JP5873736B2 - Organic wastewater treatment method and treatment apparatus - Google Patents

Organic wastewater treatment method and treatment apparatus Download PDF

Info

Publication number
JP5873736B2
JP5873736B2 JP2012043298A JP2012043298A JP5873736B2 JP 5873736 B2 JP5873736 B2 JP 5873736B2 JP 2012043298 A JP2012043298 A JP 2012043298A JP 2012043298 A JP2012043298 A JP 2012043298A JP 5873736 B2 JP5873736 B2 JP 5873736B2
Authority
JP
Japan
Prior art keywords
sludge
treatment
water
tank
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012043298A
Other languages
Japanese (ja)
Other versions
JP2013176746A (en
Inventor
米山 豊
豊 米山
滋 岡田
滋 岡田
直秀 松本
直秀 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2012043298A priority Critical patent/JP5873736B2/en
Publication of JP2013176746A publication Critical patent/JP2013176746A/en
Application granted granted Critical
Publication of JP5873736B2 publication Critical patent/JP5873736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、生活排水や下水など、低濃度有機排水の処理方法及び処理装置に関する。   The present invention relates to a treatment method and a treatment apparatus for low-concentration organic wastewater such as domestic wastewater and sewage.

有機性排水の処理方法として、好気性生物処理、嫌気性生物処理が挙げられる。嫌気性生物処理の中でメタン発酵処理は、酸素のない嫌気性環境下で生育する嫌気性微生物の代謝反応を利用して、有機物をメタンガスや炭酸ガスなどに分解する生物処理方法である。   Examples of organic wastewater treatment methods include aerobic biological treatment and anaerobic biological treatment. Among the anaerobic biological treatments, the methane fermentation treatment is a biological treatment method that decomposes organic substances into methane gas, carbon dioxide gas, etc. by utilizing the metabolic reaction of anaerobic microorganisms that grow in an anaerobic environment without oxygen.

メタン発酵処理は、好気性生物処理と比べて、汚泥発生量が少なく、ブロワ−(曝気)などの電気代が不要なためランニングコストがかからない。また、発生したメタンガスを有効利用できたりするなどのメリットがあるため、近年、下水処理、し尿処理、産業排水処理等の分野などで普及している。   The methane fermentation treatment has less sludge generation than the aerobic biological treatment, and does not require an electricity bill such as a blower (aeration), so it does not require running costs. In addition, since there is a merit that the generated methane gas can be used effectively, it has recently become widespread in fields such as sewage treatment, human waste treatment, and industrial wastewater treatment.

メタン発酵処理の種類としては、例えばUASB(Upflow Anaerobic Sludge Blanket(上向流嫌気性汚泥床)の略)法、固定床法、流動床法等のメタン発酵処理方式などが知られている。中でも、UASB法は、嫌気性微生物の自己造粒機能を利用して、沈降性の優れたグラニュ−ル汚泥を槽内に高濃度に保持でき、CODcr負荷10〜30kg/m3/dのような高い負荷をかけることができため、有機性排水の処理方法として国内外で普及している方法である。 As types of methane fermentation treatment, for example, UASB (abbreviation of Upflow Anaerobic Sludge Blanket) method, methane fermentation treatment method such as fixed bed method, fluidized bed method and the like are known. Above all, the UASB method can maintain a high concentration of granular sludge with excellent sedimentation in the tank by utilizing the self-granulating function of anaerobic microorganisms, such as a CODcr load of 10 to 30 kg / m 3 / d. It is a method that is widely used in Japan and overseas as a method for treating organic wastewater.

メタン発酵処理は、前述のように好気性生物処理と比較して、曝気が不要なため運転動力費用が安価であるばかりか、生成したメタンガスを各種発電設備の燃料として利用できるなどのメリットがある。その一方で、メタン発酵処理のみでは、有機物が残存するため河川などに直接放流できる水質までに浄化することができないというデメリットを抱えていた。
このため、メタン発酵処理後、活性汚泥法などの好気性生物処理を行ない、放流基準を満足する水質まで浄化した後、河川に放流することが提案されている。
Compared to aerobic biological treatment, methane fermentation treatment not only requires aeration, but has low operating power costs, and has the advantage that the generated methane gas can be used as fuel for various power generation facilities. . On the other hand, only the methane fermentation treatment has a demerit that it cannot be purified to water quality that can be discharged directly into rivers because organic matter remains.
For this reason, it is proposed that after the methane fermentation treatment, an aerobic biological treatment such as an activated sludge method is performed to purify the water quality so as to satisfy the discharge standard, and then discharge to the river.

メタン発酵処理と好気性生物処理とを組み合わせた処理として、例えば特許文献1には、工場等から排出される排水を、嫌気性微生物を利用した嫌気性処理工程において排水中の有機物をメタンガスに分解することで燃料としての再利用を図った後、好気性微生物を利用した好気性生物処理工程においてリンや窒素などの無機物を除去し、環境への悪影響を与える化学物質を除去した上で放流する方法が開示されている。   As a treatment combining methane fermentation treatment and aerobic biological treatment, for example, Patent Document 1 discloses that wastewater discharged from a factory or the like is decomposed into methane gas in an anaerobic treatment step using anaerobic microorganisms. After reusing as fuel, inorganic substances such as phosphorus and nitrogen are removed in the aerobic biological treatment process using aerobic microorganisms, and chemical substances that adversely affect the environment are removed and released. A method is disclosed.

特許文献2には、被処理水をメタン発酵処理し、処理後の消化液を活性汚泥法による好気性生物処理する有機性排水処理方法であって、前記被処理水の有機物濃度が、設定濃度以上であればメタン発酵処理を行い、前記設定濃度に達しない場合は前記消化液と共に好気性生物処理することを特徴とする有機性排水処理方法が開示されている。   Patent Document 2 discloses an organic wastewater treatment method in which treated water is subjected to methane fermentation treatment, and the digested liquid after treatment is subjected to an aerobic biological treatment by an activated sludge method, wherein the organic matter concentration of the treated water is a set concentration. If it is above, the methane fermentation process is performed, and when the said setting density | concentration is not reached, the aerobic biological process with the said digestive liquid is disclosed, The organic waste water treatment method characterized by the above-mentioned is disclosed.

特許文献3には、排水に対して酸生成工程とメタン発酵工程と好気性生物処理工程とを順次行う排水の処理方法において、前記酸生成工程に供給される排水を、前記メタン発酵工程が終了し前記好気性生物処理工程に送出される処理水と熱交換させることにより予熱することを特徴とする排水の処理方法が開示されている。   In Patent Document 3, in the wastewater treatment method in which an acid generation process, a methane fermentation process, and an aerobic biological treatment process are sequentially performed on wastewater, the wastewater supplied to the acid generation process is terminated with the methane fermentation process. And the wastewater processing method characterized by preheating by carrying out heat exchange with the treated water sent to the said aerobic biological treatment process is disclosed.

このようにメタン発酵処理と好気性生物処理とを組合わせることにより、比較的安価に有機性排水を放流基準に適合する水質まで浄化することができるばかりか、燃料などとして利用可能なメタンを回収することができるため、環境的なメリットと経済的なメリットの両面で利点があった。しかし、後工程の好気性生物処理方法では、微生物は、取り込んだ有機物の一部を酸化分解し、残りの有機物は汚泥に変換されて余剰汚泥として排出されることになり、難脱水性の余剰汚泥が大量に生成するという課題を抱えていた。   By combining methane fermentation treatment and aerobic biological treatment in this way, it is possible not only to purify organic wastewater to a quality that meets discharge standards, but also to recover methane that can be used as fuel. This has advantages in both environmental and economic benefits. However, in the post-process aerobic biological treatment method, microorganisms oxidize and decompose some of the organic matter taken in, and the remaining organic matter is converted into sludge and discharged as surplus sludge. The problem was that sludge was generated in large quantities.

そこで従来から、このような余剰汚泥の減容化を行う処理方法として、例えば、曝気槽又は沈殿槽から余剰汚泥を引き抜き、この引抜汚泥をオゾン処理、加熱処理、酸またはアルカリ処理等の改質処理により易生物分解性に改質し、改質された汚泥を曝気槽に返送して生物分解させる方法などが提案されている(例えば特許文献4)。   Therefore, conventionally, as a treatment method for reducing the volume of such excess sludge, for example, excess sludge is extracted from an aeration tank or a sedimentation tank, and this extracted sludge is modified by ozone treatment, heat treatment, acid or alkali treatment, etc. There has been proposed a method in which a biodegradability is improved by treatment, and the modified sludge is returned to an aeration tank for biodegradation (for example, Patent Document 4).

特開2003−71486号公報JP 2003-71486 A 特開2004−25051号公報Japanese Patent Laid-Open No. 2004-25051 特開2008−173614号公報JP 2008-173614 A 特開平7−116685号公報Japanese Unexamined Patent Publication No. 7-116687

本発明は、被処理水としての有機性排水を、先ずメタン発酵処理した後、好気性生物処理を行なって処理水を十分に浄化する処理方法に関して、好気性生物処理から生じる難脱水性の余剰汚泥の減容化を図るとともに、エネルギー回収率をさらに高めることができる、新たな有機性排水の処理方法及び処理装置を提供せんとするものである。   The present invention relates to a method for treating organic wastewater as water to be treated first by methane fermentation treatment, followed by aerobic biological treatment to sufficiently purify the treated water. It is intended to provide a new organic wastewater treatment method and treatment apparatus that can reduce the volume of sludge and further increase the energy recovery rate.

本発明は、図1に示すように、嫌気性生物を用いて被処理水をメタン発酵処理して、メタンガスを含む発生ガス、メタン発酵処理水及びメタン発酵処理汚泥を得るメタン発酵処理工程と、好気性生物を用いて前記メタン発酵処理水を生物学的酸化分解処理して好気性生物処理水及び好気性生物処理汚泥を得る好気性生物処理工程と、前記好気性生物処理汚泥の一部又は全部を酸発酵処理して酸発酵処理汚泥を得る酸発酵処理工程と、該酸発酵処理汚泥を、混合脱ガス槽で発酵ガスを分離した後、前記メタン発酵処理工程の入り口側に、前記メタン発酵処理工程におけるスカムの発生を抑制するために供給する工程と、を備えた有機性排水の処理方法を提案するものである。 The present invention, as shown in FIG. 1, methane fermentation treatment of water to be treated using anaerobic organisms, a generated gas containing methane gas, methane fermentation treated water, and methane fermentation treated sludge to obtain methane fermentation treated sludge; An aerobic biological treatment step for obtaining an aerobic biologically treated water and an aerobic biologically treated sludge by biologically oxidizing and decomposing the methane fermentation treated water using an aerobic organism, and a part of the aerobic biologically treated sludge or and all acid fermentation process to acid fermentation sludge acid fermentation process to obtain the process, the acid fermentation sludge, after fermentation gas is separated in the mixing degassing vessel, the inlet side of the methane fermentation step, the methane And a process for supplying organic effluent in order to suppress generation of scum in the fermentation process .

本発明が提案する有機性排水の処理方法によれば、好気性生物処理から生じる好気性生物処理汚泥、すなわち難脱水性の余剰汚泥を、酸発酵処理工程に供給してメタン発酵し易い有機酸等に変換した後、メタン発酵処理工程に戻すことができるので、最終的に系外へ排出する汚泥の減容化を図ることができる。しかも、前記難脱水性の余剰汚泥をその後にメタン発酵工程に戻すことになるため、当該余剰汚泥からエネルギー源としてのメタンを回収することができ、エネルギー回収率をさらに高めることができる。
また、上述した従来の処理方法、すなわち被処理水を先ず酸発酵処理した後、メタン発酵処理し、好気性生物処理する処理方法に比べると、本発明では、酸発酵処理工程で処理する被処理量が少なくて済むため、該被処理水を加熱する加熱エネルギー量が顕著に少なくて済み、処理工程全体の消費エネルギー及び処理コストを抑えることができる。
According to the organic wastewater treatment method proposed by the present invention, an aerobic biological treatment sludge generated from aerobic biological treatment, that is, an organic acid that is easily subjected to methane fermentation by supplying a hardly dewaterable excess sludge to an acid fermentation treatment step. Since it can return to a methane fermentation treatment process after converting into etc., the volume reduction of the sludge finally discharged | emitted out of the system can be aimed at. In addition, since the hardly dewaterable surplus sludge is then returned to the methane fermentation step, methane as an energy source can be recovered from the surplus sludge, and the energy recovery rate can be further increased.
Moreover, compared with the conventional treatment method mentioned above, ie, the treatment method which first treats water to be treated with acid fermentation, then performs methane fermentation treatment and aerobic biological treatment, in the present invention, the treatment to be treated in the acid fermentation treatment step. Since the amount is small, the amount of heating energy for heating the water to be treated is remarkably small, and the energy consumption and treatment cost of the whole treatment process can be suppressed.

本発明はまた、酸発酵工程で生じた酸発酵処理汚泥を、そのままメタン発酵処理工程に戻すのではなく、酸発酵処理汚泥中の発酵ガスを分離するガス分離槽を通した後、該酸発酵処理汚泥をメタン発酵処理工程に戻すことをも提案する。
酸発酵処理汚泥には発酵ガスが含まれており、この酸発酵処理汚泥をそのままメタン発酵処理工程に戻すと、発酵ガスによって反応槽下方にあるスラッジソーンが反応槽内を上昇してしまって上層部にスカムが発生することになる。そこで、酸発酵処理汚泥中の発酵ガスを分離するガス分離槽を通した後、メタン発酵処理工程に戻すようにすれば、スカムの発生を抑えることができる。
In the present invention, the acid fermentation treated sludge generated in the acid fermentation process is not directly returned to the methane fermentation treatment process, but passed through a gas separation tank for separating the fermentation gas in the acid fermentation treated sludge, and then the acid fermentation It is also proposed to return the treated sludge to the methane fermentation process.
Fermentation gas is contained in the acid fermentation treatment sludge. If this acid fermentation treatment sludge is returned to the methane fermentation treatment step as it is, sludge thorn below the reaction tank will rise in the reaction tank due to the fermentation gas, and the upper layer Scum will be generated in the part. Therefore, the generation of scum can be suppressed by returning to the methane fermentation treatment step after passing through the gas separation tank for separating the fermentation gas in the acid fermentation treatment sludge.

ところで、日本においては冬期下水の温度が18℃未満まで下がる場合、このような低温の下水を被処理水としてメタン発酵処理すると、槽内の嫌気性菌の活性が下がり、槽内に懸濁物質(Suspended Solids、以下SSとする)が溜まって、メタン発酵が進行しないようになり、発酵槽内の汚泥界面が上昇して最終的には溢れることになってしまう。この際、被処理水としての下水を加温するには、通水量が多いために多量のエネルギーが必要となるため、現実的ではない。   By the way, in Japan, when the temperature of winter sewage falls to less than 18 ° C., if such low temperature sewage is treated with methane fermentation, the activity of anaerobic bacteria in the tank will decrease, and suspended matter will remain in the tank. (Suspended Solids, hereinafter referred to as SS) accumulates, methane fermentation does not proceed, and the sludge interface in the fermenter rises and eventually overflows. At this time, in order to heat the sewage as the water to be treated, a large amount of energy is required due to a large amount of water flow, which is not realistic.

そこで本発明は、例えば被処理水の水温が13℃以上18℃未満(なお、被処理水の水温はメタン発酵槽内の水温とほぼ同じ。)の場合に適切な処理方法として、前記メタン発酵処理汚泥の一部又は全部を、酸発酵処理工程の入り口側に供給することを提案する。
このように、メタン発酵処理汚泥の一部又は全部を、メタン発酵槽から抜き出して酸発酵処理工程に供給するようにすれば、発酵槽内の汚泥界面の上昇を抑えることができるばかりか、酸発酵処理工程で該メタン発酵処理汚泥をメタン発酵し易い有機酸等に変換し、再びメタン発酵処理工程に戻すことができるので、水温が低くて嫌気性菌の活性が下がっていてもメタン発酵処理を促進させることができる。
Therefore, in the present invention, for example, when the water temperature of the water to be treated is 13 ° C. or higher and lower than 18 ° C. (note that the water temperature of the water to be treated is substantially the same as the water temperature in the methane fermentation tank), It is proposed to supply a part or all of the treated sludge to the entrance side of the acid fermentation treatment process.
In this way, if a part or all of the methane fermentation treatment sludge is extracted from the methane fermentation tank and supplied to the acid fermentation treatment step, the rise of the sludge interface in the fermentation tank can be suppressed, and the acid Since the methane fermentation treated sludge can be converted into an organic acid that can be easily methane fermented in the fermentation treatment process and returned to the methane fermentation treatment process, the methane fermentation treatment can be performed even if the water temperature is low and the activity of the anaerobic bacteria is reduced. Can be promoted.

また本発明は、例えば被処理水の水温が13℃未満の場合に適切な処理方法として、被処理水を固液分離して分離水と分離汚泥を得、該分離汚泥或いは該分離汚泥を濃縮した濃縮分離汚泥を、好気性生物処理汚泥の一部とともに酸発酵処理して酸発酵処理汚泥を得、該酸発酵処理汚泥を前記分離水と共にメタン発酵処理工程の入り口側に供給することを提案する。
被処理水の水温が13℃未満の場合は、嫌気性菌の活性がさらに下がることになる。そこで、被処理水を先ずは固液分離して、分離汚泥或いは該分離汚泥を濃縮した濃縮分離汚泥を酸発酵処理工程に供給してメタン発酵し易い有機酸等に変換した上でメタン発酵処理工程に供給することにより、水温がさらに低くて嫌気性菌の活性がさらに下がっていてもメタン発酵処理を促進させることができる。
In addition, the present invention provides, for example, as an appropriate treatment method when the water temperature of the water to be treated is less than 13 ° C., the water to be treated is subjected to solid-liquid separation to obtain separated water and separated sludge, and the separated sludge or the separated sludge is concentrated. It is proposed that the acid-separated sludge is acid-fermented with part of the aerobic biologically-treated sludge to obtain acid-fermented sludge, and the acid-fermented sludge is supplied to the inlet side of the methane fermentation process with the separated water. To do.
When the water temperature of to-be-processed water is less than 13 degreeC, the activity of anaerobic bacteria will fall further. Therefore, the water to be treated is firstly solid-liquid separated, and the separated sludge or the concentrated separated sludge obtained by concentrating the separated sludge is supplied to the acid fermentation treatment step to convert it into an organic acid or the like that is easily methane-fermented, and then the methane fermentation treatment. By supplying to the process, the methane fermentation treatment can be promoted even if the water temperature is lower and the activity of the anaerobic bacteria is further reduced.

本発明の一例に係る有機性排水の処理方法の装置並びに工程を示した図である。It is the figure which showed the apparatus and process of the processing method of the organic waste_water | drain which concerns on an example of this invention. 本発明の実施形態の一例に係る有機性排水の処理方法Aの装置並びに工程を示した図である。It is the figure which showed the apparatus and process of the processing method A of the organic waste_water | drain which concerns on an example of embodiment of this invention. 本発明の実施形態の一例に係る有機性排水の処理方法Bの装置並びに工程を示した図である。It is the figure which showed the apparatus and process of the processing method B of the organic waste_water | drain which concerns on an example of embodiment of this invention. 本発明の実施形態の一例に係る有機性排水の処理方法Cの装置並びに工程を示した図である。It is the figure which showed the apparatus and process of the processing method C of the organic waste_water | drain which concerns on an example of embodiment of this invention. メタン発酵処理装置の一例として、上向流嫌気性汚泥ろ床法(UASB)を実施することができるUASB装置の一例を示した図である。It is the figure which showed an example of the UASB apparatus which can implement an upflow anaerobic sludge filter bed method (UASB) as an example of a methane fermentation processing apparatus. UASB装置の他例を示した図である。It is the figure which showed the other example of the UASB apparatus. UASB装置のさらなる他例を示した図である。It is the figure which showed the further another example of the UASB apparatus. 図7に示したUASB装置におけるメタン発酵槽の上部を上方から見た平面図である。It is the top view which looked at the upper part of the methane fermentation tank in the UASB apparatus shown in FIG. 7 from upper direction. 実施例及び比較例を評価するために行った評価基準処理方法、すなわち、現在行われている通常の下水処理方法の処理工程を示した図である。It is the figure which showed the process of the evaluation reference | standard processing method performed in order to evaluate an Example and a comparative example, ie, the normal sewage processing method currently performed.

<本処理方法A>
図2は、本実施形態の一例に係る有機性排水の処理方法A(「本処理方法A」と称する)の装置並びに工程の一例を示した図である。
<This processing method A>
FIG. 2 is a diagram illustrating an example of an apparatus and a process of an organic wastewater treatment method A (referred to as “the present treatment method A”) according to an example of the present embodiment.

本処理方法Aは、酸発酵処理工程から供給される酸発酵処理汚泥と被処理水(原水)とを混合すると共に、当該酸発酵処理汚泥中の発酵ガスを抜いて脱ガス混合水を得る混合脱ガス工程と、脱ガス混合水をメタン発酵処理し、メタンガスを含む発生ガス、メタン発酵処理水及びメタン発酵処理汚泥を得るメタン発酵処理工程と、メタン発酵処理水を好気性生物処理して、好気性生物処理水と好気性生物処理汚泥を得る好気性生物処理工程と、好気性生物処理汚泥の一部(余剰汚泥)を必要に応じて濃縮して濃縮余剰汚泥を得る余剰汚泥濃縮工程と、好気性生物処理汚泥若しくは濃縮余剰汚泥を酸発酵処理して酸発酵処理汚泥を得、該酸発酵処理汚泥を前記混合脱ガス工程に供給する酸発酵処理工程と、を備えた有機性排水の処理方法である。   This treatment method A is a method of mixing acid fermentation treated sludge supplied from an acid fermentation treatment step and water to be treated (raw water), and removing the fermentation gas in the acid fermentation treated sludge to obtain degassed mixed water. Degassing step, methane fermentation treatment of degassed mixed water, methane fermentation treatment step to obtain generated gas containing methane gas, methane fermentation treatment water and methane fermentation treatment sludge, and aerobic biological treatment of methane fermentation treatment water, An aerobic biological treatment process for obtaining aerobic biological treatment water and an aerobic biological treatment sludge; and an excess sludge concentration process for concentrating a part of the aerobic biological treatment sludge (excess sludge) to obtain a concentrated surplus sludge. Acid fermentation treatment sludge obtained by acid fermentation treatment of aerobic biological treatment sludge or concentrated surplus sludge, and acid fermentation treatment step of supplying the acid fermentation treatment sludge to the mixed degassing step. It is a processing method.

本処理方法Aを実施するための装置としては、例えば、混合脱ガス槽1、メタン発酵処理装置2、好気性生物処理装置3及び酸発酵処理装置4を備えており、被処理水(原水)を供給する被処理水供給管5が混合脱ガス槽1の入り口側に接続され、混合脱ガス槽1の出口側には混合水供給管6を介してメタン発酵処理装置2が接続され、メタン発酵処理槽2の出口側には発生ガス排出管7、メタン発酵処理水供給管8及びメタン発酵処理汚泥排出管9が接続され、当該発生ガス排出管7は発生ガス処理装置10に接続され、当該メタン発酵処理水供給管8は好気性生物処理装置3の入り口側に接続され、当該メタン発酵処理汚泥排出管9は脱水装置11に接続され、好気性生物処理装置3の出口側には好気性生物処理液排出管12が接続され、当該好気性生物処理液排出管12は固液分離装置13の入り口側に接続され、固液分離装置13の出口側には好気性生物処理水排出管14と好気性生物処理汚泥供給管15が接続され、好気性生物処理汚泥供給管15は途中で分岐して、一方は、好気性生物処理装置3の入り口側に接続され、他方は濃縮装置16に接続され、この濃縮汚泥供給管17は酸発酵処理装置4の入り口側に接続され、酸発酵処理装置4の出口側には酸発酵処理汚泥供給管18が接続され、この酸発酵処理汚泥供給管18は前記混合脱ガス槽1の入り口側に接続されてなる構成を備えた装置を挙げることができる。
但し、上記濃縮装置16は必要に応じて設置すればよく、常に必要である訳ではない。
As an apparatus for carrying out this processing method A, for example, a mixed degassing tank 1, a methane fermentation treatment apparatus 2, an aerobic biological treatment apparatus 3 and an acid fermentation treatment apparatus 4 are provided and treated water (raw water). To be treated is connected to the inlet side of the mixed degassing tank 1, and the methane fermentation treatment apparatus 2 is connected to the outlet side of the mixed degassing tank 1 via the mixed water supply pipe 6. A generated gas discharge pipe 7, a methane fermentation treated water supply pipe 8 and a methane fermentation treated sludge discharge pipe 9 are connected to the outlet side of the fermentation treatment tank 2, and the generated gas discharge pipe 7 is connected to the generated gas processing apparatus 10, The methane fermentation treated water supply pipe 8 is connected to the inlet side of the aerobic biological treatment apparatus 3, the methane fermentation treated sludge discharge pipe 9 is connected to the dehydrator 11, and the aerobic biological treatment apparatus 3 is connected to the outlet side. The aerobic biological treatment liquid discharge pipe 12 is connected The aerobic biological treatment liquid discharge pipe 12 is connected to the inlet side of the solid-liquid separator 13, and an aerobic biological treatment water discharge pipe 14 and an aerobic biological treatment sludge supply pipe 15 are connected to the outlet side of the solid-liquid separator 13. The aerobic biological treatment sludge supply pipe 15 is branched in the middle, and one is connected to the inlet side of the aerobic biological treatment apparatus 3 and the other is connected to the concentration apparatus 16. An acid fermentation treatment sludge supply pipe 18 is connected to the inlet side of the acid fermentation treatment apparatus 4, and an acid fermentation treatment sludge supply pipe 18 is connected to the outlet side of the acid fermentation treatment apparatus 4. An apparatus having a configuration connected to the side can be mentioned.
However, the concentrator 16 may be installed as necessary and is not always necessary.

以下、各工程及びそれを実施するための設備について詳述する。   Hereinafter, each process and the equipment for implementing it will be described in detail.

(原水)
被処理水(原水)としては、低濃度有機性排水、具体的にはCODcr値が1000mg/L以下、特に300mg/L以上或いは600mg/L以下の有機性排水が本処理方法に適している。
ちなみに、下水は一般的にCODcr濃度400〜1000mg/Lの低濃度有機性排水である。
(Raw water)
As the water to be treated (raw water), low-concentration organic wastewater, specifically, organic wastewater having a CODcr value of 1000 mg / L or less, particularly 300 mg / L or more or 600 mg / L or less is suitable for this treatment method.
Incidentally, sewage is generally low-concentration organic wastewater with a CODcr concentration of 400 to 1000 mg / L.

また、本処理方法Aは、比較的低温の水温でも効果的に実施できる特徴を有しているものの、メタン発酵槽内の水温が18℃以上の場合、特に20〜25℃以上である場合に実施するのが特に好ましい。
同様の観点から、被処理水(原水)が18℃以上、特に20〜25℃以上であるのが特に好ましい。
Moreover, although this processing method A has the characteristics which can be implemented effectively even with a relatively low water temperature, when the water temperature in the methane fermentation tank is 18 ° C. or higher, particularly 20 to 25 ° C. or higher. It is particularly preferred to carry out.
From the same viewpoint, the water to be treated (raw water) is particularly preferably 18 ° C. or higher, particularly 20 to 25 ° C. or higher.

(混合脱ガス工程及び装置)
混合脱ガス工程では、被処理水供給管5を通じて混合脱ガス槽1に供給されてきた被処理水(原水)と、酸発酵処理工程から酸発酵処理汚泥供給管18を通じて混合脱ガス槽1に供給されてきた酸発酵処理汚泥とを、混合脱ガス槽1において混合すると共に、酸発酵処理汚泥中の発酵ガスを抜き、得られた脱ガス混合水を、混合水供給管6を通じてメタン発酵処理装置2に供給する。
(Mixed degassing process and equipment)
In the mixed degassing step, the water to be treated (raw water) supplied to the mixed degassing tank 1 through the treated water supply pipe 5 and the mixed degassing tank 1 from the acid fermentation treatment process through the acid fermentation treated sludge supply pipe 18. The acid fermentation treated sludge that has been supplied is mixed in the mixed degassing tank 1, the fermentation gas in the acid fermentation treated sludge is withdrawn, and the resulting degassed mixed water is subjected to methane fermentation treatment through the mixed water supply pipe 6. Supply to device 2.

混合脱ガス槽1は、発酵ガスを分離するガス分離手段を備えているのが好ましい。発酵ガスとは、主にCOガスであり、一部Hガスを含むガスである。発酵ガスがメタン発酵処理装置2に流入すると、汚泥の浮上が促進されるため、汚泥と嫌気性生物が十分に接触しないうちに汚泥が浮上することになり、メタン発酵処理装置2内でスカムの発生が促されることになる。そこで、メタン発酵処理工程の前工程で、予め酸発酵処理汚泥中の発酵ガスを分離除去することにより、メタン発酵処理装置2でのスカムの発生を抑制することができる。 The mixed degassing tank 1 preferably includes a gas separation means for separating the fermentation gas. Fermentation gas is mainly CO 2 gas and is a gas partially containing H 2 gas. When the fermentation gas flows into the methane fermentation treatment apparatus 2, the sludge floats up, so that the sludge rises before the sludge and the anaerobic organisms are in sufficient contact with each other. Occurrence is encouraged. Therefore, the scum generation in the methane fermentation treatment apparatus 2 can be suppressed by separating and removing the fermentation gas in the acid fermentation treatment sludge in advance before the methane fermentation treatment step.

ここで、発酵ガスを分離するガス分離手段としては、例えば、被処理水(原水)と酸発酵処理汚泥とを混合する混合槽に該混合水を一時的に滞留させ、大気と接触させることにより、該混合水から発酵ガスを分離除去できるようにした構成のものを挙げることができる。さらに、混合水を迂流、自然流下、オーバーフロー等させて、含有する発酵ガスの分離を促進させるようにしてもよい。また、混合槽内部に撹拌機を設けるようにしてもよい。   Here, as a gas separation means for separating the fermentation gas, for example, the mixed water is temporarily retained in a mixing tank for mixing the water to be treated (raw water) and the acid fermentation treated sludge, and is brought into contact with the atmosphere. In addition, a configuration in which the fermentation gas can be separated and removed from the mixed water can be exemplified. Further, the separation of the fermentation gas contained may be promoted by diverting the mixed water, flowing naturally, overflowing, or the like. Moreover, you may make it provide a stirrer inside a mixing tank.

(メタン発酵処理工程及び装置)
メタン発酵処理工程では、混合脱ガス槽1から供給された脱ガス混合水を、メタン発酵処理装置2においてメタン発酵処理し、メタンガスを含む発生ガス、メタン発酵処理水及びメタン発酵処理汚泥を得、前記発生ガスを発生ガス排出管7を通じて発生ガス処理装置10に供給する一方、前記メタン発酵処理水を、メタン発酵処理水供給管8を通じて好気性生物処理装置3に供給し、前記メタン発酵処理汚泥をメタン発酵処理汚泥排出管9を通じて脱水装置11に供給する。
(Methane fermentation process and equipment)
In the methane fermentation treatment process, the degassed mixed water supplied from the mixed degassing tank 1 is subjected to methane fermentation treatment in the methane fermentation treatment device 2 to obtain generated gas containing methane gas, methane fermentation treated water, and methane fermentation treated sludge, While supplying the generated gas to the generated gas treatment device 10 through the generated gas discharge pipe 7, the methane fermentation treated water is supplied to the aerobic biological treatment device 3 through the methane fermentation treated water supply pipe 8, and the methane fermentation treated sludge is supplied. Is supplied to the dehydrator 11 through the methane fermentation treatment sludge discharge pipe 9.

ここで、メタン発酵処理とは、ORPが−400mV以下の範囲で行なう嫌気性生物学的処理であり、嫌気性微生物によって有機物をメタンガスと二酸化炭素まで分解し、発生したメタンガスをエネルギーとして有効利用できるようにする処理である。   Here, the methane fermentation treatment is an anaerobic biological treatment performed in an ORP range of −400 mV or less, and an organic substance is decomposed into methane gas and carbon dioxide by anaerobic microorganisms, and the generated methane gas can be effectively used as energy. It is processing to do.

本処理方法Aのメタン発酵処理法としては、例えば上向流嫌気性汚泥床法(UASB)、固定床法、流動床法など公知の方法を適宜採用可能である。中でも、上向流嫌気性汚泥ろ床法(UASB)を採用するのが好ましい。   As the methane fermentation treatment method of the present treatment method A, for example, a known method such as an upward flow anaerobic sludge bed method (UASB), a fixed bed method, a fluidized bed method can be appropriately employed. Among them, it is preferable to employ the upward flow anaerobic sludge filter bed method (UASB).

上向流嫌気性汚泥ろ床法(UASB)は、嫌気性微生物の集塊作用を利用して活性の高い菌体をグラニュール(直径2〜3mmの粒状汚泥、糸状性の酢酸資化性メタン生成属細菌が中心となった緻密なフロック)として反応槽に大量に保持する方法で,反応槽の下部から排水(被処理水)を注入して嫌気状態で排水中の有機物を分解させる方法である。
上向流嫌気性汚泥ろ床法(UASB)は、嫌気性微生物の自己造粒機能を利用して沈降性の優れたグラニュール汚泥を槽内に高濃度で保持できるため、CODcr負荷を高めることができる。しかも、通常の嫌気性処理に比べて、比較的低濃度の排水にも適用できるうえ、高速の処理が可能で、且つ曝気を必要としないため、わずかな電力で運転でき、副産物として大量のメタンガスを生成することができる。その反面、低濃度排水の場合には、CODcr負荷を高くとるために、多量の排水を槽内に供給する必要があり、この排水の水流によってメタン発酵槽内の汚泥床が系外に流出してしまう場合がある。そこで、メタン発酵槽内の汚泥床を高濃度に維持するためには、メタン発酵槽への通水量を制限するのが好ましい。UASB槽内のグラニュール汚泥を維持させるためには、通水速度を0.5〜2.0m/hとするのが好ましく、特に0.75〜1.5m/hとするのがより一層好ましい。
したがって、UASB法をCODcr1000mg/L以下の低濃度排水に適用した場合、通水速度を下げる必要があるため、CODcr負荷は1〜2kg/m3/dと低くなる。
The upflow anaerobic sludge filtration method (UASB) uses agglomeration action of anaerobic microorganisms to granulate highly active cells (granular sludge with a diameter of 2 to 3 mm, filamentous acetic acid assimilating methane) It is a method that retains a large amount in the reaction tank as a dense floc (mainly produced bacteria), and injects wastewater (treated water) from the bottom of the reaction tank to decompose organic substances in the wastewater in an anaerobic state. is there.
The upflow anaerobic sludge filter bed method (UASB) uses the self-granulating function of anaerobic microorganisms to maintain highly settled granular sludge in the tank at a high concentration, thus increasing the CODcr load. Can do. Moreover, compared to ordinary anaerobic treatment, it can be applied to wastewater with a relatively low concentration, and high-speed treatment is possible and aeration is not required. Can be generated. On the other hand, in the case of low-concentration wastewater, it is necessary to supply a large amount of wastewater into the tank in order to increase the CODcr load, and the sludge bed in the methane fermentation tank flows out of the system by this wastewater flow. May end up. Therefore, in order to maintain the sludge bed in the methane fermentation tank at a high concentration, it is preferable to limit the amount of water flow to the methane fermentation tank. In order to maintain the granular sludge in the UASB tank, the water flow rate is preferably 0.5 to 2.0 m / h, more preferably 0.75 to 1.5 m / h. .
Therefore, when the UASB method is applied to low-concentration wastewater having a CODcr of 1000 mg / L or less, it is necessary to reduce the water flow rate, so the CODcr load is reduced to 1 to 2 kg / m 3 / d.

メタン発酵処理装置2の好ましい一例として、図5に示すような、上向流嫌気性汚泥ろ床法(UASB)を実施することのできるメタン発酵槽30(「UASB装置30」とも称する)を挙げることができる。
メタン発酵槽30は、その内部に、汚泥床32、気固液分離部(GSS)33およびメタン発酵処理水を分離する越流堰34を備え、メタン発酵槽30の上部を覆う覆蓋35を備え、さらに、混合脱ガス槽1からの脱ガス混合水を供給する混合水供給管6がメタン発酵槽30の底部に接続され、汚泥を移送するメタン発酵処理汚泥排出管9がメタン発酵槽30の下部に接続され、越流堰34内に流入するメタン発酵処理水を好気性生物処理装置3に供給するメタン発酵処理水供給管8が越流堰34に接続され、発生ガスを発生ガス処理装置10に供給する発生ガス排出管7が気固液分離部(GSS)33に接続されてなる構成を備えている。
As a preferable example of the methane fermentation treatment apparatus 2, a methane fermentation tank 30 (also referred to as “UASB apparatus 30”) capable of performing the upward flow anaerobic sludge filter bed method (UASB) as shown in FIG. 5 is given. be able to.
The methane fermentation tank 30 includes a sludge bed 32, a gas-solid-liquid separator (GSS) 33, and an overflow weir 34 that separates methane fermentation treated water, and a cover 35 that covers the top of the methane fermentation tank 30. Furthermore, a mixed water supply pipe 6 for supplying degassed mixed water from the mixed degas tank 1 is connected to the bottom of the methane fermentation tank 30, and a methane fermentation treatment sludge discharge pipe 9 for transferring sludge is provided in the methane fermentation tank 30. A methane fermentation treated water supply pipe 8 connected to the lower portion and supplying methane fermentation treated water flowing into the overflow weir 34 to the aerobic biological treatment device 3 is connected to the overflow weir 34 and the generated gas is treated with the generated gas treatment device. The generated gas discharge pipe 7 to be supplied to 10 is connected to a gas-solid-liquid separator (GSS) 33.

メタン発酵槽30においては、混合脱ガス槽1からの脱ガス混合水がメタン発酵槽30の下部から流入し、汚泥床32すなわち下部に沈殿しているグラニュールの層に均一に拡散して、被処理水に含まれた有機物や、酸発酵により生成した溶解性有機物、酢酸・プロピオン酸等の有機酸は、メタン発酵槽30内の嫌気性菌によってメタンガスと二酸化炭素ガスに分解される。そして、これらの発生ガスとグラニュールは、処理水とともに浮上し、気固液分離部(GSS)33よって発生ガス、メタン発酵処理汚泥(グラニュール)、メタン発酵処理水などに分離される。そして、前記発生ガスは、発生ガス排出管7を通じて発生ガス処理装置10に供給され、エネルギー源として利用される。前記メタン発酵処理水は、メタン発酵処理水供給管8を通じて好気性生物処理装置3に供給され、前記メタン発酵処理汚泥はメタン発酵処理汚泥排出管9を通じて脱水装置11に供給されて減容化されて系外に排出される。   In the methane fermentation tank 30, the degassed mixed water from the mixed degassing tank 1 flows from the lower part of the methane fermentation tank 30 and is uniformly diffused into the sludge bed 32, that is, the granule layer precipitated in the lower part, Organic substances contained in the water to be treated, soluble organic substances produced by acid fermentation, and organic acids such as acetic acid / propionic acid are decomposed into methane gas and carbon dioxide gas by anaerobic bacteria in the methane fermentation tank 30. The generated gas and granule float together with the treated water, and are separated into the generated gas, methane fermentation treated sludge (granule), methane fermented treated water, and the like by the gas-solid-liquid separator (GSS) 33. The generated gas is supplied to the generated gas processing apparatus 10 through the generated gas discharge pipe 7 and used as an energy source. The methane fermentation treated water is supplied to the aerobic biological treatment device 3 through the methane fermentation treated water supply pipe 8, and the methane fermentation treated sludge is supplied to the dehydrator 11 through the methane fermentation treated sludge discharge pipe 9 to reduce the volume. Are discharged outside the system.

本処理方法Aでは、前述したように、混合脱ガス槽1にて、予め酸発酵処理汚泥中の発酵ガスを分離除去しているため、メタン発酵槽30でのスカム(浮上汚物)の発生を抑制することができる。   In the present processing method A, as described above, since the fermentation gas in the acid fermentation treatment sludge is separated and removed in advance in the mixed degassing tank 1, generation of scum (floating waste) in the methane fermentation tank 30 is prevented. Can be suppressed.

下水のような低濃度有機性排水をUASB処理する場合には、汚泥床(スラッジゾーン)を確保するために通水速度が制限されるため、CODcr容積負荷は1kg/m/dと低い有機物負荷となる。一方、食品産業排水のような高濃度有機性排水のUASB処理では、CODcr容積負荷は10〜20kg/m/dと高い有機物負荷となる。すなわち、低濃度有機性排水は、高濃度有機性排水に比べ、有機物負荷が1/10〜1/20と低く、嫌気性菌の密度が低くなり、汚泥床のグラニュール汚泥の粒径は0.1〜0.5mmと小さなものになる。
このように低濃度有機性排水をUASB処理する場合には、グラニュ−ル汚泥の沈降速度と流入SSの沈降速度の差が、高濃度有機性排水に適用されている従来のUASBグラニュ−ル汚泥に比べて小さいため、流入するSS濃度、排水の性状によっては、メタン発酵槽30内でのスカムの発生量が多くなり、メタン発酵槽30内の汚泥の維持が困難になる可能性がある。
こうした理由から、メタン発酵処理の被処理水、すなわち脱ガス混合水のSS濃度は2000mg/L以下であるのが好ましく、中でも1000mg/L以下であるのが特に好ましい。そして、脱ガス混合水のSS濃度を2000mg/L以下、中でも1000mg/L以下とすることが好ましい。
When UASB treatment is performed on low-concentration organic wastewater such as sewage, the water flow rate is limited in order to secure a sludge bed (sludge zone), so the CODcr volume load is as low as 1 kg / m 3 / d. It becomes a load. On the other hand, in UASB treatment of high-concentration organic wastewater such as food industry wastewater, the CODcr volumetric load is as high as 10 to 20 kg / m 3 / d. That is, the low-concentration organic wastewater has a lower organic load of 1/10 to 1/20, the density of anaerobic bacteria is lower than the high-concentration organic wastewater, and the particle size of the granular sludge in the sludge bed is 0. .1 to 0.5mm and small.
Thus, when low concentration organic wastewater is treated with UASB, the difference between the sedimentation rate of granular sludge and the sedimentation rate of inflow SS is the conventional UASB granule sludge applied to high concentration organic wastewater. Therefore, the amount of scum generated in the methane fermentation tank 30 may increase depending on the concentration of SS flowing in and the nature of the wastewater, and it may be difficult to maintain the sludge in the methane fermentation tank 30.
For these reasons, the SS concentration of water to be treated for methane fermentation, that is, degassed mixed water, is preferably 2000 mg / L or less, and particularly preferably 1000 mg / L or less. And it is preferable to make SS density | concentration of degassed mixed water below 2000 mg / L, especially below 1000 mg / L.

前述のようにUASB法を低濃度排水に適用すると、汚泥床のグラニュール汚泥の粒径は0.1〜0.5mmと小さくなり、沈降速度も小さくなるため、流入SS濃度の影響を受けやすくなる。そのため、以下の2つの改善方法のいずれかを採用するのが好ましい。但し、必ずしも採用しなくてもよい。
(1)沈降性のよい粒径0.1mm〜1.0mm、好ましくは0.2mm〜0.7mmの砂やゼオライト、活性炭等の担体を、汚泥床容量に対して1〜10%、好ましくは5〜7%の割合で汚泥床に添加する。
(2)有機性排水に由来する被処理水に、Fe塩を好ましくは1〜20mg/L(asFe)、中でも好ましくは5〜10mg/L(asFe)の割合で添加する。
When the UASB method is applied to low-concentration wastewater as described above, the particle size of the granular sludge in the sludge bed is reduced to 0.1 to 0.5 mm, and the sedimentation speed is also reduced, so that it is easily affected by the inflow SS concentration. Become. Therefore, it is preferable to employ one of the following two improvement methods. However, it does not necessarily have to be adopted.
(1) A carrier such as sand, zeolite, activated carbon or the like having a particle size of 0.1 mm to 1.0 mm, preferably 0.2 mm to 0.7 mm with good sedimentation, is 1 to 10% with respect to the sludge bed capacity, preferably Add to sludge bed at 5-7% rate.
(2) Fe salt is preferably added to the water to be treated derived from organic waste water at a ratio of preferably 1 to 20 mg / L (asFe), and more preferably 5 to 10 mg / L (asFe).

前記(1)の方法では、担体に嫌気性菌を付着させることで、汚泥床における嫌気性菌の割合を高めることが可能となる。
前記(2)の方法では、Fe塩以外にCa塩なども適用することができる。
In the method (1), it is possible to increase the proportion of anaerobic bacteria in the sludge bed by attaching anaerobic bacteria to the carrier.
In the method (2), a Ca salt or the like can be applied in addition to the Fe salt.

メタン発酵槽30内の水温は、18℃以上であるのが好ましく、特に20℃以上、中でも特に20〜30℃であるのが好ましい。
また、メタン生成の段階で中心的役割を果たすメタン生成菌は、中性付近のpHを好むため、好ましくはpH6〜8に調整するのが好ましい。
The water temperature in the methane fermentation tank 30 is preferably 18 ° C or higher, particularly 20 ° C or higher, and particularly preferably 20 to 30 ° C.
In addition, methanogenic bacteria that play a central role in the stage of methanogenesis prefer a pH in the vicinity of neutrality, so it is preferable to adjust to pH 6-8.

また、メタン生成細菌には、活性温度によっていくつかの種類に分類されるが、本処理方法Aでは、活性温度が20〜30℃のメタン生成菌を用いるのが好ましい。   Moreover, although methanogenic bacteria are classified into several types according to the activation temperature, it is preferable to use methanogens having an activation temperature of 20 to 30 ° C. in this processing method A.

図6は、メタン発酵処理装置の変形例としてのメタン発酵槽40を示した図である。
メタン発酵槽40は、図5に示したメタン発酵槽30と対比すると、メタン発酵槽40内部に気固液分離部(GSS)33を設けず、気体を透過しない材料からなる屋根材41でメタン発酵槽30の上部を密閉被覆し、屋根材41とメタン発酵槽30との接続部分にガス排気口42を設け、このガス排気口42に発生ガス排出管7を連結して反応ガスを排出可能とした構成を備えた装置である。
但し、ガス排気口42を設ける位置は任意に設計可能である。例えば屋根材41のいずれかに設けてもよいし、メタン発酵槽30の上部に設けてもよい。
FIG. 6 is a view showing a methane fermentation tank 40 as a modification of the methane fermentation treatment apparatus.
Compared with the methane fermentation tank 30 shown in FIG. 5, the methane fermentation tank 40 does not include a gas-solid-liquid separation part (GSS) 33 inside the methane fermentation tank 40, and is a roof material 41 made of a material that does not transmit gas. The upper part of the fermenter 30 is hermetically covered, and a gas exhaust port 42 is provided at a connection portion between the roof material 41 and the methane fermenter 30, and the generated gas exhaust pipe 7 can be connected to the gas exhaust port 42 to discharge the reaction gas. This is a device having the configuration described above.
However, the position where the gas exhaust port 42 is provided can be arbitrarily designed. For example, you may provide in either of the roofing materials 41, and you may provide in the upper part of the methane fermentation tank 30.

被処理水(原水)が下水である場合、上述のように一般的にCODcr濃度400〜1000mg/Lの低濃度有機性排水であるため、メタン発酵処理槽(UASB槽)でのCODcr容積負荷が1kg/m/dと低く、食品製造排水のような高濃度有機性排水のメタン発酵処理に比べ、発生ガスの量は少ない。そのため、図5に示した装置のような気固液分離部(GSS)33を設けなくても、発生ガス回収し排出することができる。 When the water to be treated (raw water) is sewage, it is generally low-concentration organic wastewater with a CODcr concentration of 400 to 1000 mg / L as described above, so that the CODcr volumetric load in the methane fermentation treatment tank (UASB tank) The amount of generated gas is small compared to methane fermentation treatment of high-concentration organic wastewater such as food production wastewater, which is as low as 1 kg / m 3 / d. Therefore, the generated gas can be recovered and discharged without providing the gas-solid-liquid separator (GSS) 33 as in the apparatus shown in FIG.

図7は、メタン発酵処理装置のさらなる変形例としてのメタン発酵槽50を示した図である。
メタン発酵槽50は、図6に示したメタン発酵槽40と対比すると、メタン発酵槽50内部の超流堰34と同じ高さであって、超流堰34の内側部分に、スカムを集めるスカム捕集枠51を設けた構成を備えた装置である。
FIG. 7 is a view showing a methane fermentation tank 50 as a further modification of the methane fermentation treatment apparatus.
Compared with the methane fermenter 40 shown in FIG. 6, the methane fermenter 50 is the same height as the superfluid weir 34 inside the methane fermenter 50, and scum collects scum at the inner portion of the superfluid weir 34. This is an apparatus having a configuration in which a collection frame 51 is provided.

スカム捕集枠51は、図8に示すように、メタン発酵槽50の対向する内壁に渡って固定するようにしてもよいし、また、スカム捕集枠51に昇降手段52を設け、必要に応じてスカム捕集枠51を超流堰34と同じ高さに配置したり、液面の上方に配置したりするように構成することもできる。   As shown in FIG. 8, the scum collection frame 51 may be fixed over the opposing inner walls of the methane fermentation tank 50, and the scum collection frame 51 is provided with an elevating means 52, and is necessary. Accordingly, the scum collection frame 51 can be arranged at the same height as the super-flow weir 34 or arranged above the liquid level.

(好気性生物処理工程及び装置)
好気性生物処理工程では、メタン発酵処理水供給管8を通じて供給されたメタン発酵処理水を、好気性生物処理装置3において、好気性生物を用いて前記メタン発酵処理水を生物学的酸化分解処理し、得られた好気性生物処理水と好気性生物処理汚泥の混合処理液を、好気性生物処理液排出管12を通じて固液分離装置13に供給し、固液分離装置13において、好気性生物処理水と好気性生物処理汚泥に分離し、前者の好気性生物処理水は好気性生物処理水排出管14を通じて系外に排出し、後者の好気性生物処理汚泥は、好気性生物処理汚泥供給管15を通じて、その一部を好気性生物処理装置3の入り口側に返送し、他方(これを「余剰汚泥」と称する)を濃縮装置16若しくは酸発酵処理装置4に供給する。
(Aerobic biological treatment process and equipment)
In the aerobic biological treatment process, the methane fermentation treated water supplied through the methane fermentation treated water supply pipe 8 is subjected to biological oxidative decomposition treatment using the aerobic organism in the aerobic biological treatment device 3. The obtained aerobic biological treatment water and aerobic biological treatment sludge mixed treatment liquid is supplied to the solid-liquid separation device 13 through the aerobic biological treatment liquid discharge pipe 12. Separated into treated water and aerobic biological treated sludge, the former aerobic biological treated water is discharged out of the system through the aerobic biological treated water discharge pipe 14, and the latter aerobic biological treated sludge is supplied to the aerobic biological treated sludge A part thereof is returned to the inlet side of the aerobic biological treatment apparatus 3 through the pipe 15, and the other (referred to as “excess sludge”) is supplied to the concentration apparatus 16 or the acid fermentation treatment apparatus 4.

好気性生物処理は、溶存酸素が十分ある環境下で、好気性微生物によって、有機性物質、アンモニア性窒素等を酸化分解する方法である。
本処理方法Aが採用し得る好気性処理方法としては、例えば曝気によって生物フロックを浮遊させた状態で有機物質を生物学的酸化分解する方法(活性汚泥法に代表される)や、担体に微生物を付着増殖させて生物膜を形成させ、これを排水に接触させて生物学的酸化分解する方式(生物膜法に代表される)など、公知のいずれの方法も採用可能である。
中でも、本処理方法Aでは、下水などの低濃度有機性排水を好適に処理できる観点から活性汚泥法が好ましい。活性汚泥法は、活性汚泥と呼ばれるさまざまな好気性微生物や有機性物質や無機性物質などからなるゼラチン状のフロックを用いた処理方法である。
The aerobic biological treatment is a method in which an organic substance, ammonia nitrogen, and the like are oxidatively decomposed by an aerobic microorganism in an environment where dissolved oxygen is sufficient.
Examples of the aerobic treatment method that can be adopted by this treatment method A include a method of biologically oxidizing and decomposing an organic substance in a state where a biological floc is suspended by aeration (represented by the activated sludge method), and a microorganism as a carrier. Any known method such as a method (represented by a biofilm method) in which a biofilm is formed by adhering to and growing in contact with wastewater and biologically oxidatively decomposed can be employed.
Among these, in the present treatment method A, the activated sludge method is preferable from the viewpoint of suitably treating low-concentration organic wastewater such as sewage. The activated sludge method is a treatment method using gelatinous flocs made of various aerobic microorganisms called organic sludge, organic substances and inorganic substances.

好適な好気性生物処理装置3としては、微生物による有機物の酸化分解によって消費される酸素を大量に供給するための曝気装置を付属した処理槽と、汚泥と処理水とを分離する汚泥沈殿槽とを備えたものを挙げることができる。
例えば、被処理水中の浮遊物質など除去する最初沈殿池と、活性汚泥と混合すると共に曝気し、微生物の代謝によって有機物を分解する曝気槽と、汚泥と処理水とを分離するための汚泥沈殿槽とを備えた好気性生物処理装置3を例示することができる。但し、公知の好気性生物処理装置であれば採用可能である。
The preferred aerobic biological treatment apparatus 3 includes a treatment tank attached with an aeration apparatus for supplying a large amount of oxygen consumed by oxidative decomposition of organic matter by microorganisms, and a sludge settling tank for separating sludge and treated water. Can be mentioned.
For example, an initial sedimentation basin for removing suspended solids in the treated water, an aeration tank that mixes with activated sludge and aerates and decomposes organic matter by microbial metabolism, and a sludge sedimentation tank for separating sludge and treated water The aerobic biological treatment apparatus 3 provided with can be illustrated. However, any known aerobic biological treatment apparatus can be employed.

次に、固液分離装置13としては、例えば沈殿池、遠心分離機、膜分離等の固液分離装置を挙げることができる。下水のような大水量で低SS濃度の固形物を無薬注にて固液分離するためには、設備面、維持管理面からみてスケ−ルアップ容易であること、ランニングコストが低く、維持管理が容易であることなどから、沈殿池が適している。固液分離装置13は、従来の活性汚泥処理で用いられている最初沈殿池であってもよい。   Next, examples of the solid-liquid separation device 13 include a solid-liquid separation device such as a sedimentation basin, a centrifugal separator, and a membrane separation. For solid-liquid separation of solids with a large amount of water such as sewage and low SS concentration without chemical injection, it is easy to scale up from the viewpoint of equipment and maintenance, and running costs are low, so maintenance management For example, a sedimentation basin is suitable. The solid-liquid separator 13 may be an initial settling basin used in conventional activated sludge treatment.

また、通常の好気性生物処理装置3では、好気性生物が好気性生物処理汚泥と共に流出(wash out)してしまうため、本処理方法Aでは、固液分離装置13において、好気性生物処理水と好気性生物処理汚泥に分離し、図2に示すように、好気性生物処理汚泥の一部を好気性生物処理装置3の入り口側に返送するのが好ましい。   Further, in the normal aerobic biological treatment apparatus 3, since the aerobic organisms are washed out together with the aerobic biological treatment sludge, in the present treatment method A, the aerobic biological treatment water is used in the solid-liquid separation device 13. The aerobic biological treatment sludge is preferably separated and returned to the inlet side of the aerobic biological treatment apparatus 3 as shown in FIG.

(余剰汚泥濃縮工程)
固液分離装置13で分離された好気性生物処理汚泥の一部(余剰汚泥)は、必要に応じて濃縮装置16に供給され、濃縮装置16において濃縮して濃縮余剰汚泥とし、濃縮汚泥供給管17を通じて酸発酵処理装置4に供給する。
(Excess sludge concentration process)
A part of the aerobic biologically treated sludge separated by the solid-liquid separator 13 (excess sludge) is supplied to the concentrator 16 as necessary, and concentrated in the concentrator 16 to obtain concentrated surplus sludge, and the concentrated sludge supply pipe 17 is supplied to the acid fermentation treatment apparatus 4.

なお、当該余剰汚泥濃縮工程は必ずしも必要な工程ではない。例えば膜分離活性汚泥法(Membrane Bioreactor:MBRと略す)のように沈殿池のかわりに精密ろ過膜(MF膜)や限外ろ過膜(UF膜)を使う場合には、曝気槽のMLSS濃度が5000〜10000mg/Lに高濃度になるため、余剰汚泥濃縮工程は必ずしも必要とならない。通常は沈殿池を用いる場合が多いため、余剰汚泥を濃縮した上で酸発酵処理工程に供給するのが好ましい。   In addition, the said excess sludge concentration process is not necessarily a required process. For example, when a microfiltration membrane (MF membrane) or ultrafiltration membrane (UF membrane) is used instead of a sedimentation basin as in the membrane separation activated sludge method (Membrane Bioreactor: MBR), the MLSS concentration in the aeration tank is Since it becomes a high density | concentration to 5000-10000 mg / L, the excess sludge concentration process is not necessarily required. Usually, since a sedimentation basin is often used, it is preferable to supply the acid fermentation treatment step after concentrating excess sludge.

(酸発酵処理工程及び装置)
酸発酵処理装置4では、好気性生物処理汚泥(余剰汚泥)若しくは濃縮余剰汚泥を酸発酵処理して酸発酵処理汚泥を得、該酸発酵処理汚泥を、酸発酵処理汚泥供給管18を通じて混合脱ガス槽1に供給する。
(Acid fermentation process and equipment)
In the acid fermentation treatment apparatus 4, an aerobic biological treatment sludge (excess sludge) or concentrated excess sludge is subjected to an acid fermentation treatment to obtain an acid fermentation treatment sludge, and the acid fermentation treatment sludge is mixed and removed through an acid fermentation treatment sludge supply pipe 18. Supply to the gas tank 1.

酸発酵処理では、好気性生物処理汚泥若しくは濃縮余剰汚泥中の有機物の一部を、酢酸、プロピオン酸等の有機酸に低分子化することができる。   In the acid fermentation treatment, a part of the organic matter in the aerobic biological treatment sludge or the concentrated excess sludge can be reduced in molecular weight to an organic acid such as acetic acid or propionic acid.

酸発酵処理において、酸生成に関与する微生物は通性嫌気菌であり、ORPが−200〜50mVの範囲で生育させるのが好ましい。   In the acid fermentation treatment, the microorganisms involved in acid production are facultative anaerobes and are preferably grown in the range of ORP of −200 to 50 mV.

酸発酵処理装置4は、汚泥を撹拌することができる手段を備えているのが好ましい。撹拌手段としては、撹拌機を設置してもよく、空気等のガスを曝気してもよい。   It is preferable that the acid fermentation treatment apparatus 4 includes a means capable of stirring the sludge. As the stirring means, a stirrer may be installed, or a gas such as air may be aerated.

酸発酵処理装置4は、酸発酵槽内を加温する手段を備えているものが好ましい。この際、加熱用の熱源として、メタン発酵槽30から回収されたメタンガスg1をボイラーで蒸気に変換して利用することもできる。
酸発酵処理工程で被処理物を加温することは、例えばメタン発酵処理装置2において被処理水を直接加温する場合に比べ、加温に必要なエネルギーを減らすことができる。そればかりか、酸発酵槽においては、濃縮汚泥中に含まれる固形物(SS分)の一部は、加水分解、有機酸発酵を経て、溶解性の有機物(酢酸、プロピオン酸等)に変換されるため、こうした物質の存在によりメタン菌の活性を維持し、低水温の有機性排水であってもメタン発酵処理を良好に行なうことができる。
The acid fermentation treatment apparatus 4 is preferably equipped with means for heating the inside of the acid fermentation tank. At this time, as a heat source for heating, the methane gas g1 recovered from the methane fermentation tank 30 can be converted into steam by a boiler and used.
Heating the object to be treated in the acid fermentation treatment step can reduce the energy required for heating as compared to, for example, directly heating the water to be treated in the methane fermentation treatment apparatus 2. In addition, in acid fermenters, some of the solids (SS content) contained in the concentrated sludge is converted into soluble organic substances (acetic acid, propionic acid, etc.) through hydrolysis and organic acid fermentation. Therefore, the activity of methane bacteria is maintained by the presence of such substances, and methane fermentation treatment can be performed satisfactorily even with organic wastewater having a low water temperature.

酸発酵処理装置4内の温度は、好ましくは20〜35℃、下水水温と発生ガスの熱エネルギ−から判断すると、より好ましくは20〜25℃の範囲である。
このように、酸発酵処理装置4に流入した好気性生物処理汚泥若しくは濃縮余剰汚泥は、外部熱源により20℃以上に加温して酸発酵処理するのが好ましい。こうして、酸発酵処理装置4では、有機性排水中に含まれる、そのままの状態では微生物が分解できない固形物(SS分)が、酸生成菌による有機酸発酵を経て、溶解性の有機物(プロピオン酸、酢酸等)に変換される。
The temperature in the acid fermentation treatment apparatus 4 is preferably 20 to 35 ° C., and more preferably in the range of 20 to 25 ° C. as judged from the sewage water temperature and the heat energy of the generated gas.
Thus, it is preferable that the aerobic biological treatment sludge or concentrated surplus sludge that has flowed into the acid fermentation treatment apparatus 4 is heated to 20 ° C. or more by an external heat source and subjected to acid fermentation treatment. Thus, in the acid fermentation treatment apparatus 4, the solid matter (SS content) contained in the organic waste water that cannot be decomposed by microorganisms as it is is subjected to the organic acid fermentation by the acid-producing bacteria to dissolve the organic matter (propionic acid). , Acetic acid, etc.).

酸発酵処理での酸発酵処理槽の最適なHRT(Hydraulic Retention Time:水理学的滞留時間)は、溶解性有機物濃度(Soluble CODcr:S−CODcrと略す)および酢酸・プロピオン酸・乳酸等の有機酸の生成量により決定するのが好ましい。
すなわち、固形性有機物が可溶化した割合をCODcrの可溶化比(S−CODcr/CODcr)と定義し、溶解性有機酸CODcr中に含有する有機酸の割合を(asCODcr)/S−CODcr比として定義した場合において、CODcrの可溶化比及び有機酸(asCODcr)/S−CODcr比が一定値を示したときのHRTを最適HRTとするのが好ましい。
The optimum HRT (Hydraulic Retention Time) of the acid fermentation treatment tank in the acid fermentation treatment is the concentration of soluble organic substances (Soluble CODcr: abbreviated as S-CODcr) and organic substances such as acetic acid, propionic acid, and lactic acid. It is preferable to determine the amount of acid produced.
That is, the ratio of solubilized solid organic matter is defined as the solubilization ratio of CODcr (S-CODcr / CODcr), and the ratio of organic acid contained in the soluble organic acid CODcr is defined as (asCODcr) / S-CODcr ratio. In the case of the definition, it is preferable that the HRT when the solubilization ratio of CODcr and the organic acid (asCODcr) / S-CODcr ratio show a constant value is the optimum HRT.

例えば、最初沈殿池汚泥の場合、酸発酵槽の温度20℃、HRT2日〜3日で、S−CODcr/CODcr比は0.15〜0.20(−)、有機酸(asCODcr)/S−CODcr比は0.3〜0.4となり、酸発酵槽の温度25℃、HRT1日〜2日では、S−CODcr/CODcr比は0.15〜0.20(−)、VFA(asCODcr)/S−CODcrは0.55〜0.65となる。
一方、UASBの濃縮汚泥の場合、酸発酵槽の温度20℃、HRT2日〜3日で、S−CODcr/CODcr比は0.10〜0.20(−)、VFA(asCODcr)/S−CODcr比は0.13〜0.20となり、酸発酵槽の温度25℃、HRT1日〜2日で、S−CODcr/CODcr比は0.10〜0.20(−)、VFA(asCODcr)/S−CODcr比は0.35〜0.45となる。
このように、最初沈殿池汚泥、UASB槽の濃縮汚泥共に酸発酵槽の温度が高くなると酸生成菌の活性が上がるため、HRTは短縮され、水温20℃で最適HRTは2〜3日、水温25℃で最適HRTは1〜2日、水温30℃で最適HRTは0.5〜1.5日となる。UASB槽の濃縮汚泥は排水中の有機物がUASB槽で嫌気性菌により一部分解された後のものなので、最初沈殿池汚泥とUASB槽では、濃縮汚泥のS−CODcr/CODcr比、有機酸(asCODcr)/S−CODcr比は、共にUASB槽の濃縮汚泥の方が小さい値になる。
For example, in the case of the first sedimentation basin sludge, the acid fermenter temperature is 20 ° C., HRT is 2 to 3 days, the S-CODcr / CODcr ratio is 0.15 to 0.20 (−), and the organic acid (asCODcr) / S— The CODcr ratio becomes 0.3 to 0.4, and the temperature of the acid fermenter is 25 ° C. and the HRT is 1 to 2 days, the S-CODcr / CODcr ratio is 0.15 to 0.20 (−), VFA (asCODcr) / S-CODcr is 0.55 to 0.65.
On the other hand, in the case of UASB concentrated sludge, the acid fermenter temperature is 20 ° C. and the HRT is 2 to 3 days, and the S-CODcr / CODcr ratio is 0.10 to 0.20 (−), VFA (asCODcr) / S-CODcr. The ratio is 0.13 to 0.20, the temperature of the acid fermenter is 25 ° C., and the HRT is 1 to 2 days, and the S-CODcr / CODcr ratio is 0.10 to 0.20 (−), VFA (asCODcr) / S The -CODcr ratio is 0.35 to 0.45.
Thus, since the activity of acid-producing bacteria increases when the temperature of the acid fermenter increases in both the initial sedimentation basin sludge and the concentrated sludge in the UASB tank, the HRT is shortened, and the optimum HRT is 2 to 3 days at a water temperature of 20 ° C. The optimum HRT is 1 to 2 days at 25 ° C, and the optimum HRT is 0.5 to 1.5 days at a water temperature of 30 ° C. The concentrated sludge in the UASB tank is the one after the organic matter in the wastewater has been partially decomposed by anaerobic bacteria in the UASB tank. ) / S-CODcr ratio is smaller for the concentrated sludge in the UASB tank.

酸発酵処理装置4の濃縮汚泥の撹拌は、連続的あるいは間欠撹拌にて行なうことが好ましい。酸発酵処理装置4内のMLSS濃度が20000〜40000mg/Lと高濃度であるため、汚泥を均一に撹拌するための動力がかかる。しかし、撹拌が強いと生成した有機酸が揮発あるいは酸化され減少する。したがって、酸発酵槽の撹拌は間欠に行なうのが好ましい。例えば1〜2時間の撹拌停止後、5〜15分撹拌を行うような間欠撹拌を行なうことが好ましい。   The concentrated sludge in the acid fermentation treatment apparatus 4 is preferably stirred continuously or intermittently. Since the MLSS concentration in the acid fermentation treatment apparatus 4 is as high as 20000 to 40000 mg / L, power for uniformly stirring the sludge is applied. However, when the agitation is strong, the generated organic acid is volatilized or oxidized to decrease. Therefore, it is preferable to stir the acid fermentation tank intermittently. For example, it is preferable to perform intermittent stirring such as stirring for 5 to 15 minutes after stirring is stopped for 1 to 2 hours.

<本処理方法B>
図3は、本実施形態の一例に係る有機性排水の処理方法B(「本処理方法B」と称する)の装置並びに工程を示した図である。
<This processing method B>
FIG. 3 is a diagram illustrating an apparatus and a process of an organic wastewater treatment method B (referred to as “the present treatment method B”) according to an example of the present embodiment.

本処理方法Bを実施するための装置は、図2に示した本処理方法Aを実施するための装置において、メタン発酵処理汚泥排出管9を分岐し、分岐した一方を脱水装置11に接続し、他方の分岐管20が酸発酵処理装置4の入り口側に接続されている点以外、図2に示した本処理方法Aを実施するための装置と同様である。   The apparatus for carrying out this treatment method B is the apparatus for carrying out this treatment method A shown in FIG. 2, branching off the methane fermentation treatment sludge discharge pipe 9 and connecting one of the branches to the dehydrator 11. The other branch pipe 20 is the same as the apparatus for carrying out the present processing method A shown in FIG. 2 except that the other branch pipe 20 is connected to the inlet side of the acid fermentation treatment apparatus 4.

本処理方法Bは、上記本処理方法Aにおいて、メタン発酵処理装置2で生じたメタン発酵処理汚泥の一部又は全部を、分岐管20を通じて酸発酵処理装置4に供給し、酸発酵処理装置4において、前記メタン発酵処理汚泥の一部又は全部と好気性生物処理汚泥(余剰汚泥)若しくは濃縮余剰汚泥とを混合し、この混合物を酸発酵処理するようにしている点以外は、上記本処理方法Aと同様である。   This treatment method B supplies a part or all of the methane fermentation treatment sludge generated in the methane fermentation treatment device 2 to the acid fermentation treatment device 4 through the branch pipe 20 in the above treatment method A, and the acid fermentation treatment device 4 In this method, except that a part or all of the methane fermentation treatment sludge and aerobic biological treatment sludge (excess sludge) or concentrated surplus sludge are mixed and the mixture is subjected to an acid fermentation treatment. Same as A.

冬期の日本のように下水の温度が下がる場合、低温の下水を被処理水として本処理方法Aを実施すると、槽内の嫌気性菌の活性が下がり、槽内に懸濁物質(SS)が溜まって、メタン発酵が進行しないようになり、発酵槽内の汚泥界面が上昇して最終的には溢れる可能性がある。この際、被処理水としての下水を加温するには、通水量が多いために多量のエネルギーが必要となるため、現実的ではない。
そこで、本処理方法Bのように、メタン発酵処理汚泥の一部又は全部を、メタン発酵槽から抜き出して酸発酵処理工程に供給するようにすれば、発酵槽内の汚泥界面の上昇を抑えることができるばかりか、酸発酵処理工程で該メタン発酵処理汚泥をメタン発酵し易い酸に変換し、再びメタン発酵処理工程に戻すことができるので、水温が低くて嫌気性菌の活性が下がっていてもメタン発酵処理を促進させることができる。
よって、本処理方法Bは、被処理水(原水)の水温、好ましくはメタン発酵槽内の水温が13℃以上18℃未満の場合に実施するのが特に好ましい。
When the temperature of sewage falls as in Japan in winter, when this treatment method A is carried out using low-temperature sewage as the treated water, the activity of anaerobic bacteria in the tank is reduced, and suspended substances (SS) are present in the tank. There is a possibility that the methane fermentation will not proceed and the sludge interface in the fermenter will rise and eventually overflow. At this time, in order to heat the sewage as the water to be treated, a large amount of energy is required due to a large amount of water flow, which is not realistic.
Therefore, as in this treatment method B, if a part or all of the methane fermentation treatment sludge is extracted from the methane fermentation tank and supplied to the acid fermentation treatment process, the rise in the sludge interface in the fermentation tank is suppressed. In addition, the methane fermentation treatment sludge can be converted into an acid that is easily fermented in methane fermentation in the acid fermentation treatment process, and returned to the methane fermentation treatment process again, so the water temperature is low and the activity of anaerobic bacteria is reduced. Can also promote the methane fermentation process.
Therefore, this treatment method B is particularly preferably performed when the water temperature of the water to be treated (raw water), preferably the water temperature in the methane fermentation tank is 13 ° C. or more and less than 18 ° C.

<本処理方法C>
図4は、本実施形態の一例に係る有機性排水の処理方法C(「本処理方法C」と称する)の装置並びに工程を示した図である。
<This processing method C>
FIG. 4 is a diagram illustrating an apparatus and a process of an organic wastewater treatment method C (referred to as “the present treatment method C”) according to an example of the present embodiment.

本処理方法Cを実施するための装置は、図2に示した本処理方法Aを実施するための装置において、混合脱ガス槽1の上流側に固液分離装置21を設け、被処理水(原水)を供給する被処理水供給管5を当該固液分離装置21の入り口側に接続し、当該固液分離装置21の出口側に接続された分離水供給管22を混合脱ガス槽1の入り口側に接続する一方、当該固液分離装置21の出口側に接続された分離汚泥供給管23を酸発酵処理装置4の入り口側に接続している点以外は、図2に示した本処理方法Aを実施するための装置と同様である。   The apparatus for carrying out this treatment method C is the apparatus for carrying out this treatment method A shown in FIG. 2 and is provided with a solid-liquid separation device 21 on the upstream side of the mixed degassing tank 1 so that water to be treated ( Raw water) is connected to the inlet side of the solid-liquid separator 21, and the separated water supply pipe 22 connected to the outlet side of the solid-liquid separator 21 is connected to the mixed degassing tank 1. 2 except that the separation sludge supply pipe 23 connected to the outlet side of the solid-liquid separator 21 is connected to the inlet side of the acid fermentation treatment apparatus 4 while being connected to the inlet side. Similar to the apparatus for carrying out method A.

本処理方法Cは、被処理水(原水)を固液分離装置21で固液分離し、得られた分離水を混合脱ガス槽1に供給し、混合脱ガス槽1では、当該分離水と酸発酵処理汚泥とを混合すると共に酸発酵処理汚泥中の発酵ガスを抜く処理を行い、得られた混合水を、混合水供給管6を通じてメタン発酵処理装置2に供給する一方、固液分離装置21で得られた分離汚泥は、分離汚泥供給管23を通じて酸発酵処理装置4に供給し、当該分離汚泥と好気性生物処理汚泥の一部(余剰汚泥)とともに酸発酵処理して酸発酵処理汚泥を得、該酸発酵処理汚泥を混合脱ガス槽1に供給する点以外は、上記本処理方法Aと同様である。   In this treatment method C, water to be treated (raw water) is solid-liquid separated by the solid-liquid separation device 21, and the obtained separated water is supplied to the mixed degassing tank 1. While mixing with acid fermentation process sludge, the process which extracts the fermentation gas in acid fermentation process sludge is performed, and while supplying the obtained mixed water to the methane fermentation processing apparatus 2 through the mixed water supply pipe 6, solid-liquid separation apparatus The separated sludge obtained in 21 is supplied to the acid fermentation treatment apparatus 4 through the separated sludge supply pipe 23, and is subjected to an acid fermentation treatment together with the separated sludge and a part of the aerobic biological treatment sludge (excess sludge). The acid fermentation treatment sludge is the same as the treatment method A except that the acid fermentation treatment sludge is supplied to the mixed degassing tank 1.

被処理水の水温が13℃未満の場合、前述した場合よりも嫌気性菌の活性がさらに下がることになる。そこで、被処理水を先ずは固液分離して、分離汚泥或いは該分離汚泥を濃縮した濃縮分離汚泥を酸発酵処理工程に供給してメタン発酵し易い酸に変換した上でメタン発酵処理工程に供給することにより、水温がさらに低くて嫌気性菌の活性がさらに下がっていてもメタン発酵処理を促進させることができる。   When the water temperature of to-be-processed water is less than 13 degreeC, the activity of anaerobic bacteria will fall further than the case mentioned above. Therefore, the water to be treated is firstly solid-liquid separated, and the separated sludge or the concentrated separated sludge obtained by concentrating the separated sludge is supplied to the acid fermentation treatment step to convert it into an acid that is easily methane-fermented, and then into the methane fermentation treatment step. By supplying, even if the water temperature is lower and the activity of the anaerobic bacteria is further lowered, the methane fermentation treatment can be promoted.

低濃度有機性排水のメタン発酵処理では、メタン発酵処理槽で発生したメタンガスの40〜60%はメタン発酵処理水に溶存し、系外に排出される。したがって、低濃度有機性排水のメタン発酵処理で得られるメタンガスからの熱エネルギー量には制約がある。また、下水のSS濃度は通常200mg/Lの低濃度であり、この状態(SS200mg/L)で、メタン発酵で発生したガスをボイラ−にて蒸気に変換し加温エネルギ−として利用しても水温を上げることは難しい。
その点、SSを固液分離して濃縮汚泥濃度(20000〜40000mg/L)として、約100〜200倍に濃縮した濃縮汚泥量は少容量となるため、発生ガス中のメタンガスを利用して酸発酵槽内の温度を5℃前後上昇させることは可能となる。
In the methane fermentation treatment of low-concentration organic wastewater, 40 to 60% of the methane gas generated in the methane fermentation treatment tank is dissolved in the methane fermentation treatment water and discharged out of the system. Therefore, the amount of heat energy from methane gas obtained by methane fermentation treatment of low-concentration organic wastewater is limited. Moreover, the SS concentration of sewage is usually a low concentration of 200 mg / L. In this state (SS 200 mg / L), the gas generated by methane fermentation is converted into steam by a boiler and used as heating energy. It is difficult to raise the water temperature.
In that respect, SS is solid-liquid separated to obtain a concentrated sludge concentration (20,000 to 40,000 mg / L), and the amount of concentrated sludge concentrated about 100 to 200 times becomes a small volume. Therefore, an acid is generated using methane gas in the generated gas. It is possible to raise the temperature in the fermenter around 5 ° C.

<語句の説明>
本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
<Explanation of words>
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), unless otherwise specified, “X is preferably greater than X” or “preferably Y”. It also includes the meaning of “smaller”.
In addition, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), it is “preferably greater than X” or “preferably less than Y”. Includes intentions.

以下、実施例に基づいて本発明を説明する。ただし、本発明がここで説明する実施例に限定されるものではない。   Hereinafter, the present invention will be described based on examples. However, the present invention is not limited to the embodiments described here.

比較例1及び実施例1〜4では、次の低濃度有機性廃水を原水として、季節(1月〜2月、3月〜5月、6月〜10月、11月〜12月)ごとに処理方法を適宜変えながら処理を行い、得られた脱水ケーキ量を比較した。   In Comparative Example 1 and Examples 1-4, the following low-concentration organic wastewater is used as raw water for each season (January to February, March to May, June to October, November to December). The treatment was performed while appropriately changing the treatment method, and the amount of the dehydrated cake obtained was compared.

(原水)
実施例及び比較例で処理した原水、すなわち低濃度有機性廃水の性状を表1に示す。
(Raw water)
Table 1 shows properties of raw water treated in Examples and Comparative Examples, that is, low-concentration organic wastewater.

Figure 0005873736
Figure 0005873736

(実施例1)
本実施例では、図2に示した有機性排水の処理方法Aにおいて、酸発酵処理後の発酵ガスのガス抜きをせずに処理を行い、脱水ケーキ量(乾燥重量)を毎日測定し、一日当たりの脱水ケーキ量を求めた。
処理期間は次の期間である。
・中水温期間:3月〜5月及び11月〜12月(UABB槽内水温13℃以上18℃未満)
・高水温期間:6月〜10月(UABB槽内水温18℃以上25℃未満)
Example 1
In this example, in the organic wastewater treatment method A shown in FIG. 2, the treatment was performed without degassing the fermentation gas after the acid fermentation treatment, and the amount of dehydrated cake (dry weight) was measured every day. The amount of dehydrated cake per day was determined.
The processing period is the next period.
-Medium water temperature period: March to May and November to December (water temperature in the UABB tank is 13 ° C or higher and lower than 18 ° C)
・ High water temperature period: June to October (water temperature in the UABB tank is 18 ° C or higher and lower than 25 ° C)

なお、原水の温度とUABB槽内水温はほぼ同じ温度であったので、UABB槽内水温のみを記載する。この点は、後述する実施例、比較例でも同様である。   In addition, since the temperature of raw | natural water and the water temperature in a UABB tank were substantially the same temperature, only the water temperature in a UABB tank is described. This is the same in the examples and comparative examples described later.

具体的には、低濃度有機性排水(原水)と、後述する酸発酵処理装置で処理して得た酸発酵処理汚泥とを、通水速度0.5m/hで、図5に示すようなUASB槽(容量900L)内に供給し、該槽内のCODcr負荷を1.0kg/m3/dとし、メタン発酵処理を行った。なお、種汚泥は、下水の中温消化汚泥を種汚泥としてUASB法で約一年間馴到した汚泥を用いた。 Specifically, low-concentration organic waste water (raw water) and acid fermentation treatment sludge obtained by treatment with an acid fermentation treatment apparatus described later at a water flow rate of 0.5 m / h as shown in FIG. It supplied in the UASB tank (capacity | capacitance 900L), the CODcr load in this tank was 1.0 kg / m < 3 > / d, and the methane fermentation process was performed. In addition, the sludge which was accustomed for about one year by the UASB method was used for the seed sludge by using the middle temperature digested sludge of sewage as seed sludge.

次に、好気性生物処理装置にて、活性汚泥を用いて前記メタン発酵処理水を生物学的酸化分解処理した。この際、好気性生物処理装置3としては、最初沈殿池、曝気槽及び汚泥沈殿槽を備えた好気性生物処理装置3を使用した。
そして、得られた好気性生物処理水と好気性生物処理汚泥の混合処理液を、固液分離装置に供給して、好気性生物処理水と好気性生物処理汚泥に分離し、後者の好気性生物処理汚泥の一部を好気性生物処理装置の入り口側に返送する一方、残りの好気性生物処理汚泥(余剰汚泥)を濃縮装置において濃縮して濃縮余剰汚泥として得た。
Next, the methane fermentation treated water was subjected to biological oxidative decomposition treatment using activated sludge in an aerobic biological treatment apparatus. At this time, as the aerobic biological treatment apparatus 3, an aerobic biological treatment apparatus 3 having an initial sedimentation basin, an aeration tank, and a sludge sedimentation tank was used.
Then, the obtained aerobic biological treated water and aerobic biologically treated sludge mixed treatment liquid is supplied to a solid-liquid separation device, and separated into aerobic biologically treated water and aerobic biologically treated sludge. A part of the biologically treated sludge was returned to the inlet side of the aerobic biological treatment apparatus, while the remaining aerobic biological treatment sludge (excess sludge) was concentrated in a concentrator to obtain concentrated excess sludge.

次に、前記のようにして得た濃縮余剰汚泥を、酸発酵処理装置において、濃縮余剰汚泥を25℃に加熱すると共に撹拌して、ORPが−200〜50mVの範囲で酸発酵処理して酸発酵処理汚泥を得、該酸発酵処理汚泥を前記の混合脱ガス槽に供給した。
この際、酸発酵処理装置としては、酸発酵処理槽(容量10L)と、汚泥を撹拌する手段と、加熱手段を備えたものを使用し、酸発酵処理槽のHRT2日とし、酸発酵槽の撹拌は、1時間の撹拌停止後、5分間撹拌を行うような間欠撹拌を行なった。
Next, the concentrated surplus sludge obtained as described above is stirred in an acid fermentation treatment apparatus while the concentrated surplus sludge is heated to 25 ° C. and subjected to an acid fermentation treatment in the range of ORP of −200 to 50 mV. Fermentation-treated sludge was obtained, and the acid-fermented sludge was supplied to the mixed degassing tank.
At this time, as the acid fermentation treatment apparatus, an acid fermentation treatment tank (capacity 10 L), a means equipped with a means for stirring sludge, and a heating means are used, and the acid fermentation treatment tank is HRT 2 days. Stirring was carried out intermittently such that stirring was continued for 5 minutes after stopping stirring for 1 hour.

(実施例2)
本実施例は、図2に示した有機性排水の処理方法Aにおいて、酸発酵処理後の発酵ガスのガス抜きを行い、脱水ケーキ量(乾燥重量)を毎日測定し、一日当たりの脱水ケーキ量を求めた。
処理期間は次の期間である。
・中水温期間:3月〜5月及び11月〜12月(UABB槽内水温13℃以上18℃未満)
・高水温期間:6月〜10月(UABB槽内水温18℃以上25℃未満)
(Example 2)
In this embodiment, in the organic wastewater treatment method A shown in FIG. 2, the fermentation gas after acid fermentation treatment is degassed, the amount of dehydrated cake (dry weight) is measured daily, and the amount of dehydrated cake per day Asked.
The processing period is the next period.
-Medium water temperature period: March to May and November to December (water temperature in the UABB tank is 13 ° C or higher and lower than 18 ° C)
・ High water temperature period: June to October (water temperature in the UABB tank is 18 ° C or higher and lower than 25 ° C)

具体的には、CODcr値315〜520mg/Lである低濃度有機性排水(原水)を被処理水とし、先ず混合脱ガス槽において、当該被処理水と、後述する酸発酵処理装置で処理して得た酸発酵処理汚泥とを混合すると共に、酸発酵処理汚泥中の発酵ガスを抜き、脱ガス混合水(SS濃度500〜15000mg/L)を得た。そして、この脱ガス混合水を、通水速度0.5m/hで、図5に示すようなUASB装置のUASB槽(容量200L)内に供給し、後の工程は、実施例2と同様に処理した。   Specifically, low-concentration organic wastewater (raw water) having a CODcr value of 315 to 520 mg / L is treated water. First, in the mixed degassing tank, the treated water and an acid fermentation treatment apparatus described later are used. In addition to mixing the acid-fermented sludge obtained in this way, the fermentation gas in the acid-fermented sludge was extracted to obtain degassed mixed water (SS concentration 500 to 15000 mg / L). Then, this degassed mixed water is supplied into the UASB tank (capacity 200 L) of the UASB apparatus as shown in FIG. 5 at a water flow rate of 0.5 m / h, and the subsequent steps are the same as in Example 2. Processed.

(実施例3)
本実施例は図3に示した有機性排水の処理方法Bにおいて、酸発酵処理後の発酵ガスのガス抜きを行った実施例である。
処理期間は次の期間である。
・低水温期間:1月〜2月(UABB槽内水温13℃未満)
・中水温期間:3月〜5月及び11月〜12月(UABB槽内水温13℃以上18℃未満)
(Example 3)
This embodiment is an embodiment in which the fermentation gas after the acid fermentation treatment was degassed in the organic wastewater treatment method B shown in FIG.
The processing period is the next period.
・ Low water temperature period: January to February (water temperature in UABB tank is less than 13 ° C)
-Medium water temperature period: March to May and November to December (water temperature in the UABB tank is 13 ° C or higher and lower than 18 ° C)

本実施例では、上記実施例2において、メタン発酵処理汚泥の一部(5〜30質量%)を酸発酵処理装置に供給し、酸発酵処理装置において、前記メタン発酵処理汚泥の一部と前記濃縮余剰汚泥とを混合し、この混合物を酸発酵処理するようにしている点以外は、上記実施例1と同様に処理を行った。
なお、メタン発酵処理汚泥の一部と濃縮余剰汚泥との混合割合は質量比率で1:10〜1:3であった。
In a present Example, in said Example 2, a part (5-30 mass%) of methane fermentation treatment sludge is supplied to an acid fermentation treatment apparatus, In an acid fermentation treatment apparatus, a part of said methane fermentation treatment sludge and the said The treatment was performed in the same manner as in Example 1 except that the concentrated excess sludge was mixed and the mixture was subjected to an acid fermentation treatment.
In addition, the mixing ratio of a part of methane fermentation treatment sludge and concentrated excess sludge was 1:10 to 1: 3 by mass ratio.

(実施例4)
本実施例は、図4に示した有機性排水の処理方法Cにおいて、酸発酵処理後の発酵ガスのガス抜きを行い、脱水ケーキ量(乾燥重量)を毎日測定し、一日当たりの脱水ケーキ量を求めた。
処理期間は次の期間である。
・低水温期間:1月〜2月(UABB槽内水温13℃未満)
Example 4
In this example, the organic wastewater treatment method C shown in FIG. 4 is used to degas the fermentation gas after the acid fermentation treatment, measure the amount of dehydrated cake (dry weight) every day, and determine the amount of dehydrated cake per day. Asked.
The processing period is the next period.
・ Low water temperature period: January to February (water temperature in UABB tank is less than 13 ° C)

本実施例は、上記実施例2において、混合脱ガス槽の上流側に固液分離装置を配置し、被処理水(原水)を当該固液分離装置で固液分離し、得られた分離水を混合脱ガス槽に供給し、混合脱ガス槽において、当該分離水と酸発酵処理汚泥とを混合すると共に酸発酵処理汚泥中の発酵ガスを抜く処理を行う一方、前記固液分離装置で得られた分離汚泥を酸発酵処理装置に供給し、当該分離汚泥と濃縮余剰汚泥とをともに酸発酵処理した以外は、上記実施例2と同様に処理を行った。
なお、分離汚泥と濃縮余剰汚泥との混合割合は質量比率で0.5:1〜2:1であった。
In this example, a solid-liquid separation device is arranged upstream of the mixed degassing tank in Example 2, and the water to be treated (raw water) is subjected to solid-liquid separation using the solid-liquid separation device. In the mixed degassing tank, the separation water and the acid fermentation treatment sludge are mixed and the fermentation gas in the acid fermentation treatment sludge is removed and the solid-liquid separation device obtains the mixture. The separation sludge thus obtained was supplied to an acid fermentation treatment apparatus, and the treatment was performed in the same manner as in Example 2 except that both the separation sludge and the concentrated excess sludge were subjected to an acid fermentation treatment.
In addition, the mixing ratio of separation sludge and concentrated excess sludge was 0.5: 1 to 2: 1 in mass ratio.

(比較例1)
比較例1は、図1に示した有機性排水の処理方法において、酸発酵処理工程のない場合の例であり、脱水ケーキ量(乾燥重量)を毎日測定し、一日当たりの脱水ケーキ量を求めた。
処理期間は次の期間である。
・中水温期間:3月〜5月及び11月〜12月(UABB槽内水温13℃以上18℃未満)
・高水温期間:6月〜10月(UABB槽内水温18℃以上25℃未満)
(Comparative Example 1)
Comparative Example 1 is an example in which there is no acid fermentation treatment step in the organic wastewater treatment method shown in FIG. 1, and the amount of dehydrated cake (dry weight) is measured every day to determine the amount of dehydrated cake per day. It was.
The processing period is the next period.
-Medium water temperature period: March to May and November to December (water temperature in the UABB tank is 13 ° C or higher and lower than 18 ° C)
・ High water temperature period: June to October (water temperature in the UABB tank is 18 ° C or higher and lower than 25 ° C)

具体的には、低濃度有機性排水(原水)を、通水速度0.5m/hで、図5に示すようなUASB装置のUASB槽(容量200L)内に供給し、該槽内のCODcr負荷を1kg/m3/dとしてメタン発酵処理を行い、メタンガスを含む発生ガス、メタン発酵処理水及びメタン発酵処理汚泥を得た。 Specifically, low-concentration organic wastewater (raw water) is supplied into a UASB tank (capacity 200 L) of a UASB apparatus as shown in FIG. 5 at a water flow rate of 0.5 m / h, and CODcr in the tank A methane fermentation treatment was performed at a load of 1 kg / m 3 / d to obtain generated gas containing methane gas, methane fermentation treated water, and methane fermentation treated sludge.

次に、前記のようにして得たメタン発酵処理汚泥を、好気性生物処理装置にて、好気性生物を用いて前記メタン発酵処理水を生物学的酸化分解処理した。この際、好気性生物処理装置3としては、最初沈殿池、曝気槽及び汚泥沈殿槽を備えた好気性生物処理装置3を使用した。
そして、得られた好気性生物処理水と好気性生物処理汚泥の混合処理液を、固液分離装置に供給して、好気性生物処理水と好気性生物処理汚泥に分離し、後者の好気性生物処理汚泥の一部を好気性生物処理装置の入り口側に返送する一方、残りの好気性生物処理汚泥(余剰汚泥)を濃縮装置において濃縮して濃縮余剰汚泥として得た。
Next, the methane fermentation treated sludge obtained as described above was subjected to biological oxidative decomposition treatment using an aerobic organism in an aerobic biological treatment apparatus. At this time, as the aerobic biological treatment apparatus 3, an aerobic biological treatment apparatus 3 having an initial sedimentation basin, an aeration tank, and a sludge sedimentation tank was used.
Then, the obtained aerobic biological treated water and aerobic biologically treated sludge mixed treatment liquid is supplied to a solid-liquid separation device, and separated into aerobic biologically treated water and aerobic biologically treated sludge. A part of the biologically treated sludge was returned to the inlet side of the aerobic biological treatment apparatus, while the remaining aerobic biological treatment sludge (excess sludge) was concentrated in a concentrator to obtain concentrated excess sludge.

<評価方法>
前記実施例・比較例と同様の低濃度有機性排水(原水)を、図9に示した処理方法(メタン発酵処理を含まない通常の下水の活性汚泥処理)で、一年を通じて処理し、この処理方法で得られた脱水ケーキ量(乾燥重量)を測定した。
そして、この方法で得られた一日当たりの平均脱水ケーキ量(乾燥重量)を100として、前記実施例及び比較例の値と比較して評価を行った(表3)。
なお、図9に示した実験装置の使用を表2に示す。
<Evaluation method>
The same low concentration organic wastewater (raw water) as in the above-mentioned examples and comparative examples is treated throughout the year by the treatment method shown in FIG. 9 (normal sewage activated sludge treatment not including methane fermentation treatment). The amount of dehydrated cake (dry weight) obtained by the treatment method was measured.
Then, the average amount of dehydrated cake (dry weight) per day obtained by this method was set as 100, and the evaluation was performed in comparison with the values of the Examples and Comparative Examples (Table 3).
Table 2 shows the use of the experimental apparatus shown in FIG.

Figure 0005873736
Figure 0005873736

Figure 0005873736
Figure 0005873736

比較例1では、メタン発酵槽の水温13℃以上18℃未満においては、嫌気性菌の活性が低下したため槽内に汚泥が蓄積した。頻繁に汚泥処理を行う必要があった。このため、汚泥発生量の測定は80であった。メタン発酵槽の水温18℃以上25℃未満(中水温期間)では嫌気性菌の活性が上がったため、汚泥発生量は60となった。   In Comparative Example 1, when the water temperature of the methane fermentation tank was 13 ° C. or more and less than 18 ° C., sludge accumulated in the tank because the activity of the anaerobic bacteria decreased. It was necessary to perform sludge treatment frequently. For this reason, the measurement of the sludge generation amount was 80. Since the activity of anaerobic bacteria increased at a water temperature of 18 ° C. or higher and lower than 25 ° C. (medium water temperature period) in the methane fermentation tank, the amount of sludge generated was 60.

他方、実施例1では、脱ガス槽を設けなかったため、いずれの温度条件においてもメタン発酵槽内でスカムが発生し、UASB槽内の汚泥床濃度が安定せず、汚泥発生量は中水温期間で78、高水温期間で58であった。
実施例2は、脱ガス槽を設けることで、中水温期間における汚泥発生量が72となり、高水温期間における汚泥発生量が55となった。しかし、水温18℃未満の中水温期間では、嫌気性菌の活性が低下したためメタン発酵槽内に汚泥が蓄積した。そのため、頻繁に汚泥処理を行う必要があった。このように水温18℃以上の高水温期間においては、脱ガス槽を設けることで、UASB槽内の汚泥床の汚泥濃度が安定したため処理が安定した。しかしながら、高水温期間に比べて中水温期間の汚泥発生量は多くなる傾向にあった。
On the other hand, in Example 1, since the degassing tank was not provided, scum was generated in the methane fermentation tank in any temperature condition, the sludge bed concentration in the UASB tank was not stable, and the amount of sludge generated was in the middle water temperature period 78 and 58 in the high water temperature period.
In Example 2, by providing a degassing tank, the amount of sludge generated during the medium water temperature period was 72, and the amount of sludge generated during the high water temperature period was 55. However, the sludge accumulated in the methane fermentation tank because the activity of the anaerobic bacteria decreased during the middle water temperature period of less than 18 ° C. Therefore, it was necessary to perform sludge treatment frequently. Thus, in the high water temperature period of water temperature 18 degreeC or more, since the sludge density | concentration of the sludge bed in a UASB tank was stabilized by providing a degassing tank, the process became stable. However, the amount of sludge generated during the middle water temperature period tended to increase compared to the high water temperature period.

実施例3では、UASB槽内の汚泥の一部を酸発酵処理することで、中水温期間における汚泥発生量は58となった。実施例2の中水温期間における汚泥発生量72に比べて低くなった。他方、水温13℃未満の低水温期間になると、嫌気性菌の活性度がさらに低下したため、メタン発酵槽内の汚泥が蓄積した。このため頻繁に汚泥処理を行う必要があった。低水温期間における汚泥発生量は80となり、中水温期間に比べると増加した。
実施例4では、処理方法C(図4)を適用した。その結果、低水温期間における汚泥発生量は65となり、実施例3の低水温期間に比べて汚泥発生量は低下した。
In Example 3, the amount of sludge generated during the intermediate water temperature period was 58 by subjecting part of the sludge in the UASB tank to acid fermentation. It became low compared with the amount of sludge generation 72 in the middle water temperature period of Example 2. On the other hand, when the water temperature period was lower than 13 ° C., the activity of the anaerobic bacteria further decreased, so that sludge in the methane fermentation tank accumulated. For this reason, it was necessary to perform sludge treatment frequently. The amount of sludge generated during the low water temperature period was 80, which was higher than that during the middle water temperature period.
In Example 4, the processing method C (FIG. 4) was applied. As a result, the sludge generation amount in the low water temperature period was 65, and the sludge generation amount was lower than that in the low water temperature period of Example 3.

1 混合脱ガス槽
2 メタン発酵処理装置
3 好気性生物処理装置
4 酸発酵処理装置
5 被処理水供給管
6 混合水供給管
7 発生ガス排出管
8 メタン発酵処理水供給管
9 メタン発酵処理汚泥排出管
10 発生ガス処理装置
11 脱水装置
12 好気性生物処理液排出管
13 固液分離装置
14 好気性生物処理水排出管
15 好気性生物処理汚泥供給管
16 濃縮装置
17 濃縮汚泥供給管
18 酸発酵処理汚泥供給管
20 分岐管
21 固液分離装置
22 分離水供給管
23 分離汚泥供給管
30 メタン発酵槽(UASB装置)
32 汚泥床
33 気固液分離部(GSS)
34 越流堰
35 覆蓋
40 メタン発酵槽(UASB装置)
41 屋根材
42 ガス排気口
50 メタン発酵槽(UASB装置)
51 スカム捕集枠
52 昇降手段

DESCRIPTION OF SYMBOLS 1 Mixed degassing tank 2 Methane fermentation treatment apparatus 3 Aerobic biological treatment apparatus 4 Acid fermentation treatment apparatus 5 To-be-treated water supply pipe 6 Mixed water supply pipe 7 Generated gas discharge pipe 8 Methane fermentation treated water supply pipe 9 Methane fermentation treatment sludge discharge Tube 10 Generated gas treatment device 11 Dehydration device 12 Aerobic biological treatment liquid discharge tube 13 Solid-liquid separation device 14 Aerobic biological treatment water discharge tube 15 Aerobic biological treatment sludge supply tube 16 Concentration device 17 Concentrated sludge supply tube 18 Acid fermentation treatment Sludge supply pipe 20 Branch pipe 21 Solid-liquid separator 22 Separation water supply pipe 23 Separation sludge supply pipe 30 Methane fermentation tank (UASB apparatus)
32 Sludge bed 33 Gas-solid separation part (GSS)
34 Overflow weir 35 Cover lid 40 Methane fermentation tank (UASB device)
41 Roofing material 42 Gas exhaust port 50 Methane fermentation tank (UASB device)
51 Scum collection frame 52 Lifting means

Claims (11)

嫌気性生物を用いて被処理水をメタン発酵処理して、メタンガスを含む発生ガス、メタン発酵処理水及びメタン発酵処理汚泥を得るメタン発酵処理工程と、好気性生物を用いて前記メタン発酵処理水を生物学的酸化分解処理して好気性生物処理水及び好気性生物処理汚泥を得る好気性生物処理工程と、前記好気性生物処理汚泥の一部又は全部を酸発酵処理して酸発酵処理汚泥を得る酸発酵処理工程と、該酸発酵処理汚泥を、混合脱ガス槽で発酵ガスを分離した後、前記メタン発酵処理工程の入り口側に、前記メタン発酵処理工程におけるスカムの発生を抑制するために供給する工程と、を備えた有機性排水の処理方法。 Methane fermentation treatment of the water to be treated using anaerobic organisms to obtain generated gas containing methane gas, methane fermentation treatment water and methane fermentation treatment sludge, and the methane fermentation treatment water using aerobic organisms An aerobic biological treatment step to obtain an aerobic biological treatment water and an aerobic biological treatment sludge by biological oxidative decomposition treatment, and acid fermentation treatment sludge by subjecting a part or all of the aerobic biological treatment sludge to acid fermentation treatment In order to suppress the occurrence of scum in the methane fermentation treatment process, after separating the fermentation gas in a mixed degassing tank, the acid fermentation treatment process and obtaining the acid fermentation treatment sludge method of treating organic waste water comprising process and, to be supplied to. 前記メタン発酵処理汚泥の一部又は全部を脱水処理して脱水ケーキを得る脱水処理工程を備えた請求項1に記載の有機性排水の処理方法。   The processing method of the organic waste_water | drain of Claim 1 provided with the spin-drying | dehydration process which obtains spin-dry | dehydrated cake by carrying out the spin-drying | dehydration process of the methane fermentation process sludge. メタン発酵槽内の水温が18℃以上となる場合に実施することを特徴とする請求項1又は2に記載の有機性排水の処理方法。   It implements when the water temperature in a methane fermenter becomes 18 degreeC or more, The processing method of the organic waste water of Claim 1 or 2 characterized by the above-mentioned. 前記メタン発酵処理汚泥の一部又は全部を、酸発酵処理工程の入り口側に供給することを特徴とする請求項1又は2に記載の有機性排水の処理方法。   The organic wastewater treatment method according to claim 1 or 2, wherein a part or all of the methane fermentation treatment sludge is supplied to an inlet side of the acid fermentation treatment step. メタン発酵槽内の水温が13℃以上18℃未満の場合に実施することを特徴とする請求項4に記載の有機性排水の処理方法。   It implements when the water temperature in a methane fermenter is 13 degreeC or more and less than 18 degreeC, The processing method of the organic waste water of Claim 4 characterized by the above-mentioned. 被処理水(原水)を固液分離して分離水と分離汚泥を得、該分離汚泥或いは該分離汚泥を濃縮した濃縮分離汚泥を、好気性生物処理汚泥の一部とともに酸発酵処理して酸発酵処理汚泥を得、該酸発酵処理汚泥を前記分離水と共にメタン発酵処理工程の入り口側に供給することを請求項1又は2に記載の有機性排水の処理方法。   The treated water (raw water) is subjected to solid-liquid separation to obtain separated water and separated sludge, and the separated sludge or the concentrated separated sludge obtained by concentrating the separated sludge is subjected to an acid fermentation treatment together with a part of the aerobic biologically treated sludge. The processing method of the organic waste_water | drain of Claim 1 or 2 which obtains fermentation treatment sludge and supplies this acid fermentation treatment sludge with the said separated water to the entrance side of a methane fermentation treatment process. メタン発酵槽内の水温が13℃未満の場合に実施することを特徴とする請求項6に記載の有機性排水の処理方法。   It implements when the water temperature in a methane fermenter is less than 13 degreeC, The processing method of the organic waste water of Claim 6 characterized by the above-mentioned. 上向流汚泥床式メタン発酵水槽と、該メタン発酵水槽から出たメタン発酵処理水を、好気性生物を用いて生物学的酸化分解処理する好気性生物処理槽と、好気性生物処理槽から出た好気性生物処理汚泥の一部を酸発酵処理する酸発酵処理槽と、該酸発酵処理槽から出た酸発酵処理汚泥を、混合脱ガス槽に供給して発酵ガスを分離した後、メタン発酵処理槽の入り口側に、前記メタン発酵処理槽におけるスカムの発生を抑制するために供給する供給手段と、を備えた有機性排水の処理装置。 From an aerobic biological treatment tank, an aerobic biological treatment tank, and an aerobic biological treatment tank that biologically oxidatively decomposes methane fermentation treated water discharged from the methane fermentation water tank After the acid fermentation treatment tank for acid fermentation treatment of a part of the aerobic biological treatment sludge that has come out and the acid fermentation treatment sludge that has come out of the acid fermentation treatment tank are supplied to the mixed degassing tank to separate the fermentation gas, An organic wastewater treatment apparatus comprising: a supply means for supplying scum in the methane fermentation treatment tank to suppress generation of scum in the inlet side of the methane fermentation treatment tank . メタン発酵処理槽から出たメタン発酵処理汚泥の一部又は全部を脱水処理して脱水ケーキを得る脱水処理装置を備えた請求項8に記載の有機性排水の処理装置。   The processing apparatus of the organic waste_water | drain of Claim 8 provided with the dehydration processing apparatus which spin-dry | dehydrates part or all of the methane fermentation process sludge which came out of the methane fermentation processing tank, and obtains a dewatering cake. メタン発酵処理槽から出たメタン発酵処理汚泥の一部又は全部を酸発酵処理槽の入り口側に供給することを特徴とする請求項8又は9に記載の有機性排水の処理装置。   The organic wastewater treatment apparatus according to claim 8 or 9, wherein a part or all of the methane fermentation treatment sludge discharged from the methane fermentation treatment tank is supplied to the entrance side of the acid fermentation treatment tank. 上向流汚泥床式メタン発酵水槽の入り口側に、被処理水を固液分離して分離水と分離汚泥を得る固液分離装置を配置し、該分離汚泥或いは該分離汚泥を濃縮した濃縮分離汚泥を、好気性生物処理汚泥の一部とともに酸発酵処理槽に供給し、酸発酵処理槽から出た酸発酵処理汚泥を、前記分離水と共に前記メタン発酵処理槽の入り口側に供給することを請求項8〜10の何れかに記載の有機性排水の処理装置。   A solid-liquid separation device that separates treated water into solid and liquid to obtain separated water and separated sludge is placed on the inlet side of the upward flow sludge bed type methane fermentation water tank, and the separated sludge or the separated sludge is concentrated and separated. The sludge is supplied to the acid fermentation treatment tank together with a part of the aerobic biological treatment sludge, and the acid fermentation treatment sludge discharged from the acid fermentation treatment tank is supplied to the inlet side of the methane fermentation treatment tank together with the separated water. The processing apparatus of the organic waste_water | drain in any one of Claims 8-10.
JP2012043298A 2012-02-29 2012-02-29 Organic wastewater treatment method and treatment apparatus Active JP5873736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012043298A JP5873736B2 (en) 2012-02-29 2012-02-29 Organic wastewater treatment method and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012043298A JP5873736B2 (en) 2012-02-29 2012-02-29 Organic wastewater treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JP2013176746A JP2013176746A (en) 2013-09-09
JP5873736B2 true JP5873736B2 (en) 2016-03-01

Family

ID=49268982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012043298A Active JP5873736B2 (en) 2012-02-29 2012-02-29 Organic wastewater treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP5873736B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI586610B (en) * 2015-01-15 2017-06-11 黎明興技術顧問股份有限公司 Fluidized bed reactor for ammonia laden wastewater and method for treating ammonia laden wastewater
JP6513448B2 (en) * 2015-03-25 2019-05-15 東京瓦斯株式会社 Waste water treatment apparatus and waste water treatment method
WO2018021169A1 (en) * 2016-07-26 2018-02-01 水ing株式会社 Method and device for organic wastewater treatment
JP7200248B2 (en) * 2018-07-25 2023-01-06 水ing株式会社 Organic wastewater treatment method and organic wastewater treatment apparatus

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE451262B (en) * 1983-08-10 1987-09-21 Purac Ab SEE ANAEROBIC CLEANING OF WASTE WATER FROM MANUFACTURE OF MECHANICAL OR CHEMICAL MECHANICAL CELLULOSAMASSA
JPH0738994B2 (en) * 1987-04-08 1995-05-01 株式会社明電舎 Initial operation method of low temperature methane fermentation
JPS6427696A (en) * 1987-07-23 1989-01-30 Shokuhin Sangyo Maku Riyou Gij Apparatus for anaerobic treatment
JPH0722758B2 (en) * 1990-04-24 1995-03-15 群馬大学長 Wastewater treatment method to remove organic matter and nitrogen at the same time
JPH10249384A (en) * 1997-03-11 1998-09-22 Ishikawajima Harima Heavy Ind Co Ltd Treatment of concentrated suspended matter-containing waste water
JPH11689A (en) * 1997-06-11 1999-01-06 Kurita Water Ind Ltd Treatment equipment for organic waste water
JP2000153259A (en) * 1998-11-24 2000-06-06 Kubota Corp Methane fermentation method of easily degradable organic waste
JP2000218288A (en) * 1999-02-01 2000-08-08 Kurita Water Ind Ltd Batch anaerobic treatment and device therefor
JP2001062498A (en) * 1999-08-30 2001-03-13 Kubota Corp Treatment of sludge
JP4972817B2 (en) * 2000-03-10 2012-07-11 栗田工業株式会社 Anaerobic treatment method for organic wastewater
JP2002292393A (en) * 2001-03-30 2002-10-08 Sumitomo Heavy Ind Ltd Apparatus and method for methane fermentation
JP2003117584A (en) * 2001-10-19 2003-04-22 Nkk Corp Sewage treating method
CN1301924C (en) * 2002-04-18 2007-02-28 株式会社荏原制作所 Method of treating organic wastewater and sludge and treatment apparatus therefor
JP3999036B2 (en) * 2002-05-10 2007-10-31 株式会社荏原製作所 Method and apparatus for treating organic wastewater
JP2004098003A (en) * 2002-09-12 2004-04-02 Mitsubishi Kakoki Kaisha Ltd Method for treating organic waste
JP2005296891A (en) * 2004-04-15 2005-10-27 Sumitomo Heavy Ind Ltd Wastewater treatment method
JP2007289946A (en) * 2006-03-31 2007-11-08 Ebara Corp Anaerobic treatment process and device of organic solid waste
JP4982789B2 (en) * 2006-08-04 2012-07-25 独立行政法人国立環境研究所 Wastewater treatment method and apparatus by methane fermentation
JP5211769B2 (en) * 2008-03-11 2013-06-12 栗田工業株式会社 Biological treatment method and treatment apparatus for organic waste liquid
JP5114780B2 (en) * 2008-08-12 2013-01-09 水ing株式会社 Anaerobic treatment method and apparatus
JP5209686B2 (en) * 2010-10-08 2013-06-12 水ing株式会社 Organic waste water treatment apparatus and treatment method

Also Published As

Publication number Publication date
JP2013176746A (en) 2013-09-09

Similar Documents

Publication Publication Date Title
US9845260B2 (en) Treatment of municipal wastewater with anaerobic digestion
CN101607777B (en) Lurgi furnace coal gasification wastewater treatment and reuse technology
CN107473513B (en) Bamboo product wastewater Fenton treatment device and method
CN107010788A (en) A kind of Large-scale pig farm culturing wastewater processing system and method
JP2003245689A (en) Method and apparatus for treating wastewater
JP2019025438A (en) Organic waste water treatment apparatus and organic wastewater treatment method
CN104671613A (en) Landfill leachate treatment technology
JP5873736B2 (en) Organic wastewater treatment method and treatment apparatus
KR20180116806A (en) Bio-reactor for sewage treatment and sewage treatment system comprising the same
JP4655974B2 (en) Waste water treatment method and treatment apparatus
CN114685014A (en) Livestock and poultry breeding wastewater treatment circulating system
KR20220096414A (en) Apparatus for treating waste water using iron oxide powder
JP5801769B2 (en) Method and apparatus for anaerobic digestion treatment of organic wastewater
KR101023684B1 (en) Method for treating organic waste
JP3636035B2 (en) Digestion method of organic sludge
CN207121472U (en) A kind of aerobic integrated sewage-treating reactor device of internal circulating anaerobic
JP7200248B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
CN215756648U (en) High-temperature aerobic membrane aeration bioreactor and sewage treatment system
CN205328795U (en) Wet spinning acrylic fibres production polymerization effluent disposal system
KR102340961B1 (en) Apparatus for treating waste water using iron oxide powder
WO2018021169A1 (en) Method and device for organic wastewater treatment
CN105461163A (en) Wet spinning acrylic production polymeric wastewater treatment system and treatment method
CN220149427U (en) Chicken raising wastewater stable treatment system
JP7398601B1 (en) Organic wastewater treatment equipment and organic wastewater treatment method
CN216445206U (en) Urine extraction wastewater advanced treatment and nitrogen resource recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5873736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250