JP2004098003A - Method for treating organic waste - Google Patents

Method for treating organic waste Download PDF

Info

Publication number
JP2004098003A
JP2004098003A JP2002266176A JP2002266176A JP2004098003A JP 2004098003 A JP2004098003 A JP 2004098003A JP 2002266176 A JP2002266176 A JP 2002266176A JP 2002266176 A JP2002266176 A JP 2002266176A JP 2004098003 A JP2004098003 A JP 2004098003A
Authority
JP
Japan
Prior art keywords
methane
acid fermentation
waste
acid
fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002266176A
Other languages
Japanese (ja)
Inventor
Hajime Kurihara
栗原 元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2002266176A priority Critical patent/JP2004098003A/en
Publication of JP2004098003A publication Critical patent/JP2004098003A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating organic wastes capable of eliminating the possibility of giving rise to the hindrance of microorganism growth due to the accumulation of nitrogen components and phosphorus, of reducing running expenses as a result of no more need for using industrial water for the purpose of diluting water of an acid fermentation liquid, and of promoting resource recovery as gaseous methane from the organic wastes by enabling to maintain the concentration of anaerobic microorganisms, such as methane bacteria, in a methane fermenter at a high level. <P>SOLUTION: The method for treating the organic wastes is provided with a waste slurrying step of crushing and slurrying the organic wastes by a crusher, an acid fermentation step of subjecting the waste slurry to acid fermentation treatment, a methane fermentation step of subjecting the acid fermentation liquid to the methane fermentation treatment and a digested liquid return step of returning 20 to 85vol% of the digested liquid to the acid fermentation step. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、有機性廃棄物をメタン発酵処理してメタンガスを回収する方法であり、更に詳しくは、有機性廃棄物を酸発酵処理したのち、メタン発酵処理する二相式メタン発酵処理方法に関する。
【0002】
【従来の技術】
現在、食品製造業、食品流通業又は外食産業の厨房などから排出される有機性廃棄物は、コンポスト化処理方法や飼料化処理方法により有効利用されているものもあるが、多くは焼却して埋立処分されている。
【0003】
前記有機性廃棄物の処理方法にあって、コンポスト化処理や飼料化処理する方法においては、大都市圏で廃棄物量が多いにもかかわらず、製造されたコンポストや飼料の消費量が極めて少なく、多量に処理しても流通を確保するのが容易ではない問題がある。そのため有機性廃棄物を処理する方法として、廃棄物を破砕し、破砕物をスラリー化して嫌気性処理槽に供給し、メタン菌などの嫌気性微生物の生物学的作用で有機物を生物学的に分解し、メタンを主成分とする消化ガスを生成させ、消化ガスを燃料等に有効活用する嫌気性消化処理方法が開示されている(特開平11−28445号公報、特開11−300323号公報参照)。
【0004】
また、嫌気性消化処理工程を酸発酵槽とメタン発酵槽の二相の工程で行なう二相式嫌気性消化処理方法も従来から行われている(特開昭60−78698号公報、特開平11−77005号公報参照)。
【0005】
なお、従来の二相式嫌気性消化処理方法を図2に基づいて詳述する。
有機性廃棄物を廃棄物供給経路11から破砕装置1に供給し、適宜に水を水供給経路22から添加し微細破砕してスラリー化する。スラリー化された廃棄物スラリーをスラリー供給経路12から酸発酵槽2に供給し、加熱手段7の加熱蒸気23により所定の温度に加熱すると共に、攪拌手段8で攪拌混合し、液温度を55〜65℃程度にして嫌気性雰囲気を保って所定の時間滞留させることにより、嫌気性微生物の作用で含有する有機物が酸発酵され、主に酢酸や酪酸などの有機酸に変換される。
