pを核として成長した生物凝集体は酸生成槽3での生物処理によって分解し、改質される。核となっていた無機質粒子の担体pは酸生成槽3の穏やかな生物処理条件では良好な凝集体の核になる担体pとしての性質を留めており、安定しているので、曝気槽に戻されて再度使用される。 These inorganic particles also have a property of having a great effect of aggregating sludge by combining with aerobic microbial sludge. Biological aggregates grown using the carrier P of inorganic particles as a nucleus are decomposed and modified by biological treatment in the acid generation tank 3. The carrier p of the inorganic particles that has been a nucleus retains the properties as a carrier p that becomes a core of good aggregates under the mild biological treatment conditions of the acid generation tank 3 and is stable, so return to the aeration tank. Have been used again.

これら無機質粒子の適した粒度は約0.1〜1,000マイクロメートル、より好ましくは数マイクロメートルから数百マイクロメートルである。あまり細かいと、取り扱いが難しくなる。また、凝集性は良好であるが沈降性の大幅な改善効果が期待できなくなる。逆に、大きくなると凝集性やグラニュール化の効果が乏しくなる。また、無機質粒子の添加量としては0.1〜100g/L、より好ましくは1〜10g/L程度である。 A suitable particle size for these inorganic particles is about 0.1 to 1,000 micrometers, more preferably a few micrometers to a few hundred micrometers. If it is too fine, handling becomes difficult. In addition, the cohesiveness is good, but a significant improvement effect of sedimentation cannot be expected. On the other hand, when it becomes large, the effect of cohesion and granulation becomes poor. Moreover, as addition amount of an inorganic particle, it is 0.1-100 g / L, More preferably, it is about 1-10 g / L.

なお、図1の実施形態においては曝気槽1の形式としてエアリフト型の反応槽を示したが、曝気槽底部のほぼ全面よりディフューザや散気パネルによって空気や酸素ガス等を供給する反応槽を使用することもできる。また、沈殿槽2の代わりにろ過分離、膜分離等を利用する固液分離槽を利用することもできる。   In the embodiment of FIG. 1, an airlift type reaction tank is shown as a type of the aeration tank 1, but a reaction tank that supplies air, oxygen gas, or the like from almost the entire bottom of the aeration tank by a diffuser or a diffuser panel is used. You can also Further, instead of the precipitation tank 2, a solid-liquid separation tank using filtration separation, membrane separation or the like can be used.

次に、図2に示す本発明の他の実施形態ついて説明する。
図2に示す実施形態は図1の実施形態に、処理すべき汚泥を予め前処理するための工程である酸生成槽4を曝気槽1の前段に設けたものである。すなわち、図1の実施形態においては、処理すべき汚泥を汚泥供給管100を介して直接、曝気槽1へ供給したが、図2の実施形態では、予め汚泥を酸生成槽4で改質処理を施した後、送液管108を介して曝気槽1に供給して処理するものである。
このように汚泥を予め嫌気性条件下、酸生成菌で改質しておくと、曝気槽1内での有機物の分解反応及び新たに生成した生物汚泥の担体への結合をより効果的に進めることができる。
Next, another embodiment of the present invention shown in FIG. 2 will be described.
In the embodiment shown in FIG. 2, an acid generation tank 4, which is a process for pretreating sludge to be treated, is provided in the previous stage of the aeration tank 1 in the embodiment of FIG. 1. That is, in the embodiment of FIG. 1, the sludge to be treated is directly supplied to the aeration tank 1 via the sludge supply pipe 100, but in the embodiment of FIG. 2, the sludge is previously reformed in the acid generation tank 4. Then, the liquid is supplied to the aeration tank 1 through the liquid feeding pipe 108 and processed.
Thus, if sludge is modified with acid-producing bacteria under anaerobic conditions in advance, the decomposition reaction of organic matter in the aeration tank 1 and the binding of newly generated biological sludge to the carrier are more effectively promoted. be able to.

