JP3698419B2 - Organic sludge reduction method and apparatus - Google Patents

Organic sludge reduction method and apparatus Download PDF

Info

Publication number
JP3698419B2
JP3698419B2 JP2001174213A JP2001174213A JP3698419B2 JP 3698419 B2 JP3698419 B2 JP 3698419B2 JP 2001174213 A JP2001174213 A JP 2001174213A JP 2001174213 A JP2001174213 A JP 2001174213A JP 3698419 B2 JP3698419 B2 JP 3698419B2
Authority
JP
Japan
Prior art keywords
sludge
solid
separated
anaerobic
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001174213A
Other languages
Japanese (ja)
Other versions
JP2002361293A (en
Inventor
俊博 田中
克之 片岡
昭 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001174213A priority Critical patent/JP3698419B2/en
Publication of JP2002361293A publication Critical patent/JP2002361293A/en
Application granted granted Critical
Publication of JP3698419B2 publication Critical patent/JP3698419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水、産業排水などの有機性汚水を生物学的に処理する工程から発生する余剰汚泥、下水混合生汚泥などの有機性汚泥を、省エネルギー的かつ高速度で減量できる新規技術に関する。
【0002】
【従来の技術】
下水、産業排水、し尿、ごみ埋立汚水などの活性汚泥処理施設から、大量の有機性汚泥(余剰汚泥、生汚泥など)が毎日発生しており、その量は日本全体で年間1000万トンを上回る。余剰汚泥の処理及び処分が、環境問題における最大の問題点になっている。すなわち、この有機性汚泥の中でも余剰汚泥は非常に難脱水性であるため、多量の脱水助剤(ポリマーなど)を添加し、汚泥脱水機で水分85%程度に脱水し、脱水ケーキを埋立処分するか、又は焼却処分しているが、脱水助剤コスト、脱水ケーキの埋立場所不足、焼却灰の処分場所の不足、焼却設備費、焼却用重油コストの高さなどの多くの問題点を抱えている。
【0003】
このような問題を解決するため、特許公開公報に「オゾンを利用した余剰汚泥減量化法」が開示されている。この技術は、廃水の活性汚泥処理工程から、余剰汚泥発生量より多い量の活性汚泥を引き抜きオゾン酸化した後、そのまま活性汚泥処理工程に返送する方法である。
【0004】
その他に、活性汚泥をアルカリ剤で加水分解させて汚泥の生物分解性を向上させる方法、活性汚泥を加熱して細胞を破壊する方法(水環境学会誌、21巻6号p360〜:好熱性微生物を利用した余剰汚泥が発生しない活性汚泥プロセス)、活性汚泥をミルで破砕する方法、汚泥を高圧ポンプ吐出口に設けた内径1〜2mm程度のノズルから板に対して高速噴射するウォータジェット法(麻生他;汚泥減量化システムの基礎検討;第37回下水道研究発表会講演集p482〜484、2000年)、余剰汚泥にオゾンを添加するか超音波を照射して可溶化した後嫌気性消化する方法(土木学会第41回年次学術講演会、昭和61年11月、p915−)などが知られている。
【0005】
【発明が解決しようとする課題】
しかし、従来の技術は、可溶化汚泥を好気性生物によって減量化するために曝気動力を多量に必要とするので、エネルギー消費が多いという問題があり、また可溶化汚泥を嫌気性消化処理によって減量化する場合にも、嫌気性消化処理の処理所要時間が長く、消化できない消化残渣がかなり残るという問題があった。