【0006】
酸発酵液に水を水供給経路24から添加して適宜な有機固形物濃度に希釈し、酸発酵液供給経路13からメタン発酵槽3に供給する。メタン発酵槽3では、液温度を30〜60℃程度にして嫌気性雰囲気を保って所定の時間滞留させることにより、メタン菌などの嫌気性微生物の作用で、含有する酢酸や酪酸などの有機酸がメタン発酵され、主にメタンや炭酸ガスなどに変換される。
【0007】
前記の酸発酵槽2やメタン発酵槽3で発生した消化ガスは、それぞれガス排出経路17、18からガスホルダ6に供給されたのち、必要により脱硫処理して加熱燃料、発電用燃料や燃料電池用燃料などとして利用される。
【0008】
また、メタン発酵処理後の消化液は、消化液抜出し経路14から抜出し、消化液貯槽4に供給し、一旦貯留されたのち、消化液供給経路16から汚泥脱水機5に供給し、固形物と水分とに分離される。分離された固形物は、汚泥抜出し経路21から脱水汚泥として抜出され、コンポスト装置などの汚泥処理装置や埋立などにより処分され、水分は分離水抜出し経路20から分離水として抜出され、活性汚泥処理装置などの水処理装置により処理される。
【0009】
【発明が解決しようとする課題】
前記従来の技術において、単一嫌気性消化処理方法の場合には、酸発酵とメタン発酵が単一槽内で同時進行するが、酸発酵とメタン発酵とは好ましい有機固形物濃度などが相違するため消化効率が低く、また、滞留時間も長く必要とするため、消化槽容量も大きくなる問題がある。
【0010】
また、二相式嫌気性消化処理方法においては、破砕装置で添加される水や酸発酵液の希釈水などに汚泥脱水機の分離水などを用いると、窒素分やりんが過剰に蓄積して障害を起す恐れがあるため、工業用水などが使用されているが、運転経費が嵩むと共に、メタン発酵槽におけるメタン菌などの嫌気性微生物濃度が低くなり、メタン発酵効率が低下する問題がある。
【0011】
本発明は、窒素分やりんが蓄積して微生物生育障害を起す恐れがなく、酸発酵液の希釈水などに工業用水などを使用する必要がなくなり運転経費を低廉化でき、また、メタン発酵槽におけるメタン菌などの嫌気性微生物濃度を高く維持できることにより、有機性廃棄物からメタンガスとしての再資源化を促進することのできる有機性廃棄物の処理方法を提供する目的で成されたものである。
【0012】
【課題を解決するための手段】
前記目的を達成するための本発明の要旨は、請求項1に記載した発明においては、有機性廃棄物を処理する方法において、前記廃棄物を破砕装置で破砕してスラリー化する廃棄物スラリー化工程と、前記廃棄物スラリー化工程からの廃棄物スラリーを酸発酵処理する酸発酵工程と、前記酸発酵工程からの酸発酵液をメタン発酵処理するメタン発酵工程と、前記メタン発酵工程からの消化液の20〜85容量%を前記酸発酵工程に返送する消化液返送工程を設けたことを特徴とする有機性廃棄物の処理方法である。
【0013】
前記請求項1に記載の方法では、メタン発酵工程からの消化液の20〜85容量%を酸発酵工程に返送する消化液返送工程を設けたことにより、酸発酵液の希釈水などに工業用水などを使用せずに、窒素分やりんが蓄積して障害を起す恐れがなく、メタン発酵槽におけるメタン菌などの嫌気性微生物濃度を高く維持できるため、有機性廃棄物からメタンガスとしての再資源化を促進することができる。
【0014】
また、請求項2に記載の装置においては、有機性廃棄物を処理する方法において、前記廃棄物を破砕装置で破砕してスラリー化する廃棄物スラリー化工程と、前記廃棄物スラリー化工程からの廃棄物スラリーを酸発酵処理する酸発酵工程と、前記酸発酵工程からの酸発酵液をメタン発酵処理するメタン発酵工程と、前記メタン発酵工程からの消化液の20〜85容量%を前記酸発酵工程に返送する消化液返送工程を設けることにより、前記酸発酵工程において前記廃棄物スラリーの固形物濃度を1.2〜2.0倍量に希釈することを特徴とする有機性廃棄物の処理方法である。
【0015】
前記請求項2に記載の方法では、メタン発酵工程からの消化液の20〜85容量%を酸発酵工程に返送する消化液返送工程を設け、前記廃棄物スラリーの固形物濃度を1.2〜2.0倍量に希釈することにより、酸発酵液の希釈水などに工業用水などを使用せずに、窒素分やりんが蓄積して障害を起す恐れがなく、また、酸発酵工程における有機固形物濃度及びメタン発酵槽におけるメタン菌などの嫌気性微生物濃度を好適に維持できるため、有機性廃棄物からメタンガスとしての再資源化を促進することができる。
【0016】
なお、酸発酵工程への消化液の返送量が前記20〜85容量%の範囲外では、酸発酵工程での有機固形物濃度の維持とメタン発酵工程での嫌気性微生物濃度の維持及び微生物活性に適した窒素分及びりん濃度の維持のバランスをとることが困難となる。返送量が20容量%よりも少ないと、メタン発酵工程での好ましい嫌気性微生物濃度の維持が困難であり、返送量が85容量%よりも多いと、窒素分及びりんが過剰に蓄積され、微生物の生育にとって好ましい濃度に維持することが困難となる。
【0017】
また、酸発酵工程において、消化液での廃棄物スラリーの希釈が1.2倍量よりも少ないとメタン発酵工程での嫌気性微生物濃度の維持が困難となり、また、希釈が2.0倍量よりも多いと酸発酵工程での有機固形物濃度が低くなり過ぎると共に窒素分及びりん濃度維持のバランスがくずれ蓄積量が多くなる恐れがある。
【0018】
また、前記酸発酵工程やメタン発酵工程が行われる酸発酵槽やメタン発酵槽において、機械攪拌手段やガス攪拌手段などが付設された発酵槽や酸発酵室とメタン発酵室とを区画して設けた単一槽であってもよい。なお、酸発酵工程における処理温度は、25〜75℃、好ましくは45〜65℃、滞留時間は、24時間〜2週間であり、処理温度が25℃よりも低いと、酸発酵が進みにくいなどの問題があり、また、75℃よりも高いと、嫌気性微生物が生存しにくいなどの問題がある。