なお、図2に示す実施形態においては、酸生成槽4を沈殿槽2の後段に設けた酸生成槽3と別個に示したが、それらの酸生成槽3、4を一つにすることも可能である。例えば、酸生成槽3を省略して、汚泥送液管106の沈殿槽2の引き抜き汚泥を直接、酸生成槽4に供給してもよい。 In the embodiment shown in FIG. 2, the acid generation tank 4 is shown separately from the acid generation tank 3 provided at the subsequent stage of the precipitation tank 2, but the acid generation tanks 3 and 4 may be combined into one. Is possible. For example, the acid generation tank 3 may be omitted, and the extracted sludge from the sedimentation tank 2 of the sludge feeding pipe 106 may be supplied directly to the acid generation tank 4.

更に、図3に示す本発明の更に他の実施形態である図3について説明する。図3に示す実施形態は、生物的脱窒脱リン工程を有する下水などの廃水処理に本発明を適用したものである。
近年、下水の高度処理では生物処理によってBOD(生物化学的酸素要求量)物質やN(窒素)、P(リン)の処理が行われている。例えば、図3の下部に示したような処理が知られている。この処理では、最初に沈殿池A(単なる自然沈降や凝集剤を添加する凝集沈殿など)で固形物が取り除かれ、次いで無酸素槽(あるいは嫌気槽)Bで有機物除去及び硝酸態や亜硝酸態窒素の脱窒が行われ、続いて好気槽Cではアンモニア態窒素の硝酸態や亜硝酸態窒素への酸化が行われ、好気槽Cの処理液の大部分が無酸素槽Bへ循環されて脱窒が行われる。好気槽Cの処理液の残部は、残存する硝酸態や亜硝酸態の窒素を除去するために後段の無酸素槽(あるいは嫌気槽)Dへ供給される。
Furthermore, FIG. 3, which is still another embodiment of the present invention shown in FIG. 3, will be described. In the embodiment shown in FIG. 3, the present invention is applied to the treatment of wastewater such as sewage having a biological denitrification and dephosphorization step.
In recent years, BOD (biochemical oxygen demand) substances, N (nitrogen), and P (phosphorus) have been treated by biological treatment in advanced sewage treatment. For example, a process as shown in the lower part of FIG. 3 is known. In this treatment, first, solids are removed in a sedimentation basin A (simply natural sedimentation or agglomeration sedimentation in which a flocculant is added), and then an organic substance is removed in an oxygen-free tank (or anaerobic tank) B and nitrate or nitrite is removed. Nitrogen is denitrified, and in the aerobic tank C, ammonia nitrogen is oxidized to nitrate and nitrite nitrogen, and most of the treatment liquid in the aerobic tank C is circulated to the anoxic tank B. Denitrification is performed. The remainder of the treatment liquid in the aerobic tank C is supplied to a subsequent anaerobic tank (or anaerobic tank) D in order to remove remaining nitrate and nitrite nitrogen.

通常、この無酸素槽Dにはメタノール等の有機物が添加される。しかし、メタノール等の有機物は高価であるという問題がある。次に残存する有機物やリンを除去するために好気槽Eで処理され、最後に汚泥が最終沈殿池Fで分離される。最終沈殿池Fの上澄水は消毒(G)処理された後、処理水として排液管208から放流される。分離された汚泥は汚泥送液管209及び211を介して最初の無酸素槽Bに戻される。残部の汚泥は余剰汚泥として汚泥排出管210から排出される。 Usually, an organic substance such as methanol is added to the oxygen-free tank D. However, there is a problem that organic substances such as methanol are expensive. Next, in order to remove the remaining organic matter and phosphorus, it is treated in the aerobic tank E, and finally the sludge is separated in the final sedimentation tank F. The supernatant water of the final sedimentation basin F is sterilized (G) and then discharged from the drainage pipe 208 as treated water. The separated sludge is returned to the first oxygen-free tank B through the sludge feed pipes 209 and 211. The remaining sludge is discharged from the sludge discharge pipe 210 as surplus sludge.