本発明は、このような従来の問題点に鑑みてなされたものであり、有機性汚水の生物処理工程から発生する余剰汚泥などの有機性汚泥を、高速度かつ省エネルギー的に高い減量効率で減量化できる新技術を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明は、次の手段により上記の課題を解決することができた。
(1)有機性汚泥を酸発酵処理した後、固液分離し、該固液分離によって得た分離汚泥を可溶化処理し、次いで該可溶化処理で得た可溶化汚泥を嫌気性消化するとともに、前記嫌気性消化において生じた消化汚泥を、前記分離汚泥の可溶化処理に返送消化汚泥として送り、かつ前記酸発酵処理後の固液分離で分離された分離液を有機性汚水の生物処理工程の嫌気部または無酸素部に供給して処理することを特徴とする有機性汚泥の減量化方法。
【0007】
(2)有機性汚泥を導入して酸発酵する酸発酵槽、前記酸発酵槽から酸発酵汚泥を導入して分離汚泥と分離液に分離する固液分離装置、前記固液分離装置からの分離汚泥を導入して可溶化する可溶化処理槽、前記可溶化処理槽からの可溶化汚泥を導入して嫌気性消化をする嫌気性消化槽を有し、前記嫌気性消化槽からの消化汚泥を可溶化処理槽に返送し、かつ前記の後段の固液分離装置からの分離液を有機性汚水の生物処理工程の嫌気部または無酸素部に供給する配管を有することを特徴とする有機性汚泥減量化装置。
【0008】
【発明の実施の形態】
図1は、本発明を有機性汚水の活性汚泥処理施設から発生する余剰活性汚泥の減量化に適用した構成例を示すブロック図である。すなわち、図1では、活性汚泥処理施設(図示せず)からの余剰活性汚泥である汚泥1を減量化するための装置を示したもので、酸発酵菌による酸発酵処理をする酸発酵槽2、酸発酵槽2の後段に酸発酵汚泥3を固液分離する固液分離装置4があり、固液分離装置4で分離された分離汚泥5を超音波処理(8は超音波を示す、なお、超音波とは人間の耳の可聴周波数を超える、周波数(約10KHZ以上)を持つ音波又は弾性波と定義される。)、オゾン酸化などによる可溶化処理をする可溶化処理槽7により可溶化し、その可溶化汚泥9をさらに後段の嫌気性消化槽10に入れて消化し、発生する消化ガス14を槽10の頂部から系外へ排出するとともに、嫌気性消化槽10内に設置した膜分離ユニット11により消化脱離液が膜透過水12として系外へ流出し、同時に消化されにくい可溶化濃縮汚泥分を消化汚泥13として取り出し、その一部を返送消化汚泥15として可溶化処理槽7へ返送する配管を備え、微量の未消化残差だけを廃棄消化汚泥16として系外へ排出し、一方固液分離装置4から出る分離液6は、上向流嫌気性スラッジブランケット装置(以下「UASB」という)17の固定メタン菌によってメタン発酵されて消化ガス19及び処理水18として系外へ排出されるように処理するか、有機性汚水の生物処理工程の嫌気部又は無酸素部20へ配管を経て返送供給するか、あるいは可溶化汚泥9の嫌気性消化槽10へ供給するように構成されている。
【0009】
本発明において、汚水を好気性微生物によって浄化する活性汚泥処理工程(生物脱リン法、生物学的硝化脱窒素法のように嫌気部を付帯するものも含む)の沈殿槽における沈殿汚泥の一部を引き抜き、酸発酵菌(通性菌)による酸発酵処理をする酸発酵槽2に供給し、所要時間滞留させる。活性汚泥の細胞壁を構成する主要成分は多糖類、たんぱく質であるが、多糖類は嫌気性消化されにくい。しかし、活性汚泥を酸発酵させると、多糖類は単糖類、低級脂肪酸、酢酸などの有機酸に変化する。また、たんぱく質はペプチド、アミノ酸、脂肪酸に変わる。
【0010】
次に、酸発酵槽2から流出する酸発酵汚泥3を固液分離する。固液分離装置4は遠心分離、浮上分離、沈殿分離、膜分離などの各種分離手段を適用する。次いで、分離汚泥5を可溶化処理槽7に供給する。
可溶化処理槽における汚泥の可溶化手段としては、超音波処理、オゾン酸化、ミルなどによる汚泥すりつぶし、アルカリ処理、加熱処理など公知の余剰汚泥生物細胞壁の破壊、すなわち可溶化手段が採用できるが、特に超音波8による可溶化手段が最も可溶化コストが少なく、装置も簡単で、小さいものですむので好ましい。
【0011】
超音波照射槽に供給して、超音波8を照射すると、汚泥細胞壁を効果的に破壊するため汚泥1が可溶化する。適性超音波周波数は、周波数が高すぎると汚泥可溶化効果が悪化することが認められ、10〜100KHZ、より好ましくは15〜50KHZが好適である。汚泥可溶化のための超音波照射エネルギーとしては、2〜10Kwh/kg・SSが好適である。
超音波8による可溶化法において、固形物濃度には最適範囲が存在し、濃度1.5〜4%の範囲が適正範囲であった。この範囲の汚泥固形物濃度において、同一の超音波出力での汚泥細胞の破壊効果、言い換えると汚泥可溶化効果が向上することが認められた。
【0012】
濃度が4%を超えると濃度が高くなり過ぎ、汚泥スラリの粘性が高くなりすぎ、流動性が悪化するため、汚泥への超音波照射の効果が不均一になる。また、固形物濃度が1.5%未満であること固形物濃度が少なすぎ、超音波のエネルギーが固形物の可溶化作用以外に無駄に消費される。超音波照射の時間は極めて短時間で充分であり、数分以下で良い。したがって超音波照射槽容積は非常に小さくてすむ。
超音波を照射すると、超音波エネルギーが最終的に熱に変わり、汚泥の温度が上昇するので、温度35℃程度の液温が好適な中温メタン発酵処理に、超音波照射の温度上昇効果を利用でき好都合になる。
【0013】
また、オゾンによって余剰汚泥1を可溶化する場合、酸発酵槽2後の分離汚泥5をあらかじめ酸素含有ガスで曝気し、酸化還元電位(ORP)を高めてからオゾン酸化すると、汚泥1以外の硫化水素などの還元性物質が減少し、汚泥可溶化のためのオゾン所要量が減少できる。このように、好気性状態にした酸発酵汚泥をオゾンで可溶化する場合のオゾンの注入率は、汚泥固形物重量1kgあたり20〜60gオゾンで良い。
【0014】
酸発酵汚泥を可溶化処理すると、酸発酵菌および酸発酵菌によって液化できなかった活性汚泥分の粒子系が微細化し、また細胞壁が破壊されるため、嫌気性消化菌が資化しやすくなる。
次に酸発酵後の分離液6の有機成分は、有機酸が主成分になっているので、UASB17などの固定化メタン菌を利用するメタン発酵法によって、きわめて高速度でメタンガス、炭酸ガスに分解される。UASB法においては、原水中の高濃度のSS分は障害になるが、本発明では、固液分離されたSSが少ない分離液を供給できるので、このような障害はない。なお酸発酵汚泥の分離液6を、可溶化汚泥の嫌気性消化槽10に供給して、一緒に嫌気性消化処理しても当然良い。又は酸発酵槽2のあとの分離液6を、有機性汚水の生物学的処理工程の無酸素部又は嫌気部20に供給し、生物脱リン菌からのリン吐き出しの促進のための有機炭素源、又は生物学的脱窒素菌のための有機炭素源に利用することも好適な実施態様である。
【0015】
UASB装置17内において、ブランケットを形成しているメタン菌グラニュールの固形物濃度は、75000〜90000mg/リットルと非常に高濃度であり、このため有機物負荷は、約30kgCODcr/m3 という著しく高い負荷を採ることができる。そのため、本発明の余剰汚泥可溶化後の固液分離液13を処理する場合、UASB装置17の滞留時間は、温度35℃において数時間という短時間で十分なメタン発酵処理が可能である。
【0016】
固定化メタン菌を利用する方法としては、メタン生成菌の自己固定化(自己造粒)現象を利用するUASB法が最適であるが、粒状セラミック、粒状活性炭、粒状ゼオライトなどの微生物付着担体を用いる嫌気性流動層法、嫌気性固定床法を適用しても良い。図1にはUASB法を例示してある。
【0017】
またオゾン、超音波8などで可溶化処理された汚泥分は、嫌気性菌による生分解性が増加しているので、嫌気性消化槽10において高速度かつ高分解効率で嫌気性消化が進む。
図1の嫌気性消化槽10は攪拌されており、内部に膜分離ユニット11が設置されている。嫌気性消化槽10の汚泥はこの膜分離ユニット11で固液分離され、消化脱離液が膜透過水12として流出する。
本発明における可溶化汚泥を嫌気性消化する場合の所要滞留日数は、温度35℃において3日で十分である。この結果、トータルの処理速度は、従来方式に比較して大幅に向上し、全体の処理槽容積も縮小される。
【0018】
嫌気性消化槽10には、可溶化濃縮汚泥の嫌気性消化によって消化されにくい分が残渣として蓄積されるので、適宜引き抜き、これを可溶化処理槽7に返送し可溶化すると、再び嫌気性消化可能の性状になり、嫌気性消化槽10において分解される。この結果、未消化残渣量が減少し、ほとんど未消化残渣が発生しなくなる。本発明者等の実験によれば、余剰活性汚泥を本発明によって減量化処理すると、最終的に系外に廃棄しなければならない汚泥量は、投入余剰活性汚泥1kgあたり0.07〜0.09kgに過ぎなかった。
【0019】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明は、この実施例により何等制限されるものではない。
【0020】
実施例1
下水の活性汚泥処理施設から排出される余剰活性汚泥を対象に試験した。
試験条件を第1表に示す。
【0021】
【表1】

Figure 0003698419
【0022】
以上の条件で運転を行った結果、嫌気性消化槽から系外に廃棄しなければならない汚泥量は、固形物基準で46g・SS/dであった。余剰汚泥処理量は700g・SS/dであるので、汚泥減量化率は93%と優秀であった。
UASB処理水の水質はBOD150mg/リットル、汚泥嫌気性消化槽の脱離液水質は230mg/リットルと良好であった。
【0023】
【発明の効果】
本発明によれば、下記の(1)〜(3)の効果が得られた。
(1)余剰活性汚泥などの有機性汚泥が、高速度かつ省エネルギー的に高度に減量化できる。
(2)したがって、汚泥脱水・焼却工程が大幅に合理化される。
(3)生成メタンガスを燃料にして発電できるので、得られた電力を汚泥可溶化のための超音波発生用電力、オゾン発生器用電力として利用でき、外部から購入する電力が削減できる。
【図面の簡単な説明】
【図1】本発明の有機性汚泥の減量化装置の構成を示すブロック図である。
【符号の説明】
1 汚泥(余剰活性汚泥)
2 酸発酵槽
3 酸発酵汚泥
4 固液分離装置
5 分離汚泥
6 分離液
7 可溶化手段
8 超音波
9 消化ガス
10 嫌気性消化槽
11 膜分離ユニット
12 膜透過液
13 消化汚泥
14 消化ガス
15 返送消化汚泥
16 廃棄消化汚泥
17 UASB
18 処理水
19 消化ガス
20 有機性汚水の生物処理工程の嫌気部又は無酸素部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel technique capable of reducing the amount of organic sludge such as surplus sludge generated from a process of biologically treating organic sewage such as sewage and industrial wastewater, and sewage mixed raw sludge at an energy-saving and high speed.
[0002]
[Prior art]
A large amount of organic sludge (excess sludge, raw sludge, etc.) is generated daily from activated sludge treatment facilities such as sewage, industrial wastewater, human waste, and landfill sewage, and the amount exceeds 10 million tons annually in Japan. . The treatment and disposal of surplus sludge is the biggest problem in environmental problems. In other words, surplus sludge is extremely difficult to dehydrate among these organic sludges, so a large amount of dewatering aid (polymer, etc.) is added, dewatered to about 85% water with a sludge dewatering machine, and the dewatered cake is landfilled. However, it has many problems such as dewatering aid cost, shortage of landfill for dewatered cake, shortage of land for incineration ash, incineration equipment cost, high cost of heavy oil for incineration. ing.
[0003]
In order to solve such problems, the “Patent Sludge Reduction Method Using Ozone” is disclosed in the patent publication. This technology is a method in which an activated sludge having a larger amount than the amount of surplus sludge generated is extracted from the activated sludge treatment process of waste water and ozone-oxidized, and then returned to the activated sludge treatment process as it is.
[0004]
In addition, the method of hydrolyzing activated sludge with an alkaline agent to improve the biodegradability of sludge, the method of heating activated sludge to destroy cells (Journal of Japan Society on Water Environment, Vol. 21, No. 6, p360: thermophilic microorganisms) Activated sludge process in which surplus sludge does not occur), a method of crushing activated sludge with a mill, a water jet method in which sludge is sprayed at high speed from a nozzle having an inner diameter of about 1 to 2 mm provided at a high-pressure pump discharge port ( Aso et al. Basic study of sludge reduction system; 37th sewerage research conference lectures p482-484, 2000), adding excess sludge to ozone or irradiating with ultrasonic waves and digesting anaerobically Methods (41st Annual Scientific Lecture Meeting of Japan Society of Civil Engineers, November 1986, p915) are known.
[0005]
[Problems to be solved by the invention]
However, since the conventional technology requires a large amount of aeration power to reduce the amount of solubilized sludge by aerobic organisms, there is a problem of high energy consumption, and the amount of solubilized sludge is reduced by anaerobic digestion treatment. Even in the case of aging, there is a problem that the digestion residue that cannot be digested remains considerably because the processing time of the anaerobic digestion process is long.
The present invention has been made in view of such conventional problems, and organic sludge such as excess sludge generated from the biological treatment process of organic sewage is reduced at a high speed and energy-saving high reduction efficiency. The challenge is to provide new technologies that can be used.
[0006]
[Means for Solving the Problems]
The present invention was able to solve the above problems by the following means.
(1) The organic sludge and acid fermentation treatment, solid-liquid separation, the separated sludge obtained by solid-liquid separation processes solubilize, then solubilized sludge obtained in solubilization process with digestion anaerobic The digested sludge generated in the anaerobic digestion is returned to the solubilized treatment of the separated sludge as digested sludge, and the separated liquid separated by solid-liquid separation after the acid fermentation treatment is subjected to a biological treatment process of organic wastewater. A method for reducing the amount of organic sludge, characterized in that it is supplied to an anaerobic part or an anoxic part .
[0007]
(2) An acid fermenter that introduces organic sludge and performs acid fermentation, a solid-liquid separator that introduces acid-fermented sludge from the acid fermenter and separates it into separated sludge and a separated liquid, and separation from the solid-liquid separator A solubilization treatment tank that introduces sludge and solubilizes, an anaerobic digestion tank that introduces solubilized sludge from the solubilization treatment tank and performs anaerobic digestion, and digests sludge from the anaerobic digestion tank Organic sludge having piping for returning to the solubilization tank and supplying the separated liquid from the latter solid-liquid separator to the anaerobic part or oxygen-free part of the biological treatment process of organic sewage Weight reduction device.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing a configuration example in which the present invention is applied to a reduction in surplus activated sludge generated from an activated sludge treatment facility of organic sewage. That is, in FIG. 1, an apparatus for reducing the amount of sludge 1 that is surplus activated sludge from an activated sludge treatment facility (not shown) is shown, and an acid fermentation tank 2 that performs acid fermentation treatment with acid-fermenting bacteria. , there is a solid-liquid separator 4 for subsequent solid-liquid separation of acid fermentation sludge 3 in the acid fermentation tank 2, a separation sludge 5 separated by the solid-liquid separator 4 sonication (8 illustrates an ultrasound, Note Ultrasound is defined as a sound wave or elastic wave having a frequency (about 10 KHZ or more) exceeding the audible frequency of the human ear. ) Solubilization by a solubilization treatment tank 7 that performs solubilization treatment by ozone oxidation or the like The solubilized sludge 9 is further digested by being placed in a subsequent anaerobic digestion tank 10, and the generated digestion gas 14 is discharged from the top of the tank 10 to the outside of the system, and the membrane installed in the anaerobic digestion tank 10 By the separation unit 11, the digestion detachment liquid becomes membrane permeated water 1. 2 so that the solubilized and concentrated sludge that flows out of the system at the same time and is difficult to digest at the same time is taken out as digested sludge 13, and a part of it is returned to the solubilization treatment tank 7 as return digested sludge 15. Only the difference is discharged out of the system as waste digested sludge 16. On the other hand, the separation liquid 6 exiting from the solid-liquid separation apparatus 4 is subjected to methane fermentation by fixed methane bacteria in an upflow anaerobic sludge blanket apparatus (hereinafter referred to as “UASB”) 17. Processed to be discharged out of the system as digested gas 19 and treated water 18, or returned to the anaerobic or anoxic part 20 of the biological treatment process of organic sewage, or solubilized sludge 9 is configured to be supplied to the anaerobic digester 10.
[0009]
In the present invention, a part of the precipitated sludge in the sedimentation tank of the activated sludge treatment process (including those with anaerobic parts such as biological dephosphorization method and biological nitrification denitrogenation method) for purifying the sewage by aerobic microorganisms Is extracted and supplied to the acid fermenter 2 that performs acid fermentation treatment with acid-fermenting bacteria (facultative bacteria) and allowed to stay for a required time. The main components constituting the cell wall of activated sludge are polysaccharides and proteins, but polysaccharides are difficult to be anaerobically digested. However, when activated sludge is subjected to acid fermentation, the polysaccharide changes to an organic acid such as a monosaccharide, a lower fatty acid, or acetic acid. Proteins are changed into peptides, amino acids, and fatty acids.
[0010]
Next, the acid fermentation sludge 3 flowing out from the acid fermentation tank 2 is solid-liquid separated. The solid-liquid separation device 4 applies various separation means such as centrifugal separation, flotation separation, precipitation separation, and membrane separation. Next, the separated sludge 5 is supplied to the solubilization treatment tank 7.
As the sludge solubilization means in the solubilization treatment tank, known surplus sludge biological cell wall destruction such as ultrasonic treatment, ozone oxidation, milling sludge grinding, alkali treatment, heat treatment, that is, solubilization means can be adopted, In particular, the solubilization means using the ultrasonic wave 8 is preferable because the cost for solubilization is the lowest, the apparatus is simple and small.
[0011]
When supplied to an ultrasonic irradiation tank and irradiated with ultrasonic waves 8, the sludge 1 is solubilized in order to effectively destroy the sludge cell walls. When the frequency is too high, it is recognized that the sludge solubilizing effect is deteriorated, and 10 to 100 KHZ, more preferably 15 to 50 KHZ is suitable. The ultrasonic irradiation energy for sludge solubilization is preferably 2 to 10 Kwh / kg · SS.
In the solubilization method using the ultrasonic wave 8, there was an optimum range for the solid concentration, and the range of 1.5 to 4% was an appropriate range. It was confirmed that the sludge solids concentration within this range improves the sludge cell destruction effect with the same ultrasonic output, in other words, the sludge solubilization effect.
[0012]
If the concentration exceeds 4%, the concentration becomes too high, the viscosity of the sludge slurry becomes too high, and the fluidity deteriorates, so the effect of ultrasonic irradiation on the sludge becomes non-uniform. In addition, if the solid concentration is less than 1.5%, the solid concentration is too low, and ultrasonic energy is wasted in addition to the solubilizing action of the solid. The time for ultrasonic irradiation is very short and may be several minutes or less. Therefore, the volume of the ultrasonic irradiation tank can be very small.
When the ultrasonic wave is irradiated, the ultrasonic energy is finally changed to heat, and the temperature of the sludge rises. Therefore, the temperature rise effect of ultrasonic wave irradiation is used for the medium temperature methane fermentation process where a liquid temperature of about 35 ° C is suitable. It will be convenient.
[0013]
Further, when the excess sludge 1 is solubilized by ozone, the separated sludge 5 after the acid fermentation tank 2 is aerated with an oxygen-containing gas in advance, and the oxidation reduction potential (ORP) is increased and then the ozone oxidation is performed. Reducing substances such as hydrogen are reduced and the amount of ozone required for sludge solubilization can be reduced. Thus, the ozone injection rate in the case of solubilizing the acid-fermented sludge in an aerobic state with ozone may be 20 to 60 g ozone per kg sludge solid weight.
[0014]
When acid-fermented sludge is solubilized, the particle system of activated sludge that could not be liquefied by acid-fermenting bacteria and acid-fermenting bacteria becomes finer, and the cell wall is destroyed.
Next, the organic component of the separation liquid 6 after acid fermentation is mainly composed of organic acid, so it is decomposed into methane gas and carbon dioxide at a very high speed by the methane fermentation method using immobilized methane bacteria such as UASB17. Is done. In the UASB method, high-concentration SS content in the raw water is an obstacle, but in the present invention, since a separated liquid with a small amount of solid-liquid separation can be supplied, there is no such an obstacle. Of course, the acid-fermented sludge separation liquid 6 may be supplied to the solubilized sludge anaerobic digester 10 and anaerobically digested together. Or the separation liquid 6 after the acid fermenter 2 is supplied to the anaerobic part or anaerobic part 20 of the biological treatment process of organic sewage, and the organic carbon source for promoting the discharge of phosphorus from the biological dephosphorizing bacteria Or an organic carbon source for biological denitrification is a preferred embodiment.
[0015]
In the UASB apparatus 17, the solid matter concentration of the Methane granule forming the blanket is 75000 to 90000 mg / liter, which is a very high concentration. Therefore, the organic load is a remarkably high load of about 30 kg CODcr / m 3. Can be taken. Therefore, when processing the solid-liquid separation liquid 13 after the excess sludge solubilization of this invention, the residence time of the UASB apparatus 17 can perform sufficient methane fermentation processing for a short time of several hours at the temperature of 35 degreeC.
[0016]
As a method using immobilized methane bacteria, the UASB method using the self-immobilization (self-granulation) phenomenon of methanogens is optimal, but a microorganism-adhering carrier such as granular ceramic, granular activated carbon, or granular zeolite is used. An anaerobic fluidized bed method or an anaerobic fixed bed method may be applied. FIG. 1 illustrates the UASB method.
[0017]
In addition, since the sludge solubilized with ozone, ultrasonic wave 8 or the like has increased biodegradability by anaerobic bacteria, anaerobic digestion proceeds at high speed and with high decomposition efficiency in the anaerobic digestion tank 10.
The anaerobic digester 10 of FIG. 1 is agitated, and a membrane separation unit 11 is installed inside. The sludge in the anaerobic digestion tank 10 is solid-liquid separated by the membrane separation unit 11, and the digestion and desorption liquid flows out as membrane permeated water 12.
When the solubilized sludge in the present invention is subjected to anaerobic digestion, 3 days is sufficient at a temperature of 35 ° C. As a result, the total processing speed is greatly improved as compared with the conventional method, and the entire processing tank volume is also reduced.
[0018]
In the anaerobic digestion tank 10, the portion that is difficult to digest by the anaerobic digestion of the solubilized concentrated sludge is accumulated as a residue. Therefore, when it is appropriately extracted and returned to the solubilization treatment tank 7 and solubilized, it is again anaerobic digestion. It becomes a possible property and is decomposed in the anaerobic digester 10. As a result, the amount of undigested residue is reduced and almost no undigested residue is generated. According to the experiments by the present inventors, when the surplus activated sludge is reduced according to the present invention, the amount of sludge that must be finally discarded outside the system is 0.07 to 0.09 kg per kg of surplus activated sludge. It was only.
[0019]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not restrict | limited at all by this Example.
[0020]
Example 1
Excess activated sludge discharged from the sewage activated sludge treatment facility was tested.
The test conditions are shown in Table 1.
[0021]
[Table 1]
Figure 0003698419
[0022]
As a result of operating under the above conditions, the amount of sludge that had to be discarded out of the system from the anaerobic digester was 46 g · SS / d on a solid basis. Since the excess sludge treatment amount was 700 g · SS / d, the sludge reduction rate was excellent at 93%.
The quality of the UASB treated water was as good as BOD 150 mg / liter, and the quality of the effluent from the sludge anaerobic digester was 230 mg / liter.
[0023]
【The invention's effect】
According to the present invention, the following effects (1) to (3) were obtained.
(1) Organic sludge such as surplus activated sludge can be highly reduced at high speed and energy saving.
(2) Therefore, the sludge dewatering / incineration process is greatly streamlined.
(3) Since power can be generated using the generated methane gas as fuel, the obtained power can be used as ultrasonic power for solubilization of sludge and power for ozone generator, and power purchased from outside can be reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the configuration of an organic sludge reduction apparatus according to the present invention.
[Explanation of symbols]
1 Sludge (surplus activated sludge)
2 Acid fermentation tank 3 Acid fermentation sludge 4 Solid-liquid separator 5 Separation sludge 6 Separation liquid 7 Solubilization means 8 Ultrasonic 9 Digestion gas 10 Anaerobic digestion tank 11 Membrane separation unit 12 Membrane permeate 13 Digestion sludge 14 Digestion gas 15 Return Digested sludge 16 Waste digested sludge 17 UASB
18 Treated water 19 Digestion gas 20 Anaerobic or anoxic part of biological treatment process of organic sewage

Claims (2)

有機性汚泥を酸発酵処理した後、固液分離し、該固液分離によって得た分離汚泥を可溶化処理し、次いで該可溶化処理で得た可溶化汚泥を嫌気性消化するとともに、前記嫌気性消化において生じた消化汚泥を、前記分離汚泥の可溶化処理に返送消化汚泥として送り、かつ前記酸発酵処理後の固液分離で分離された分離液を有機性汚水の生物処理工程の嫌気部または無酸素部に供給して処理することを特徴とする有機性汚泥の減量化方法。The organic sludge is subjected to an acid fermentation treatment, followed by solid-liquid separation, the separated sludge obtained by the solid-liquid separation is solubilized, and then the solubilized sludge obtained by the solubilization treatment is anaerobically digested and the anaerobic The digested sludge generated in the sexual digestion is sent back to the solubilized treatment of the separated sludge as the digested sludge, and the separated liquid separated by solid-liquid separation after the acid fermentation treatment is anaerobic part of the biological treatment process of organic sewage Or the reduction method of the organic sludge characterized by supplying to an anoxic part and processing . 有機性汚泥を導入して酸発酵する酸発酵槽、前記酸発酵槽から酸発酵汚泥を導入して分離汚泥と分離液に分離する固液分離装置、前記固液分離装置からの分離汚泥を導入して可溶化する可溶化処理槽、前記可溶化処理槽からの可溶化汚泥を導入して嫌気性消化をする嫌気性消化槽を有し、前記嫌気性消化槽からの消化汚泥を可溶化処理槽に返送し、かつ前記の後段の固液分離装置からの分離液を有機性汚水の生物処理工程の嫌気部または無酸素部に供給する配管を有することを特徴とする有機性汚泥減量化装置。An acid fermenter that introduces organic sludge for acid fermentation, a solid-liquid separator that introduces acid-fermented sludge from the acid fermenter and separates it into separated sludge and a separated liquid, and a separated sludge from the solid-liquid separator A solubilization treatment tank to be solubilized, an anaerobic digestion tank that introduces the solubilized sludge from the solubilization treatment tank to perform anaerobic digestion, and solubilizes the digested sludge from the anaerobic digestion tank An organic sludge reduction apparatus characterized by having a pipe that returns to the tank and supplies the separated liquid from the subsequent solid-liquid separation apparatus to the anaerobic part or oxygen-free part of the biological treatment process of organic sewage .
JP2001174213A 2001-06-08 2001-06-08 Organic sludge reduction method and apparatus Expired - Fee Related JP3698419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001174213A JP3698419B2 (en) 2001-06-08 2001-06-08 Organic sludge reduction method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001174213A JP3698419B2 (en) 2001-06-08 2001-06-08 Organic sludge reduction method and apparatus

