JP5742254B2 - Organic wastewater treatment method - Google Patents

Organic wastewater treatment method Download PDF

Info

Publication number
JP5742254B2
JP5742254B2 JP2011016393A JP2011016393A JP5742254B2 JP 5742254 B2 JP5742254 B2 JP 5742254B2 JP 2011016393 A JP2011016393 A JP 2011016393A JP 2011016393 A JP2011016393 A JP 2011016393A JP 5742254 B2 JP5742254 B2 JP 5742254B2
Authority
JP
Japan
Prior art keywords
solid
acid fermentation
liquid
dilution
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011016393A
Other languages
Japanese (ja)
Other versions
JP2012152721A (en
Inventor
鈴木 和夫
和夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011016393A priority Critical patent/JP5742254B2/en
Publication of JP2012152721A publication Critical patent/JP2012152721A/en
Application granted granted Critical
Publication of JP5742254B2 publication Critical patent/JP5742254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、固形有機物を多く含有する有機性排水を、有機酸発酵及びメタン発酵により効率的に処理する方法に関する。   The present invention relates to a method for efficiently treating organic wastewater containing a large amount of solid organic matter by organic acid fermentation and methane fermentation.

従来、有機性排水は、一般に、活性汚泥法等の好気性生物処理法で処理されてきた。
しかし、好気性生物処理法は、有機物の生分解に酸素を必要とし、このために曝気等を行うことから、省エネルギーな処理法と言えない。また、好気性細菌は汚泥転換率が高いために、余剰汚泥の発生量が多いという問題もある。
Conventionally, organic wastewater has generally been treated by an aerobic biological treatment method such as an activated sludge method.
However, the aerobic biological treatment method requires oxygen for biodegradation of organic matter, and aeration is performed for this purpose, so it cannot be said that it is an energy-saving treatment method. Moreover, since aerobic bacteria have a high sludge conversion rate, there is also a problem that a large amount of excess sludge is generated.

この問題を解決する方法として、嫌気性生物処理法がある。嫌気性生物処理法は、有機物をメタンガスとしてエネルギー回収できることや有機物の分解に酸素を必要としないため曝気動力を要しないこと等、省エネルギーな方法であり、且つ余剰汚泥発生量が少ないという利点もある。
しかし、メタン菌は、増殖速度が非常に遅いことから、細菌当りの負荷は好気性細菌より高くとれず、菌体量の確保が重要となる。また、メタン菌はアンモニア等による阻害も受けやすいため、十分な運転条件の調整が必要となる。
As a method of solving this problem, there is an anaerobic biological treatment method. The anaerobic biological treatment method is an energy-saving method that does not require aeration power because it can recover energy from methane gas as an organic substance and does not require oxygen for decomposition of the organic substance, and has the advantage that the amount of excess sludge generated is small. .
However, since the growth rate of methane bacteria is very slow, the load per bacterium cannot be higher than that of aerobic bacteria, and it is important to secure the amount of microbial cells. In addition, since methane bacteria are susceptible to inhibition by ammonia or the like, sufficient adjustment of operating conditions is required.

嫌気性生物処理法としては、現在、以下のような方法が主として採用されている。
(1) UASB法(Upflow Anaerobic Sludge Blanket;上向流式嫌気性汚泥床法):この処理法は自己造粒した嫌気性微生物のペレット(グラニュールと称す)が展開している汚泥床中に有機性排水を通水し、有機物をメタンガス化するものである。この方法は、メタン菌等の嫌気性微生物をグラニュールに固定化しており、そのグラニュールは沈降性が非常に良いことから、固液分離装置が不要である、微生物濃度を非常に高く保つことができるので、高負荷運転が可能である、といった利点がある。
Currently, the following methods are mainly employed as anaerobic biological treatment methods.
(1) UASB method (Upflow Anaerobic Sludge Blanket): This treatment method is used in a sludge bed where self-granulated anaerobic microbial pellets (called granules) are developed. Organic wastewater is passed through to convert organic matter into methane gas. In this method, anaerobic microorganisms such as methane bacteria are immobilized on granules, and the granules have very good sedimentation, so no solid-liquid separation device is required, and the microorganism concentration is kept very high. Therefore, there is an advantage that high load operation is possible.

しかし、UASB法は、主として溶解性有機物の処理を対象とするものであり、UASB法による固形有機物の分解は難しく、また、固形有機物がグラニュールの沈降性を阻害するおそれもある。従って、従来は、固形有機物を多く含む有機性排水をUASB法で処理する場合には、UASB反応槽の前段で有機性排水を固液分離し、その分離液のみをUASB反応槽に導入して処理することが行われている。   However, the UASB method is mainly intended for the treatment of soluble organic matter, and it is difficult to decompose the solid organic matter by the UASB method, and the solid organic matter may inhibit the sedimentation property of the granules. Therefore, conventionally, when organic wastewater containing a large amount of solid organic matter is treated by the UASB method, the organic wastewater is separated into solid and liquid before the UASB reaction tank, and only the separated liquid is introduced into the UASB reaction tank. Processing has been done.

また、菌体を固定化したUASB法以外に、以下のような浮遊性の嫌気性処理法も提案され、実用化されている。
(2) 一過式のメタン発酵法:この方法は、下水余剰汚泥やし尿処理で用いられてきた方法であり、固形有機物も処理可能である。一過式なので固液分離が不要で、省エネルギーである反面、菌体濃度を高く保てないことから大容量のメタン発酵槽が必要となるという欠点がある。
(3) 汚泥返送を行うメタン発酵法:上記一過式における大容量の発酵槽を必要とするという問題点を解決するために、メタン発酵槽内汚泥を抜き出して遠心分離等で濃縮して返送することにより、発酵槽内の汚泥濃度を高める方法である。この方法では、メタン細菌の回収のために凝集剤(カチオンポリマー)を必要することや遠心濃縮機等の使用で、多大の薬剤費と動力費及び建設費が必要となるため、一般的にはあまり普及していないのが実状である。
In addition to the UASB method in which cells are immobilized, the following floating anaerobic treatment methods have been proposed and put into practical use.
(2) Transient methane fermentation method: This method has been used in the treatment of excess sewage sludge and human waste, and can also treat solid organic matter. Since it is a transient type, solid-liquid separation is unnecessary and energy saving is required. On the other hand, since the bacterial cell concentration cannot be kept high, there is a disadvantage that a large-capacity methane fermenter is required.
(3) Methane fermentation method for returning sludge: In order to solve the problem of requiring a large-capacity fermenter in the above-mentioned transient type, the sludge in the methane fermenter is extracted, concentrated by centrifugation, etc., and returned. This is a method for increasing the sludge concentration in the fermenter. In this method, since a flocculant (cationic polymer) is required for the recovery of methane bacteria and the use of a centrifugal concentrator, etc., a large amount of chemical costs, power costs and construction costs are required. The reality is that it is not so popular.

固形有機物を多く含む有機性排水を固液分離し、その分離液のみをUASB法で嫌気性処理する場合、有機性排水の固液分離で有機性の濃縮汚泥が発生する。この汚泥処理には通常活性汚泥法が用いられているが、活性汚泥法は、上記のように省エネルギーな処理法といえず、且つ曝気槽での発泡や沈殿槽での汚泥浮上等の運転上のトラブルも多い。   When organic wastewater containing a large amount of solid organic matter is subjected to solid-liquid separation and only the separated solution is subjected to anaerobic treatment by the UASB method, organic concentrated sludge is generated by solid-liquid separation of the organic wastewater. The activated sludge method is usually used for this sludge treatment. However, the activated sludge method cannot be said to be an energy-saving treatment method as described above, and in operation such as foaming in an aeration tank and sludge floating in a sedimentation tank. There are many troubles.

一方、この固形有機物を多く含む有機性排水の固液分離で得られた濃縮汚泥を嫌気性生物処理した場合には、次のような問題がある。即ち、例えば、食品製造排水等の有機性排水は、固形有機物を多く含み且つその固形物中に有機体窒素を多く含む。従って、濃縮した固形有機物を嫌気性生物処理した場合、固形有機物を分解するに従い、アンモニア性窒素(NH−N)が高濃度に生成する。メタン細菌(中温;35℃)のNH−Nの阻害濃度は約1,000mg/L(500〜2,000mg/L)で、運転に際してはこの阻害濃度以下に希釈する必要がある。この希釈により、メタン発酵槽への流入水量は大幅に増加し(数倍〜10倍程度)となり、前記一過式メタン発酵槽の場合には膨大な容量が必要となる。
また、汚泥返送を行うメタン発酵法でも、固液分離に供される水量が増加し、固液分離装置が大規模になり、且つ凝集剤、電気代等の運転経費も高騰する。
On the other hand, when the concentrated sludge obtained by solid-liquid separation of organic waste water containing a large amount of solid organic matter is subjected to anaerobic biological treatment, there are the following problems. That is, for example, organic wastewater such as food production wastewater contains a large amount of solid organic matter and contains a lot of organic nitrogen in the solid matter. Therefore, when an anaerobic biological treatment is performed on the concentrated solid organic matter, ammonia nitrogen (NH 4 -N) is generated at a high concentration as the solid organic matter is decomposed. The inhibitory concentration of NH 4 -N in methane bacteria (medium temperature; 35 ° C.) is about 1,000 mg / L (500 to 2,000 mg / L), and it is necessary to dilute to this inhibitory concentration or less during operation. By this dilution, the amount of water flowing into the methane fermenter is greatly increased (several times to 10 times), and a huge capacity is required in the case of the transient methane fermenter.
In addition, even in the methane fermentation method in which sludge is returned, the amount of water provided for solid-liquid separation increases, the solid-liquid separation device becomes large-scale, and the operating costs such as the flocculant and electricity cost also rise.

一方、メタン発酵の前処理として、有機酸発酵を行う二相処理法も提案されている。二相処理法であれば、次のような利点がある。
即ち、固形有機物の嫌気性生物処理において、固形有機物は、加水分解され低分子化し、糖、アミノ酸等になり、次いで、酸生成細菌により有機酸(低級脂肪酸)となり、更に酢酸生成菌により酢酸となる。メタン発酵では、更にメタン生成菌によって酢酸がメタンと二酸化炭素となる。
On the other hand, a two-phase treatment method in which organic acid fermentation is performed is also proposed as a pretreatment for methane fermentation. The two-phase processing method has the following advantages.
That is, in the anaerobic biological treatment of solid organic matter, the solid organic matter is hydrolyzed and reduced in molecular weight to sugar, amino acid, etc., then converted to an organic acid (lower fatty acid) by acid-producing bacteria, and further to acetic acid by acetic acid-producing bacteria. Become. In methane fermentation, acetic acid is further converted into methane and carbon dioxide by methanogenic bacteria.

この微生物反応では、メタン生成細菌の増殖が著しく遅いので種々の阻害も受けやすく且つ回復も遅く、その維持管理が難しいが、有機酸発酵とメタン発酵とを分離して行う二相処理法では、前段の有機酸発酵で、有機酸生成ないし酢酸生成までを、種々の細菌で行うため、メタン細菌に比較して阻害を受けにくく、回復しやすい。
例えば、アンモニア性窒素(NH−N)による阻害を受けるNH−N濃度も、上述の如く、中温メタン細菌が1,000mg/L程度であるのに対して、酸生成菌は5,000mg/L以上と言われている。更に、NH−N阻害はNH イオンよりもガス化したNHによるものと言われているが、酸発酵槽内をpH5〜6の弱酸性としてNHの生成を防止することにより阻害を受けにくくすることもできる。
In this microbial reaction, the growth of methanogenic bacteria is remarkably slow, so they are susceptible to various inhibitions and are slow to recover and difficult to maintain, but in the two-phase treatment method that separates organic acid fermentation and methane fermentation, Since organic acid production or acetic acid production is carried out by various bacteria in the preceding organic acid fermentation, it is less susceptible to inhibition and easier to recover than methane bacteria.
For example, the concentration of NH 4 -N that is inhibited by ammoniacal nitrogen (NH 4 -N) is about 1,000 mg / L for mesophilic methane bacteria as described above, whereas that for acid producing bacteria is 5,000 mg. / L or more. Furthermore, NH 4 -N inhibition is said to be due to gasification of NH 3 rather than NH 4 + ions, but it is inhibited by making the acid fermenter weakly acidic at pH 5-6 to prevent the formation of NH 3. It can be made difficult to receive.

酸発酵に伴う余剰汚泥の生成は、メタン細菌に比較しては2〜3倍と大きいが、好気処理に比較しては約1/2〜1/3と少ない。従って、二相処理法による処理系統全体としての余剰汚泥の生成量は、好気性生物処理よりも非常に少ない。
なお、酸発酵処理pHを弱酸性、例えばpH5〜6(望ましくはpH5.0〜5.5)とすることで、メタン細菌の活動が阻害されるので、酸発酵槽でのメタンガスの発生を抑えることもできる。
The production of excess sludge accompanying acid fermentation is 2-3 times larger than that of methane bacteria, but is about 1 / 2-1 / 3 less than that of aerobic treatment. Therefore, the amount of surplus sludge produced as a whole treatment system by the two-phase treatment method is much smaller than that of the aerobic biological treatment.
In addition, since the activity of methane bacteria is inhibited by setting the acid fermentation treatment pH to weak acidity, for example, pH 5 to 6 (preferably pH 5.0 to 5.5), generation of methane gas in the acid fermentation tank is suppressed. You can also.

このように、固形有機物は、高分子→低分子→酸生成の過程を経て、メタン発酵されるが、この固形有機物の処理を酸発酵工程とメタン発酵工程とに分離して行うことで、固形有機物をより省エネルギー的に分解処理し、また、より多くのエネルギー回収を行うことができるようになる。   Thus, the solid organic matter is methane-fermented through a process of polymer → low molecule → acid generation, but the solid organic matter is separated into an acid fermentation step and a methane fermentation step, so that the solid organic matter is solidified. Organic substances can be decomposed more energy-saving, and more energy can be recovered.

従来、このような二相処理法による有機性排水の処理では、有機酸発酵で得られた酸発酵液は、通常、希釈や固液分離を行うことなく、全量をメタン発酵処理(通常一過式)に供しているが、特許文献1には、酸発酵液を固液分離し、分離液をメタン発酵することが記載されている。
この特許文献1では、酸発酵液中に多く含まれる固形分(SS)がメタン発酵槽に流入すると、槽内でSSが蓄積し、例えばUASB法では、グラニュール汚泥の系内流出を引き起こし、また、固定床法では濾材の閉塞を引き起こし、いずれの場合も処理効率が低下することから、この問題を解決するために、酸発酵液を固液分離し、分離液をメタン発酵に供している。
Conventionally, in the treatment of organic wastewater by such a two-phase treatment method, the whole amount of acid fermentation broth obtained by organic acid fermentation is usually subjected to methane fermentation treatment (normally transient treatment without dilution or solid-liquid separation). However, Patent Document 1 describes that the acid fermentation liquid is subjected to solid-liquid separation and the separation liquid is subjected to methane fermentation.
In this patent document 1, when solid content (SS) much contained in an acid fermentation liquid flows into a methane fermentation tank, SS accumulates in the tank. For example, in the UASB method, the granule sludge is caused to flow into the system, Moreover, in the fixed bed method, the filter medium is blocked, and in any case, the processing efficiency is lowered. In order to solve this problem, the acid fermentation broth is subjected to solid-liquid separation, and the separated liquid is subjected to methane fermentation. .

特許第2587301号公報Japanese Patent No. 2587301

しかし、特許文献1の方法のように、酸発酵液を単に固液分離して分離液をメタン発酵に供する方法では、次のような問題がある。   However, as in the method of Patent Document 1, the method of simply subjecting the acid fermentation broth to solid-liquid separation and subjecting the separated liquid to methane fermentation has the following problems.

(1) 固形有機物はタンパク質等の多くの窒素分を含んでおり、この固形有機物を有機酸発酵すると、アンモニア性窒素(NH−N)となるが、このNH−Nは、前述のようにメタン細菌に対して阻害作用がある。酸発酵液を単に固液分離して分離液をメタン発酵に供するのみでは、有機酸発酵で生成したNH−Nをメタン細菌の阻害濃度で含む液がメタン発酵槽に流入するようになり、メタン発酵効率が低下する。 (1) The solid organic matter contains a large amount of nitrogen such as protein. When this solid organic matter is subjected to organic acid fermentation, it becomes ammoniacal nitrogen (NH 4 -N). This NH 4 -N is as described above. Has an inhibitory effect on methane bacteria. If the acid fermentation broth is simply subjected to solid-liquid separation and the separated liquid is subjected to methane fermentation, a liquid containing NH 4 -N produced by organic acid fermentation at an inhibitory concentration of methane bacteria will flow into the methane fermentation tank. Methane fermentation efficiency decreases.

(2) 酸発酵液は、原水である有機性排水由来の固形無機物を含み、このため固形物濃度(SS)10000mg/L以上の高濃度SS含有液となる。このような酸発酵液をそのまま固液分離した場合、液中に大量に含まれるSS分に溶解性有機物が付着して汚泥と共に分離されることとなり、有機酸発酵で生成した溶解性有機物を効率的に分離液中に回収することができず、濃縮汚泥側に含有されて系外に排出される溶解性有機物量が多くなる。この場合には、メタン発酵に供される溶解性有機物量の低減で、メタンガスの回収効率が低下する。 (2) The acid fermentation broth contains a solid inorganic substance derived from organic wastewater that is raw water, and thus becomes a high-concentration SS-containing liquid having a solid matter concentration (SS) of 10,000 mg / L or more. When such an acid fermentation broth is solid-liquid separated as it is, soluble organic matter adheres to the SS contained in a large amount in the solution and is separated together with sludge, so that the soluble organic matter produced by organic acid fermentation is efficiently used. In other words, the amount of soluble organic substances that cannot be recovered in the separation liquid and contained on the concentrated sludge side and discharged out of the system increases. In this case, the recovery efficiency of methane gas falls by the reduction of the amount of soluble organic matter provided for methane fermentation.

なお、特許文献1では、メタン発酵処理水の一部を酸発酵槽に循環しているが、これは単なる処理水の循環処理であり、酸発酵工程からの酸発酵液の希釈には該当しない。   In Patent Document 1, a part of the methane fermentation treated water is circulated to the acid fermenter, but this is merely a circulated treatment of the treated water and does not correspond to dilution of the acid fermentation broth from the acid fermentation process. .

本発明は上記従来の問題点を解決し、固形有機物を多く含有する有機性排水を二相処理法により効率的に処理する方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned conventional problems and to provide a method for efficiently treating organic waste water containing a large amount of solid organic matter by a two-phase treatment method.

本発明(請求項1)の有機性排水の処理方法は、固形有機物を含有する有機性排水を有機酸発酵する酸発酵工程と、該酸発酵工程から流出した酸発酵液を希釈水で希釈する希釈工程と、該希釈工程の希釈液を固液分離する固液分離工程と、該固液分離工程の分離液をメタン発酵するメタン発酵工程とを有することを特徴とする。 The organic wastewater treatment method of the present invention (Claim 1) includes an acid fermentation step of subjecting an organic wastewater containing solid organic matter to an organic acid fermentation, and diluting the acid fermentation broth flowing out of the acid fermentation step with dilution water. It has a dilution process, the solid-liquid separation process which carries out solid-liquid separation of the dilution liquid of this dilution process, and the methane fermentation process which carries out the methane fermentation of the separated liquid of this solid-liquid separation process.

本発明(請求項2)の有機性排水の処理方法は、固形有機物を含有する有機性排水を有機酸発酵する酸発酵工程と、該酸発酵工程から流出した酸発酵液を希釈水で希釈する希釈工程と、該希釈工程の希釈液を凝集処理する凝集工程と、該凝集工程の凝集処理液を固液分離する固液分離工程と、該固液分離工程の分離液をメタン発酵するメタン発酵工程とを有することを特徴とする。 The organic wastewater treatment method of the present invention (Claim 2) includes an acid fermentation step of subjecting an organic wastewater containing solid organic matter to an organic acid fermentation, and diluting the acid fermentation broth flowing out from the acid fermentation step with dilution water. Dilution step, agglomeration step for aggregating the dilution liquid of the dilution step, a solid-liquid separation step for solid-liquid separation of the agglomeration treatment liquid of the aggregation step, and methane fermentation for methane fermentation of the separated liquid of the solid-liquid separation step And a process.

請求項3の有機性排水の処理方法は、請求項1又は2において、前記固形有機物を含有する有機性排水を固液分離する固液分離工程を有し、該固液分離工程の分離汚泥が前記酸発酵工程で有機酸発酵されることを特徴とする。   The organic wastewater treatment method according to claim 3 has a solid-liquid separation step for solid-liquid separation of the organic wastewater containing the solid organic matter in claim 1 or 2, and the separation sludge of the solid-liquid separation step is Organic acid fermentation is performed in the acid fermentation process.

請求項4の有機性排水の処理方法は、請求項3において、前記固液分離工程の分離液を生物処理する生物処理工程を有し、該生物処理工程の処理水を、前記希釈水として用いることを特徴とする。   The organic wastewater treatment method according to claim 4 has a biological treatment step of biologically treating the separated liquid of the solid-liquid separation step according to claim 3, and uses the treated water of the biological treatment step as the dilution water. It is characterized by that.

請求項5の有機性排水の処理方法は、請求項1ないしのいずれか1項において、前記希釈工程は、前記酸発酵工程からの酸発酵液を希釈槽に送給して希釈水で希釈するか、或いは、前記酸発酵液の移送配管に希釈水を注入して希釈する工程であり、前記希釈工程における希釈倍率が5〜20倍であることを特徴とする。 The organic wastewater treatment method according to claim 5 is the method according to any one of claims 1 to 4 , wherein in the dilution step, the acid fermentation liquor from the acid fermentation step is supplied to a dilution tank and diluted with dilution water. Or, it is a step of diluting by injecting dilution water into the acid fermentation broth transfer pipe, wherein the dilution rate in the dilution step is 5 to 20 times.

本発明では、酸発酵液を希釈した後固液分離することにより、分離液中のアンモニア性窒素(NH−N)濃度を下げ、メタン発酵工程におけるメタン細菌のNH−N阻害を防止して、安定かつ効率的なメタン発酵処理を行える。
また、酸発酵液を希釈することにより、酸発酵液のSS濃度を下げることで酸発酵液の固液分離に際して、酸発酵液中の溶解性有機物を効率的に分離液側に回収することができるようになり、この結果、メタン発酵工程に供される溶解性有機物量が増え、メタンガスの回収効率も向上する。
In the present invention, by diluting the acid fermentation broth and then performing solid-liquid separation, the ammonia nitrogen (NH 4 -N) concentration in the separated liquid is lowered, and NH 4 -N inhibition of methane bacteria in the methane fermentation process is prevented. Stable and efficient methane fermentation treatment.
In addition, by diluting the acid fermentation broth, by reducing the SS concentration of the acid fermentation broth, when the acid fermentation broth is subjected to solid-liquid separation, the soluble organic matter in the acid fermentation broth can be efficiently recovered on the separation liquid side. As a result, the amount of soluble organic matter provided to the methane fermentation process is increased, and the recovery efficiency of methane gas is improved.

本発明においては、酸発酵液の希釈液を凝集処理した後固液分離しても良く、これにより、より一層効率的な固液分離を行える(請求項2)。   In the present invention, the dilute solution of the acid fermentation broth may be subjected to an agglomeration treatment, followed by solid-liquid separation, whereby more efficient solid-liquid separation can be performed (claim 2).

また、固形有機物を含有する有機性排水を有機酸発酵する前に固液分離し、分離汚泥を有機酸発酵するようにしても良く、これにより、酸発酵槽の容量の小型化を図り、菌体を安定に維持して効率的な有機酸発酵を行える(請求項3)。   In addition, organic wastewater containing solid organic matter may be subjected to solid-liquid separation before organic acid fermentation, and the separated sludge may be subjected to organic acid fermentation, thereby reducing the capacity of the acid fermenter, An efficient organic acid fermentation can be performed while maintaining a stable body (Claim 3).

また、このように有機性排水を固液分離する場合、固液分離液を生物処理し、生物処理水を酸発酵液の希釈水として利用しても良い(請求項4)。   Further, when the organic waste water is separated into solid and liquid in this way, the solid / liquid separated liquid may be biologically treated, and the biologically treated water may be used as dilution water for the acid fermentation liquid.

また、本発明において、酸発酵液の希釈は、液量の過度な増加を抑えた上で、希釈による上記効果を十分に得るために、5〜20倍の希釈倍率で行うことが好ましい(請求項5)。   In the present invention, the acid fermentation broth is preferably diluted at a dilution factor of 5 to 20 in order to sufficiently obtain the above-described effects after dilution while suppressing an excessive increase in the amount of the liquid (claim). Item 5).

本発明の有機性排水の処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method of the organic waste_water | drain of this invention. 本発明の有機性排水の処理方法の他の実施の形態を示す系統図である。It is a systematic diagram which shows other embodiment of the processing method of the organic waste_water | drain of this invention. 本発明を固形有機物濃度の高い濃厚な有機性排水の処理に適用した場合の適用例を示す系統図である。It is a systematic diagram which shows the example of application at the time of applying this invention to the treatment of the rich organic waste_water | drain with a high solid organic substance density | concentration. 本発明を固形有機物濃度の高い濃厚な有機性排水の処理に適用した場合の適用例を示す系統図である。It is a systematic diagram which shows the example of application at the time of applying this invention to the treatment of the rich organic waste_water | drain with a high solid organic substance density | concentration. 実験例1の結果(酸醗酵槽のHRTと可溶化率等との関係)を示すグラフである。It is a graph which shows the result of Experimental example 1 (relation between HRT of an acid fermenter, solubilization rate, etc.). 実験例2の結果(酸醗酵槽のHRTと固液分離におけるSS回収率との関係)を示すグラフである。It is a graph which shows the result (Experiment 2) (relation between HRT of an acid fermentation tank and SS recovery rate in solid-liquid separation). 実験例3の結果(酸醗酵液の固液分離におけるPAC添加率と上澄液SSとの関係)を示すグラフである。It is a graph which shows the result (The relationship between the PAC addition rate in the solid-liquid separation of an acid fermentation liquid, and supernatant SS) of Experimental example 3. 実験例4の結果(希釈液の遠心分離における遠心力とSS回収率等との関係)を示すグラフである。It is a graph which shows the result of Experimental example 4 (relationship between the centrifugal force in SS of a dilution liquid, SS recovery rate, etc.).

以下に図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1,2は本発明の有機性排水の処理方法の実施の形態を示す系統図である。
図1の方法では、原水である固形有機物を含有する有機性排水は、配管11より第1の沈殿槽1に導入されて固液分離され、分離液は、配管12より他の生物処理装置10に送給され、活性汚泥法等の好気性生物処理法、又はUASB法等の嫌気性生物処理法で処理される。生物処理装置10の処理水の一部は配管13より後述の希釈水として希釈槽3に送給され、残部は配管14より系外へ排出される。一方、第1の沈殿槽1の分離汚泥は、配管15より酸発酵槽2に送給される。
1 and 2 are system diagrams showing an embodiment of the organic wastewater treatment method of the present invention.
In the method of FIG. 1, organic wastewater containing solid organic matter that is raw water is introduced into the first sedimentation tank 1 through the pipe 11 and separated into solid and liquid, and the separated liquid is supplied from the pipe 12 to another biological treatment apparatus 10. And processed by an aerobic biological treatment method such as an activated sludge method or an anaerobic biological treatment method such as a UASB method. A part of the treated water of the biological treatment apparatus 10 is supplied to the dilution tank 3 as dilution water described later from the pipe 13, and the remaining part is discharged out of the system through the pipe 14. On the other hand, the separated sludge in the first sedimentation tank 1 is fed to the acid fermentation tank 2 through the pipe 15.

第1の沈殿槽は、原水中の固形分(SS)を濃縮してより高濃度とすることにより、酸発酵槽2の水槽容量を小さくすると共に、菌体維持の安定化や処理効率の向上を図るために設けられる。即ち、酸発酵槽2の必要容量は、有機物負荷ではなく、滞留時間で決められるため、原水は有機酸発酵に先立ち、固液分離してSS濃度を高めることが好ましい。   The first sedimentation tank reduces the water tank capacity of the acid fermentation tank 2 by concentrating the solid content (SS) in the raw water to a higher concentration, and also stabilizes the bacterial cell maintenance and improves the processing efficiency. It is provided to plan. That is, since the required capacity of the acid fermenter 2 is determined not by the load of organic matter but by the residence time, it is preferable that the raw water is separated into solid and liquid to increase the SS concentration prior to organic acid fermentation.

本発明の有機性排水の処理方法が適用される有機性排水は、一般的に、SS濃度が500〜5000mg/L程度の工場排水等であるが、本発明では、このように前濃縮を行うことにより、SS濃度10g/L以上、特にSS濃度30g/L以上、例えば30〜40g/L程度に濃縮して酸発酵槽2に導入することが好ましい。
原水のSS濃度が上記濃度以上であれば、この第1の沈殿槽1による前濃縮は不要となる。
The organic wastewater to which the organic wastewater treatment method of the present invention is applied is generally factory wastewater having an SS concentration of about 500 to 5000 mg / L. In the present invention, preconcentration is performed in this way. Therefore, it is preferable to concentrate the SS concentration to 10 g / L or more, particularly to the SS concentration of 30 g / L or more, for example, about 30 to 40 g / L, and introduce it into the acid fermenter 2.
If the SS concentration of the raw water is equal to or higher than the above concentration, the pre-concentration by the first sedimentation tank 1 is unnecessary.

この原水の前濃縮のための固液分離手段としては特に制限はなく、沈殿槽による重力濃縮の他、遠心濃縮や加圧浮上等の手段も採用することができるが、省エネルギーの面から、重力濃縮による方法が好ましい。   The solid-liquid separation means for pre-concentration of the raw water is not particularly limited, and other means such as centrifugal concentration and pressurized levitation can be adopted in addition to gravity concentration using a precipitation tank. A method by concentration is preferred.

原水の固液分離に際しては、固液分離性の向上のために凝集剤を用いても良い。凝集剤としては、PAC(ポリ塩化アルミニウム)、硫酸バンド、塩化第二鉄、ポリ硫酸鉄等の無機凝集剤や、カチオン性高分子凝集剤(カチオンポリマー)、アニオン性高分子凝集剤(アニオンポリマー)等の高分子凝集剤を用いることができる。これらは1種を単独で用いても良く、2種以上を併用しても良い。   In the solid-liquid separation of raw water, a flocculant may be used to improve solid-liquid separation. As the flocculant, inorganic flocculants such as PAC (polyaluminum chloride), sulfuric acid band, ferric chloride, polyiron sulfate, cationic polymer flocculants (cationic polymers), anionic polymer flocculants (anionic polymers) ) And the like can be used. These may be used alone or in combination of two or more.

酸発酵槽2に導入された第1の沈殿槽1の分離汚泥は、酸発酵槽2内で有機酸発酵され、溶解性有機物となる。具体的には、固形有機物が加水分解で低分子量化された後、酸生成細菌により有機酸(低級脂肪酸)となり、更に酢酸生成菌により酢酸となる。   The separated sludge of the first sedimentation tank 1 introduced into the acid fermentation tank 2 is subjected to organic acid fermentation in the acid fermentation tank 2 and becomes soluble organic matter. Specifically, after solid organic substances are reduced in molecular weight by hydrolysis, they are converted into organic acids (lower fatty acids) by acid-producing bacteria and further converted into acetic acid by acetic acid-producing bacteria.

この酸発酵槽2は、装置の簡略化の面から、通常一過式で運転される。   This acid fermenter 2 is normally operated in a transient manner from the viewpoint of simplification of the apparatus.

酸発酵は2は、撹拌機2A、pH計2B、中和剤注入手段2C、温度計2D、加温手段(図1では、蒸気注入手段)2Eを備えるが、中和剤注入手段2C、加温手段2Eについては、不要な場合もある。   Acid fermentation 2 comprises a stirrer 2A, a pH meter 2B, a neutralizing agent injection means 2C, a thermometer 2D, and a heating means (steam injection means in FIG. 1) 2E. The temperature means 2E may not be necessary.

酸発酵槽2では、槽内SSが沈降しないように撹拌機2Aで緩やかに撹拌する。撹拌機型式は、撹拌羽根によるものでも水中撹拌機でも構わない。
また、固形有機物の酸発酵により有機酸が生成し、pHが低下するため、酸発酵が可能なpH以下になる場合には、中和剤注入手段2CよりNaOH等のアルカリを中和剤として添加し、pH計2Bで槽内のpHが5〜6程度に維持されるように制御する。
また、有機酸発酵の温度条件は水温20〜55℃が望ましく、従って、水温が低い場合には温度計2Dで監視制御しながら、必要に応じて加温手段2Eより蒸気の吹込を行ったり、その他の間接加熱手段等で槽内の水温を所定の水温に保つ。
In the acid fermentation tank 2, it stirs gently with the stirrer 2A so that SS in a tank may not settle. The stirrer type may be a stirring blade or an underwater stirrer.
In addition, since an organic acid is generated by acid fermentation of solid organic matter and the pH is lowered, an alkali such as NaOH is added as a neutralizing agent from the neutralizing agent injection means 2C when the pH is lower than the pH at which acid fermentation is possible. Then, the pH meter 2B is controlled so that the pH in the tank is maintained at about 5-6.
Further, the temperature condition of the organic acid fermentation is desirably a water temperature of 20 to 55 ° C. Therefore, when the water temperature is low, monitoring and controlling with the thermometer 2D, blowing steam from the heating means 2E as necessary, The water temperature in the tank is kept at a predetermined water temperature by other indirect heating means.

十分に高い固形有機物の分解効率を得る上で、酸発酵槽2の滞留時間(HRT)は3日以上、特に5日以上、例えば5〜10日とすることが好ましい。   In order to obtain a sufficiently high decomposition efficiency of the solid organic matter, the residence time (HRT) of the acid fermentation tank 2 is preferably 3 days or more, particularly 5 days or more, for example, 5 to 10 days.

なお、後段に、後処理としての好気性生物処理工程がある場合には、その余剰汚泥をこの酸発酵槽2に返送して処理することも可能である。また、後段の第2の沈殿槽4の分離汚泥を返送しても良い。更には、前述の生物処理装置10の余剰汚泥を導入しても良い。酸発酵槽2の滞留時間を適切に調整することにより、これらの余剰汚泥中の固形有機物についても30〜60%程度を酸発酵により溶解性有機物に分解することができる。   In addition, when there exists an aerobic biological treatment process as a post process in a back | latter stage, it is also possible to return the surplus sludge to this acid fermentation tank 2, and to process it. Moreover, you may return the separation sludge of the 2nd settling tank 4 of a back | latter stage. Furthermore, you may introduce the surplus sludge of the above-mentioned biological treatment apparatus 10. By appropriately adjusting the residence time of the acid fermentation tank 2, about 30 to 60% of the solid organic matter in the excess sludge can be decomposed into soluble organic matter by acid fermentation.

酸発酵槽2における処理では、前述のようにメタン発酵まで行われないため、ガスの発生が非常に少ない。しかし、酸生成菌や硫酸還元菌の活動等で硫化水素や二酸化炭素等が僅かに発生するので、酸発酵槽2では臭気捕集と排ガス処理を行うことが好ましい。排ガス処理法は、好気処理の曝気槽への吹き込みや薬品脱臭等いずれの方法でも構わない。   In the treatment in the acid fermenter 2, since methane fermentation is not performed as described above, the generation of gas is very small. However, since hydrogen sulfide, carbon dioxide, and the like are slightly generated by the activity of acid-producing bacteria and sulfate-reducing bacteria, it is preferable to perform odor collection and exhaust gas treatment in the acid fermentation tank 2. The exhaust gas treatment method may be any method such as blowing into an aeration tank for aerobic treatment or chemical deodorization.

酸発酵槽2の処理液(酸発酵液)は、次いで配管16より希釈槽3に送給され、配管13からの希釈水で希釈される。   The treatment liquid (acid fermentation liquid) in the acid fermentation tank 2 is then fed from the pipe 16 to the dilution tank 3 and diluted with dilution water from the pipe 13.

本発明では、このように、酸発酵液を固液分離してメタン発酵処理するに先立ち、希釈水で希釈することを特徴とする。   In the present invention, the acid fermentation liquid is thus diluted with dilution water prior to solid-liquid separation and methane fermentation treatment.

本発明における希釈の目的は、以下の通りである。   The purpose of dilution in the present invention is as follows.

(1) 固形有機物はタンパク質の多くの窒素分を含んでおり、この固形有機物を可溶化するとNH−Nとなる。このNH−Nは、前述のようにメタン細菌に対して阻害作用がある。このため、本発明では、酸発酵液の固液分離に先立ち、酸発酵液を希釈して、NH−N濃度をメタン細菌の阻害濃度以下(例えば、食品排水の場合、約1000mg/L以下)とする。
(2) 酸発酵液は、原水由来の固形無機物が残留するため、固形物濃度(SS)は、10000mg/L以上である。このため、酸発酵液をそのまま固液分離しても、酸発酵槽2で可溶化された溶解性有機物を効果的に分離液中に得ることができない。酸発酵液を希釈することにより多くの溶解性有機物を分離液中に得ることができる。
(1) The solid organic matter contains much nitrogen content of protein, and when this solid organic matter is solubilized, NH 4 —N is obtained. This NH 4 -N has an inhibitory action on methane bacteria as described above. For this reason, in the present invention, prior to solid-liquid separation of the acid fermentation broth, the acid fermentation broth is diluted so that the NH 4 -N concentration is less than or equal to the inhibitory concentration of methane bacteria (for example, about 1000 mg / L or less in the case of food wastewater). ).
(2) Since the solid inorganic substance derived from raw water remains in the acid fermentation broth, the solid matter concentration (SS) is 10000 mg / L or more. For this reason, even if an acid fermentation liquid is solid-liquid separated as it is, the soluble organic substance solubilized in the acid fermentation tank 2 cannot be effectively obtained in the separation liquid. By diluting the acid fermentation broth, many soluble organic substances can be obtained in the separated liquid.

酸発酵液の希釈の程度(希釈倍率)は、低過ぎると希釈による上記効果を十分に得ることができず、高過ぎると、後段の固液分離手段の水量負荷が増大し、例えば沈殿槽であれば水面積負荷が大きくなり、好ましくない。
従って、希釈倍率は、後段の固液分離手段や酸発酵液のSS濃度にもよるが、通常、5〜20倍、特に10〜15倍とすることが好ましい。ただし、後段の固液分離手段が遠心分離又は膜分離による場合には、5倍以下、例えば2〜5倍程度の希釈倍率とするこができる。
If the degree of dilution of the acid fermentation liquor (dilution ratio) is too low, the above-mentioned effect due to dilution cannot be obtained sufficiently. If it is too high, the water load on the solid-liquid separation means at the subsequent stage increases, If it exists, a water area load will become large and is not preferable.
Accordingly, the dilution rate is usually 5 to 20 times, particularly preferably 10 to 15 times, although it depends on the solid-liquid separation means in the latter stage and the SS concentration of the acid fermentation liquid. However, when the solid-liquid separation means in the subsequent stage is based on centrifugation or membrane separation, the dilution ratio can be 5 times or less, for example, about 2 to 5 times.

酸発酵液の希釈に用いる希釈水としては、SSの少ない水であれば良く、特に制限はない。図1では、生物処理装置10の処理水を希釈水としているが、後段のメタン発酵槽5の処理水等、他系統の処理水であっても良い。また、SS濃度が低ければ、他系統の希薄排水であっても良い。   As dilution water used for dilution of an acid fermentation liquid, what is necessary is just water with little SS, and there is no restriction | limiting in particular. In FIG. 1, the treated water of the biological treatment apparatus 10 is diluted water, but it may be treated water of other systems such as treated water of the methane fermentation tank 5 in the subsequent stage. Moreover, if SS density | concentration is low, the diluted waste water of another system | strain may be sufficient.

図1では、希釈槽3を設け、希釈槽3内で酸発酵液と希釈水を撹拌機3Aにより混合して希釈しているが、希釈槽3を省略して酸発酵液の移送配管16に直接希釈水を注入して希釈しても良い。   In FIG. 1, a dilution tank 3 is provided, and the acid fermentation liquid and dilution water are mixed and diluted in the dilution tank 3 by the stirrer 3 </ b> A, but the dilution tank 3 is omitted and the acid fermentation liquid transfer pipe 16 is provided. You may dilute by injecting dilution water directly.

希釈槽3の希釈液は次いで配管17より第2の沈殿槽4に送給されて固液分離され、溶解性有機物を含む分離液が配管18よりメタン発酵槽5に送給され、分離汚泥(可溶化残渣)は配管19より系外へ排出される。   The dilution liquid in the dilution tank 3 is then fed from the pipe 17 to the second sedimentation tank 4 for solid-liquid separation, and the separation liquid containing soluble organic substances is fed from the pipe 18 to the methane fermentation tank 5 to separate the sludge ( The solubilized residue) is discharged out of the system through the pipe 19.

希釈液の固液分離手段としては特に制限はなく、沈殿槽による重力式の沈降分離の他、遠心分離や加圧浮上、膜分離等の手段も採用することができるが、省エネルギーの面から、重力式の沈降分離による方法が好ましい。   The solid-liquid separation means for the diluted liquid is not particularly limited, and in addition to gravity-type sedimentation separation by a sedimentation tank, means such as centrifugal separation, pressurized flotation, and membrane separation can also be adopted, but from the aspect of energy saving, A method by gravity type sedimentation is preferred.

なお、遠心分離や膜分離であれば、後述の凝集処理が不要となり、また、希釈水量が少なくて十分な効果を得ることができる。   In addition, if it is centrifugation and membrane separation, the below-mentioned aggregation process will become unnecessary and the amount of dilution water will be small and sufficient effect can be acquired.

希釈液の固液分離に際しては凝集剤は無添加でも良いが、分離液のSS濃度を低くしたい場合、或いは酸発酵槽2の滞留時間が比較的短いなどの理由でフロックが形成し難く、固液分離性が悪い場合、後段のメタン発酵槽としてのUASB槽へのSSの流入が好ましくない場合などには、凝集剤を添加して凝集処理を行っても良い。凝集剤としては、PAC等の前述の無機凝集剤とアニオンポリマーとの併用、カチオンポリマー単独、或いはアニオンポリマーとカチオンポリマーとの併用などが好適である。   In the solid-liquid separation of the diluted solution, no flocculant may be added. However, when it is desired to lower the SS concentration of the separated solution or because the residence time of the acid fermentation tank 2 is relatively short, it is difficult to form flocs. When the liquid separation property is poor, or when the inflow of SS into the UASB tank as the subsequent methane fermentation tank is not preferable, an aggregating agent may be added to perform the aggregation treatment. As the flocculant, a combination of the above-mentioned inorganic flocculant such as PAC and an anionic polymer, a cationic polymer alone, or a combination of an anionic polymer and a cationic polymer is preferable.

図1において、第2の沈殿槽4には撹拌機4Aが設けられているが、撹拌機4Aの設置は、槽底部を安息角以上にすること等で対応できるので必須条件ではない。   In FIG. 1, the second settling tank 4 is provided with a stirrer 4A. However, the installation of the stirrer 4A is not an essential condition because it can be handled by setting the bottom of the tank to an angle of repose or more.

第2の沈殿槽4における好適な水面積負荷は、凝集剤の添加の有無により異なり、凝集剤無添加の場合は0.5〜2m/m/hr、凝集剤添加の場合は1〜4m/m/hr程度である。 A suitable water area load in the second sedimentation tank 4 varies depending on whether or not a flocculant is added, 0.5 to 2 m 3 / m 2 / hr when no flocculant is added, and 1 to 2 when a flocculant is added. It is about 4 m 3 / m 2 / hr.

なお、希釈液の固液分離手段として、遠心分離機を用いる場合、凝集剤は原則として無添加で、遠心力1000〜2100G程度で行うのが好ましい。   In addition, when using a centrifuge as a solid-liquid separation means of a dilution liquid, it is preferable not to add a flocculant in principle and to carry out with the centrifugal force about 1000-2100G.

第2の沈殿槽4からの、溶解性有機物を含む分離液は、配管18よりメタン発酵槽5に送給されてメタン発酵処理される。このメタン発酵手段としては特に制限はないが、高負荷かつ高速で効率的なメタン発酵が可能である上に処理後の固液分離も不要であり、省スペース、省エネルギーで、メタンガスとしてのエネルギー回収効率も高いことから、UASB槽を用いることが好ましい。   The separation liquid containing soluble organic substances from the second sedimentation tank 4 is fed to the methane fermentation tank 5 through the pipe 18 and subjected to methane fermentation. There are no particular restrictions on the means of methane fermentation, but high-load, high-speed and efficient methane fermentation is possible, and solid-liquid separation after treatment is unnecessary, saving space and energy, and recovering energy as methane gas It is preferable to use a UASB tank because of its high efficiency.

メタン発酵槽5の処理水は、配管20より系外へ排出される。   The treated water in the methane fermentation tank 5 is discharged out of the system through the pipe 20.

一方、第2の沈殿槽4の分離汚泥は、系外へ排出され、好気性生物処理、仕上げのメタン発酵処理等に供されるが、そのまま脱水処理しても良い。ただし、この分離汚泥には、有機酸発酵における中間分解物が多く含まれているので、脱水薬剤を多く要したり、臭気が問題となる場合がある。その場合には、前段の希釈工程における希釈水量を十分に用い、有機酸発酵で発生する残査を洗浄することで、脱水薬剤低減や脱水ケーキの臭気低減を図ることができる。   On the other hand, the separated sludge in the second settling tank 4 is discharged out of the system and used for aerobic biological treatment, finishing methane fermentation treatment, etc., but may be dehydrated as it is. However, since this separated sludge contains a large amount of intermediate decomposition products in organic acid fermentation, a large amount of dehydrating chemicals or odor may be a problem. In that case, it is possible to reduce the amount of dehydrated chemicals and the odor of the dehydrated cake by sufficiently using the amount of diluted water in the previous dilution step and washing the residue generated in the organic acid fermentation.

第2の沈殿槽4の分離汚泥を好気性生物処理やメタン発酵処理等で処理しても、本発明では、原水中の固形有機物の大部分が酸発酵により溶解性有機物となり、この溶解性有機物の殆どが分離液中に移行しているため、第2の沈殿槽4の分離汚泥の処理における負荷量は著しく小さくて済み、原水を直接好気性生物処理する場合に比べて、処理設備の規模は大幅に低減される。   Even if the separated sludge in the second sedimentation tank 4 is treated by aerobic biological treatment, methane fermentation treatment, or the like, in the present invention, most of the solid organic matter in the raw water becomes soluble organic matter by acid fermentation, and this soluble organic matter Since most of the liquid is transferred into the separation liquid, the load in the treatment of the separated sludge in the second sedimentation tank 4 can be remarkably small, and the scale of the treatment equipment is larger than that in the case where the raw water is directly subjected to aerobic biological treatment. Is greatly reduced.

なお、前述の如く、酸発酵槽2は、通常、一過式で運転され、第2の沈殿槽4の分離汚泥(可溶化残渣)の返送の必要はない。しかし、以下等の場合には必要な菌体量確保等の目的で第2の沈殿槽4の分離汚泥の一部を酸発酵槽2に返送しても良い。
(1) 酸発酵槽2に導入される原水又はその固液分離汚泥の固形有機物(VSS)濃度が薄い場合。
(2) 固形有機物の酸生成度合いを高くしたい場合。
(3) 固形有機物の生分解が遅い場合。
In addition, as mentioned above, the acid fermentation tank 2 is normally operated in a transient manner, and there is no need to return the separated sludge (solubilized residue) in the second sedimentation tank 4. However, in the following cases, part of the separated sludge in the second sedimentation tank 4 may be returned to the acid fermentation tank 2 for the purpose of securing the necessary amount of bacterial cells.
(1) When the solid organic matter (VSS) density | concentration of the raw | natural water introduced into the acid fermenter 2 or its solid-liquid separation sludge is thin.
(2) When it is desired to increase the acid generation degree of solid organic matter.
(3) When biodegradation of solid organic matter is slow.

図2に示す方法は、希釈液の固液分離に先立ち、第1の凝集槽6で配管21からの無機凝集剤により凝集処理した後、第2の凝集槽7で配管22からのアニオンポリマーによりフロックの粗大化を図り、このようにして凝集処理した凝集処理液について固液分離を行う点が、図1に示す方法と異なり、その他の構成、手順は同様である。図2において、図1に示す部材と同様の機能を奏する部材には同一符号を付してある。   In the method shown in FIG. 2, prior to solid-liquid separation of the diluted solution, after aggregating with an inorganic flocculant from the pipe 21 in the first aggregating tank 6, anionic polymer from the pipe 22 is used in the second aggregating tank 7. Unlike the method shown in FIG. 1, the other configuration and procedure are the same in that the flocs are coarsened and the aggregating treatment liquid thus agglomerated is subjected to solid-liquid separation. In FIG. 2, members having the same functions as those shown in FIG.

即ち、前述の如く、酸発酵液の希釈液の固液分離性が悪い場合や、メタン発酵槽5に送給する固液分離液のSS濃度を下げたい場合には、希釈液の固液分離に先立ち凝集処理を行う。   That is, as described above, when the solid-liquid separation property of the diluted solution of the acid fermentation solution is poor or when it is desired to reduce the SS concentration of the solid-liquid separated solution fed to the methane fermentation tank 5, the solid-liquid separation of the diluted solution is performed. Prior to the agglomeration treatment.

図2の方法では、希釈槽3からの希釈液を配管17Aを介して第1の凝集槽6に導入して、無機凝集剤を添加し撹拌機6Aで急速撹拌する。ここで、通常の無機凝集剤添加量であればpHは適正なものとなるが、凝集に最適なpHとならない場合には、アルカリ剤や酸によりpH調整を行なう。無機凝集剤による凝集処理液は、次いで、配管17Bより、第2の凝集槽7に導入し、アニオンポリマーを添加し、撹拌機7Aで援速撹拌してフロックを形成させる。この第2の凝集槽7の凝集処理液を配管17より第2の沈殿槽4に送給して固液分離する。   In the method of FIG. 2, the diluting liquid from the diluting tank 3 is introduced into the first coagulating tank 6 through the pipe 17A, an inorganic flocculant is added, and rapid stirring is performed with the stirrer 6A. Here, the pH is appropriate if it is a normal addition amount of the inorganic flocculant, but if the pH is not optimal for aggregation, the pH is adjusted with an alkali agent or acid. The aggregating treatment liquid using the inorganic aggregating agent is then introduced into the second aggregating tank 7 through the pipe 17B, an anionic polymer is added, and agitation is performed with the agitator 7A to form a floc. The aggregating treatment liquid in the second aggregating tank 7 is fed from the pipe 17 to the second sedimentation tank 4 for solid-liquid separation.

このように希釈液を凝集処理する場合、凝集剤としては、
・無機凝集剤とアニオンポリマーとの併用
・アニオンポリマーとカチオンポリマーとの併用
・カチオンポリマーの単独使用
などが挙げられる。通常は、無機凝集剤とアニオンポリマーの併用が用いられるが、無機凝集剤によるSSの生成を避けるために、ポリマーのみを用いる場合もある。
When the aggregating treatment is performed as described above, as the aggregating agent,
-Combined use of inorganic flocculant and anionic polymer-Combined use of anionic polymer and cationic polymer-Use of cationic polymer alone. Usually, a combination of an inorganic flocculant and an anionic polymer is used, but only a polymer may be used to avoid the formation of SS by the inorganic flocculant.

希釈液の凝集処理に好適な凝集剤と、その好適な添加量は以下の通りである。
無機凝集剤:pH5〜6前後の弱酸性域で凝集し且つ硫酸根を含まない塩化第二鉄やポリ塩化アルミニウム(PAC)等が好ましく、好適な添加量は25〜50mg/L程度である。
アニオンポリマー:アクリル酸塩系等のものが好ましく、好適な添加量は1〜3mg/L程度である。
カチオンポリマー:ジメチルアミノエチルアクリレート(DAA系)、ジメチルアミノエチルメタアクリレート(DAM系)、ジアリルジメチルアンモニウムクロライド(DADMAC系)、ジアミン系、キトサン系のものが好ましく、好適な添加量は3〜5mg/L程度である。
The flocculant suitable for the flocculant treatment of the diluted solution and the preferred addition amount are as follows.
Inorganic flocculants: Ferric chloride and polyaluminum chloride (PAC) that aggregate in a weakly acidic range of about pH 5 to 6 and do not contain sulfate radicals are preferable, and a suitable addition amount is about 25 to 50 mg / L.
Anionic polymers: acrylates and the like are preferable, and the preferred addition amount is about 1 to 3 mg / L.
Cationic polymer: dimethylaminoethyl acrylate (DAA type), dimethylaminoethyl methacrylate (DAM type), diallyldimethylammonium chloride (DADMAC type), diamine type and chitosan type are preferable, and the preferred addition amount is 3-5 mg / About L.

次に、本発明を、固形有機物濃度の高い濃厚な有機性排水の処理に適用した場合の適用例を、図3,4を参照して説明する。   Next, an application example in the case where the present invention is applied to the treatment of rich organic waste water having a high solid organic matter concentration will be described with reference to FIGS.

図3では、原水の固形有機物濃度が高いため、前濃縮することなく、直接酸発酵槽21に導入し、酸発酵液の移送配管に希釈水を注入して希釈した後、固液分離手段22に送給して固液分離する。固液分離手段22の分離液はUASB槽23に送給してメタン発酵処理し、UASB処理水と固液分離手段22の分離汚泥とを更に好気性生物処理装置24で処理する。本例では、この好気性生物処理装置24の処理水の一部を希釈水として前段に返送し、残部は後処理した後、放流する。また、好気性生物処理装置24の余剰汚泥は一部を酸発酵槽21に返送し、残部を脱水機25で脱水処理し、脱水ケーキは系外へ排出する。   In FIG. 3, since the concentration of solid organic matter in the raw water is high, it is introduced directly into the acid fermentation tank 21 without pre-concentration, diluted by injecting dilution water into the acid fermentation broth transfer pipe, and then the solid-liquid separation means 22 To be separated into solid and liquid. The separation liquid of the solid-liquid separation means 22 is supplied to the UASB tank 23 and subjected to methane fermentation treatment, and the UASB treated water and the separated sludge of the solid-liquid separation means 22 are further treated by the aerobic biological treatment device 24. In this example, a part of the treated water of the aerobic biological treatment device 24 is returned to the previous stage as dilution water, and the remainder is post-treated and then discharged. Moreover, a part of the excess sludge of the aerobic biological treatment apparatus 24 is returned to the acid fermentation tank 21, the remaining part is dehydrated by the dehydrator 25, and the dehydrated cake is discharged out of the system.

なお、固液分離手段22の分離液の移送配管及びUASB処理水の移送配管には、それぞれSS濃度調整及び併合処理のために希薄排水が注入されている。   Note that dilute waste water is injected into the separation liquid transfer pipe and the UASB treated water transfer pipe of the solid-liquid separation means 22 for SS concentration adjustment and merge processing, respectively.

食品系排水は濃厚な排水と希薄排水が混合され総合排水となっている場合が多い。図4は、この場合の適用例を示すものである。図4では、前濃縮手段31の濃縮汚泥を酸発酵槽32で有機酸発酵した後、希釈水で希釈し、固液分離手段33で固液分離する。固液分離手段33の分離液は、前濃縮手段31の入口側或いはUASB槽34の入口側或いは別途設けたUASB槽36に送給されてUASB処理された後、好気性生物処理装置35で好気性生物処理される。   In many cases, food wastewater is mixed with rich wastewater and dilute wastewater to form total wastewater. FIG. 4 shows an application example in this case. In FIG. 4, the concentrated sludge of the pre-concentration means 31 is subjected to organic acid fermentation in the acid fermentation tank 32, diluted with dilution water, and solid-liquid separated by the solid-liquid separation means 33. The separation liquid of the solid-liquid separation means 33 is fed to the inlet side of the pre-concentration means 31, the inlet side of the UASB tank 34, or a separately provided UASB tank 36 and subjected to UASB treatment, and is then favored by the aerobic biological treatment apparatus 35. Tempered biological treatment.

固液分離手段33の分離汚泥は、UASB槽34の後段の好気性生物処理装置35で好気性生物処理されるか(この好気性生物処理の前にメタン発酵処理しても良い。)、そのまま脱水処理される。   The separated sludge of the solid-liquid separation means 33 is subjected to aerobic biological treatment in the aerobic biological treatment device 35 subsequent to the UASB tank 34 (may be subjected to methane fermentation treatment before this aerobic biological treatment). Dehydrated.

一方、前濃縮手段31の分離液はUASB槽35で処理され、UASB処理水の一部は、希釈水として酸発酵槽32の移送配管に送給され、残部は好気性生物処理装置35に送給されて好気性生物処理され、この処理水は更に後処理された後放流される。なお、酸液の希釈水としては、好気性生物処理装置35の処理水を用いても良い。   On the other hand, the separation liquid of the pre-concentration means 31 is processed in the UASB tank 35, a part of the UASB treated water is supplied as dilution water to the transfer pipe of the acid fermentation tank 32, and the remainder is sent to the aerobic biological treatment apparatus 35. It is supplied and treated with aerobic organism, and this treated water is discharged after being further treated. In addition, you may use the treated water of the aerobic biological treatment apparatus 35 as dilution water of an acid solution.

いずれの場合も、固形有機物を含む有機性排水をそのまま好気性生物処理又はUASB処理する場合に比べて、曝気動力や余剰汚泥発生量を大幅に低減して、また、UASB槽でのSSによる不具合を引き起こすことなく、省スペースかつ省エネルギーで効率的な処理を行って、エネルギー回収を図ることができる。   In any case, compared to the case where organic wastewater containing solid organic matter is subjected to aerobic biological treatment or UASB treatment as it is, the aeration power and surplus sludge generation amount are greatly reduced, and there is a problem due to SS in the UASB tank. In this way, energy can be recovered by performing efficient processing with space saving and energy saving.

以下に実施例に対応する実験例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to experimental examples corresponding to the examples.

[実験例1]
A社B工場から排出されるジャガイモ加工排水を重力沈降法で固液分離して得られた下記水質の分離液について、有機酸発酵実験を行った。
[Experimental Example 1]
An organic acid fermentation experiment was conducted on the following water quality separated liquid obtained by solid-liquid separation of the potato wastewater discharged from the company A factory B by gravity sedimentation.

<分離液水質>
SS:約30〜40g/L
VSS:約25〜34g/L
VSS/SS:75〜85%
CODCr:約40〜55g/L
<Separate liquid quality>
SS: about 30-40 g / L
VSS: about 25-34 g / L
VSS / SS: 75-85%
COD Cr : about 40 to 55 g / L

試験装置としては、1Lのジャーファメンターを用い、水温は35℃±1℃で温度調節した。
運転方法は、バッチ運転・一過式とした(処理液引き抜きと原水投入を1回/日実施)。
槽内の固形有機物(VSS)が、可溶化、酸生成するに従って、槽内液のpHが低下するので、pH計の指示でNaOHを用いてpH5.0〜5.5に槽内液を調整した。
As a test apparatus, a 1 L jar fermenter was used, and the water temperature was adjusted at 35 ° C. ± 1 ° C.
The operation method was a batch operation and a one-time operation method (treatment liquid extraction and raw water input were performed once / day).
As the solid organic matter (VSS) in the tank solubilizes and generates acid, the pH of the liquid in the tank decreases, so adjust the pH in the tank to pH 5.0 to 5.5 using NaOH according to the instructions of the pH meter. did.

この処理において、水理学的滞留時間(HRT)を変えた場合の、VSSの分解(可溶化)の効果を図5に示す。なお、溶解性物質の分析は、槽内液を孔径0.45μmの精密濾過膜で濾過した液について行った。また、可溶化率とはVSSの分解(減少)率である。   FIG. 5 shows the effect of VSS decomposition (solubilization) when the hydraulic residence time (HRT) is changed in this treatment. In addition, the analysis of the soluble substance was performed about the liquid which filtered the liquid in a tank with the microfiltration membrane with the hole diameter of 0.45 micrometer. Further, the solubilization rate is the decomposition (decrease) rate of VSS.

図5より、HRTを長くするに従ってVSSは減少し、VSSの分解に伴って溶解性の有機酸(CODCr)が増加し、たんぱく質の分解からのNH−Nも増加してくることが分かる。
また、VSSの分解は、HRTを3日以上、望ましくは5日以上とすることで、効果的に行うことができ、VSS分解率から、固形VSS分解に伴う菌体増殖が少ないことが分かる。
FIG. 5 shows that VSS decreases with increasing HRT, soluble organic acid (COD Cr ) increases with the decomposition of VSS, and NH 4 -N from the decomposition of protein also increases. .
In addition, the degradation of VSS can be effectively performed by setting the HRT to 3 days or more, preferably 5 days or more. From the VSS degradation rate, it can be seen that there is little bacterial cell proliferation accompanying solid VSS degradation.

[実験例2]
実験例1で得られた酸発酵液の固液分離実験を行った。
各HRTでの酸発酵液に水道水を加えて10倍に希釈した希釈液(希釈後のMLSSは、約3.5〜1.2g/L)を1Lメスシリンダーに入れて、静置30分後に沈降したSS量を測定し、結果を図6に示した。
[Experiment 2]
A solid-liquid separation experiment of the acid fermentation broth obtained in Experimental Example 1 was performed.
A diluted solution (MLSS after dilution is about 3.5 to 1.2 g / L) diluted 10 times by adding tap water to the acid fermentation broth at each HRT is placed in a 1 L graduated cylinder and allowed to stand for 30 minutes. The amount of SS that subsequently settled was measured, and the results are shown in FIG.

図6より、酸発酵槽でのHRTが長くなるに従って、酸発酵液の希釈液のSSは沈降しやすくなり、HRT5日程度以上でSSの多くが沈降分離でき、溶解性有機物の多い分離液をメタン発酵に供することができることが分かる。   As shown in FIG. 6, as the HRT in the acid fermenter becomes longer, the SS of the diluted solution of the acid fermentation solution tends to settle, so that most of the SS can settle and separate in about 5 days or more of the HRT, It turns out that it can use for methane fermentation.

[実験例3]
実験例2に示すように、凝集剤無添加での沈降分離でも大部分のSSは沈降分離できるが、その沈降速度は充分でなく大きな沈降槽が必要となる。更に、分離液中にはSSが多く残っており、直接UASB処理するには、不適当である。
これらを解消するために、希釈液の凝集処理実験を行った。
[Experiment 3]
As shown in Experimental Example 2, although most of the SS can be separated by sedimentation without adding a flocculant, the sedimentation speed is not sufficient and a large sedimentation tank is required. Furthermore, a large amount of SS remains in the separation liquid, which is inappropriate for direct UASB treatment.
In order to solve these problems, a coagulation treatment experiment of the diluted solution was performed.

実験例1において、HRT5日の酸発酵液を水道水で10倍に希釈した希釈液(水質はpH5.3,SS=1.4g/L,VSS/SS=54%)に無機凝集剤としてPACを種々の添加量で添加した後、アニオンポリマー(アクリル酸塩系ポリマー)を0.5〜1.0mg/L添加して凝集処理した後、実験例2と同様にして静置による固液分離を行い、分離液のSS濃度を測定し、結果を図7に示した。   In Experimental Example 1, PAC as an inorganic flocculant was added to a diluted solution (water quality was pH 5.3, SS = 1.4 g / L, VSS / SS = 54%) obtained by diluting the acid fermentation broth of HRT 5 days with tap water. In various addition amounts, 0.5 to 1.0 mg / L of anionic polymer (acrylate polymer) was added, and after agglomeration treatment, solid-liquid separation by standing was performed as in Experimental Example 2. The SS concentration of the separation liquid was measured, and the results are shown in FIG.

図7より、酸発酵液の10倍希釈液に対してPAC添加率25〜50mg/Lで良好なフロックを形成し、分離液中のSSも200〜300mg/Lが得られた。
なお、カチオンポリマー(DAA系)単独での凝集処理でも、この10倍希釈液に対してポリマー添加率3〜5mg/Lで良好なフロックを形成し、分離液中のSSも200〜300mg/Lが得られることが確認された。
From FIG. 7, good flocs were formed at a PAC addition rate of 25 to 50 mg / L with respect to a 10-fold diluted solution of the acid fermentation broth, and SS in the separated solution was also 200 to 300 mg / L.
Even in the flocculation treatment with a cationic polymer (DAA) alone, a good floc is formed at a polymer addition rate of 3 to 5 mg / L with respect to this 10-fold diluted solution, and the SS in the separation liquid is also 200 to 300 mg / L. It was confirmed that

[実験例4]
酸発酵液の希釈液の遠心分離機による固液分離実験を行った。
実験例1と同様にして得られたSS=15.38g/L、可溶化率約72%程度の酸発酵液を水道水で2倍に希釈した後、凝集剤無添加で遠心分離機により固液分離した。
このときの遠心分離機の遠心力と得られた濾液のSS濃度、水回収率、SS回収率との関係を図8に示した。
[Experimental Example 4]
A solid-liquid separation experiment was performed using a centrifuge of the diluted acid fermentation broth.
An acid fermentation broth with SS = 15.38 g / L and a solubilization rate of about 72% obtained in the same manner as in Experimental Example 1 was diluted twice with tap water, and then solidified by a centrifuge without adding a flocculant. The liquid was separated.
The relationship between the centrifugal force of the centrifuge at this time and the SS concentration, water recovery rate, and SS recovery rate of the obtained filtrate is shown in FIG.

図8に示すように、なお、酸発酵で可溶化した有機物は、水回収率から95%以上が濾液側に移行していることが分かる。また、分離汚泥は、SS約150g/L前後(含水率約85%前後)が得られた。
なお、この遠心分離機による固液分離に当たり、カチオンポリマー(DAA系)をSS当り約0.3〜0.5重量%添加することで、含水率80〜83%の分離汚泥を得ることができ、これは脱水ケーキとして処分することが可能であった。
As shown in FIG. 8, it can be seen that 95% or more of the organic matter solubilized by acid fermentation is transferred to the filtrate side from the water recovery rate. The separated sludge had an SS of about 150 g / L (water content of about 85%).
In addition, in the solid-liquid separation by this centrifuge, the separation sludge having a water content of 80 to 83% can be obtained by adding about 0.3 to 0.5% by weight of cationic polymer (DAA system) per SS. This could be disposed of as a dehydrated cake.

1 第1の沈殿槽
2 酸発酵槽
3 希釈槽
4 第2の沈殿槽
5 メタン発酵槽
6 第1の凝集槽
7 第2の凝集槽
DESCRIPTION OF SYMBOLS 1 1st precipitation tank 2 Acid fermentation tank 3 Dilution tank 4 2nd precipitation tank 5 Methane fermentation tank 6 1st coagulation tank 7 2nd coagulation tank

Claims (5)

固形有機物を含有する有機性排水を有機酸発酵する酸発酵工程と、
該酸発酵工程から流出した酸発酵液を希釈水で希釈する希釈工程と、
該希釈工程の希釈液を固液分離する固液分離工程と、
該固液分離工程の分離液をメタン発酵するメタン発酵工程と
を有することを特徴とする固形有機物を含有する有機性排水の処理方法。
An acid fermentation process for organic acid fermentation of organic wastewater containing solid organic matter,
A dilution step of diluting the acid fermentation liquor that has flowed out of the acid fermentation step with dilution water;
A solid-liquid separation step for solid-liquid separation of the dilution liquid of the dilution step;
A method for treating organic wastewater containing solid organic matter, comprising: a methane fermentation step of methane fermentation of a separated liquid of the solid-liquid separation step.
固形有機物を含有する有機性排水を有機酸発酵する酸発酵工程と、
該酸発酵工程から流出した酸発酵液を希釈水で希釈する希釈工程と、
該希釈工程の希釈液を凝集処理する凝集工程と、
該凝集工程の凝集処理液を固液分離する固液分離工程と、
該固液分離工程の分離液をメタン発酵するメタン発酵工程と
を有することを特徴とする固形有機物を含有する有機性排水の処理方法。
An acid fermentation process for organic acid fermentation of organic wastewater containing solid organic matter,
A dilution step of diluting the acid fermentation liquor that has flowed out of the acid fermentation step with dilution water;
An aggregating step for aggregating the diluted solution of the diluting step;
A solid-liquid separation step of solid-liquid separation of the aggregation treatment liquid of the aggregation step;
A method for treating organic wastewater containing solid organic matter, comprising: a methane fermentation step of methane fermentation of a separated liquid of the solid-liquid separation step.
請求項1又は2において、前記固形有機物を含有する有機性排水を固液分離する固液分離工程を有し、該固液分離工程の分離汚泥が前記酸発酵工程で有機酸発酵されることを特徴とする固形有機物を含有する有機性排水の処理方法。   In Claim 1 or 2, it has a solid-liquid separation process which carries out solid-liquid separation of the organic waste water containing the solid organic matter, and the separation sludge of the solid-liquid separation process is subjected to organic acid fermentation in the acid fermentation process. A method for treating organic wastewater containing solid organic matter. 請求項3において、前記固液分離工程の分離液を生物処理する生物処理工程を有し、該生物処理工程の処理水を、前記希釈水として用いることを特徴とする固形有機物を含有する有機性排水の処理方法。   The organic substance containing a solid organic material according to claim 3, further comprising a biological treatment step for biologically treating the separated liquid in the solid-liquid separation step, wherein the treated water in the biological treatment step is used as the dilution water. Wastewater treatment method. 請求項1ないしのいずれか1項において、前記希釈工程は、前記酸発酵工程からの酸発酵液を希釈槽に送給して希釈水で希釈するか、或いは、前記酸発酵液の移送配管に希釈水を注入して希釈する工程であり、前記希釈工程における希釈倍率が5〜20倍であることを特徴とする固形有機物を含有する有機性排水の処理方法。 In any one of claims 1 to 4, wherein the dilution step, or the acid fermentation liquid from the acid fermentation step is diluted with dilution water to feed into the dilution tank or transfer pipe of the acid fermentation liquor A method for treating organic wastewater containing solid organic matter , wherein the dilution is carried out by injecting dilution water into the diluting solution, and the dilution ratio in the diluting step is 5 to 20 times.
JP2011016393A 2011-01-28 2011-01-28 Organic wastewater treatment method Active JP5742254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011016393A JP5742254B2 (en) 2011-01-28 2011-01-28 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011016393A JP5742254B2 (en) 2011-01-28 2011-01-28 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2012152721A JP2012152721A (en) 2012-08-16
JP5742254B2 true JP5742254B2 (en) 2015-07-01

Family

ID=46835045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011016393A Active JP5742254B2 (en) 2011-01-28 2011-01-28 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP5742254B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101324494B1 (en) * 2012-12-13 2013-11-01 한국과학기술원 Anaerpbic digestion apparatus for organic waste and anaerpbic digestion method for organic waste
KR101591443B1 (en) * 2013-10-31 2016-02-04 한경대학교 산학협력단 Anaerobic digestion system of agricultural byproduct for the alleviation of ammonia inhibition
JP6858326B2 (en) * 2016-11-17 2021-04-14 株式会社サピエナント Organic matter treatment system and organic matter treatment method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3698419B2 (en) * 2001-06-08 2005-09-21 株式会社荏原製作所 Organic sludge reduction method and apparatus
JP4527325B2 (en) * 2001-09-27 2010-08-18 清水建設株式会社 Denitrification and methane fermentation equipment
JP2006297205A (en) * 2005-04-15 2006-11-02 Mitsubishi Heavy Ind Ltd Processing method of organic waste and its apparatus
JP5148550B2 (en) * 2009-04-20 2013-02-20 水ing株式会社 Anaerobic treatment method and apparatus provided with evaporative concentration means for methane fermentation treated water
JP5731209B2 (en) * 2011-01-24 2015-06-10 大阪瓦斯株式会社 Method and apparatus for treating soap production waste liquid

Also Published As

Publication number Publication date
JP2012152721A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
US7713417B2 (en) Method for wastewater treatment with resource recovery and reduced residual solids generation
CN103011526B (en) Method for treating erythromycin thiocyanate wastewater
CN104671613B (en) A kind for the treatment of process of percolate from garbage filling field
Ji et al. Integrated ABR and UASB system for dairy wastewater treatment: Engineering design and practice
JP2001129590A (en) Method for anaerobic treatment of waste water from starch production
CN104531783B (en) The method that copper sulphate joint alkaline pH promotes excess sludge anaerobic fermentation production short chain fatty acids
JP5742254B2 (en) Organic wastewater treatment method
CN103771655A (en) Cellulose ethanol fermentation waste liquor treatment method
CN103771613B (en) Pretreatment method of cellulosic ethanol production wastewater
CN104529053A (en) High concentration pharmaceutical wastewater treatment technology
Basset et al. Comparison of aerobic granulation and anaerobic membrane bioreactor technologies for winery wastewater treatment
CN108439750B (en) Method for realizing recessive growth reduction of sludge and strengthening wastewater treatment by Fenton oxidation
CN109626692A (en) Contain high concentration sodium sulfate, small organic molecule method for waste water and equipment for handling
CN105712570B (en) A kind of processing method of high concentration selenium-containing wastewater
CN204417278U (en) Culturing wastewater processing system
CN107098466B (en) Real-time regulation and control method of anaerobic membrane bioreactor and reactor adopting same
CN111875171B (en) Duck breeding wastewater treatment process and resource recovery method
JP5873736B2 (en) Organic wastewater treatment method and treatment apparatus
CN108341572B (en) Method for realizing sludge recessive growth reduction by Fenton oxidation coupled microorganism iron reduction
CN207002529U (en) Pyrazolone production wastewater treatment device
CN201932986U (en) Disposal system capable of improving biodegradability of coking wastewater
CN104529106A (en) Method for promoting anaerobic digestion of excess sludge through copper sulfate to produce methane
He et al. Chemically enhanced high-loaded membrane bioreactor (CE-HLMBR) for A-stage municipal wastewater treatment: Pilot-scale experiments and practical feasibility evaluation
CN212425812U (en) Sewage treatment system for realizing material and energy recovery based on sulfur circulation
CN103773817A (en) Method for promoting residual sludge to be anaerobically fermented to produce acid by utilizing tea saponin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R150 Certificate of patent or registration of utility model

Ref document number: 5742254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250