本発明では図3に示すように下水の最初沈殿池Aの引き抜き汚泥(有機性汚泥)が汚泥送液管212、113を介して曝気槽1へ供給され、汚泥が好気性微生物により分解されると共に、生成した生物汚泥は、曝気槽1内に共存する嫌気性グラニュール汚泥あるいは無機質粒子の担体Pの表面に担持される。
曝気槽1の流出液は送液管102を介して沈殿槽2へ供給されて固液分離される。汚泥は必要に応じて一部は汚泥送液管Rを介して曝気槽1へ返送され、残部は汚泥送液管106を介して酸生成槽3へ供給され、次いで送液管107を介して酸生成槽3の後段に設けられた沈殿槽等の固液分離槽5へ供給される。
In the present invention, as shown in FIG. 3, the sludge withdrawn from the first sedimentation tank A (organic sludge) is supplied to the aeration tank 1 through the sludge feed pipes 212 and 113, and the sludge is decomposed by aerobic microorganisms. At the same time, the generated biological sludge is carried on the surface of the anaerobic granular sludge or inorganic particle carrier P coexisting in the aeration tank 1.
The effluent from the aeration tank 1 is supplied to the precipitation tank 2 via the liquid feeding pipe 102 and separated into solid and liquid. If necessary, the sludge is partially returned to the aeration tank 1 via the sludge liquid feed pipe R, and the remainder is supplied to the acid generation tank 3 via the sludge liquid feed pipe 106, and then via the liquid feed pipe 107. It is supplied to a solid-liquid separation tank 5 such as a precipitation tank provided in the subsequent stage of the acid generation tank 3.

有機酸等の可溶化した有機物が含まれる固体液体分離槽5の上澄水は送液管109を介して無酸素槽(あるいは嫌気槽)Dへ供給され、有機源として利用される。
汚泥送液管110より引き抜かれた固液分離槽5の汚泥は、一部は汚泥送液管112及び113を介して曝気槽1に戻され、未分解物が再処理されると同時に担体Pとして利用された嫌気性グラニュール汚泥あるいは無機質の粒子が再利用される。残部は必要に応じて汚泥排出管111を介して系外へ排出される。
The supernatant water of the solid liquid separation tank 5 containing solubilized organic substances such as organic acids is supplied to the anoxic tank (or anaerobic tank) D through the liquid feeding pipe 109 and used as an organic source.
Part of the sludge in the solid-liquid separation tank 5 drawn out from the sludge liquid feeding pipe 110 is returned to the aeration tank 1 through the sludge liquid feeding pipes 112 and 113, and the undecomposed matter is reprocessed and at the same time the carrier P The anaerobic granule sludge or inorganic particles used as a recycle are reused. The remaining portion is discharged out of the system through the sludge discharge pipe 111 as necessary.

なお、図3に示す実施形態において、固液分離槽5としては沈殿槽が一般的であるが、ろ過分離、膜分離等を利用する固液分離手段を使用することもできる。また、汚泥送液管209及び汚泥排出管210を介して排出される最終沈殿池Fの余剰汚泥は曝気槽1に供給して処理するか、別に設けられた図1又は図2に示される装置によって処理することができる。また、図3に示す実施形態において、沈殿槽2の送液管103を介して排出される上澄水は無酸素槽(又は嫌気槽)Bなどに供給することにより処理することもできる。   In the embodiment shown in FIG. 3, a precipitation tank is generally used as the solid-liquid separation tank 5, but solid-liquid separation means using filtration separation, membrane separation, or the like can also be used. Further, the excess sludge in the final sedimentation basin F discharged through the sludge feed pipe 209 and the sludge discharge pipe 210 is supplied to the aeration tank 1 for processing, or a separate apparatus shown in FIG. 1 or FIG. Can be processed by. In the embodiment shown in FIG. 3, the supernatant water discharged through the liquid feeding pipe 103 of the settling tank 2 can be processed by supplying it to an oxygen-free tank (or anaerobic tank) B or the like.