Publications (2)

Publication Number Publication Date
JP2002361293A JP2002361293A (en) 2002-12-17
JP3698419B2 true JP3698419B2 (en) 2005-09-21

Family

ID=19015530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001174213A Expired - Fee Related JP3698419B2 (en) 2001-06-08 2001-06-08 Organic sludge reduction method and apparatus

Country Status (1)

Country Link
JP (1) JP3698419B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351271A (en) * 2003-05-27 2004-12-16 Unitika Ltd Method and apparatus of treating organic waste water
JP2005342682A (en) * 2004-06-07 2005-12-15 Mitsubishi Electric Corp Method and apparatus for treating organic waste liquid
JP2006198484A (en) * 2005-01-18 2006-08-03 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus and method
CN100522853C (en) * 2007-03-05 2009-08-05 同济大学 Sludge phase-splitting slaking method of water treatment plant
JP5213153B2 (en) * 2007-06-13 2013-06-19 学校法人 芝浦工業大学 Purification method of contaminated seawater by seawater-derived microorganisms
GB2455335A (en) * 2007-12-06 2009-06-10 United Utilities Plc Dewatering of Sludge by Fermentation
JP5209686B2 (en) * 2010-10-08 2013-06-12 水ing株式会社 Organic waste water treatment apparatus and treatment method
CN102001809B (en) * 2010-12-07 2012-06-06 北京机电院高技术股份有限公司 Belt-type drying complete processing device and method for sludge
JP5742254B2 (en) * 2011-01-28 2015-07-01 栗田工業株式会社 Organic wastewater treatment method
CN103008324B (en) * 2012-11-26 2014-12-03 北京化工大学 Efficient anaerobic digestion method for self-immobilized biological membranes of kitchen wastes and fruit and vegetable wastes
JP2016019966A (en) * 2014-06-17 2016-02-04 日本臓器製薬株式会社 Sludge treatment method and sludge treatment system
CN114314836A (en) * 2021-12-31 2022-04-12 中国科学院生态环境研究中心 Sewage treatment device and process for deep denitrification under low carbon-nitrogen ratio by ASO method
JP7292535B1 (en) * 2022-04-08 2023-06-16 三菱電機株式会社 ORGANIC WASTE TREATMENT SYSTEM AND ORGANIC WASTE TREATMENT METHOD

Also Published As

Publication number Publication date
JP2002361293A (en) 2002-12-17

Similar Documents

Publication Publication Date Title
JP3754979B2 (en) Sludge reduction method and apparatus
CN103508617B (en) The method of petrochemical industry reducing biological sludge and treatment unit thereof
JP3698419B2 (en) Organic sludge reduction method and apparatus
WO2006035594A1 (en) Method and apparatus for biologically treating wastewater containing fats and oils
JP2003200198A (en) Method and apparatus for treating sludge
JP3775654B2 (en) Method and apparatus for reducing excess sludge in biological treatment of organic sewage
JP2003039096A (en) Method and apparatus for treating organic waste
KR100770626B1 (en) Bio gas collection system of organic waste
JP3763460B2 (en) Biological treatment method and apparatus for organic wastewater
JP4667890B2 (en) Organic waste treatment methods
JP3977174B2 (en) Sludge treatment method and apparatus for reducing generation amount of excess sludge
JP2006239625A (en) Method and equipment for treating organic waste
JP4457391B2 (en) Organic sludge treatment method and treatment apparatus
JP2004041953A (en) Method and equipment for treating organic waste water
JP2005103375A (en) Methane fermentation treatment method and apparatus
JP2002059190A (en) Method of treating sewage and sludge
JP2006326438A (en) Apparatus and method for treating sludge
JP2002316130A (en) Method and apparatus for treating organic solid waste
KR20020075637A (en) Method and apparatus for treating excess sludge produced from processes for biological treatment of sewage or waste water
CN105366813A (en) Method and system for conducting sewage treatment and sludge reduction through combination of ultrasonic waves and A2O technology
JP2005095811A (en) Method and apparatus for treating organic waste
JP3672091B2 (en) Organic wastewater treatment method and equipment
JP4600921B2 (en) Organic waste treatment method and apparatus
JP2002224686A (en) Anaerobic treatment method and equipment for starch particle-containing liquid
JP2003300096A (en) Method for anaerobic digestion of high-concentration sludge and apparatus for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

R150 Certificate of patent or registration of utility model

Ref document number: 3698419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees