JP2006239625A - Method and equipment for treating organic waste - Google Patents

Method and equipment for treating organic waste Download PDF

Info

Publication number
JP2006239625A
JP2006239625A JP2005061198A JP2005061198A JP2006239625A JP 2006239625 A JP2006239625 A JP 2006239625A JP 2005061198 A JP2005061198 A JP 2005061198A JP 2005061198 A JP2005061198 A JP 2005061198A JP 2006239625 A JP2006239625 A JP 2006239625A
Authority
JP
Japan
Prior art keywords
liquid
sludge
treatment
organic waste
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005061198A
Other languages
Japanese (ja)
Inventor
Hiroshi Mizutani
洋 水谷
Taku Ike
卓 池
Tomoaki Omura
友章 大村
Nobuyuki Ukai
展行 鵜飼
Takehiro Kato
雄大 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005061198A priority Critical patent/JP2006239625A/en
Publication of JP2006239625A publication Critical patent/JP2006239625A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provided a method and equipment for treating organic waste which achieve reduction in power for solubilization, and which efficiently treat even organic waste of high concentration. <P>SOLUTION: The equipment for treating organic waste is provided with a methane fermentation tank 12 methane-fermenting organic waste; and a biological denitrification equipment 13 biologically treating digested sludge 21 discharged from the methane fermentation tank, the equipment for treating organic waste is further provided with; a solubilization tank 30 solubilizing biologically-treated liquid 22 discharged from the biological denitrification equipment 13 to obtain solubilized sludge; and a solubilized sludge return line returning at least part 23 of the solubilized sludge to the methane fermentation tank 12, or to the upstream side of the tank 12. Preferably the solubilization tank 30 is composed of a colloidalization means colloidalizing mainly the biologically-treated liquid 22, and a liquefying means liquefying mainly the colloidalized treated liquid. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機性廃棄物をメタン発酵する技術に関し、特に、生ごみ、食品加工残渣、家畜糞尿等の有機性固形物を多く含む高濃度の有機性廃棄物であっても効率良くメタン発酵することができる有機性廃棄物の処理方法及び処理設備に関する。   The present invention relates to a technology for methane fermentation of organic waste, and in particular, methane fermentation efficiently even for high-concentration organic waste containing a large amount of organic solids such as garbage, food processing residues, and livestock manure. The present invention relates to a processing method and processing equipment for organic waste.

従来より、有機性廃棄物の処理方法として、環境負荷が小さく且つエネルギや資源を回収できるメタン発酵処理が広く用いられている。
一般的なメタン発酵プロセスを図9に示す。まず大径の有機性廃棄物を破砕し、夾雑物を除去した後に、調整槽51にて廃棄物のpH、温度、水量、濃度等をメタン発酵に適した条件に調整し、該調整した廃棄物をメタン発酵槽52にてメタン発酵する。該メタン発酵槽52では、嫌気性微生物の作用により廃棄物中の有機物等が分解され、発生したバイオガスを回収する。回収したバイオガスは脱硫、ガス精製された後に発電等に利用される。一方、前記メタン発酵槽52にて発生した消化汚泥は生物学的脱窒素処理設備53に送給し、ここで硝化、脱窒処理して汚泥中の窒素、BOD等を除去する。そして、処理液の一部は希釈水として前記調整槽51に返送するとともに、他の処理液は固液分離装置54にて固液分離し、分離液は高度処理装置55にて浄化した後に放流される。固液分離装置54にて分離した汚泥は汚泥処理設備56にて処理していた。
2. Description of the Related Art Conventionally, a methane fermentation process that has a low environmental load and can recover energy and resources has been widely used as a method for treating organic waste.
A typical methane fermentation process is shown in FIG. First, after crushing large-sized organic waste and removing contaminants, the pH, temperature, amount of water, concentration, etc. of the waste are adjusted to conditions suitable for methane fermentation in the adjustment tank 51, and the adjusted waste The product is subjected to methane fermentation in the methane fermentation tank 52. In the methane fermentation tank 52, organic substances in the waste are decomposed by the action of anaerobic microorganisms, and the generated biogas is recovered. The recovered biogas is desulfurized and gas purified and then used for power generation. On the other hand, the digested sludge generated in the methane fermentation tank 52 is fed to a biological denitrification treatment facility 53, where nitrification and denitrification treatment are performed to remove nitrogen, BOD and the like in the sludge. A part of the processing liquid is returned to the adjustment tank 51 as dilution water, and the other processing liquid is solid-liquid separated by the solid-liquid separation device 54, and the separated liquid is discharged after being purified by the advanced processing device 55. Is done. The sludge separated by the solid-liquid separator 54 was treated by the sludge treatment facility 56.

このようなメタン発酵では汚泥の減容化が求められるが、メタン発酵で生じる消化汚泥は難濾過性で沈降分離などによる固液分離が困難であり、また固液分離後の汚泥発生量が多いため汚泥処理設備が大型化し処理費用が嵩むという問題があった。
そこで、メタン発酵後の消化汚泥を可溶化処理して汚泥発生量を低減する方法が、提案、実用化されている。可溶化処理では、オゾン酸化、加熱、アルカリ添加等の方法によって消化汚泥中の有機物を低分子化し、後段の生物処理での有機物分解率を向上させて汚泥の減容化を図っている。
In such methane fermentation, volume reduction of sludge is required, but digested sludge produced by methane fermentation is difficult to filter and solid-liquid separation by sedimentation separation is difficult, and sludge generation after solid-liquid separation is large Therefore, there has been a problem that the sludge treatment facility is enlarged and the treatment cost is increased.
Thus, a method for reducing the amount of sludge generated by solubilizing digested sludge after methane fermentation has been proposed and put to practical use. In the solubilization treatment, the organic matter in the digested sludge is reduced in molecular weight by methods such as ozone oxidation, heating, and alkali addition, and the organic matter decomposition rate in the subsequent biological treatment is improved to reduce the sludge volume.

特許文献1(特開平9−122682号公報)には、汚水を最初沈殿池にて固液分離し、分離した有機性SSを活性汚泥法により生物処理し、該生物処理からの活性汚泥を固液分離して生物処理液を得る汚水処理方法が開示されており、この処理方法では、最初沈殿池にて分離した生汚泥と前記生物処理から引き抜かれた生物汚泥をメタン発酵させた後、オゾン酸化し、前記生物処理に返送するようにしている。
この方法によれば、メタン発酵後の消化汚泥をオゾン酸化して汚泥中の有機物を可溶化した後に生物処理するため、汚泥の減容化が達成できるとともに処理液性状を向上させることが可能である。
In Patent Document 1 (Japanese Patent Laid-Open No. 9-122682), sewage is first solid-liquid separated in a sedimentation basin, and the separated organic SS is biologically treated by an activated sludge method, and the activated sludge from the biological treatment is solidified. A sewage treatment method is disclosed in which a biological treatment liquid is obtained by liquid separation. In this treatment method, raw sludge separated in a first sedimentation basin and biological sludge extracted from the biological treatment are subjected to methane fermentation, and then ozone It is oxidized and returned to the biological treatment.
According to this method, the digested sludge after methane fermentation is ozone-oxidized to solubilize the organic matter in the sludge, and then biological treatment is performed. Therefore, it is possible to reduce the volume of the sludge and improve the treatment liquid properties. is there.

また、特許文献2(特開2003−88895号公報)では、有機性廃棄物をメタン発酵させ、該メタン発酵により発生した消化汚泥をオゾン酸化して可溶化した後に、可溶化汚泥を固液分離し、分離した分離液を廃水処理するとともに、前記可溶化汚泥の一部をメタン発酵槽に返送する方法が開示されている。
このように、メタン発酵後の消化汚泥中に含有される難分解性物質をオゾン酸化により可溶化し、再びメタン発酵させることでメタン発酵の分解効率を向上させることが可能となる。
Moreover, in patent document 2 (Unexamined-Japanese-Patent No. 2003-88895), organic waste is methane-fermented, the digested sludge generated by this methane fermentation is solubilized by ozone oxidation, and the solubilized sludge is solid-liquid separated. And the method of returning a part of said solubilized sludge to a methane fermenter while disposing the isolate | separated separated liquid into wastewater is disclosed.
Thus, it becomes possible to improve the decomposition efficiency of methane fermentation by solubilizing the hardly decomposable substance contained in the digested sludge after methane fermentation by ozone oxidation and performing methane fermentation again.

特開平9−122682号公報JP-A-9-122682 特開2003−88895号公報JP 2003-88895 A

しかしながら、特許文献1及び2に記載のように、メタン発酵後の消化汚泥をオゾン酸化した場合、消化汚泥の嫌気度が高く、且つ未分解の有機物を多く含むため、オゾンの消費量が非常に高くなり、可溶化動力が大きく、コストが嵩むという問題があった。
また、メタン発酵後に可溶化処理を行うことにより汚泥の減容化が期待できるが、生ごみ、食品加工残渣、家畜糞尿等の有機性固形物を多く含む高濃度の有機性廃棄物の場合、可溶化処理を行っても固形物濃度が低減され難く、汚泥の減容化効果が小さい。従って、汚泥処理設備が大型化し、さらに処理コストが嵩むという問題があった。
本発明は上記従来技術の問題点に鑑み、可溶化動力を低減することができ、且つ高濃度の有機性廃棄物であっても効率良く処理することができる有機性廃棄物の処理方法及び処理設備を提供することを目的とする。
However, as described in Patent Documents 1 and 2, when the digested sludge after methane fermentation is subjected to ozone oxidation, the digested sludge has a high anaerobic degree and contains a large amount of undegraded organic matter. There was a problem that it became high, solubilization power was large, and cost increased.
In addition, sludge volume reduction can be expected by performing solubilization treatment after methane fermentation, but in the case of high-concentration organic waste that contains a lot of organic solids such as garbage, food processing residues, livestock manure, Even if the solubilization treatment is performed, it is difficult to reduce the solid concentration, and the sludge volume reduction effect is small. Therefore, there has been a problem that the sludge treatment facility is enlarged and the treatment cost is increased.
In view of the above-described problems of the prior art, the present invention can reduce solubilization power, and can treat organic waste efficiently even if it is a high concentration organic waste. The purpose is to provide equipment.

そこで、本発明はかかる課題を解決するために、
有機性廃棄物をメタン発酵するメタン発酵工程と、該メタン発酵にて生じた消化汚泥を生物学的脱窒素処理する生物学的脱窒素処理工程と、を備えた有機性廃棄物の処理方法において、
前記生物学的脱窒素処理工程からの生物処理液を可溶化して可溶化汚泥を得る可溶化工程を設け、前記可溶化汚泥の少なくとも一部を、前記メタン発酵工程、若しくは該メタン発酵工程より上流側に返送することを特徴とする。
Therefore, in order to solve this problem, the present invention provides:
In a method for treating organic waste, comprising: a methane fermentation process for methane fermentation of organic waste; and a biological denitrification process for biologically denitrifying digested sludge produced by the methane fermentation. ,
A solubilization process for obtaining a solubilized sludge by solubilizing a biological treatment liquid from the biological denitrification process is provided, and at least a part of the solubilized sludge is obtained from the methane fermentation process or the methane fermentation process. It is returned to the upstream side.

本発明によれば、生物学的脱窒素処理において好気的に処理された処理液を可溶化処理し、メタン発酵において分解容易な性状とするため、設備全体において発生する汚泥量の低減を図ることができるとともに、メタンガス発生量の増加が可能となる。
メタン発酵においては、有機物の分解に伴い、たんぱく質中の窒素がアンモニア性窒素に転換する。アンモニア性窒素はメタン発酵の阻害成分であるため、メタン発酵槽内での濃度を3000〜5000ppm以下に保つ必要があるが、本発明によれば、生物学的脱窒素処理によりアンモニア性窒素がある程度分解された後の処理液を可溶化してメタン発酵槽に返送しているため、メタン発酵槽内のアンモニア性窒素濃度を希釈することができ、効率の良いメタン発酵が可能となる。
さらに、メタン発酵にて生じる嫌気度の高い消化汚泥を、一旦生物学的脱窒素処理により好気的に処理するため、可溶化に適した性状の処理液が可溶化処理に導入され、効率的に可溶化することができ、且つ生物学的脱窒素処理によって消化汚泥中に残留する未分解のコロイド成分が低減されているため、可溶化設備における動力の低減が可能となる。
According to the present invention, the amount of sludge generated in the entire equipment is reduced in order to solubilize the treatment solution that has been aerobically treated in biological denitrification treatment and to make it easily decomposed in methane fermentation. In addition, the amount of methane gas generated can be increased.
In methane fermentation, nitrogen in the protein is converted to ammonia nitrogen with the decomposition of organic matter. Since ammonia nitrogen is an inhibitory component of methane fermentation, it is necessary to keep the concentration in the methane fermentation tank at 3000 to 5000 ppm or less. Since the decomposed treatment liquid is solubilized and returned to the methane fermentation tank, the ammonia nitrogen concentration in the methane fermentation tank can be diluted, and efficient methane fermentation becomes possible.
In addition, digested sludge with high anaerobicity produced by methane fermentation is once treated aerobically by biological denitrification treatment, so that a treatment solution with properties suitable for solubilization is introduced into the solubilization treatment. Since the undegraded colloidal component remaining in the digested sludge is reduced by the biological denitrification treatment, the power in the solubilization equipment can be reduced.

また、前記可溶化工程が、前記生物処理液を主体的にコロイド化するコロイド化工程と、該コロイド化した処理液を主体的に液状化する液状化工程とからなることを特徴とし、好適には前記可溶化工程では、前記コロイド化工程にて前記生物処理液をオゾン酸化によりコロイド化し、前記液状化工程にて前記コロイド化した処理液中にキャビテーションを発生させて液状化するようにする。
本発明によれば、前記可溶化処理がコロイド化工程と液状化工程とを有するため、高濃度の有機性廃棄物であっても高効率処理が可能である。また、前記メタン発酵により生じた嫌気度の高い消化汚泥は、生物学的脱窒素処理により好気性に転換されているため、オゾン酸化に適した状態となり、高効率でオゾン酸化可能で且つオゾン消費量を低減することができる。
Further, the solubilization step is characterized by comprising a colloidalization step in which the biological treatment liquid is mainly colloided and a liquefaction step in which the colloidalized treatment liquid is mainly liquefied. In the solubilization step, the biological treatment liquid is colloided by ozone oxidation in the colloidalization step, and cavitation is generated in the colloidal treatment liquid in the liquefaction step to be liquefied.
According to the present invention, since the solubilization treatment includes a colloidalization step and a liquefaction step, high-efficiency treatment is possible even with a high concentration of organic waste. The highly anaerobic digested sludge produced by the methane fermentation has been converted to aerobic by biological denitrification treatment, so that it is in a state suitable for ozone oxidation, is capable of ozone oxidation with high efficiency, and consumes ozone. The amount can be reduced.

また、前記可溶化汚泥の少なくとも一部を固液分離して分離液と分離汚泥を得る固液分離工程を備えた有機性廃棄物の処理方法であって、
前記可溶化工程と前記固液分離工程との間、若しくは前記固液分離工程の後段に、前記可溶化汚泥若しくは前記固液分離液を生物学的脱窒素処理する第2の生物学的脱窒素処理工程を設けたことを特徴とする。
このように、第2の生物学的脱窒素処理工程を設けることにより、可溶化により生じたアンモニア性窒素を確実に除去することができ、最終的に発生したアンモニア性窒素が系外に排出される惧れがなくなる。また、メタン発酵後の消化汚泥は通常BOD/N比が低くなっており、生物学的脱窒素処理工程にてメタノール等の栄養源を必要とする場合があるが、第2の硝化脱窒処理では、その上流側で可溶化処理が行われているため、BOD/N比が改善されており、栄養源の添加量を削減或いは不要化することができる。
In addition, a method for treating organic waste comprising a solid-liquid separation step for obtaining a separated liquid and separated sludge by solid-liquid separation of at least a part of the solubilized sludge,
A second biological denitrogenation that biologically denitrifies the solubilized sludge or the solid-liquid separation solution between the solubilization step and the solid-liquid separation step or after the solid-liquid separation step. A processing step is provided.
In this way, by providing the second biological denitrification treatment step, ammonia nitrogen generated by solubilization can be surely removed, and finally generated ammonia nitrogen is discharged out of the system. There is no fear. In addition, digested sludge after methane fermentation usually has a low BOD / N ratio and may require a nutrient source such as methanol in the biological denitrification process. Then, since the solubilization treatment is performed on the upstream side, the BOD / N ratio is improved, and the amount of the nutrient source added can be reduced or eliminated.

また、前記生物学的脱窒素処理工程の後段に生物処理液を固液分離して分離液と分離汚泥を得る固液分離工程を設け、該分離汚泥を前記可溶化工程に導入することを特徴とする。
本発明によれば、固液分離により濃縮された汚泥を可溶化処理するため、可溶化対象液量が低減でき、可溶化動力を低減することができる。
In addition, a solid-liquid separation step for obtaining a separated liquid and separated sludge by solid-liquid separation of the biological treatment liquid is provided after the biological denitrification treatment step, and the separated sludge is introduced into the solubilization step. And
According to the present invention, since the sludge concentrated by solid-liquid separation is solubilized, the amount of liquid to be solubilized can be reduced, and solubilization power can be reduced.

さらに、前記メタン発酵工程の前段に有機性廃棄物を固液分離して分離液と分離汚泥を得る固液分離工程を設け、該分離汚泥を前記メタン発酵工程に導入するとともに、該分離液を前記生物学的脱窒素処理工程に導入することを特徴とする。
さらにまた、前記生物学的脱窒素工程に、固形物含有量の少ない液状廃棄物を導入し、該液状廃棄物を前記消化汚泥とともに処理することを特徴とする。
これらの発明によれば、メタン発酵工程の前段に固液分離工程を設けることにより、メタン発酵に流入する水量負荷の低減が図れるため、装置のコンパクト化を図ることができる。また、生物学的脱窒素処理に液状廃棄物若しくは分離液を投入することにより、これらに含有されるBOD成分を脱窒素の際の栄養源として利用することができ、メタノール等の栄養源の外部添加量を低減若しくは不要化することができる。
In addition, a solid-liquid separation step for obtaining a separated liquid and separated sludge by solid-liquid separation of organic waste is provided before the methane fermentation step, and the separated sludge is introduced into the methane fermentation step, It introduce | transduces into the said biological denitrification process process, It is characterized by the above-mentioned.
Furthermore, the present invention is characterized in that a liquid waste having a small solid content is introduced into the biological denitrification step, and the liquid waste is treated together with the digested sludge.
According to these inventions, by providing the solid-liquid separation step before the methane fermentation step, the load of water flowing into the methane fermentation can be reduced, so that the apparatus can be made compact. In addition, by introducing liquid waste or separation liquid into biological denitrification treatment, the BOD components contained in these can be used as nutrient sources during denitrification, and external to nutrient sources such as methanol The amount added can be reduced or eliminated.

また、有機性廃棄物をメタン発酵するメタン発酵装置と、該メタン発酵装置から排出される消化汚泥を生物学的脱窒素処理する生物学的脱窒素処理装置と、を備えた有機性廃棄物の処理設備において、
前記生物学的脱窒素処理装置から排出される生物処理液を可溶化処理して可溶化汚泥を得る可溶化装置を設け、前記可溶化汚泥の少なくとも一部を、前記メタン発酵装置、若しくは該メタン発酵装置より上流側に返送する可溶化汚泥返送ラインを設けたことを特徴とする。
このとき、前記可溶化装置が、前記生物処理液を主体的にコロイド化するコロイド化手段と、該コロイド化した処理液を主体的に液状化する液状化手段とからなることを特徴とし、好適には、前記可溶化装置では、前記コロイド化手段にて前記生物処理液をオゾン酸化によりコロイド化し、前記液状化手段にて前記コロイド化した処理液中にキャビテーションを発生させて液状化するようにする。
An organic waste comprising: a methane fermentation apparatus for methane fermentation of organic waste; and a biological denitrification apparatus for biologically denitrifying digested sludge discharged from the methane fermentation apparatus. In processing equipment,
There is provided a solubilization device for obtaining a solubilized sludge by solubilizing a biological treatment liquid discharged from the biological denitrification treatment device, and at least a part of the solubilized sludge is used as the methane fermentation device or the methane A solubilized sludge return line is provided for returning to the upstream side of the fermenter.
At this time, the solubilization apparatus is characterized by comprising a colloiding means for mainly colloiding the biological treatment liquid and a liquefaction means for mainly liquefying the colloidal treatment liquid. In the solubilization apparatus, the biological treatment liquid is colloided by ozone oxidation by the colloiding means, and cavitation is generated in the colloidal treatment liquid by the liquefaction means so as to be liquefied. To do.

また、前記可溶化汚泥の少なくとも一部を固液分離して分離液と分離汚泥を得る固液分離装置を備えた有機性廃棄物の処理設備であって、
前記可溶化装置と前記固液分離装置との間、若しくは前記固液分離装置の後段に、前記可溶化汚泥若しくは前記分離液を生物学的脱窒素処理する第2の生物学的脱窒素処理装置を設けたことを特徴とする。
また、前記生物学的脱窒素処理装置の後段に、前記生物処理液を固液分離して分離液と分離汚泥を得る固液分離装置を設け、該分離汚泥を前記可溶化装置に導入することを特徴とする。
さらに、前記メタン発酵装置の前段に有機性廃棄物を固液分離して分離液と分離汚泥を得る固液分離装置を設け、該分離汚泥を前記メタン発酵装置に導入するとともに、該分離液を前記生物学的脱窒素処理装置に導入することを特徴とする。
さらにまた、前記生物学的脱窒素装置に、固形物含有量の少ない液状廃棄物の投入ラインを設け、該液状廃棄物を前記消化汚泥とともに処理することを特徴とする。
Moreover, it is an organic waste treatment facility equipped with a solid-liquid separation device that separates at least a part of the solubilized sludge to obtain a separated liquid and separated sludge,
A second biological denitrification apparatus for biologically denitrifying the solubilized sludge or the separated liquid between the solubilizer and the solid-liquid separator or at the subsequent stage of the solid-liquid separator. Is provided.
In addition, a solid-liquid separation device that separates the biological treatment liquid into solid and liquid to obtain a separation liquid and separated sludge is provided at a subsequent stage of the biological denitrification treatment apparatus, and the separated sludge is introduced into the solubilization apparatus. It is characterized by.
Furthermore, a solid-liquid separation device is provided in the preceding stage of the methane fermentation apparatus to obtain a separated liquid and separated sludge by solid-liquid separation of organic waste, the separated sludge is introduced into the methane fermentation apparatus, and the separated liquid is It introduce | transduces into the said biological denitrification processing apparatus, It is characterized by the above-mentioned.
Furthermore, the biological denitrification apparatus is provided with a liquid waste input line having a low solid content, and the liquid waste is treated together with the digested sludge.

以上記載のごとく本発明によれば、生物学的脱窒素処理の後段にて可溶化を行い、可溶化汚泥をメタン発酵若しくはその上流側に返送する構成としたため、少ない可溶化動力で効率的に汚泥減容化を実現することができる。
これは、メタン発酵にて生じる嫌気度の高い消化汚泥を、一旦生物学的脱窒素処理により好気的に処理するため、可溶化に適した性状の処理液が可溶化処理に導入され、効率的に可溶化することができ、且つ生物学的脱窒素処理によって消化汚泥中に残留する未分解のコロイド成分が低減されているため、可溶化設備における動力の低減が可能となるためである。
また、可溶化処理がコロイド化工程と液状化工程とを有するため、高濃度の有機性廃棄物であっても高効率処理が可能である。
また、第2の生物学的脱窒素処理工程を設けることにより、可溶化により生じたアンモニア性窒素を確実に除去することができ、最終的に発生したアンモニア性窒素が系外に排出される惧れがなくなる。
さらに、生物学的脱窒素処理からの生物処理液を固液分離して、固液分離により濃縮された汚泥を可溶化処理することにより、可溶化対象液量が低減でき、可溶化動力を低減することができる。
As described above, according to the present invention, since the solubilization is performed after the biological denitrification treatment and the solubilized sludge is returned to the methane fermentation or its upstream side, it can be efficiently used with less solubilization power. Sludge volume reduction can be realized.
This is because digested sludge produced by methane fermentation is treated with aerobic treatment by biological denitrification once, so that a treatment solution with properties suitable for solubilization is introduced into the solubilization treatment. This is because the undegraded colloidal component remaining in the digested sludge is reduced by the biological denitrification treatment, and the power in the solubilization equipment can be reduced.
Further, since the solubilization treatment includes a colloidalization step and a liquefaction step, high-efficiency treatment is possible even with a high concentration of organic waste.
Moreover, by providing the second biological denitrification treatment step, ammonia nitrogen generated by solubilization can be surely removed, and finally generated ammonia nitrogen may be discharged out of the system. This disappears.
Furthermore, the amount of liquid to be solubilized can be reduced and the solubilization power can be reduced by solid-liquid separation of biological treatment liquid from biological denitrification treatment and solubilization of sludge concentrated by solid-liquid separation. can do.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
本実施例の処理対象としては、例えば、生ごみ、食品加工残渣、畜産廃棄物、及び下水処理等の水処理により発生する汚泥などの有機性廃棄物が挙げられるが、特に生ごみ、食品加工残渣等の高濃度の有機性廃棄物の処理に適している。
図1は本発明の実施例1に係る処理システムの概略を示すフロー図、図2は本実施例の可溶化設備の一例を示す概略構成図、図3は本実施例の可溶化設備の具体的な装置構成を示す図、図4は図3の可溶化設備に用いられるオゾン発生器を示す概略断面図、図5は図3の可溶化設備に用いられるキャビテーション装置を示す概略構成図、図6は本発明の実施例2に係る処理システムの概略を示すフロー図、図7は図6の可溶化設備の一例を示す概略構成図、図8は本発明の実施例3に係る処理システムの概略を示すフロー図である。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
Examples of the treatment target of this embodiment include organic waste such as food waste, food processing residue, livestock waste, and sludge generated by water treatment such as sewage treatment. Suitable for the treatment of high concentration organic waste such as residues.
FIG. 1 is a flowchart showing an outline of a treatment system according to Embodiment 1 of the present invention, FIG. 2 is a schematic configuration diagram showing an example of the solubilization equipment of this embodiment, and FIG. 3 is a specific example of the solubilization equipment of this embodiment. FIG. 4 is a schematic sectional view showing an ozone generator used in the solubilization equipment of FIG. 3, FIG. 5 is a schematic construction diagram showing a cavitation device used in the solubilization equipment of FIG. 6 is a flowchart showing an outline of the processing system according to the second embodiment of the present invention, FIG. 7 is a schematic configuration diagram showing an example of the solubilization equipment of FIG. 6, and FIG. 8 is a diagram of the processing system according to the third embodiment of the present invention. It is a flowchart which shows an outline.

図1に示すように本実施例1に係る有機性廃棄物の処理装置は、ライン上流から下流に向かって、有機性廃棄物20の酸生成工程を行なう調整槽11と、該調整槽11から有機性廃棄物20が供給され、該有機性廃棄物20のメタン生成工程を行なうメタン発酵槽12と、該メタン発酵槽12にて生じる消化汚泥21が供給され、好気・嫌気性微生物の作用により硝化・脱窒素が行なわれる生物学的脱窒素処理設備13と、生物学的脱窒素処理された生物処理液22が導入され、該生物処理液のコロイド化及び液状化を行なう可溶化設備30と、可溶化汚泥の少なくとも一部が供給され、、分離液25と分離汚泥26とに固液分離する固液分離装置14と、前記分離液25を高度処理する高度処理装置15と、前記分離汚泥26を処理する汚泥処理設備16と、を備えている。   As shown in FIG. 1, the organic waste processing apparatus according to the first embodiment includes an adjustment tank 11 that performs an acid generation process of the organic waste 20 from the upstream side to the downstream side of the line, and the adjustment tank 11. The organic waste 20 is supplied, the methane fermentation tank 12 that performs the methane production process of the organic waste 20, and the digested sludge 21 generated in the methane fermentation tank 12 are supplied, and the action of aerobic / anaerobic microorganisms The biological denitrification treatment facility 13 in which nitrification and denitrification is performed by the above and the biological treatment solution 22 that has been subjected to biological denitrification treatment are introduced, and the solubilization facility 30 that colloidizes and liquefies the biological treatment solution And at least a part of the solubilized sludge, and the solid-liquid separation device 14 that performs solid-liquid separation into the separation liquid 25 and the separation sludge 26; the advanced processing device 15 that performs high-level treatment of the separation liquid 25; and the separation The sludge that treats sludge 26 It is provided with a processing facility 16, a.

本実施例における処理装置は、前記調整槽11の前段に、大径の有機性廃棄物を破砕する破砕手段、及び夾雑物等を除去する分別手段等の前処理設備を備えている。
該前処理設備の後段には、調整槽11とメタン発酵槽12からなるメタン発酵装置が設けられる。
前記調整槽11は、有機性廃棄物20のpH、温度、水量、濃度等をメタン発酵に適した条件に調整する手段、及び撹拌手段等を有し、主として廃棄物中の有機物を加水分解及び酸発酵する酸生成段階が行なわれる。
前記メタン発酵槽12は、槽内に嫌気性微生物が繁殖しており、嫌気性微生物が卓越して繁殖できる環境に温度、pH等の条件が維持されており、主として水素・酢酸生成及びメタン生成からなるメタン生成段階が行なわれ、バイオガス、上澄み液である消化液、及び消化汚泥21が発生する。本実施例では、前記メタン発酵槽12は中温メタン発酵処理槽及び高温発酵処理槽の何れを用いても良く、前記中温メタン発酵処理槽の場合には、槽内温度条件を約30〜40℃に維持し、前記高温発酵処理槽の場合には、槽内温度条件を約50〜60℃とする。
The processing apparatus in the present embodiment is provided with preprocessing equipment such as a crushing means for crushing large-diameter organic waste and a sorting means for removing impurities and the like in the previous stage of the adjustment tank 11.
A methane fermentation apparatus composed of an adjustment tank 11 and a methane fermentation tank 12 is provided at the subsequent stage of the pretreatment facility.
The adjustment tank 11 has means for adjusting the pH, temperature, amount of water, concentration, and the like of the organic waste 20 to conditions suitable for methane fermentation, a stirring means, and the like, and mainly hydrolyzes organic matter in the waste. An acid production stage is carried out to acid ferment.
In the methane fermentation tank 12, anaerobic microorganisms are propagated in the tank, and conditions such as temperature and pH are maintained in an environment where the anaerobic microorganisms can prominently propagate. A methane production step is performed, and biogas, digestive fluid as a supernatant, and digested sludge 21 are generated. In this embodiment, the methane fermentation tank 12 may be either a medium temperature methane fermentation treatment tank or a high temperature fermentation treatment tank. In the case of the medium temperature methane fermentation treatment tank, the temperature condition in the tank is about 30 to 40 ° C. In the case of the high-temperature fermentation treatment tank, the temperature condition in the tank is about 50 to 60 ° C.

前記生物学的脱窒素処理設備13は、嫌気槽と好気槽と沈殿槽が複数組み合わされた構成を有し、主に硝化菌と脱窒菌の作用により消化汚泥中のBOD、窒素化合物等を分解除去する装置である。
前記固液分離装置14は、可溶化汚泥を分離液25と分離汚泥26とに分離する装置であり、重力沈降方式、遠心分離方式、膜分離方式、凝集分離方式、浮上分離方式等が用いられる。
前記高度処理装置15としては凝集分離装置、活性炭吸着塔等が挙げられ、前記固液分離後の処理液が放流水準に満たない場合に必要に応じて設置すると良い。
前記汚泥処理設備16は、前記分離汚泥26の脱水、乾燥、焼却、堆肥化等を行なう設備である。
The biological denitrification equipment 13 has a configuration in which a plurality of anaerobic tanks, aerobic tanks, and sedimentation tanks are combined, and mainly the BOD, nitrogen compounds, etc. in the digested sludge by the action of nitrifying bacteria and denitrifying bacteria. It is a device for decomposing and removing.
The solid-liquid separation device 14 is a device for separating the solubilized sludge into the separation liquid 25 and the separation sludge 26, and a gravity sedimentation method, a centrifugal separation method, a membrane separation method, a coagulation separation method, a flotation separation method, or the like is used. .
Examples of the advanced processing device 15 include a coagulation separation device, an activated carbon adsorption tower, and the like. The processing solution after the solid-liquid separation may be installed as necessary when the processing liquid does not reach the discharge level.
The sludge treatment facility 16 is a facility for performing dehydration, drying, incineration, composting and the like of the separated sludge 26.

前記可溶化設備30は、オゾン酸化手段、超音波手段、水熱を含む加熱手段、溶菌酵素供給手段、キャビテーション発生手段、酸化剤添加手段、電気分解手段、アルカリ剤添加手段、機械的せん断・摩擦手段のうち、少なくとも1若しくはこれらの2以上を組み合わた手段を有し、前記可溶化手段を有する1又は2以上の槽内にて、図2に示されるように、前記生物処理液22のコロイド化工程30Aと液状化工程30Bとを行なう。
前記コロイド化工程30Aでは、生物処理液中の有機物を可溶化手段により低分子化して主体的にコロイド化を行なう。前記液状化工程30Bは前記コロイド化工程30Aの後に行なわれ、コロイド化した低分子有機物をさらに可溶化手段により主体的に液状化する。
The solubilizing equipment 30 includes ozone oxidizing means, ultrasonic means, heating means including hydrothermal, lytic enzyme supplying means, cavitation generating means, oxidizing agent adding means, electrolysis means, alkaline agent adding means, mechanical shearing / friction. As shown in FIG. 2, the colloid of the biological treatment liquid 22 has at least one of the means or a combination of two or more of these means, and in one or more tanks having the solubilizing means. The liquefaction step 30A and the liquefaction step 30B are performed.
In the colloidalization step 30A, the organic matter in the biological treatment liquid is reduced in molecular weight by a solubilizing means and colloidalized mainly. The liquefaction step 30B is performed after the colloidalization step 30A, and the colloidalized low molecular weight organic substance is liquefied mainly by a solubilizing means.

前記可溶化手段のうち、前記オゾン酸化手段は、オゾン発生器等により発生させたオゾンと生物処理液22とを気液接触させ、オゾンの強力な酸化力により処理液中の高分子有機物を低分子化させて可溶化する。また、前記超音波手段は、超音波発生器を設けて生物処理液中に超音波を発生させ、超音波振動により微生物の細胞壁を破砕して可溶化する。前記加熱手段は、有機物に熱を与えることによって水熱反応により処理液の低分子化を図るものである。前記溶菌酵素供給手段は、強力な溶菌活性を有する細菌によって微生物の細胞壁を分解することにより可溶化を行なう。前記キャビテーション発生手段は、生物処理液中に微細な気泡を発生させる手段であり、例えば、加圧後圧力開放することによりキャビテーションを発生させるものが挙げられる。この構成については後述する。前記酸化剤添加手段は、公知の過酸化水素、過酸化カルシウム、過硫酸アンモニウム、次亜塩素酸等の酸化剤が使用されるが、コストや副生物等の点からみて過酸化水素が最も好ましく、該酸化剤の添加により有機物を酸化分解し、可溶化を行なう。前記電気分解手段は、処理槽内に浸漬した電極間に電流を流すことにより微生物を死滅させるとともに細胞壁や細胞膜の一部を破壊し、可溶化を行なう。前記アルカリ剤添加手段は、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、酸化カルシウム、酸化ナトリウム等の周知のアルカリ剤を用いることができる。前記機械的せん断・摩擦手段は、例えば、ビーズミル、ディスクミル等の機器を用いることができ、生物処理液にせん断力・摩擦力を与えて機械的に破砕し低分子化するものである。
また、これらの可溶化手段に加えて、補助的に曝気手段を加えることも好適である。
Among the solubilizing means, the ozone oxidizing means brings ozone generated by an ozone generator or the like into a gas-liquid contact with the biological treatment liquid 22, and reduces the high molecular organic matter in the treatment liquid by the strong oxidizing power of ozone. Solubilize by molecularization. Further, the ultrasonic means is provided with an ultrasonic generator to generate ultrasonic waves in the biological treatment liquid, and crush and solubilize the cell walls of microorganisms by ultrasonic vibration. The heating means is intended to lower the molecular weight of the treatment liquid by hydrothermal reaction by applying heat to the organic matter. The lytic enzyme supply means performs solubilization by decomposing the cell wall of the microorganism with bacteria having strong lytic activity. The cavitation generating means is means for generating fine bubbles in the biological treatment liquid, and examples thereof include those that generate cavitation by releasing the pressure after pressurization. This configuration will be described later. As the oxidizing agent adding means, known oxidizing agents such as hydrogen peroxide, calcium peroxide, ammonium persulfate and hypochlorous acid are used, but hydrogen peroxide is most preferable from the viewpoint of cost and by-products, By adding the oxidizing agent, the organic substance is oxidized and decomposed to solubilize. The electrolysis means kills microorganisms by flowing an electric current between electrodes immersed in the treatment tank, and destroys a part of the cell wall and cell membrane to perform solubilization. As the alkali agent adding means, a known alkali agent such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, calcium oxide, sodium oxide or the like can be used. As the mechanical shearing / friction means, for example, a device such as a bead mill or a disk mill can be used, and a shearing force / friction force is applied to the biological treatment liquid to mechanically crush and reduce the molecular weight.
In addition to these solubilizing means, it is also preferable to add an aeration means as an auxiliary.

前記可溶化設備30の好適な一実施例を図3に示す。図3に示されるように、該可溶化設備30は、生物処理液22が貯留される貯留槽30Cと、該貯留槽30Cから生物処理液22が供給され、オゾンにより該生物処理液22を主体的にコロイド化するオゾン酸化装置30Aと、該オゾン酸化装置30Aより供給された処理液にキャビテーションを発生させて液状化するキャビテーション装置30Bと、から構成される。
前記オゾン酸化装置30Aは、オゾン発生器130により発生させたオゾンを、前記生物処理液22が貯留された反応槽内に設置した散気管から噴出させ、生物処理液と接触させるとともに槽内を撹拌する構成となっている。
A preferred embodiment of the solubilization equipment 30 is shown in FIG. As shown in FIG. 3, the solubilization facility 30 includes a storage tank 30C in which the biological treatment liquid 22 is stored, and the biological treatment liquid 22 is supplied from the storage tank 30C, and the biological treatment liquid 22 is mainly formed by ozone. The ozone oxidizer 30A for colloidalization, and the cavitation device 30B for generating cavitation in the processing liquid supplied from the ozone oxidizer 30A and liquefying it.
The ozone oxidizer 30A ejects ozone generated by the ozone generator 130 from an air diffuser installed in a reaction tank in which the biological treatment liquid 22 is stored, and makes contact with the biological treatment liquid while stirring the inside of the tank. It is the composition to do.

前記オゾン発生器130の一例を図4に示す。図4(a)は平板式で(b)は多管式である。該オゾン発生器130は、電極の一方の面に固体絶縁物であるガラス板131を配置し、電極間に交流電圧を加えて間隙に継続した放電空間132を形成し、オゾンを生成する。これにより、空気を原料とする場合には3〜4%、酸素を原料とする場合には6〜8%の濃度のオゾンを得ることができる。
前記オゾン酸化装置30Aでは、オゾンの強力な酸化力によって処理液中の有機物が低分子化し、主体的にコロイド状となる。勿論このとき、生物処理液中には部分的に液状部、固体状部も存在する。
An example of the ozone generator 130 is shown in FIG. 4A is a flat plate type, and FIG. 4B is a multi-tube type. In the ozone generator 130, a glass plate 131, which is a solid insulator, is disposed on one surface of an electrode, an alternating voltage is applied between the electrodes to form a discharge space 132 that continues in the gap, and generates ozone. Thus, ozone having a concentration of 3 to 4% when air is used as a raw material and 6 to 8% when oxygen is used as a raw material can be obtained.
In the ozone oxidizer 30A, the organic matter in the treatment liquid is reduced in molecular weight by the strong oxidizing power of ozone, and becomes mainly colloidal. Of course, at this time, the biological treatment liquid partially includes a liquid portion and a solid portion.

図5に前記キャビテーション装置30Bの概略構成を示す。該キャビテーション装置30Bは、加圧ポンプ136と、内部流路がオリフィス状に絞られている配管137とを有し、該配管137内に導入された生物処理液22は、配管137の狭窄部において前記加圧ポンプ136により数百kPa〜数MPa、好適には200〜500kPaまで加圧され、その後流路拡大部において渦流によりキャビテーションが発生する。このとき、前記配管137の狭窄部、拡大部の口径等の諸条件は処理対象処理液によって決定される。
前記キャビテーション装置30Bによれば、キャビテーションの発生によりその近傍で局所的な高温、高圧場が形成され、OHラジカルが発生する。OHラジカルは強力な酸化力を有するため、このOHラジカルによって生物処理液中の固形物、コロイド状物質が低分子化され液状化し、可溶化する。
尚本実施例では、上記したオゾン発生器130、キャビテーション装置30Bの構成に限定されるものではなく、同様の目的を達成できる装置であれば適用可能である。
FIG. 5 shows a schematic configuration of the cavitation device 30B. The cavitation device 30B includes a pressurizing pump 136 and a pipe 137 whose internal flow path is narrowed in an orifice shape, and the biological treatment liquid 22 introduced into the pipe 137 is in a constricted portion of the pipe 137. The pressurizing pump 136 is pressurized to several hundred kPa to several MPa, preferably 200 to 500 kPa, and then cavitation occurs due to vortex flow in the flow path expanding portion. At this time, various conditions such as the narrowed portion and the diameter of the enlarged portion of the pipe 137 are determined by the processing target processing liquid.
According to the cavitation apparatus 30B, a local high temperature and high pressure field is formed in the vicinity of the cavitation, and OH radicals are generated. Since the OH radical has a strong oxidizing power, the solid and colloidal substances in the biological treatment liquid are reduced in molecular weight, liquefied and solubilized by the OH radical.
In addition, in a present Example, it is not limited to the structure of the above-mentioned ozone generator 130 and the cavitation apparatus 30B, It is applicable if it is an apparatus which can achieve the same objective.

以上の構成を有する処理設備について、その作用を処理方法とともに説明する。
まず、破砕・分別処理等の前処理を行なった有機性廃棄物20を前記調整槽11に供給し、該調整槽11内にて有機性廃棄物のpH、温度、水量、濃度等をメタン発酵に適した条件に調整し、主として廃棄物中の有機物が加水分解及び酸発酵される酸生成段階を行なう。調整後の有機性廃棄物20はメタン発酵槽12に導入し、該メタン発酵槽12にて嫌気性微生物によりメタン発酵する。
メタン発酵槽12にて発生した消化汚泥21は生物学的脱窒素処理設備13に送給し、ここで硝化・脱窒素した後に生物処理液22を可溶化設備30に送給する。該可溶化設備30では、生物処理液22のコロイド化を行った後、コロイド化した処理液の液状化を行い、可溶化汚泥を得る。
About the processing equipment which has the above composition, the operation is explained with a processing method.
First, the organic waste 20 that has undergone pretreatment such as crushing / sorting is supplied to the adjustment tank 11, and the pH, temperature, water amount, concentration, etc. of the organic waste are methane fermentation in the adjustment tank 11. The acid generation step is performed in which the organic matter in the waste is mainly hydrolyzed and acid-fermented. The adjusted organic waste 20 is introduced into the methane fermentation tank 12 and methane-fermented with anaerobic microorganisms in the methane fermentation tank 12.
Digested sludge 21 generated in the methane fermentation tank 12 is fed to a biological denitrification treatment facility 13, and after nitrification / denitrification, the biological treatment liquid 22 is fed to a solubilization facility 30. In the solubilization equipment 30, the biological treatment liquid 22 is colloided, and then the colloidal treatment liquid is liquefied to obtain a solubilized sludge.

可溶化汚泥の少なくとも一部は固液分離装置14に導入され、該固液分離装置14にて分離液25と分離汚泥26とに固液分離し、該分離液25は高度処理装置15にて浄化した後に処理水27は放流される。前記汚泥26は汚泥処理設備16にて焼却、堆肥化等の処理がなされる。
一方、前記可溶化汚泥の他の一部23は前記調整槽11若しくは前記メタン発酵槽12に返送される。このとき、前記メタン発酵槽12より上流側に位置する廃棄物送給管上に返送しても良いことは勿論である。
また、前記可溶化汚泥の他の一部24は、前記生物学的脱窒素処理設備13、若しくはその直前に返送するようにしても良い。
At least a part of the solubilized sludge is introduced into the solid-liquid separation device 14, and the solid-liquid separation device 14 performs solid-liquid separation into the separation liquid 25 and the separation sludge 26. After the purification, the treated water 27 is discharged. The sludge 26 is subjected to processing such as incineration and composting in the sludge treatment facility 16.
On the other hand, the other part 23 of the solubilized sludge is returned to the adjustment tank 11 or the methane fermentation tank 12. At this time, it goes without saying that it may be returned onto a waste feed pipe located upstream of the methane fermentation tank 12.
Further, the other part 24 of the solubilized sludge may be returned to the biological denitrification facility 13 or just before that.

本実施例によれば、可溶化処理により固形物(SS成分)が減少するため、生物学的脱窒素処理において好気的に処理された処理液を可溶化処理し、メタン発酵において分解可能な性状とするため、設備全体において発生する汚泥量の低減を図ることができるとともに、メタンガス発生量の増加が可能となる。
また、前記可溶化処理が、コロイド化工程と液状化工程とを有するため、高濃度の有機性廃棄物であっても高効率処理が可能である。
また、メタン発酵槽12においては、有機物の分解に伴い、たんぱく質中の窒素がアンモニア性窒素に転換する。アンモニア性窒素は、メタン発酵の阻害成分であるため、メタン発酵槽内での濃度を3000〜5000ppm以下に保つ必要があるが、本実施例によれば、生物学的脱窒素処理設備13によりアンモニア性窒素がある程度分解された後の処理液を可溶化してメタン発酵槽12に返送しているため、メタン発酵槽12内のアンモニア性窒素濃度を希釈することができる。
さらに、メタン発酵槽12から排出される嫌気度の高い消化汚泥21を、生物学的脱窒素処理設備13により好気的に処理するため、可溶化に適した性状の処理液22が可溶化設備30に導入されることとなり、且つ生物学的脱窒素処理によって消化汚泥21中に残留する未分解のコロイド成分が低減されているため、可溶化設備30における動力の低減が可能となる。
さらにまた、前記可溶化汚泥の少なくとも一部24を前記生物学的脱窒素処理設備13に返送することにより、可溶化にて生じたBODを脱窒素に必要な栄養源として利用できるため、メタノール等の栄養源の外部添加を低減できる。
According to the present embodiment, since solids (SS component) are reduced by the solubilization treatment, the treatment liquid aerobically treated in the biological denitrification treatment can be solubilized and decomposed in the methane fermentation. Because of the properties, the amount of sludge generated in the entire facility can be reduced, and the amount of methane gas generated can be increased.
In addition, since the solubilization treatment includes a colloidalization step and a liquefaction step, high-efficiency treatment is possible even with high-concentration organic waste.
Further, in the methane fermentation tank 12, nitrogen in the protein is converted to ammonia nitrogen with the decomposition of the organic matter. Since ammonia nitrogen is an inhibitory component of methane fermentation, it is necessary to keep the concentration in the methane fermentation tank at 3000 to 5000 ppm or less. Since the treatment liquid after the decomposition of the functional nitrogen to some extent is solubilized and returned to the methane fermentation tank 12, the ammonia nitrogen concentration in the methane fermentation tank 12 can be diluted.
Further, since the highly anaerobic digested sludge 21 discharged from the methane fermentation tank 12 is aerobically treated by the biological denitrification treatment equipment 13, a treatment liquid 22 having properties suitable for solubilization is obtained. Since the undecomposed colloidal component remaining in the digested sludge 21 is reduced by the biological denitrification treatment, the power in the solubilization facility 30 can be reduced.
Furthermore, since at least a part 24 of the solubilized sludge is returned to the biological denitrification facility 13, the BOD generated by solubilization can be used as a nutrient source necessary for denitrification, such as methanol. Can reduce external addition of nutrient sources.

また、本実施例の別の構成として、前記可溶化設備30と前記固液分離装置14の間(※1)若しくは前記固液分離装置14と前記高度処理装置15の間(※2)に、第2の生物学的脱窒素処理設備を設けるようにしても良い。
前記可溶化設備30と前記固液分離装置14の間(※1)に設ける場合は、前記第2の生物学的脱窒素処理設備としては、硝化層と脱窒槽と沈殿槽が組み合わされた装置とすることが好ましい。
前記固液分離装置14と前記高度処理装置15の間(※2)に設ける場合は、前記第2の生物学的脱窒素処理設備としては、生物固定床が適している。
Further, as another configuration of the present embodiment, between the solubilization equipment 30 and the solid-liquid separation device 14 (* 1) or between the solid-liquid separation device 14 and the advanced processing device 15 (* 2), A second biological denitrification facility may be provided.
When it is provided between the solubilization facility 30 and the solid-liquid separation device 14 (* 1), the second biological denitrification treatment device is a device in which a nitrification layer, a denitrification tank and a precipitation tank are combined. It is preferable that
When provided between the solid-liquid separator 14 and the advanced processor 15 (* 2), a biological fixed bed is suitable as the second biological denitrification facility.

前記可溶化設備30においては、処理液の可溶化に伴って、アンモニア性窒素などの溶解性の窒素が発生するが、第2の生物学的脱窒素処理設備を設けることにより、確実にアンモニア性窒素の処理を行うことができ、最終的に発生したアンモニア性窒素が系外に排出される惧れがなくなる。
また、メタン発酵後の消化汚泥は通常BOD/N比が低くなっており、後段において硝化脱窒を行う場合は、メタノール等の栄養源を必要とするが、第2の硝化脱窒処理では、その上流側で可溶化処理が行われているため、BOD/N比が改善されており、栄養源の添加量を削減或いは不要化することができる。
この場合、生物学的脱窒素処理設備13は、消化汚泥中に含まれる栄養分量(BOD量)で処理可能な窒素負荷に応じた容量とし、残りを第2の生物学的脱窒素処理設備にて処理することとすれば効率的である。
In the solubilization facility 30, soluble nitrogen such as ammoniacal nitrogen is generated along with the solubilization of the treatment liquid. By providing the second biological denitrification treatment facility, it is ensured that it is ammoniac. Nitrogen treatment can be performed, and there is no possibility that ammonia nitrogen finally generated is discharged out of the system.
In addition, digested sludge after methane fermentation usually has a low BOD / N ratio, and when nitrification denitrification is performed in the latter stage, a nutrient source such as methanol is required. In the second nitrification denitrification treatment, Since the solubilization treatment is performed on the upstream side, the BOD / N ratio is improved, and the amount of nutrients added can be reduced or eliminated.
In this case, the biological denitrification treatment facility 13 has a capacity corresponding to the nitrogen load that can be treated with the amount of nutrients (BOD amount) contained in the digested sludge, and the rest is used as the second biological denitrification treatment facility. It is efficient if it is processed.

図6に本実施例2に係る有機性廃棄物の処理装置の概略フローを示す。以下、本実施例2及び実施例3において、前記実施例1と略同様の構成についてはその詳細な説明を省略する。
本実施例2は、生物学的脱窒素処理設備13の後段に固液分離装置14を設け、該固液分離装置14にて得られた分離液25を高度処理設備15に送給するとともに、分離汚泥26の少なくとも一部を可溶化設備30に送給し、他の一部を汚泥処理設備16に送給する構成としている。
前記可溶化設備30にて得られた可溶化汚泥23は、調整槽11若しくはメタン発酵槽12に返送する。
FIG. 6 shows a schematic flow of the organic waste processing apparatus according to the second embodiment. Hereinafter, in the second embodiment and the third embodiment, detailed description of the configuration substantially similar to that of the first embodiment will be omitted.
The present Example 2 is provided with a solid-liquid separation device 14 at the subsequent stage of the biological denitrogenation treatment facility 13 and supplies the separation liquid 25 obtained by the solid-liquid separation device 14 to the advanced treatment facility 15, At least a part of the separated sludge 26 is supplied to the solubilization facility 30 and the other part is supplied to the sludge treatment facility 16.
The solubilized sludge 23 obtained by the solubilization equipment 30 is returned to the adjustment tank 11 or the methane fermentation tank 12.

前記可溶化設備30は、実施例1と同様の構成とするが、特に本実施例において好適に用いられる構成を図7に示す。同図に示されるように、前記可溶化設備30は、分離汚泥26の機械的せん断・摩擦を行うビーズミル30Aと、加熱装置30Bとが直列に配設された構成となっている。
前記ビーズミル30Aは、横置状の筒体内に、モータ130に連結された軸138が貫挿配置され、該軸138に所定間隔ずつ隔てて設けられた攪拌羽根が回転することにより、筒体内に収容された数十〜数百μmの径を有するビーズ140が流動する構成となっている。該ビーズミル30Aに導入された前記分離汚泥26は、流動するビーズ140間にてすり潰され、固形物が微粉砕、分散されて、コロイド化される。
コロイド化した汚泥は、前記加熱装置30Bに導入され、加熱されることにより低分子化され、液状化した可溶化汚泥23が得られる。
The solubilization facility 30 has the same configuration as that of the first embodiment, but FIG. 7 shows a configuration that is particularly preferably used in this embodiment. As shown in the figure, the solubilization equipment 30 has a configuration in which a bead mill 30A that mechanically shears and frictions the separated sludge 26 and a heating device 30B are arranged in series.
In the bead mill 30A, a shaft 138 connected to the motor 130 is inserted in a horizontal cylinder, and a stirring blade provided at a predetermined interval on the shaft 138 rotates, so that The accommodated beads 140 having a diameter of several tens to several hundreds of μm flow. The separated sludge 26 introduced into the bead mill 30A is ground between the flowing beads 140, and the solid matter is finely pulverized and dispersed to be colloidalized.
The colloidal sludge is introduced into the heating device 30B and heated to obtain a low-molecular-weight solubilized solubilized sludge 23.

本実施例によれば、固液分離装置14により濃縮された汚泥26を可溶化処理するため、可溶化対象液量が低減でき、可溶化設備動力を低減することができる。
また、可溶化設備30においては、汚泥の可溶化に伴って、アンモニア性窒素などの溶解性の窒素、リン酸態リンなどの溶解性のリンが溶出するが、汚泥処理設備16において、発生する分離液をメタン発酵槽12若しくは生物学的脱窒素処理設備13に返送することで分離液が未処理のまま高度処理に流入、若しくは放流される惧れがない。
According to the present embodiment, since the sludge 26 concentrated by the solid-liquid separator 14 is solubilized, the amount of liquid to be solubilized can be reduced, and solubilization equipment power can be reduced.
Further, in the solubilization facility 30, soluble nitrogen such as ammonia nitrogen and soluble phosphorus such as phosphate phosphorus are eluted with sludge solubilization, but this occurs in the sludge treatment facility 16. By returning the separated liquid to the methane fermenter 12 or the biological denitrification treatment facility 13, there is no possibility that the separated liquid will flow into the advanced treatment or be discharged without being treated.

図8に本実施例3に係る有機性廃棄物の処理装置の概略フローを示す。
本実施例3では、前記実施例1の構成に加えて、前記調整槽11の前段に固液分離装置19を設けた構成としている。
前記固液分離装置19にて有機性廃棄物20を固液分離して分離液29と分離汚泥を得た後、該分離汚泥は前記調整槽11に導入し、該分離液29は生物学的脱窒素処理設備13に導入し、メタン発酵槽12から排出される消化汚泥21とともに生物学的脱窒素処理する。
また、別の構成として、前記消化汚泥21とともに固形物含有量の少ない液状廃棄物40を前記生物学的脱窒素処理設備13に投入するようにしても良い。
FIG. 8 shows a schematic flow of the organic waste processing apparatus according to the third embodiment.
In the third embodiment, in addition to the configuration of the first embodiment, a solid-liquid separation device 19 is provided in the previous stage of the adjustment tank 11.
The organic waste 20 is solid-liquid separated by the solid-liquid separation device 19 to obtain a separation liquid 29 and separation sludge. Then, the separation sludge is introduced into the adjustment tank 11, and the separation liquid 29 is biologically separated. It introduces into the denitrification processing equipment 13 and biologically denitrifies with the digested sludge 21 discharged from the methane fermentation tank 12.
As another configuration, a liquid waste 40 having a small solid content together with the digested sludge 21 may be input to the biological denitrification equipment 13.

本実施例によれば、前記固液分離装置19を設けることにより、メタン発酵槽12に流入する水量負荷の低減が図れるため、メタン発酵槽12のコンパクト化を図ることができる。また、生物学的脱窒素処理において、液状廃棄物40若しくは分離液29を投入することにより、これらに含有されるBOD成分を脱窒素の際の栄養源として利用することができ、メタノール等の栄養源の外部添加量を低減若しくは不要化することができる。
尚、前記実施例1に記載した第2の生物学的脱窒素処理設備に、前記液状廃棄物40若しくは分離液29を導入するようにしても良い。
According to the present embodiment, by providing the solid-liquid separation device 19, the load of water flowing into the methane fermentation tank 12 can be reduced, so that the methane fermentation tank 12 can be made compact. Moreover, in biological denitrification treatment, by introducing the liquid waste 40 or the separation liquid 29, the BOD component contained therein can be used as a nutrient source during denitrification, and nutrition such as methanol The external addition amount of the source can be reduced or eliminated.
In addition, you may make it introduce | transduce the said liquid waste 40 or the separation liquid 29 into the 2nd biological denitrification processing facility described in the said Example 1. FIG.

本発明は、高効率で以ってメタン発酵、生物学的脱窒素処理を行うことができ、且つ汚泥の減容化が可能であるため、有機物下水道処理、し尿処理、浄化槽汚泥処理、畜産排水処理、水産加工排水処理、洗浄排水処理、工場排水処理等の何れの処理にも有効に適用できる。   The present invention can perform methane fermentation and biological denitrification with high efficiency and can reduce the volume of sludge. Therefore, organic sewerage treatment, human waste treatment, septic tank sludge treatment, livestock wastewater It can be effectively applied to any treatment such as wastewater treatment, fishery processing wastewater treatment, washing wastewater treatment, and factory wastewater treatment.

本発明の実施例1に係る処理システムの概略を示すフロー図である。It is a flowchart which shows the outline of the processing system which concerns on Example 1 of this invention. 本実施例の可溶化設備の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the solubilization installation of a present Example. 本実施例の可溶化設備の具体的な装置構成を示す図である。It is a figure which shows the specific apparatus structure of the solubilization installation of a present Example. 図3の可溶化設備に用いられるオゾン発生器を示す概略断面図である。It is a schematic sectional drawing which shows the ozone generator used for the solubilization installation of FIG. 図3の可溶化設備に用いられるキャビテーション装置を示す概略構成図である。It is a schematic block diagram which shows the cavitation apparatus used for the solubilization installation of FIG. 本発明の実施例2に係る処理システムの概略を示すフロー図である。It is a flowchart which shows the outline of the processing system which concerns on Example 2 of this invention. 図6の可溶化設備の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the solubilization installation of FIG. 本発明の実施例3に係る処理システムの概略を示すフロー図である。It is a flowchart which shows the outline of the processing system which concerns on Example 3 of this invention. 従来のメタン発酵処理システムの概略を示すフロー図である。It is a flowchart which shows the outline of the conventional methane fermentation processing system.

符号の説明Explanation of symbols

11 調整槽
12 メタン発酵槽
13 生物学的脱窒素処理設備
14 固液分離装置
15 高度処理装置
16 汚泥処理設備
20 有機性廃棄物
23、24 可溶化汚泥
30 可溶化設備
30A コロイド化工程(オゾン酸化装置、ビーズミル)
30B 液状化工程(キャビテーション装置、加熱装置)
30C 貯留槽
40 液状廃棄物
DESCRIPTION OF SYMBOLS 11 Adjustment tank 12 Methane fermentation tank 13 Biological denitrification processing equipment 14 Solid-liquid separator 15 Advanced processing equipment 16 Sludge processing equipment 20 Organic waste 23, 24 Solubilized sludge 30 Solubilization equipment 30A Colloidalization process (ozone oxidation) Equipment, bead mill)
30B Liquefaction process (cavitation equipment, heating equipment)
30C Reservoir 40 Liquid waste

Claims (14)

有機性廃棄物をメタン発酵するメタン発酵工程と、該メタン発酵にて生じた消化汚泥を生物学的脱窒素処理する生物学的脱窒素処理工程と、を備えた有機性廃棄物の処理方法において、
前記生物学的脱窒素処理工程からの生物処理液を可溶化して可溶化汚泥を得る可溶化工程を設け、前記可溶化汚泥の少なくとも一部を、前記メタン発酵工程、若しくは該メタン発酵工程より上流側に返送することを特徴とする有機性廃棄物の処理方法。
In a method for treating organic waste, comprising: a methane fermentation process for methane fermentation of organic waste; and a biological denitrification process for biologically denitrifying digested sludge produced by the methane fermentation. ,
A solubilization process for obtaining a solubilized sludge by solubilizing a biological treatment liquid from the biological denitrification process is provided, and at least a part of the solubilized sludge is obtained from the methane fermentation process or the methane fermentation process. A method for treating organic waste, which is returned upstream.
前記可溶化工程が、前記生物処理液を主体的にコロイド化するコロイド化工程と、該コロイド化した処理液を主体的に液状化する液状化工程とからなることを特徴とする請求項1記載の有機性廃棄物の処理方法。   The said solubilization process consists of the colloidalization process which mainly colloidizes the said biological treatment liquid, and the liquefaction process which mainly liquefies this colloidalization process liquid, The characterized by the above-mentioned. Of organic waste. 前記可溶化工程では、前記コロイド化工程にて前記生物処理液をオゾン酸化によりコロイド化し、前記液状化工程にて前記コロイド化した処理液中にキャビテーションを発生させて液状化するようにしたことを特徴とする請求項2記載の有機性廃棄物の処理方法。   In the solubilization step, the biological treatment liquid is colloided by ozone oxidation in the colloidalization step, and cavitation is generated in the colloidal treatment liquid in the liquefaction step to be liquefied. The method for treating organic waste according to claim 2, wherein: 前記可溶化汚泥の少なくとも一部を固液分離して分離液と分離汚泥を得る固液分離工程を備えた有機性廃棄物の処理方法であって、
前記可溶化工程と前記固液分離工程との間、若しくは前記固液分離工程の後段に、前記可溶化汚泥若しくは前記固液分離液を生物学的脱窒素処理する第2の生物学的脱窒素処理工程を設けたことを特徴とする請求項1若しくは2記載の有機性廃棄物の処理方法。
A method for treating organic waste comprising a solid-liquid separation step for obtaining a separated liquid and separated sludge by solid-liquid separation of at least a part of the solubilized sludge,
A second biological denitrogenation that biologically denitrifies the solubilized sludge or the solid-liquid separation solution between the solubilization step and the solid-liquid separation step or after the solid-liquid separation step. 3. A method for treating organic waste according to claim 1, further comprising a treatment step.
前記生物学的脱窒素処理工程の後段に生物処理液を固液分離して分離液と分離汚泥を得る固液分離工程を設け、該分離汚泥を前記可溶化工程に導入することを特徴とする請求項1記載の有機性廃棄物の処理方法。   A solid-liquid separation step for obtaining a separation liquid and separated sludge by solid-liquid separation of the biological treatment liquid is provided after the biological denitrification treatment step, and the separated sludge is introduced into the solubilization step. The organic waste processing method according to claim 1. 前記メタン発酵工程の前段に有機性廃棄物を固液分離して分離液と分離汚泥を得る固液分離工程を設け、該分離汚泥を前記メタン発酵工程に導入するとともに、該分離液を前記生物学的脱窒素処理工程に導入することを特徴とする請求項1記載の有機性廃棄物の処理方法。   A solid-liquid separation step for obtaining a separated liquid and separated sludge by solid-liquid separation of organic waste is provided before the methane fermentation step, and the separated sludge is introduced into the methane fermentation step, The organic waste treatment method according to claim 1, wherein the organic waste treatment method is introduced into a chemical denitrification treatment step. 前記生物学的脱窒素工程に、固形物含有量の少ない液状廃棄物を導入し、該液状廃棄物を前記消化汚泥とともに処理することを特徴とする請求項1記載の有機性廃棄物の処理方法。   The method for treating organic waste according to claim 1, wherein liquid waste with a low solid content is introduced into the biological denitrification step, and the liquid waste is treated together with the digested sludge. . 有機性廃棄物をメタン発酵するメタン発酵装置と、該メタン発酵装置から排出される消化汚泥を生物学的脱窒素処理する生物学的脱窒素処理装置と、を備えた有機性廃棄物の処理設備において、
前記生物学的脱窒素処理装置から排出される生物処理液を可溶化処理して可溶化汚泥を得る可溶化装置を設け、前記可溶化汚泥の少なくとも一部を、前記メタン発酵装置、若しくは該メタン発酵装置より上流側に返送する可溶化汚泥返送ラインを設けたことを特徴とする有機性廃棄物の処理設備。
Organic waste treatment equipment comprising: a methane fermentation apparatus for methane fermentation of organic waste; and a biological denitrogenation treatment apparatus for biologically denitrifying digested sludge discharged from the methane fermentation apparatus In
There is provided a solubilization device for obtaining a solubilized sludge by solubilizing a biological treatment liquid discharged from the biological denitrification treatment device, and at least a part of the solubilized sludge is used as the methane fermentation device or the methane An organic waste treatment facility comprising a solubilized sludge return line for returning upstream from the fermenter.
前記可溶化装置が、前記生物処理液を主体的にコロイド化するコロイド化手段と、該コロイド化した処理液を主体的に液状化する液状化手段とからなることを特徴とする請求項8記載の有機性廃棄物の処理設備。   9. The solubilizing apparatus comprises a colloiding means for mainly colloiding the biological treatment liquid and a liquefaction means for mainly liquefying the colloidal treatment liquid. Organic waste processing equipment. 前記可溶化装置では、前記コロイド化手段にて前記生物処理液をオゾン酸化によりコロイド化し、前記液状化手段にて前記コロイド化した処理液中にキャビテーションを発生させて液状化するようにしたことを特徴とする請求項8若しくは9記載の有機性廃棄物の処理設備。   In the solubilization apparatus, the biological treatment liquid is colloided by ozone oxidation by the colloid means, and cavitation is generated in the colloid treatment liquid by the liquefaction means to liquefy. The organic waste treatment facility according to claim 8 or 9, characterized in that 前記可溶化汚泥の少なくとも一部を固液分離して分離液と分離汚泥を得る固液分離装置を備えた有機性廃棄物の処理設備であって、
前記可溶化装置と前記固液分離装置との間、若しくは前記固液分離装置の後段に、前記可溶化汚泥若しくは前記分離液を生物学的脱窒素処理する第2の生物学的脱窒素処理装置を設けたことを特徴とする請求項8若しくは9記載の有機性廃棄物の処理設備。
An organic waste treatment facility equipped with a solid-liquid separation device that separates at least a part of the solubilized sludge to obtain a separated liquid and separated sludge,
A second biological denitrification apparatus for biologically denitrifying the solubilized sludge or the separated liquid between the solubilizer and the solid-liquid separator or at the subsequent stage of the solid-liquid separator. 10. The organic waste treatment facility according to claim 8 or 9, wherein:
前記生物学的脱窒素処理装置の後段に、前記生物処理液を固液分離して分離液と分離汚泥を得る固液分離装置を設け、該分離汚泥を前記可溶化装置に導入することを特徴とする請求項8記載の有機性廃棄物の処理設備。   A solid-liquid separation device for obtaining a separated liquid and separated sludge by solid-liquid separation of the biological treatment liquid is provided at a subsequent stage of the biological denitrification treatment apparatus, and the separated sludge is introduced into the solubilizer. The organic waste processing facility according to claim 8. 前記メタン発酵装置の前段に有機性廃棄物を固液分離して分離液と分離汚泥を得る固液分離装置を設け、該分離汚泥を前記メタン発酵装置に導入するとともに、該分離液を前記生物学的脱窒素処理装置に導入することを特徴とする請求項8記載の有機性廃棄物の処理設備。   A solid-liquid separation device is provided in the preceding stage of the methane fermentation apparatus to obtain a separated liquid and separated sludge by solid-liquid separation of organic waste, and the separated sludge is introduced into the methane fermentation apparatus, and the separated liquid is introduced into the biological organism. The organic waste treatment facility according to claim 8, which is introduced into a chemical denitrification treatment apparatus. 前記生物学的脱窒素処理装置に、固形物含有量の少ない液状廃棄物の投入ラインを設け、該液状廃棄物を前記消化汚泥とともに処理することを特徴とする請求項8記載の有機性廃棄物の処理設備。
9. The organic waste according to claim 8, wherein the biological denitrification apparatus is provided with a liquid waste input line having a low solid content, and the liquid waste is treated together with the digested sludge. Processing equipment.
JP2005061198A 2005-03-04 2005-03-04 Method and equipment for treating organic waste Pending JP2006239625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005061198A JP2006239625A (en) 2005-03-04 2005-03-04 Method and equipment for treating organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005061198A JP2006239625A (en) 2005-03-04 2005-03-04 Method and equipment for treating organic waste

Publications (1)

Publication Number Publication Date
JP2006239625A true JP2006239625A (en) 2006-09-14

Family

ID=37046544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005061198A Pending JP2006239625A (en) 2005-03-04 2005-03-04 Method and equipment for treating organic waste

Country Status (1)

Country Link
JP (1) JP2006239625A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110510A (en) * 2009-11-27 2011-06-09 Meidensha Corp Hydrogen-methane fermentation method and system for the same
JP2015044164A (en) * 2013-08-28 2015-03-12 三菱重工環境・化学エンジニアリング株式会社 Organic waste treatment method and equipment
KR20160008417A (en) * 2014-07-14 2016-01-22 한국과학기술원 Method for preparing hydrogen gas using hydrogen producing microorganism and pretreatment apparatus for preparing hydrogen gas
WO2022065294A1 (en) * 2020-09-28 2022-03-31 三菱重工業株式会社 Waste treatment system and waste treatment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122682A (en) * 1995-10-30 1997-05-13 Ebara Corp Method for treating waste water
JP2001079584A (en) * 1999-09-14 2001-03-27 Nihon Hels Industry Corp Cleaning method of organic waste water
JP2001121183A (en) * 1999-10-28 2001-05-08 Mitsubishi Heavy Ind Ltd Method for treating organic waste liquid
JP2003170142A (en) * 2001-12-07 2003-06-17 Kubota Corp Method and apparatus for treating organic waste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122682A (en) * 1995-10-30 1997-05-13 Ebara Corp Method for treating waste water
JP2001079584A (en) * 1999-09-14 2001-03-27 Nihon Hels Industry Corp Cleaning method of organic waste water
JP2001121183A (en) * 1999-10-28 2001-05-08 Mitsubishi Heavy Ind Ltd Method for treating organic waste liquid
JP2003170142A (en) * 2001-12-07 2003-06-17 Kubota Corp Method and apparatus for treating organic waste

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110510A (en) * 2009-11-27 2011-06-09 Meidensha Corp Hydrogen-methane fermentation method and system for the same
JP2015044164A (en) * 2013-08-28 2015-03-12 三菱重工環境・化学エンジニアリング株式会社 Organic waste treatment method and equipment
KR20160008417A (en) * 2014-07-14 2016-01-22 한국과학기술원 Method for preparing hydrogen gas using hydrogen producing microorganism and pretreatment apparatus for preparing hydrogen gas
KR101595816B1 (en) 2014-07-14 2016-02-22 한국과학기술원 Method for preparing hydrogen gas using hydrogen producing microorganism and pretreatment apparatus for preparing hydrogen gas
WO2022065294A1 (en) * 2020-09-28 2022-03-31 三菱重工業株式会社 Waste treatment system and waste treatment method

Similar Documents

Publication Publication Date Title
JP2004042043A (en) Method of treating waste by oxidation
JP5023473B2 (en) Sewage treatment system
JP4667890B2 (en) Organic waste treatment methods
JP3698419B2 (en) Organic sludge reduction method and apparatus
JP3775654B2 (en) Method and apparatus for reducing excess sludge in biological treatment of organic sewage
JP2003039096A (en) Method and apparatus for treating organic waste
JP4907123B2 (en) Organic waste processing method and processing system
JP2006297205A (en) Processing method of organic waste and its apparatus
JP4542764B2 (en) Organic wastewater treatment equipment
JP2006239625A (en) Method and equipment for treating organic waste
KR101267054B1 (en) Method of recovery organic waste
JP2003024972A (en) Biological treatment method for organic sewage and apparatus therefor
JP3977174B2 (en) Sludge treatment method and apparatus for reducing generation amount of excess sludge
JP4457391B2 (en) Organic sludge treatment method and treatment apparatus
JP2005193146A (en) Method for treating organic waste and the treating system
JP4298602B2 (en) Method and apparatus for anaerobic digestion treatment of organic sludge
JP3600566B2 (en) Method for treating organic waste and method for producing biogas
JP2009195783A (en) Organic wastewater treatment method
JP2006326438A (en) Apparatus and method for treating sludge
JP3672091B2 (en) Organic wastewater treatment method and equipment
JP2005095811A (en) Method and apparatus for treating organic waste
JP2008155075A (en) Sewage treatment method and apparatus
JP2005161110A (en) Method and apparatus for treating organic sludge
JP2005254199A (en) Method and apparatus for wastewater treatment
JP2004344782A (en) Method and apparatus for treating organic waste fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100416

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110121