以下、本発明の実施例について説明する。
実施例1
図1に示す装置を用い、下水処理設備の最終沈殿池汚泥(汚泥濃度MLSS:約8,000mg/L)を毎時1.5Lの割合で曝気槽(有効容積100L)に供給し、また、空気をエアリフト管の下部より毎分5Lの割合で供給した。なお、曝気槽にはメタン醗酵処理設備(UASB)から得られた嫌気性グラニュール汚泥(粒度約1〜4mm)を4g/L投入した。曝気槽からの流出水を沈殿槽(有効容積4.5L)に導入して固液分離を行い、沈殿槽底部から汚泥を引き抜いた。この汚泥の濃度は約24,000mg/Lで汚泥の濃縮は良好であった。
次に、この汚泥を酸生成槽に供給して温度50℃、pH約4〜8、ORP(酸化還元電位)−150mV以下の条件で5日間、改質処理を行い、嫌気性グラニュール汚泥及び有機酸等を含有する酸生成処理物を前記の曝気槽に戻して処理した。なお、運転は20日間連続で行った。
その結果、酸生成槽で汚泥を改質処理した後も嫌気性グラニュール汚泥は当初投入したものの形状を維持していた。また装置の運転が安定した時点での系外への引き抜き汚泥量(汚泥排出量)はほとんどなく、投入汚泥量の約100%が減量化された。
実施例2
Examples of the present invention will be described below.
Example 1
Using the apparatus shown in FIG. 1, the final sedimentation basin sludge (sludge concentration MLSS: about 8,000 mg / L) of the sewage treatment facility is supplied to the aeration tank (effective volume 100 L) at a rate of 1.5 L / hour, and the air Was supplied from the lower part of the air lift pipe at a rate of 5 L / min. The aeration tank was charged with 4 g / L of anaerobic granular sludge (particle size of about 1 to 4 mm) obtained from a methane fermentation treatment facility (UASB). The effluent water from the aeration tank was introduced into a sedimentation tank (effective volume 4.5 L) to perform solid-liquid separation, and sludge was extracted from the bottom of the precipitation tank. The concentration of this sludge was about 24,000 mg / L and the concentration of sludge was good.
Next, this sludge is supplied to an acid generation tank and reformed for 5 days under conditions of a temperature of 50 ° C., a pH of about 4 to 8, and an ORP (oxidation-reduction potential) of −150 mV or less, and anaerobic granule sludge and The acid product treated with an organic acid or the like was returned to the aeration tank for treatment. The operation was continued for 20 days.
As a result, the anaerobic granular sludge maintained its original shape even after the sludge was reformed in the acid generation tank. Moreover, there was almost no amount of sludge drawn out (sludge discharge amount) when the operation of the apparatus was stabilized, and about 100% of the input sludge amount was reduced.
Example 2

実施例1の嫌気性グラニュール汚泥の投入に代えて、無機質の粒子すなわち、石炭フライアッシュ、アルミナ、シリカ、ゼオライト、酸化鉄、二酸化チタン、炭素(活性コークス)または粘土鉱物を焼成して得られた多孔性セラミックス(粒度はいずれも約10〜200マイクロメートル)を用いて、実施例1と同じ条件で、汚泥の処理をおこなった。なお、無機質の粒子の添加量は4g/Lとした。
その結果、沈殿槽底部から引き抜いた汚泥の濃度は約23,000〜26,000mg/Lで汚泥の濃縮はいずれも良好であった。また、酸生成槽で汚泥を改質処理した後も、いずれの無機質粒子は変化がなく、安定していた。また、装置の運転が安定した時点での系外への汚泥排出量はほとんどなく、投入汚泥量の約100%が減量化された。
比較例1
Instead of charging the anaerobic granule sludge of Example 1, it is obtained by firing inorganic particles, ie, coal fly ash, alumina, silica, zeolite, iron oxide, titanium dioxide, carbon (active coke) or clay mineral. The sludge was treated under the same conditions as in Example 1 using porous ceramics (both particle sizes were about 10 to 200 micrometers). The amount of inorganic particles added was 4 g / L.
As a result, the concentration of sludge extracted from the bottom of the sedimentation tank was about 23,000 to 26,000 mg / L, and the concentration of sludge was good. Further, even after the sludge was reformed in the acid generation tank, none of the inorganic particles was stable and stable. Moreover, there was almost no sludge discharge amount outside the system when the operation of the apparatus was stabilized, and about 100% of the input sludge amount was reduced.
Comparative Example 1