【0019】
また、前記メタン発酵工程における処理温度は、25〜75℃、好ましくは45〜65℃、滞留時間は、24時間〜2週間であり、処理温度が25℃よりも低いと、メタン発酵が進みにくいなどの問題があり、また、75℃よりも高いと、嫌気性微生物が生存しにくいなどの問題がある。なお、生成したメタンガスを汚泥の加温に利用することで、運転経費や設備費などが低廉化できる。
【0020】
また、有機性廃棄物を機械的に微細破砕する廃棄物スラリー化工程に用いられる破砕装置としては、被処理物を固定刃に高速で衝突させて破砕、又は高速回転刃で破砕する機械式破砕機や摩砕する石臼などが用いられ、また、有機性廃棄物中の水分が少ない場合には、水を混合して破砕する湿式破砕装置などが用いられる。
【0021】
【発明の実施の形態】
以下に本発明の実施の形態について図面に基づいて説明する。図1は本発明の一実施の形態の処理装置の系統図である。なお、図2の従来の処理装置の系統図と同一の作用を有する部材については同一の符号を付した。
【0022】
図において、1は、固形の有機性廃棄物(以下単に廃棄物という。)である食品廃棄物を機械的に微細破砕して廃棄物をスラリー化する廃棄物スラリー化工程の破砕装置であり、水分の少ない廃棄物を処理する場合には、水を添加してスラリー化する。なお、水は洗浄水を兼ねて供給するのが好ましい。2は、廃棄物スラリー化工程により破砕されスラリー化された廃棄物を、液温度を所定の温度にし、嫌気性雰囲気を保って所定の時間滞留させることにより、嫌気性微生物の作用で、含有する有機物を酸発酵し、主に酢酸や酪酸などの有機酸に変換する酸発酵工程の酸発酵槽であり、攪拌混合手段8及び加熱蒸気23により加熱する加熱手段7が付設されている。なお、攪拌混合手段としては、パドル型攪拌機、スクリュウ型攪拌機などの機械式攪拌混合装置やガス攪拌装置などが用いられ、また、加熱手段としては熱交換器などを用いてもよい。
【0023】
3は、酸発酵工程で処理された酸発酵液を、液温度を所定の温度にし、嫌気性雰囲気を保って所定の時間滞留させることにより、メタン菌などの嫌気性微生物の作用で、含有する酢酸や酪酸などの有機酸をメタン発酵し、主にメタンや炭酸ガスなどに変換するメタン発酵工程のメタン発酵槽であり、図示しない圧力変動攪拌装置やガス攪拌装置などの攪拌混合手段が設けられている。
【0024】
4は、メタン発酵工程で処理された消化液を貯留する消化液貯槽であり、5は消化液貯槽4に貯留された消化液を固液分離して清澄な分離水と脱水汚泥とを得る汚泥脱水手段の汚泥脱水機であり、汚泥脱水機5としては、デカンタ型遠心分離機や各種濾過機が用いられる。また、汚泥脱水機5の前段に分離膜濃縮装置や浮上分離装置などの汚泥濃縮手段を設けてもよい。6は、酸発酵槽2及びメタン発酵槽3で生成したメタンを主成分とする消化ガスを貯留するガスホルダであり、ガスホルダ6の前段又は後段に、消化ガス中の硫黄化合物を除去する脱硫装置を適宜に配置するのが好ましい。
【0025】
次に前記有機性廃棄物の処理装置により食品廃棄物を処理する処理方法について以下詳述する。図1において、食品廃棄物を廃棄物供給経路11から破砕装置1に供給し、水を水供給経路22から添加し微細破砕してスラリー化する(廃棄物スラリー化工程)。スラリー化された廃棄物スラリーをスラリー供給経路12から酸発酵槽2に供給すると共に、消化液貯槽4から消化液循環経路15を経て消化循環液を供給して有機固形物濃度を調製する。酸発酵槽2内の混合処理液を加熱手段7の加熱蒸気23により液温度を55〜65℃程度に加熱すると共に、攪拌手段8で攪拌混合し、嫌気性雰囲気を保って所定の時間滞留させることにより、嫌気性微生物の作用で、含有する有機物が酸発酵され、主に酢酸や酪酸などの有機酸に変換する(酸発酵工程)。
【0026】
酸発酵液を酸発酵液供給経路13からメタン発酵槽3に供給し、図示しない圧力変動攪拌装置やガス攪拌装置などの攪拌混合手段で攪拌混合し、液温度を45〜65℃程度にして嫌気性雰囲気を保って所定の時間滞留させることにより、メタン菌などの嫌気性微生物の作用で、含有する酢酸や酪酸などの有機酸がメタン発酵され、主にメタンや炭酸ガスなどに変換する(メタン発酵工程)。なお、酸発酵工程およびメタン発酵工程における処理温度は、前記温度範囲の高温発酵処理で行なうのが処理効率や装置の小型化などから好ましいが、それより低い中温発酵処理であってもよく、処理温度によっては加熱の必要がない場合がある。また、滞留時間については、処理温度などの条件により決定されるが、24時間〜2週間程度必要とする。
【0027】
前記の酸発酵槽2やメタン発酵槽3で発生した消化ガスは、それぞれガス排出経路17、18からガスホルダ6に供給されたのち、必要により脱硫処理して、加熱燃料、発電用燃料や燃料電池用燃料などとして利用される。
【0028】
また、メタン発酵処理後の消化液は、消化液抜出し経路14から抜出され、消化液貯槽4に供給し、一旦貯留されたのち、一部は消化液供給経路16から汚泥脱水機5に供給して固形物と水分とに分離し、分離された固形物は汚泥抜出し経路21から脱水汚泥として抜出され、適宜コンポスト化処理装置などの汚泥処理装置や埋立などにより処分され、水分は分離水抜出し経路20から分離水として抜出され、活性汚泥処理装置などの水処理装置により処理される。
【0029】
また、消化液貯槽4に貯留された消化液は、メタン発酵工程から排出される消化液量の20〜85容量%が消化液返送経路15を経て酸発酵槽2に供給される。また、破砕装置1から供給される廃棄物スラリー量に基づいて、酸発酵槽2での廃棄物スラリーの固形物濃度を1.2〜2.0倍量に希釈する容量を返送するのが好ましい。
【0030】
【実施例】
(実施例1)
食品工場からの有機性廃棄物スラリーを9kg/dで供給し、酸発酵槽にメタン発酵槽の消化液の28容量%を返送して処理した。なお、前記返送量により、廃棄物スラリーの固形物濃度の希釈倍率は1.2倍であった。その結果を表1に示す。
【0031】
【表1】

Figure 2004098003
表1から、メタン発酵工程において効率よくメタン発酵が行われ、メタン菌などの嫌気性微生物濃度が所定の濃度に維持されることが判明した。
【0032】
(実施例2)
食品工場からの有機性廃棄物スラリーを9kg/dで供給し、酸発酵槽にメタン発酵槽の消化液の83容量%を返送して処理した。なお、前記返送量により、廃棄物スラリーの固形物濃度の希釈倍率は2.0倍であった。その結果を表2に示す。
【0033】
【表2】
Figure 2004098003
表2から、窒素分やりんの過剰な蓄積もなく、メタン発酵工程において効率よくメタン発酵が行われることが判明した。
【0034】
【発明の効果】
本発明は、窒素分やりんが蓄積して微生物生育障害を起す恐れがなく、酸発酵液の希釈水などに工業用水などを使用する必要がなくなり運転経費を低廉化でき、また、メタン発酵槽におけるメタン菌などの嫌気性微生物濃度を高く維持できることにより、有機性廃棄物からメタンガスとしての再資源化を促進することのできる有機性廃棄物の処理方法である。
【図面の簡単な説明】
【図1】本発明の一実施の形態の有機性廃棄物処理装置の系統図
【図2】従来の有機性廃棄物処理装置の系統図
【符号の説明】
1:破砕装置(廃棄物スラリー化工程)
2:酸発酵槽(酸発酵工程)
3:メタン発酵槽(メタン発酵工程)
4:消化液貯槽
5:汚泥脱水機
6:ガスホルダ
7:加熱手段
8:攪拌混合手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for recovering methane gas by subjecting an organic waste to methane fermentation, and more particularly to a two-phase methane fermentation method for subjecting an organic waste to acid fermentation and then methane fermentation.
[0002]
[Prior art]
At present, organic waste discharged from kitchens in the food manufacturing, food distribution, or restaurant industries is effectively used by composting and feed processing methods, but most of them are incinerated. It has been landfilled.
[0003]
In the method of treating the organic waste, in the method of composting and feed processing, despite the large amount of waste in the metropolitan area, the consumption of manufactured compost and feed is extremely low, There is a problem that it is not easy to secure the distribution even if it is processed in a large amount. Therefore, as a method of treating organic waste, the waste is crushed, the crushed material is slurried and supplied to an anaerobic treatment tank, and organic matter is biologically removed by the biological action of anaerobic microorganisms such as methane bacteria. An anaerobic digestion method has been disclosed in which the digestion gas is decomposed to produce a digestion gas containing methane as a main component, and the digestion gas is effectively used as a fuel or the like (JP-A-11-28445, JP-A-11-300323). reference).
[0004]
Further, a two-phase anaerobic digestion method in which the anaerobic digestion process is performed in a two-phase process of an acid fermentation tank and a methane fermentation tank has also been conventionally performed (JP-A-60-78698, JP-A-11-1985). -77005).
[0005]
The conventional two-phase anaerobic digestion treatment method will be described in detail with reference to FIG.
The organic waste is supplied to the crushing apparatus 1 from the waste supply path 11, and water is appropriately added from the water supply path 22 to finely crush and turn into a slurry. The slurried waste slurry is supplied to the acid fermentation tank 2 from the slurry supply path 12, heated to a predetermined temperature by the heating steam 23 of the heating means 7, and stirred and mixed by the stirring means 8 to reduce the liquid temperature to 55 to 55. By maintaining the anaerobic atmosphere at about 65 ° C. and keeping the anaerobic atmosphere for a predetermined time, the organic substances contained therein are acid-fermented by the action of the anaerobic microorganisms, and are mainly converted to organic acids such as acetic acid and butyric acid.
[0006]
Water is added to the acid fermentation liquor from the water supply path 24 to dilute it to an appropriate organic solid concentration, and then supplied to the methane fermentation tank 3 from the acid fermentation liquor supply path 13. In the methane fermentation tank 3, the liquid temperature is maintained at about 30 to 60 ° C., and the anaerobic atmosphere is maintained for a predetermined time, so that the organic acid such as acetic acid or butyric acid contained by the action of anaerobic microorganisms such as methane bacteria. Is methane fermented and mainly converted to methane and carbon dioxide.
[0007]
The digestion gas generated in the acid fermentation tank 2 and the methane fermentation tank 3 is supplied to the gas holder 6 from the gas discharge paths 17 and 18, respectively, and then subjected to desulfurization processing as necessary, to be used as a heating fuel, a power generation fuel or a fuel cell. Used as fuel.
[0008]
The digested liquid after the methane fermentation treatment is extracted from the digested liquid extraction path 14 and supplied to the digested liquid storage tank 4, and once stored, supplied to the sludge dewatering machine 5 from the digested liquid supply path 16 to remove solid matter. Separated from water. The separated solid matter is extracted as dewatered sludge from a sludge extraction path 21 and disposed of by a sludge treatment device such as a composting device or landfill. Water is extracted as separated water from a separation water extraction path 20 and activated sludge. It is treated by a water treatment device such as a treatment device.
[0009]
[Problems to be solved by the invention]
In the prior art, in the case of a single anaerobic digestion treatment method, acid fermentation and methane fermentation proceed simultaneously in a single tank, but acid fermentation and methane fermentation differ in preferred organic solids concentration and the like. Therefore, the digestion efficiency is low, and the residence time is required to be long.
[0010]
Further, in the two-phase anaerobic digestion treatment method, when water separated in a sludge dewatering machine is used as water added in a crusher or dilution water of an acid fermentation solution, nitrogen and phosphorus are excessively accumulated. Industrial water and the like are used because they may cause troubles. However, there is a problem that the operation cost is increased and the concentration of anaerobic microorganisms such as methane bacteria in the methane fermentation tank is reduced, and the methane fermentation efficiency is reduced.
[0011]
The present invention does not cause the risk of microbial growth due to accumulation of nitrogen and phosphorus, eliminates the need to use industrial water or the like as dilution water for the acid fermentation solution, can reduce operating costs, and can provide a methane fermentation tank. The purpose of the present invention is to provide a method for treating organic waste that can promote the recycling of organic waste as methane gas by being able to maintain a high concentration of anaerobic microorganisms such as methane bacteria in Japan. .
[0012]
[Means for Solving the Problems]
The gist of the present invention to achieve the above object is to provide a method for treating organic waste in the invention according to claim 1, wherein the waste is slurried by crushing the waste with a crushing device. An acid fermentation step of subjecting the waste slurry from the waste slurrying step to acid fermentation, a methane fermentation step of methane fermentation of the acid fermentation liquor from the acid fermentation step, and digestion from the methane fermentation step. A method for treating organic waste, comprising a digestion liquid returning step of returning 20 to 85% by volume of the liquid to the acid fermentation step.
[0013]
The method according to claim 1, wherein a digestion liquid returning step of returning 20 to 85% by volume of the digestion liquid from the methane fermentation step to the acid fermentation step is provided. It is possible to maintain the concentration of anaerobic microorganisms such as methane bacteria in the methane fermentation tank at a high level without the risk of accumulation of nitrogen and phosphorus, without the use of such substances. Can be promoted.
[0014]
Further, in the apparatus according to claim 2, in the method for treating organic waste, a waste slurry forming step in which the waste is crushed into a slurry by a crushing device, and a waste slurry forming step is performed. An acid fermentation step of subjecting the waste slurry to acid fermentation, a methane fermentation step of methane fermentation of the acid fermentation liquor from the acid fermentation step, and 20 to 85% by volume of the digestion liquor from the methane fermentation step to the acid fermentation Processing of organic waste, wherein a solid concentration of the waste slurry is diluted to 1.2 to 2.0 times in the acid fermentation step by providing a digestion liquid returning step for returning to the step. Is the way.
[0015]
In the method according to claim 2, a digestion liquid returning step of returning 20 to 85% by volume of the digestion liquid from the methane fermentation step to the acid fermentation step is provided, and the solid concentration of the waste slurry is set to 1.2 to 85%. By diluting to 2.0 times the amount, there is no danger of the accumulation of nitrogen and phosphorus to cause troubles without using industrial water or the like in the dilution water of the acid fermentation solution. Since the solid matter concentration and the concentration of anaerobic microorganisms such as methane bacteria in the methane fermentation tank can be suitably maintained, the recycling of organic waste as methane gas can be promoted.
[0016]
If the amount of digested juice returned to the acid fermentation step is out of the range of 20 to 85% by volume, the organic solids concentration is maintained in the acid fermentation step, the anaerobic microorganism concentration is maintained in the methane fermentation step, and the microbial activity is maintained. It is difficult to balance the maintenance of the nitrogen and phosphorus concentrations suitable for water. If the amount returned is less than 20% by volume, it is difficult to maintain a preferable anaerobic microorganism concentration in the methane fermentation step. If the amount returned is more than 85% by volume, nitrogen and phosphorus are excessively accumulated, and It is difficult to maintain the concentration at a level suitable for the growth of E. coli.
[0017]
In addition, in the acid fermentation step, if the dilution of the waste slurry with the digestion liquid is less than 1.2 times, it becomes difficult to maintain the anaerobic microorganism concentration in the methane fermentation step, and the dilution is 2.0 times. If it is larger than this, the organic solids concentration in the acid fermentation step becomes too low, and the balance between the nitrogen content and the phosphorus concentration maintenance is lost, and the accumulated amount may increase.
[0018]
Further, in the acid fermentation tank or the methane fermentation tank in which the acid fermentation step or the methane fermentation step is performed, a fermentation tank, an acid fermentation chamber, and a methane fermentation chamber provided with mechanical stirring means, gas stirring means, and the like are provided separately. Or a single tank. The treatment temperature in the acid fermentation step is 25 to 75 ° C., preferably 45 to 65 ° C., and the residence time is 24 hours to 2 weeks. If the treatment temperature is lower than 25 ° C., the acid fermentation hardly proceeds. When the temperature is higher than 75 ° C., there is a problem that anaerobic microorganisms are difficult to survive.
[0019]
In addition, the treatment temperature in the methane fermentation step is 25 to 75 ° C, preferably 45 to 65 ° C, and the residence time is 24 hours to 2 weeks. When the treatment temperature is lower than 25 ° C, methane fermentation does not easily proceed. When the temperature is higher than 75 ° C., there is a problem that anaerobic microorganisms are difficult to survive. In addition, by using the generated methane gas for heating the sludge, it is possible to reduce operating costs and equipment costs.
[0020]
In addition, as a crushing device used in a waste slurry process for mechanically finely crushing organic waste, a mechanical crushing method in which an object to be processed is crushed by colliding with a fixed blade at a high speed, or crushed by a high-speed rotary blade. A mill or a millstone to be milled is used, and when there is little water in the organic waste, a wet crusher for mixing and crushing water is used.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram of a processing apparatus according to an embodiment of the present invention. Members having the same functions as those in the system diagram of the conventional processing apparatus in FIG. 2 are denoted by the same reference numerals.
[0022]
In the figure, reference numeral 1 denotes a crushing apparatus in a waste slurry forming step of mechanically finely crushing food waste, which is solid organic waste (hereinafter, simply referred to as waste), and turning the waste into a slurry. In the case of treating waste with low moisture content, water is added to form a slurry. In addition, it is preferable to supply water also as washing water. No. 2 contains the waste crushed and slurried in the waste slurry forming step by the action of anaerobic microorganisms by keeping the liquid temperature at a predetermined temperature and keeping the anaerobic atmosphere for a predetermined time. This is an acid fermentation tank for an acid fermentation step in which an organic substance is subjected to acid fermentation and mainly converted to an organic acid such as acetic acid or butyric acid, and is provided with a stirring and mixing means 8 and a heating means 7 for heating with heating steam 23. In addition, as the stirring and mixing means, a mechanical stirring and mixing device such as a paddle-type stirrer or a screw-type stirrer, a gas stirrer, or the like is used. As the heating means, a heat exchanger or the like may be used.
[0023]
3 contains the acid fermentation liquid treated in the acid fermentation step by the action of anaerobic microorganisms such as methane bacteria by keeping the liquid temperature at a predetermined temperature and maintaining the anaerobic atmosphere for a predetermined time. This is a methane fermentation tank for methane fermentation, in which organic acids such as acetic acid and butyric acid are methane fermented and mainly converted to methane, carbon dioxide, etc., provided with stirring and mixing means such as a pressure fluctuation stirrer and a gas stirrer (not shown). ing.
[0024]
Reference numeral 4 denotes a digestive juice storage tank for storing the digestive juice processed in the methane fermentation step, and reference numeral 5 denotes sludge for solid-liquid separation of the digestive juice stored in the digestive juice storage tank 4 to obtain clear separated water and dehydrated sludge. It is a sludge dewatering machine of a dewatering means, and as the sludge dewatering machine 5, a decanter-type centrifugal separator or various filters are used. Further, a sludge concentration means such as a separation membrane concentration device or a flotation separation device may be provided in a stage preceding the sludge dehydrator 5. Reference numeral 6 denotes a gas holder for storing a digestion gas mainly composed of methane generated in the acid fermentation tank 2 and the methane fermentation tank 3, and a desulfurization device for removing a sulfur compound in the digestion gas before or after the gas holder 6. It is preferable to arrange them appropriately.
[0025]
Next, a treatment method for treating food waste by the organic waste treatment apparatus will be described in detail below. In FIG. 1, food waste is supplied to a crushing apparatus 1 from a waste supply path 11, and water is added from a water supply path 22 to finely crush and turn into a slurry (a waste slurry forming step). The slurried waste slurry is supplied to the acid fermentation tank 2 from the slurry supply path 12 and the digestion circulating liquid is supplied from the digestion liquid storage tank 4 via the digestion liquid circulation path 15 to adjust the organic solid concentration. The mixed solution in the acid fermentation tank 2 is heated to a temperature of about 55 to 65 ° C. by the heating steam 23 of the heating means 7, and is stirred and mixed by the stirring means 8 to keep the anaerobic atmosphere for a predetermined time. As a result, the contained organic matter is acid-fermented by the action of the anaerobic microorganism, and is mainly converted into organic acids such as acetic acid and butyric acid (acid fermentation step).
[0026]
The acid fermentation liquor is supplied from the acid fermentation liquor supply path 13 to the methane fermentation tank 3, and is stirred and mixed by a stirring and mixing means such as a pressure fluctuation stirrer or a gas stirrer (not shown). By maintaining a neutral atmosphere for a predetermined period of time, anaerobic microorganisms such as methane bacteria act to ferment methane fermentation of organic acids such as acetic acid and butyric acid, which are mainly converted to methane and carbon dioxide gas (methane Fermentation process). The processing temperature in the acid fermentation step and the methane fermentation step is preferably high-temperature fermentation in the above-mentioned temperature range from the viewpoint of processing efficiency and downsizing of the apparatus. Heating may not be necessary depending on the temperature. Further, the residence time is determined depending on conditions such as the processing temperature, but it requires about 24 hours to 2 weeks.
[0027]
The digestion gas generated in the acid fermentation tank 2 and the methane fermentation tank 3 is supplied to the gas holder 6 from the gas discharge paths 17 and 18, respectively, and then subjected to desulfurization processing if necessary, thereby heating the fuel, the fuel for power generation, and the fuel cell. It is used as a fuel for applications.
[0028]
The digested liquid after the methane fermentation treatment is withdrawn from the digested liquid extraction path 14 and supplied to the digested liquid storage tank 4, and once stored, partially supplied to the sludge dewatering machine 5 from the digested liquid supply path 16. To separate into solids and water, and the separated solids are extracted as dehydrated sludge from the sludge extraction path 21 and are disposed of as appropriate by a sludge treatment device such as a composting treatment device or a landfill. The water is extracted as separated water from the extraction path 20 and is treated by a water treatment device such as an activated sludge treatment device.
[0029]
In addition, the digested juice stored in the digested juice storage tank 4 is supplied to the acid fermentation tank 2 via the digested juice return path 15 at 20 to 85% by volume of the digested juice discharged from the methane fermentation step. In addition, it is preferable to return a volume that dilutes the solid concentration of the waste slurry in the acid fermentation tank 2 to 1.2 to 2.0 times the amount based on the amount of the waste slurry supplied from the crushing device 1. .
[0030]
【Example】
(Example 1)
The organic waste slurry from the food factory was supplied at 9 kg / d, and 28% by volume of the digested liquid in the methane fermenter was returned to the acid fermenter for treatment. In addition, the dilution ratio of the solid concentration of the waste slurry was 1.2 times by the returned amount. Table 1 shows the results.
[0031]
[Table 1]
Figure 2004098003
From Table 1, it was found that methane fermentation was efficiently performed in the methane fermentation step, and the concentration of anaerobic microorganisms such as methane bacteria was maintained at a predetermined concentration.
[0032]
(Example 2)
An organic waste slurry from a food factory was supplied at 9 kg / d, and 83% by volume of the digested liquid in the methane fermentation tank was returned to the acid fermentation tank for processing. In addition, the dilution ratio of the solid concentration of the waste slurry was 2.0 times based on the returned amount. Table 2 shows the results.
[0033]
[Table 2]
Figure 2004098003
From Table 2, it was found that methane fermentation was efficiently performed in the methane fermentation step without excessive accumulation of nitrogen and phosphorus.
[0034]
【The invention's effect】
The present invention does not cause a risk of microbial growth due to accumulation of nitrogen and phosphorus, eliminates the need to use industrial water or the like as dilution water for the acid fermentation broth, can reduce operating costs, and can provide a methane fermentation tank. This is a method for treating organic waste, which can promote the recycling of organic waste as methane gas by maintaining the concentration of anaerobic microorganisms such as methane bacteria at a high level.
[Brief description of the drawings]
FIG. 1 is a system diagram of an organic waste treatment apparatus according to an embodiment of the present invention. FIG. 2 is a system diagram of a conventional organic waste treatment apparatus.
1: Crusher (waste slurry process)
2: Acid fermentation tank (acid fermentation process)
3: Methane fermentation tank (methane fermentation process)
4: digestion liquid storage tank 5: sludge dewatering machine 6: gas holder 7: heating means 8: stirring and mixing means

Claims (2)

有機性廃棄物を処理する方法において、前記廃棄物を破砕装置で破砕してスラリー化する廃棄物スラリー化工程と、前記廃棄物スラリー化工程からの廃棄物スラリーを酸発酵処理する酸発酵工程と、前記酸発酵工程からの酸発酵液をメタン発酵処理するメタン発酵工程と、前記メタン発酵工程からの消化液の20〜85容量%を前記酸発酵工程に返送する消化液返送工程を設けたことを特徴とする有機性廃棄物の処理方法。In a method of treating organic waste, a waste slurry step of crushing the waste with a crusher to form a slurry, and an acid fermentation step of performing acid fermentation of the waste slurry from the waste slurry step. A methane fermentation step of subjecting the acid fermentation liquid from the acid fermentation step to methane fermentation, and a digestion liquid return step of returning 20 to 85% by volume of the digestion liquid from the methane fermentation step to the acid fermentation step. A method for treating organic waste. 有機性廃棄物を処理する方法において、前記廃棄物を破砕装置で破砕してスラリー化する廃棄物スラリー化工程と、前記廃棄物スラリー化工程からの廃棄物スラリーを酸発酵処理する酸発酵工程と、前記酸発酵工程からの酸発酵液をメタン発酵処理するメタン発酵工程と、前記メタン発酵工程からの消化液の20〜85容量%を前記酸発酵工程に返送する消化液返送工程を設けることにより、前記酸発酵工程において前記廃棄物スラリーの固形物濃度を1.2〜2.0倍量に希釈することを特徴とする有機性廃棄物の処理方法。In a method of treating organic waste, a waste slurry step of crushing the waste with a crusher to form a slurry, and an acid fermentation step of performing acid fermentation of the waste slurry from the waste slurry step. A methane fermentation step of subjecting the acid fermentation liquid from the acid fermentation step to methane fermentation, and a digestion liquid return step of returning 20 to 85% by volume of the digestion liquid from the methane fermentation step to the acid fermentation step. And diluting the solid concentration of the waste slurry to 1.2 to 2.0 times in the acid fermentation step.
JP2002266176A 2002-09-12 2002-09-12 Method for treating organic waste Pending JP2004098003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002266176A JP2004098003A (en) 2002-09-12 2002-09-12 Method for treating organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002266176A JP2004098003A (en) 2002-09-12 2002-09-12 Method for treating organic waste

Publications (1)

Publication Number Publication Date
JP2004098003A true JP2004098003A (en) 2004-04-02

Family

ID=32265057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002266176A Pending JP2004098003A (en) 2002-09-12 2002-09-12 Method for treating organic waste

Country Status (1)

Country Link
JP (1) JP2004098003A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117934A1 (en) * 2005-04-27 2006-11-09 Mitsubishi Kakoki Kaisha, Ltd. Organic waste disposal facility and method of disposal
KR100787074B1 (en) * 2007-08-22 2007-12-21 한밭대학교 산학협력단 Apparatus of biogas production for organic waste
JP2013176746A (en) * 2012-02-29 2013-09-09 Swing Corp Treatment method and treatment device for organic wastewater
KR102275726B1 (en) * 2020-12-07 2021-07-09 수도권매립지관리공사 Anaerobic digestion apparatus for treating food wastewater including acid fermentation tank capable of selectively fermenting methane

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117934A1 (en) * 2005-04-27 2006-11-09 Mitsubishi Kakoki Kaisha, Ltd. Organic waste disposal facility and method of disposal
US8043505B2 (en) 2005-04-27 2011-10-25 Enertech Environmental, Inc. Treatment equipment of organic waste and treatment method
JP4888911B2 (en) * 2005-04-27 2012-02-29 三菱化工機株式会社 Organic waste treatment facility and treatment method
KR101151121B1 (en) 2005-04-27 2012-06-01 미쯔비시 가꼬끼 가이샤 리미티드 Organic waste disposal facility and method of disposal
US8551337B2 (en) 2005-04-27 2013-10-08 SGC Advisors, LLC Treatment equipment of organic waste and treatment method
KR100787074B1 (en) * 2007-08-22 2007-12-21 한밭대학교 산학협력단 Apparatus of biogas production for organic waste
JP2013176746A (en) * 2012-02-29 2013-09-09 Swing Corp Treatment method and treatment device for organic wastewater
KR102275726B1 (en) * 2020-12-07 2021-07-09 수도권매립지관리공사 Anaerobic digestion apparatus for treating food wastewater including acid fermentation tank capable of selectively fermenting methane

Similar Documents

Publication Publication Date Title
US10781143B2 (en) Method and plant for treatment of organic waste
US10006713B2 (en) Apparatus and method for processing final effluent and palm by-products discharged from palm oil milling process
KR101092017B1 (en) The Working Method of Continuous Thermophilic Anaerobic Co-Phase Digestion System using Waste Activated Sludge
KR20170088176A (en) Anaerobic digestion system of organic waste through the thermal hydrolysis
JP2009119378A (en) Methane fermentation method and methane fermentation system of organic waste
JP2007203213A (en) Method and apparatus for treating highly wet waste before hydration, and dehydration system equipped with this apparatus
KR101841098B1 (en) Food waste processing apparatus and processing method
JP2004050143A (en) Treating method of organic waste
CN112058856A (en) Anaerobic digestion method for solid kitchen waste
KR101123854B1 (en) Wet-dry serial parallel anaerobic digestion apparatus and method for treating organic waste
KR102029117B1 (en) Anaerobic digestion apparatus for treating organic waste using the thermal hydrolysis
JP2020157261A (en) Organic sludge treatment method and treatment apparatus
JP4409928B2 (en) Organic waste treatment methods
KR100374485B1 (en) Method for the organic wastes treatment
CN113717834A (en) Organic garbage treatment process and organic garbage treatment equipment
KR101033618B1 (en) Apparatus for recycling of organic waste
KR20070119462A (en) Methane fermentation system
JP2007044572A (en) Method and system for treating organic waste
JP2006281035A (en) Apparatus and method for treating organic waste
JP2004098003A (en) Method for treating organic waste
KR101605523B1 (en) Method and appratus for treating organic waste
JPH10316982A (en) Production of solid fuel
KR20040105933A (en) Method for the efficient treatment of organic waste
KR102327703B1 (en) The processing method for the reuse of wastewater through a complex process
JP2005087977A (en) Organic waste treatment method and organic waste treatment system