実施例1あるいは実施例2で用いた嫌気性グラニュール汚泥や無機質の粒子を添加しない以外は実施例1、実施例2と同じ条件で汚泥の処理を行った。その結果、沈殿槽引き抜き汚泥の濃度は約8,000mg/Lで汚泥の濃縮はほとんど起こらなかった。この濃度の低い汚泥を酸生成槽へ供給して温度50℃、ph約4〜8、ORP−150mV以下の条件で1.7日間改質処理を行い、処理物を実施例1、2と同様に曝気槽に戻して処理した。尚、運転は20日間連続で行った。
その結果、酸生成槽での改質処理時間が短いために汚泥の減容化割合は約30〜40%であった。
比較例2
The sludge was treated under the same conditions as in Examples 1 and 2 except that the anaerobic granular sludge and inorganic particles used in Example 1 or Example 2 were not added. As a result, the concentration of the sludge extracted from the sedimentation tank was about 8,000 mg / L, and the concentration of the sludge hardly occurred. This low-concentration sludge is supplied to an acid generation tank and subjected to a reforming treatment for 1.7 days under the conditions of a temperature of 50 ° C., a pH of about 4 to 8 and an ORP of 150 mV or less. It returned to the aeration tank and processed. The operation was continued for 20 days.
As a result, since the reforming time in the acid generation tank was short, the volume reduction rate of sludge was about 30 to 40%.
Comparative Example 2

実施例1で使用した図1の装置において、酸生成槽の代わりアルカリ処理槽を用い、その他の条件は実施例1と同じ条件で汚泥の処理試験を行った。すなわち下水処理設備の最終沈殿池汚泥(汚泥濃度MLSS:約8,000mg/L)を毎時1.5Lの割合で曝気槽(有効容積100L)に供給し、また空気をエアリフト管の下部より毎分5Lの割合で供給した。なお、曝気槽にはメタン醗酵処理設備(UASB)から得られた嫌気性グラニュール汚泥(粒度約1〜4mm)を4g/L投入した。
曝気槽からの流出水を沈殿槽(有効容積4.5L)に導入して固液分離を行い、沈殿槽底部から汚泥を引き抜いた。この汚泥の濃度は約24,000mg/Lで汚泥の濃縮は良好であった。次にこの汚泥をアルカリ処理槽へ供給し、水酸化ナトリウムでpH11に調整し、温度50℃の条件で5時間改質処理を行った。改質処理して得られた処理物を塩酸で中和したのち、曝気槽へ戻して処理した。
その結果、アルカリ処理槽で汚泥を改質処理する際に担体として使用した嫌気性グラニュール汚泥も大半が溶解し、当初投入したグラニュール汚泥の形状を維持できなかった。このため処理物を曝気槽に戻しても汚泥の凝集は起こらず、次の固液分離工程である沈殿槽で濃縮した汚泥は得られなかった。
実施例3
In the apparatus of FIG. 1 used in Example 1, a sludge treatment test was performed under the same conditions as in Example 1 except that an alkali treatment tank was used instead of the acid generation tank. That is, the final sedimentation basin sludge (sludge concentration MLSS: about 8,000 mg / L) of the sewage treatment facility is supplied to the aeration tank (effective volume 100 L) at a rate of 1.5 L / hour, and air is supplied from the lower part of the air lift pipe every minute. It was supplied at a rate of 5L. The aeration tank was charged with 4 g / L of anaerobic granular sludge (particle size: about 1 to 4 mm) obtained from a methane fermentation treatment facility (UASB).
The effluent water from the aeration tank was introduced into a sedimentation tank (effective volume 4.5 L) to perform solid-liquid separation, and sludge was extracted from the bottom of the precipitation tank. The concentration of this sludge was about 24,000 mg / L and the concentration of sludge was good. Next, this sludge was supplied to an alkali treatment tank, adjusted to pH 11 with sodium hydroxide, and reformed for 5 hours under the condition of a temperature of 50 ° C. The treated product obtained by the modification treatment was neutralized with hydrochloric acid and then returned to the aeration tank for treatment.
As a result, most of the anaerobic granular sludge used as a carrier when the sludge was reformed in the alkali treatment tank was dissolved, and the shape of the granular sludge initially charged could not be maintained. For this reason, even if the treated product was returned to the aeration tank, sludge aggregation did not occur, and the sludge concentrated in the sedimentation tank as the next solid-liquid separation step could not be obtained.
Example 3

図2に示す装置を用いて、下水処理設備の最終沈殿池汚泥(汚泥濃度MLSS:約8,000mg/L)を毎時1.5Lの割合で酸生成槽へ供給して温度50℃、滞留時間5日間の条件で改質処理を行ってから曝気槽(有効容積100L)に導入し、また空気をエアリフト管の下部より毎分5Lの割合で供給した。尚、曝気槽にはメタン醗酵設備から得られた嫌気性グラニュール汚泥(粒度約1〜4mm)を4g/L投入して行った。曝気槽からの流出水を沈殿槽(有効容積4.5L)に導入して固液分離を行い、沈殿槽底部から汚泥を引き抜いた。この汚泥の濃度は約32,000mg/Lで、汚泥の濃縮は良好であった。
次に、この汚泥を酸生成槽に供給して温度50℃、pH約4〜8、ORP−150mV以下、滞留時間3.5日間の条件で改質処理を行った。改質処理後の嫌気性グラニュール汚泥は当初投入したものの形状を維持していた。嫌気性グラニュール汚泥及び有機酸等を含有する処理物を前記の曝気槽へ戻して処理した。なお運転は20日間連続で行った。
その結果、装置の運転が安定した時点での系外への汚泥排出量はほとんどなく、投入汚泥量の約100%が減量化された。
Using the apparatus shown in FIG. 2, the final sedimentation basin sludge (sludge concentration MLSS: about 8,000 mg / L) of the sewage treatment facility is supplied to the acid generation tank at a rate of 1.5 L / hour, the temperature is 50 ° C., and the residence time is The reforming treatment was carried out under conditions for 5 days and then introduced into an aeration tank (effective volume 100 L), and air was supplied from the lower part of the air lift pipe at a rate of 5 L per minute. The aeration tank was charged with 4 g / L of anaerobic granular sludge (particle size: about 1 to 4 mm) obtained from a methane fermentation facility. The effluent water from the aeration tank was introduced into a sedimentation tank (effective volume 4.5 L) to perform solid-liquid separation, and sludge was extracted from the bottom of the precipitation tank. The sludge concentration was about 32,000 mg / L, and the sludge concentration was good.
Next, this sludge was supplied to the acid generation tank, and a reforming treatment was performed under conditions of a temperature of 50 ° C., a pH of about 4 to 8, an ORP of 150 mV or less, and a residence time of 3.5 days. The anaerobic granule sludge after the reforming treatment maintained the shape of what was initially introduced. The treated product containing anaerobic granule sludge and organic acid was returned to the aeration tank for treatment. The operation was continued for 20 days.
As a result, there was almost no sludge discharged outside the system when the operation of the apparatus was stabilized, and about 100% of the input sludge was reduced.

汚泥を直接、曝気槽へ供給した実施例1に比べて、汚泥を予め酸生成槽で前処理をした後、曝気槽に供給した本実施例の方が曝気槽内での担体を核とした汚泥の凝集やグラニュール化が良好で、次の工程である沈殿槽による固液分離でより高い濃度の汚泥が得られた。 Compared with Example 1 in which sludge was directly supplied to the aeration tank, the sludge was pretreated in the acid generation tank in advance, and then the present example in which the sludge was supplied to the aeration tank was based on the carrier in the aeration tank. The sludge was well agglomerated and granulated, and a higher concentration of sludge was obtained by solid-liquid separation using a sedimentation tank as the next step.

本発明の一実施形態を模式的に示す構成図である。It is a lineblock diagram showing typically one embodiment of the present invention. 本発明の他の実施形態を模式的に示す構成図である。It is a block diagram which shows typically other embodiment of this invention. 本発明の更に他の実施形態を模式的に示す構成図である。It is a block diagram which shows typically other embodiment of this invention.

符号の説明Explanation of symbols

1 曝気槽
2 沈殿槽
3 酸生成槽
4 酸生成槽
5 固液分離槽
1 Aeration tank 2 Precipitation tank 3 Acid generation tank 4 Acid generation tank 5 Solid-liquid separation tank

Claims (7)

有機性汚泥を好気性微生物と結合する担体が投入された好気性生物処理槽に供給して、有機物を分解すると共に担体に汚泥を担持させ、担持された汚泥を担体と共に分離して、嫌気性条件下、酸生成菌による改質処理を施した後、前記好気性生物処理槽に戻して処理することを特徴とする有機性汚泥の処理方法。 Supplying organic sludge to an aerobic biological treatment tank containing a carrier that binds aerobic microorganisms, decomposing organic matter and supporting the sludge on the carrier, separating the sludge with the carrier, anaerobic A method for treating organic sludge, comprising performing a modification treatment with acid-producing bacteria under conditions and then returning to the aerobic biological treatment tank for treatment. 有機性汚泥を予め嫌気性条件下、酸生成菌による改質処理を施した後、好気性微生物と結合する担体が投入された好気性生物処理槽に供給することを特徴とする請求項1記載の有機性汚泥の処理方法。 The organic sludge is subjected to a modification treatment with acid-producing bacteria under anaerobic conditions in advance, and then supplied to an aerobic biological treatment tank into which a carrier that binds to aerobic microorganisms is charged. Of organic sludge. 嫌気性条件下、酸生成菌による汚泥の改質処理で得られる処理物を固液分離して液側を生物的脱窒脱リン工程における有機質原料として利用し、固形物は前記好気性生物処理槽に戻して処理することを特徴とする請求項1又は2記載の有機性汚泥の処理方法。 Under anaerobic conditions, the treatment product obtained by the sludge modification treatment with acid-producing bacteria is solid-liquid separated, and the liquid side is used as an organic raw material in the biological denitrification and dephosphorization step, and the solid matter is the aerobic biological treatment. It returns to a tank and processes, The processing method of the organic sludge of Claim 1 or 2 characterized by the above-mentioned. 好気性微生物と結合する担体が嫌気性グラニュール汚泥あるいは石炭フライアッシュ、アルミナ、シリカ、ゼオライト、酸化鉄、二酸化チタン、炭素あるいは多孔性のセラミックス等の無機質粒子であることを特徴とする請求項1乃至3のいずれか1項に記載の有機性汚泥の処理方法。 Claim 1, wherein the carrier binds the aerobic microorganisms are inorganic particles anaerobic granular sludge or coal fly ash, alumina, silica, zeolite, iron oxide, titanium dioxide, carbon or porous ceramics The processing method of the organic sludge of any one of thru | or 3 . 有機性汚泥が供給される好気性微生物と結合する担体が投入された曝気槽、担体に担持され汚泥を担体と共に分離する固液分離槽、固液分離槽で分離された汚泥を嫌気性条件下、酸生成菌で改質処理する酸生成槽、それらを繋ぐ送液管及び酸生成槽の改質処理で得られる処理物を前記曝気槽に返送する送液管を備えることを特徴とする有機性汚泥の処理装置。 An aeration tank containing a carrier that binds aerobic microorganisms to which organic sludge is supplied, a solid-liquid separation tank that supports the carrier and separates the sludge together with the carrier, and sludge separated in the solid-liquid separation tank under anaerobic conditions An organic acid generator comprising an acid generating tank for reforming with an acid-producing bacterium, a liquid feeding pipe connecting them, and a liquid feeding pipe for returning a treatment product obtained by the reforming treatment of the acid generating tank to the aeration tank. Sludge treatment equipment. 有機性汚泥を予め嫌気性条件下、酸生成菌による改質処理を施す酸生成槽を設けることを特徴とする請求項5記載の有機性汚泥の処理装置。 6. The organic sludge treatment apparatus according to claim 5, wherein an acid generation tank is provided in which the organic sludge is previously subjected to a modification treatment with acid-producing bacteria under anaerobic conditions. 嫌気性条件下、酸生成菌による汚泥の改質処理で得られる処理物を固液分離する固液分離装置、固液分離装置で分離された液側を生物的脱窒・脱リン工程に供給する送液管、分離された固形物を前記曝気槽に供給する汚泥送液管を備えることを特徴とする請求項5又は6記載の有機性汚泥の処理装置。 Under anaerobic conditions, solid-liquid separation equipment for solid-liquid separation of the treatment product obtained by sludge modification treatment with acid-producing bacteria, and the liquid side separated by the solid-liquid separation equipment is supplied to the biological denitrification / phosphorus removal process An organic sludge treatment apparatus according to claim 5 or 6 , further comprising a sludge feeding pipe for feeding the separated solid matter to the aeration tank.
JP2003399717A 2003-11-28 2003-11-28 Organic sludge treatment method and apparatus Expired - Fee Related JP4248375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003399717A JP4248375B2 (en) 2003-11-28 2003-11-28 Organic sludge treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003399717A JP4248375B2 (en) 2003-11-28 2003-11-28 Organic sludge treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2005161110A JP2005161110A (en) 2005-06-23
JP4248375B2 true JP4248375B2 (en) 2009-04-02

Family

ID=34724185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003399717A Expired - Fee Related JP4248375B2 (en) 2003-11-28 2003-11-28 Organic sludge treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP4248375B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098271A (en) * 2005-10-04 2007-04-19 Sumitomo Heavy Ind Ltd Method and system for producing organic acid
MX2012006387A (en) * 2009-12-01 2012-10-03 Dayong Li Sludge treatment method and apparatus thereof and application to wastewater bio-treatment.
CN105502869B (en) * 2015-12-01 2018-10-16 山东建筑大学 A kind of technique that mud decrement recycles phosphorus simultaneously
CN107235553B (en) * 2017-07-25 2020-03-06 江南大学 Low-temperature aerobic granular sludge rapid culture method based on sludge incineration ash
CN109019846B (en) * 2018-08-22 2021-06-11 浙江万里学院 Efficient method for treating wastewater containing PFCs by combining photocatalysis-aerobic granular sludge
CN115321673A (en) * 2022-10-13 2022-11-11 青岛万慧源环保科技有限公司 Sludge-membrane symbiotic sewage treatment process technology

Also Published As

Publication number Publication date
JP2005161110A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
NL195011C (en) Process for the treatment of organic waste.
JPWO2004026774A1 (en) Sludge reduction method and apparatus
WO2007139264A1 (en) Apparatus and method for treatment of food waste
JP2003200199A (en) Sewage treatment method
JP4248375B2 (en) Organic sludge treatment method and apparatus
KR101003482B1 (en) Disposal method of high concentration organic matter waste water
JP2014008491A (en) Organic waste treatment apparatus, and organic waste treatment method using the same
JP4667890B2 (en) Organic waste treatment methods
JP2000015230A (en) Method for removing ammonia
JP4457391B2 (en) Organic sludge treatment method and treatment apparatus
JP2004008843A (en) Method for treating organic waste water
JP4298602B2 (en) Method and apparatus for anaerobic digestion treatment of organic sludge
JP4004766B2 (en) Excess sludge biological treatment method using hydrothermal reaction
JP2006239625A (en) Method and equipment for treating organic waste
KR102340961B1 (en) Apparatus for treating waste water using iron oxide powder
JP2009195783A (en) Organic wastewater treatment method
JP2002326088A (en) Method and apparatus for treating phosphorous and cod- containing water
KR102131743B1 (en) Bio-reactor for sewage treatment and sewage treatment system comprising the same
JP2005185967A (en) Treatment method and treatment apparatus for organic waste water
KR20190134583A (en) Bio-reactor for sewage treatment and sewage treatment system comprising the same
KR100666605B1 (en) Wastewater treatment method for reducing waste-sludge utilizing an anaerobic digestion reactor and wastewater treatment system thereof
JP3672091B2 (en) Organic wastewater treatment method and equipment
JP2003334589A (en) Wastewater treatment method and treatment apparatus therefor
JP2002316191A (en) Method and apparatus for treating organic foul water
JP2005246347A (en) Method and apparatus for treating sewage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees