JP3999036B2 - Method and apparatus for treating organic wastewater - Google Patents

Method and apparatus for treating organic wastewater Download PDF

Info

Publication number
JP3999036B2
JP3999036B2 JP2002135534A JP2002135534A JP3999036B2 JP 3999036 B2 JP3999036 B2 JP 3999036B2 JP 2002135534 A JP2002135534 A JP 2002135534A JP 2002135534 A JP2002135534 A JP 2002135534A JP 3999036 B2 JP3999036 B2 JP 3999036B2
Authority
JP
Japan
Prior art keywords
treatment
anaerobic
sludge
organic wastewater
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002135534A
Other languages
Japanese (ja)
Other versions
JP2003326295A (en
Inventor
康弘 本間
俊博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002135534A priority Critical patent/JP3999036B2/en
Publication of JP2003326295A publication Critical patent/JP2003326295A/en
Application granted granted Critical
Publication of JP3999036B2 publication Critical patent/JP3999036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Removal Of Floating Material (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種工場、下水、し尿、畜産業施設等より排出される有機性の廃水又は有機性の廃棄物等を対象とし、これを無害化する嫌気性汚泥床処理方法及び装置に関し、更に詳しくは、嫌気性処理に阻害を及ぼす物質を含む有機性廃水の上向流嫌気性汚泥床処理方法及び装置に関する。
【0002】
【従来の技術】
有機性の廃水あるいは有機性の廃棄物等は、嫌気性処理によって分解処理されることがある。こうした分解処理方法として、例えば上向流嫌気性汚泥床法(以後、UASBとも記す)や、グラニュール汚泥膨張床(以後、EGSBとも記す)がある。これは近年普及してきた方法で、メタン菌等の嫌気性菌をグラニュール状に造粒化することにより、リアクター内のメタン菌の濃度を高濃度に維持できるという特徴があり、その結果、廃水中の有機物の濃度が相当高い場合でも効率よく処理できる。例えば、この方法を具体化した装置では、重クロム酸カリウムを酸化剤として測定したCODcr(以後CODと記す)の容積負荷が20〜30kg/m3/dの廃水、廃棄物でも効率よく運転できるという特徴がある。
【0003】
嫌気性処理工程に阻害を及ぼす物質としては、高級脂肪酸、紙パルプ廃水に含まれるテルペン類や樹脂酸などが知られている。紙パルプ廃水に含まれる嫌気性処理工程に阻害を及ぼす物質は、好気性処理工程で分解除去されることが知られている(Sjon Kortekaasら,Journal of Fermentation and Bioengineering,86(1),97−110(1998))。ここで阻害とは、嫌気性菌の活性度を低下させる、あるいは嫌気性菌を死滅させることを意味する。嫌気性処理工程に阻害を及ぼす物質を含む有機性廃水を嫌気性処理する手法としては、以下の手法が挙げられる。
【0004】
(a)予め阻害物質を除去した後、嫌気性処理を行う。
(b)系外から供給する希釈水や好気性処理により嫌気性処理に阻害を及ぼす物質が分解、除去された処理水により希釈を行い、阻害の影響の無い濃度に下げた後、嫌気性処理を行う。
(c)嫌気性菌を阻害物質に馴養させた後、低負荷で嫌気性処理を行う。
【0005】
【発明が解決しようとする課題】
しかしながら、嫌気性処理工程に阻害を及ぼす物質を含む有機性廃水を嫌気性処理する方法には、以下に示すような課題がある。
(イ)予め阻害物質を除去した後、嫌気性処理を行う場合には前処理設備が必要となる。
(ロ)希釈水等により希釈を行い、阻害の影響の無い濃度に下げた後、嫌気性処理を行う場合、希釈倍率が高い時には、大量の希釈水により嫌気性処理装置などの設備が過大となる。
(ハ)嫌気性菌を阻害物質に馴養させた後、低負荷で嫌気性処理を行う場合には嫌気性処理装置が過大となる。
【0006】
このような欠点を解消すべく、本発明は、嫌気性処理工程に阻害を及ぼす物質を含む有機性廃水を対象とした、高性能な上向流嫌気性汚泥床処理方法及び装置の提供を目的とする。
【0007】
【課題を解決するための手段】
本発明は、以下に記載する手段によって前記課題を解決した。
(1)嫌気性処理に阻害を及ぼす物質を含む有機性廃水を嫌気性処理工程で、上向流嫌気性汚泥床処理装置に導き、嫌気性処理を行った後、その流出液を好気性処理工程に導き、好気性処理を行う方法において、前記嫌気性処理工程に、前記上向流嫌気性汚泥床処理装置の本体側壁との角度が35度以下、かつ各占有面積が装置断面積の2分の1以上となる邪魔板により形成される、ガス・液・固分離部を多段に有する上向流嫌気性汚泥床処理装置を用い、前記好気性処理工程で発生する汚泥の一部を該上向流嫌気性汚泥床処理装置に流入させ、該汚泥に有機性廃水に含まれる物質であって、嫌気性処理に阻害を及ぼす物質を吸着あるいは付着させ、該上向流嫌気性汚泥床処理装置の流出液の一部あるいは全量とともに好気性処理工程に流入させることを特徴とする有機性廃水の処理方法。
(2)前記上向流嫌気性汚泥床処理装置内の通水速度を1〜5m/hとすることを特徴とする前記(1)に記載の有機性廃水の処理方法。
【0008】
(3)流入する有機性廃水と前記汚泥とを混合し、酸発酵した後に嫌気性処理をすることを特徴とする前記(1)又は(2)に記載の有機性廃水の処理方法。
(4)流入する有機性廃水に消泡剤を添加することで、前記ガス・液・固液分離部内部での発泡及びスカムの形成を防止することを特徴とする、前記(2)又は(3)に記載の有機性廃水の処理方法。
【0009】
(5)嫌気性処理に阻害を及ぼす物質を含む有機性廃水を導入する上向流嫌気性汚泥床処理装置と、該上向流嫌気性汚泥床処理装置からの流出液を好気性処理槽に導いて好気性処理を行う有機性廃水の処理装置において、前記上向流嫌気性汚泥床処理装置が本体側壁との角度が35度以下、かつ各占有面積が装置断面積の2分の1以上となる邪魔板により形成される、ガス・液・固分離部を多段に有しており、前記好気性処理槽で発生する汚泥を導入して、前記汚泥に前記の嫌気性処理に阻害を及ぼす物質を吸着あるいは付着させて、その汚泥を槽外に流出させる上向流嫌気性汚泥床処理装置であり、該上向流嫌気性汚泥床処理装置からの嫌気性処理液を導入して好気性処理する好気性処理槽と、該好気性処理槽にて発生する汚泥の一部を原水送液管へ送るための汚泥配管とを備えることを特徴とする有機性廃水の処理装置。
(6)前記上向流嫌気性処理汚泥床処理装置内の通水速度を1〜5m/hとすることを特徴とする前記(5)に記載の有機性廃水の処理装置。
(7)前記上向流嫌気性汚泥床処理装置の前段に、原水を流入させる原水送液管及び前記好気性処理槽にて発生する汚泥の一部を供給する活性汚泥配管を備えた酸発酵槽を設けたことを特徴とする前記(5)又は(6)に記載の有機性廃水の処理装置。
(8)前記原水送液管に消泡剤の供給管が連通されていることを特徴とする前記(5)〜(7)のいずれか1項に記載の有機性廃水の処理装置。
【0010】
本発明の骨子は、好気性処理工程で発生する汚泥を嫌気性処理工程に加え、この汚泥に嫌気性処理工程に阻害を及ぼす物質を吸着あるいは付着させ、原水を処理水の循環液や系外から供給する希釈水により必要に応じて適宜希釈を行うことにより、一貫して、流入水のリアクター内部における装置断面積基準の通水速度を、1〜5m/hとなるように調節することができるようにして、添加した汚泥はリアクター内にとどまることなく嫌気性処理工程流出水とともに系外に流出し、さらにその際の嫌気性処理装置として、装置本体側壁との角度が35度以下、かつ各占有面積が装置断面積の2分の1以上となる邪魔板により形成される、ガス・液・固分離部を多段に有する上向流嫌気性汚泥床処理装置を用いることで、リアクター内のガス・液・固分離性能が高まるため、リアクター内にグラニュール汚泥を高濃度に保持することが可能となり、嫌気性処理工程に阻害を及ぼす物質を含む有機性廃水を対象とした、高性能な上向流嫌気性汚泥床処理が達成でき、かつ、汚泥に吸着あるいは付着した状態で好気性処理工程に流入する、嫌気性処理工程に阻害を及ぼす物質は好気性処理工程で分解、除去されることにある。
【0011】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態を具体的に説明する。
図1は、嫌気性処理工程に阻害を及ぼす物質を含む有機性廃水の処理を実施するのに好ましい、本発明の処理フローの一形態の概要を例示した図である。図2は、本発明において嫌気性処理方法を実施するのに好ましい、上向流嫌気性処理装置の一形態の概要を例示した図である。図1において、21は原水、22は酸発酵槽、23は上向流嫌気性汚泥処理装置(UASB)、24は曝気槽、25は沈殿池、26は処理水、27はUASB処理水循環配管、28は活性汚泥配管、29は返送汚泥配管である。
【0012】
図2において、原水送液管1が底部に接続され、上下を閉塞した筒状のリアクター2内部の左右両側壁には、それぞれに一方の端部を固定し、他方の端部を反対側の側壁方向に向かって下降しながら延ばしている邪魔板3が設置されている。邪魔板3は、上下方向に2箇所左右交互に設けてあって、リアクター側壁との間にそれぞれ鋭角の区分スラッジゾーン4a〜4bを形成している。リアクター2側壁と邪魔板3のなす角度θは35度以下の鋭角であり、占有面積は装置断面積の1/2以上である。35度を越える角度の場合には、スラッジゾーン4a,4bの邪魔板3にグラニュール汚泥が堆積し、流動性が不十分となり、デッドスペースが形成される。また、邪魔板3の占有面積が1/2以下だと、発生ガスの捕捉が不十分となり、気・液・固の分離に不具合を生じる。すなわち、リアクター2の中心よりガスが上方へ抜けてしまい、後記のGSS部5にガスを十分に集積することができなくなる。
【0013】
区分スラッジゾーン4a、4b上部はGSS部5を形成している。反応が開始すると発生ガスが集まる気相部5aには、外部と通じる発生ガス回収配管6の排出口を設けてある。
なお、気相部5aから接続されている発生ガス回収配管6の吐出口は、水を充填した水封槽7の水中内で開口している。開口位置は水圧が異なる適宜な水深位にあり、水封槽7には、発生ガス回収配管6から吐き出されたガス流量を測定するガスメータ8を設けてある。ガスメータ8の先には、ガスホルダー11が設けられている。また、リアクター2上端には上澄み液を排出する処理水配管9が開口している。
【0014】
リアクター2は嫌気性菌からなるグラニュール汚泥を投入して使用する。本発明の対象となる嫌気性処理は、30℃〜35℃を至適温度とした中温メタン発酵処理、50℃〜55℃を至適温度とした高温メタン発酵処理など、全ての温度範囲の嫌気性処理を対象としている。リアクター2に嫌気性菌からなるグラニュール汚泥を投入し、有機性廃棄物などを含んだ原水を送液管1からリアクター2へ導入する。原水を嫌気性処理工程の処理水、あるいは好気性処理工程の処理水による循環液や、系外から供給する希釈水等により必要に応じて適宜希釈を行い、流入水のリアクター2内部での通水速度が1〜5m/hとなるように調節する。
【0015】
好気性処理工程で発生した活性汚泥を、予めリアクター2への流入部に活性汚泥流入配管15より加え、原水の嫌気性処理工程に阻害を及ぼす物質は、活性汚泥に吸着あるいは付着した状態でリアクター2内を通り抜ける。そのため、嫌気性処理工程に阻害を及ぼす物質の影響を受けずに、嫌気性処理をすることが可能となる。原水の性状によっては、リアクターに流入する前に酸発酵槽で酸発酵処理は4時間〜4日程度が妥当である。この場合には、活性汚泥を酸発酵槽に供給することで、原水中に含まれる嫌気性処理工程に阻害を及ぼす物質を吸着あるいは付着の効果が大きくなる。
ここで活性汚泥とは、好気性処理で発生する微生物であり、活性汚泥処理工程の返送汚泥や濃縮汚泥、好気性固定床のろ床洗浄排水中の微生物などである。
【0016】
リアクター2内では、嫌気性菌からなるグラニュール汚泥の介在によって有機性廃棄物が分解し、分解ガスが発生する。発生したガスは、各区分スラッジゾーン4a〜4b上端のGSS部5に別れて集まり、それぞれに気相部5aを形成し、発生ガス回収配管6を通じて水封槽7に至る。こうした発生ガスは、ガスメータ8でその排出量が記録され、ガスホルダー11に送られる。発生ガスの一部は、区分スラッジゾーン4a〜4b内でグラニュール汚泥に付着し、その見かけ比重を軽減させるとともに、グラニュール汚泥を同伴してGSS部5の水面に達する。こうした発生ガスは、気泡を形成して水面気泡部5bに一時的に滞留する。水面気泡部5bに集合した気泡はやがて破裂し、発生ガスとグラニュール汚泥とが分離され、グラニュール汚泥はもとの比重を回復して水中に潜り、発生ガスは発生ガス回収配管6から水封槽7を経由して、系外に排出される。有機物が分解して清澄になって水はリアクター2の上端から、処理水配管9を経由して系外に排出される。
【0017】
各GSS部5の気相部5aのガス圧は異なるので、その差圧は水封槽7で調整するとよい。原水送液側に近い順に水封圧は高く保つ必要がある。ガス回収の圧調整は水封槽7を使う方法以外にも多くの方法がある。例えば圧力弁等を使用してもよい。本発明の嫌気性処理方法では、各区分スラッジゾーン毎にそこで発生する発生ガスを回収できるため、リアクター単位断面積当たりの発生ガス量が少なくなる。特に処理水を流出させる処理水配管9に最も近い所では、リアクターの単位断面積当たりのガス量が小さくなる。そのため、グラニュール汚泥の系外流出量は非常に少なくすることができる。
【0018】
GSS部を多段に設置したリアクターでは、通水速度を1〜5m/hとすることにより、グラニュール汚泥層の流動状態が良好となり、また、リアクター内の90%以上のグラニュール汚泥は粒径が0.5〜1.5mm、沈降速度が5〜40m/hとなる。活性汚泥はグラニュール汚泥よりも沈降速度が小さく、かつ、その沈降速度がリアクター内の通水速度よりも小さいため、活性汚泥はリアクター内に堆積することなく処理水とともに流出する。一方、グラニュール汚泥はリアクター内にとどまる。
【0019】
嫌気性処理工程から流出する活性汚泥に吸着あるいは付着した、嫌気性処理工程に阻害を及ぼす物質は、好気性処理工程で分解、除去される。そのため、好気性処理工程の活性汚泥を嫌気性処理工程に流入させても、嫌気性処理工程に阻害を及ぼすことはない。
【0020】
発泡性の原水の場合には、GSS部5内の気相部5a及び発生ガス回収配管6が閉塞し、発生ガスの回収が困難となる。このような場合、リアクター2流入水に予め消泡剤10を加えることで、GSS部5内での発泡を抑えることができる。GSS部5内に消泡剤を滴下、噴霧する方法に比べ、本手法は密閉空間での消泡に効果的である。消泡剤10は原水性状に応じた消泡効果を有し、発酵液の消泡に適した、中温(30〜35℃)あるいは高温(50〜55℃)において消泡効果をなくすことのない消泡剤を使用する。消泡剤の種類としてはシリコーン系消泡剤、アルコール系消泡剤の何れも適用が可能である。
【0021】
原水性状等の影響により、スカムを形成しやすい場合には、GSS部5内の気泡部5b表面及び内部にスカムを形成し、発生ガスの回収が困難となる。このような場合には、発生ガス吹き込み配管13を発生ガス回収配管6あるいは散気管12に接続し、ガスホルダー11内の発生ガスをGSS部5内に供給することで、スカムの破壊あるいはスカムの形成防止が可能となる。
【0022】
発生ガス吹き込み配管13を発生ガス回収配管6に接続し、GSS部5−1内のスカムを破壊・除去する場合は、バルブ14aを閉じ、GSS部5−1内全体を気相部5−1−aとし、GSS部5−1からスカムを排出する。この排出されたスカムはGSS部5−2内にとどまるため、バルブ14bを閉じ、GSS部5−2内全体を気相部5−2−aとし、GSS部5−2からスカムを排出し、これを処理水とともに流出させる。
【0023】
また、発生ガス吹き込み配管13を散気管12に接続する場合は、散気管12から吹き込まれる気泡によりスカムが破壊され、破壊されたスカムはリアクター2内の液の流れとともに処理水として排出される。本手法の場合にはバルブ14a、14bの開閉は問わない。バルブ14a、14bを開けて操作する場合は、散気管12から吹き込まれた気体は発生ガス回収配管6より回収される。バルブ14a、14bを閉じて操作する場合は、散気管12から吹き込まれる気泡によるスカムの破壊効果に加え、前記発生ガス吹き込み配管13を発生ガス回収配管6に接続した場合のスカム排出効果も期待できる。なお、GSS部5内部のスカムを破壊・除去するために、GSS部5内に吹き込む気体は窒素ガス等の酸素を含まない、メタン発酵等の生物処理に影響を与えない気体を適用できるが、嫌気性処理によって発生したガスを使用することが望ましい。GSS部5内にガスを吹き込む頻度は、廃水の性状にもよるが、1日に1回から1週間に1回とすることでGSS部5内部のスカムの破壊・除去の効果がある。
【0024】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例によって限定されるものではない。
【0025】
実施例及び比較例
図2に、実験に用いた上向流式嫌気性汚泥床(UASB)装置の概要を示す。A〜C系列の装置は同一構造であり、傾斜する邪魔板を2ヶ取り付け、装置側壁と邪魔板との角度を30度とし、原水に消泡剤を添加し、散気管から発生ガスを吹き込むスカムの破壊・除去機能を付加した。発生ガスの散気管からの吹き込みは1日当たり1回とした。液層部の容量は1m3である。リアクター内の水温は35℃になるように温度制御されている。
原水には、クラフトパルプの黒液廃水(COD:約25000mg/リットル、SS約500mg/リットル)に無機栄養塩類(窒素、リンなど)を添加したものを用いた。
【0026】
図3に処理フローの概要を示す。
なお、図1で示した部分と同一部分とは同一符号を用いて示す。
A〜C系列とも好気性処理として活性汚泥処理を行った。曝気槽の容量は2m3、沈殿池の内径はφ0.5mである。曝気槽のMLSSを5000mg/リットルに設定した。
【0027】
A系列では、UASB処理した後、活性汚泥処理を行った。返送汚泥濃度は20000mg/リットル、返送比は原水の0.25倍とした。(図3(a)参照)
B系列では原水を酸発酵処理した後、活性汚泥処理により、嫌気性処理に阻害を及ぼす物質を分解、除去した沈殿池越流水(活性汚泥処理水)で10倍希釈し、これをUASB処理した後、活性汚泥処理を行った。返送汚泥濃度は20000mg/リットル、返送比は原水の3倍とした。(図3(b)参照)
C系列では原水に返送汚泥を加え、SS4000mg/リットルに調整し、酸発酵処理を行い、UASB処理した後、活性汚泥処理を行った。UASB流出液の一部を酸発酵処理水とともにUASBに流入させ、通水速度を2m/hに設定した。返送汚泥濃度は20000mg/リットル、返送比は酸発酵槽へ原水の0.25倍、曝気槽へ原水の0.1倍とした。C系列は本発明に基づく系列である。(図3(c)参照)
【0028】
図4〜図7に実験経過を、第1表に処理成績結果を示す。
A系列ではUASBのCOD負荷(以下、単にCOD負荷と記す)を1kg/m3/dで実験を開始したが、UASB処理でCODはほとんど除去されなかった。(図5参照)
【0029】
B系列では、60日目までのCOD負荷8kg/m3/dではUASB処理水のCODが3000mg/リットル、処理水のCODが1000mg/リットル、COD除去率96%の処理であった。60日後以降にCOD負荷を12kg/m3/dとしたところ、活性汚泥処理での水量の増大による曝気槽の滞留時間の短縮及び沈殿池での水面積負荷の増大のため、活性汚泥処理が悪化し、処理水CODが5000mg/リットルまで上昇したため、曝気槽の容量を5m3に、沈殿池の内径をφ1.2mに増設した。その結果、100日目までのCOD負荷15kg/m3/dではUASB処理水のCODが3000mg/リットル、処理水のCODが1000mg/リットル、COD除去率96%の処理であった。100日目以降、COD負荷を20kg/m3/dとしたところ、UASB内の通水速度が増大し、グラニュール汚泥が大量に流出し、UASB処理が行えなくなり、処理水のCODは8000mg/リットルまで悪化した。(図6参照)
【0030】
C系列では、110日後以降にCOD負荷25kg/m3/dでUASB処理水COD7000mg/リットル、溶解性COD2500mg/リットル、処理水のCODが1000mg/リットル以下、COD除去率96%の処理が可能であった。UASB処理水のCODが7000mg/リットルと高いのは、UASBに流入した返送汚泥がUASB内にとどまらずそのまま流出し、UASB処理水のSSが4000〜5000mg/リットルと高くなったことによる。(図7参照)
本発明法であるC系列は、従来法のA、B系列に比べ、高いCOD除去性能を示し、かつ、省スペースな処理方式であった。
【0031】
【表1】

Figure 0003999036
【0032】
【発明の効果】
本発明では、好気性処理工程で発生する汚泥を嫌気性処理工程に加え、この汚泥に嫌気性処理工程に阻害を及ぼす物質を吸着あるいは付着させ、添加した汚泥はリアクター内にとどまることなく処理水とともに系外に流出させることにより、リアクター内のガス・液・固分離性能が高まり、リアクター内にグラニュール汚泥を高濃度に保持することが可能となり、嫌気性処理に阻害を及ぼす物質を含む有機性廃水を、高効率で上向流嫌気性汚泥床処理がすることができる。本発明法であるC系列は、従来法のA、B系列に比べ、高いCOD除去性能を示し、かつ、省スペースな処理方式であった。
【図面の簡単な説明】
【図1】本発明の有機性廃水処理装置の構成を示すブロック図である。
【図2】本発明で使用する上向流通気性処理装置の一例を示す概略説明図である。
【図3】実施例で用いた従来の(A系列、B系列)、及び本発明(C系列)の有機性廃水処理装置の構成を示すブロック図である。
【図4】実験に用いたA〜C系列のCOD負荷と経過日数の関係を示す図である。
【図5】従来(A系列)のCODと経過日数の関係を示す図である。
【図6】従来(B系列)のCODと経過日数の関係を示す図である。
【図7】本発明(C系列)のCODと経過日数の関係を示す図である。
【符号の説明】
1 原液送液管
2 リアクター
3 邪魔板
4a 区分スラッヂゾーン
4b 区分スラッヂゾーン
5−1a 気相部
5−2a 気相部
5−1b 液相部
5−2b 液相部
6 発生ガス回収配管
7 水封槽
8 ガスメータ
9 処理水配管
10 消泡剤注入管
11 ガスホルダー
12 散気管
13 発生ガス吸込配管
14a バルブ
14b バルブ
15 活性汚泥流入配管
21 原水
22 酸発酵槽
23 UASB
24 曝気槽
25 沈殿池
26 処理水
27 UASB処理水循環配管
28 活性汚泥配管
29 返送汚泥配管
30 活性汚泥処理水配管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anaerobic sludge bed treatment method and apparatus for detoxifying organic waste water or organic waste discharged from various factories, sewage, human waste, livestock industry facilities, etc. Specifically, the present invention relates to a method and apparatus for treating an upstream anaerobic sludge bed containing organic substances containing substances that inhibit anaerobic treatment.
[0002]
[Prior art]
Organic wastewater or organic waste may be decomposed by anaerobic treatment. As such a decomposition treatment method, for example, there are an upflow anaerobic sludge bed method (hereinafter also referred to as UASB) and a granular sludge expansion bed (hereinafter also referred to as EGSB). This is a method that has become widespread in recent years. It is characterized by maintaining a high concentration of methane bacteria in the reactor by granulating anaerobic bacteria such as methane bacteria into granules. Even when the concentration of the organic matter in it is considerably high, it can be processed efficiently. For example, in an apparatus embodying this method, COD cr (hereinafter referred to as COD) measured using potassium dichromate as an oxidizing agent operates efficiently even in wastewater and waste having a volume load of 20 to 30 kg / m 3 / d. There is a feature that can be done.
[0003]
Known substances that inhibit the anaerobic treatment process include higher fatty acids, terpenes and resin acids contained in paper pulp wastewater. Substances that inhibit the anaerobic treatment process contained in paper pulp wastewater are known to be decomposed and removed in the aerobic treatment process (Sjon Kortekaas et al., Journal of Fermentation and Bioengineering, 86 (1), 97- 110 (1998)). Here, inhibition means reducing the activity of anaerobic bacteria or killing anaerobic bacteria. The following method is mentioned as a method for anaerobically treating organic wastewater containing a substance that inhibits the anaerobic treatment step.
[0004]
(A) Anaerobic treatment is performed after removing the inhibitor in advance.
(B) Dilution water supplied from outside the system and substances that inhibit the anaerobic treatment by aerobic treatment are diluted with treated water that has been decomposed and removed, and the concentration is reduced to a level that does not affect the anaerobic treatment. I do.
(C) After anaerobic bacteria are acclimatized to the inhibitory substance, anaerobic treatment is performed with a low load.
[0005]
[Problems to be solved by the invention]
However, the method for anaerobically treating organic wastewater containing substances that inhibit the anaerobic treatment process has the following problems.
(A) When an anaerobic treatment is performed after removing the inhibitor in advance, a pretreatment facility is required.
(B) When anaerobic treatment is performed after diluting with dilution water, etc., and reducing to a concentration that does not affect the inhibition, when the dilution ratio is high, the equipment such as anaerobic treatment equipment is too large with a large amount of dilution water. Become.
(C) After anaerobic bacteria are acclimatized to the inhibitory substance, the anaerobic treatment apparatus becomes excessive when anaerobic treatment is performed with a low load.
[0006]
In order to eliminate such drawbacks, the present invention aims to provide a high-performance upflow anaerobic sludge bed treatment method and apparatus for organic wastewater containing substances that inhibit the anaerobic treatment process. And
[0007]
[Means for Solving the Problems]
The present invention has solved the above problems by the means described below.
(1) Organic wastewater containing substances that interfere with anaerobic treatment is introduced into an upflow anaerobic sludge bed treatment device in an anaerobic treatment process, and after anaerobic treatment, the effluent is aerobically treated. In the method of conducting an aerobic treatment, leading to a process, the anaerobic treatment step includes an angle of 35 degrees or less with respect to the side wall of the main body of the upward flow anaerobic sludge bed treatment apparatus, and each occupied area is 2 of the apparatus cross-sectional area. is formed by baffles which a partial one or more, the gas-liquid-solid separation unit with upflow anaerobic sludge blanket processor having a multistage, the part of the sludge from the aerobic treatment step An upflow anaerobic sludge bed treatment device that adsorbs or adheres substances that are contained in organic wastewater and that inhibit the anaerobic treatment to the sludge. It flows into the aerobic treatment step together with a part or the total amount of effluent apparatus Method of treating organic waste water, which comprises causing.
(2) The method for treating organic wastewater according to (1) above, wherein a water flow rate in the upward flow anaerobic sludge bed treatment apparatus is 1 to 5 m / h.
[0008]
(3) mixing the organic wastewater and before Symbol sludge flows, the processing method of organic wastewater according to (1) or (2), characterized in that the anaerobic treatment after acid fermentation.
(4) The anti-foaming agent is added to the inflowing organic waste water to prevent foaming and scum formation in the gas / liquid / solid-liquid separation part, (2) or ( The method for treating organic wastewater as described in 3) .
[0009]
(5) An upflow anaerobic sludge bed treatment device that introduces organic wastewater containing substances that inhibit anaerobic treatment, and an effluent from the upflow anaerobic sludge bed treatment device into an aerobic treatment tank In the organic wastewater treatment apparatus that conducts aerobic treatment by guiding, the upward flow anaerobic sludge bed treatment apparatus has an angle with the side wall of the main body of 35 degrees or less, and each occupied area is more than half of the cross-sectional area of the apparatus. The gas / liquid / solid separation part is formed in multiple stages and is introduced by the sludge generated in the aerobic treatment tank , and inhibits the anaerobic treatment to the sludge. material is adsorbed or attached, the sludge is upflow anaerobic sludge blanket treatment apparatus to flow out the Sogai, by introducing the anaerobic treatment liquid from the upper countercurrent anaerobic sludge bed processor aerobic and aerobic treatment tank, a portion of the sludge generated in the aerobic treatment tank original to be processed Processor of organic wastewater characterized in that it comprises a sludge pipe for sending the liquid feed pipe.
(6) The organic wastewater treatment apparatus according to (5), wherein a water flow rate in the upward flow anaerobic treatment sludge bed treatment apparatus is 1 to 5 m / h.
(7) Acid fermentation provided with a raw water feed pipe for feeding raw water and an activated sludge pipe for supplying a part of the sludge generated in the aerobic treatment tank, upstream of the upward flow anaerobic sludge bed treatment apparatus. The apparatus for treating organic wastewater according to (5) or (6) above, wherein a tank is provided .
(8) The organic wastewater treatment apparatus according to any one of (5) to (7), wherein a defoamer supply pipe is communicated with the raw water feed pipe.
[0010]
The essence of the present invention is that the sludge generated in the aerobic treatment process is added to the anaerobic treatment process, and a substance that inhibits the anaerobic treatment process is adsorbed or adhered to the sludge, and the raw water is treated with circulating water or outside the system. It is possible to consistently adjust the water flow rate based on the cross-sectional area of the inflow water reactor so that it becomes 1 to 5 m / h by appropriately diluting with dilution water supplied from The added sludge flows out of the system together with the anaerobic treatment process effluent without staying in the reactor, and as the anaerobic treatment device at that time, the angle with the side wall of the device main body is 35 degrees or less, and By using an upflow anaerobic sludge bed treatment device that has multiple stages of gas, liquid, and solid separation sections, each of which occupies an area that is half or more of the cross-sectional area of the device. Gas / Liquid・ Since the solid separation performance is improved, it is possible to keep granular sludge in the reactor at a high concentration, and high-performance upward flow targeting organic wastewater containing substances that impede the anaerobic treatment process. Anaerobic sludge bed treatment can be achieved, and substances that interfere with the anaerobic treatment process that flow into the aerobic treatment process while adsorbed or adhered to the sludge are to be decomposed and removed in the aerobic treatment process. .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
FIG. 1 is a diagram exemplifying an outline of one embodiment of a treatment flow of the present invention, which is preferable for carrying out treatment of organic wastewater containing a substance that inhibits an anaerobic treatment step. FIG. 2 is a diagram illustrating an outline of an embodiment of an upward flow anaerobic treatment apparatus that is preferable for carrying out the anaerobic treatment method in the present invention. In FIG. 1, 21 is raw water, 22 is an acid fermentation tank, 23 is an upflow anaerobic sludge treatment device (UASB), 24 is an aeration tank, 25 is a sedimentation basin, 26 is treated water, 27 is a UASB treated water circulation pipe, 28 is an activated sludge pipe, and 29 is a return sludge pipe.
[0012]
In FIG. 2, the raw water feed pipe 1 is connected to the bottom, and one end is fixed to each of the left and right side walls inside the cylindrical reactor 2 whose top and bottom are closed, and the other end is on the opposite side. A baffle plate 3 extending while descending toward the side wall is provided. The baffle plates 3 are provided alternately at two left and right locations in the vertical direction, and form acute slanted section sludge zones 4a to 4b between the reactor side walls. The angle θ formed between the side wall of the reactor 2 and the baffle plate 3 is an acute angle of 35 degrees or less, and the occupied area is ½ or more of the apparatus sectional area. In the case of an angle exceeding 35 degrees, granular sludge accumulates on the baffle plates 3 of the sludge zones 4a and 4b, resulting in insufficient fluidity and formation of dead spaces. On the other hand, if the area occupied by the baffle plate 3 is 1/2 or less, trapping of the generated gas becomes insufficient, causing problems in separation of gas, liquid, and solid. That is, the gas escapes upward from the center of the reactor 2, and the gas cannot be sufficiently accumulated in the GSS unit 5 described later.
[0013]
The upper part of the divided sludge zones 4a and 4b forms a GSS portion 5. In the gas phase part 5a where the generated gas collects when the reaction starts, an outlet of the generated gas recovery pipe 6 communicating with the outside is provided.
In addition, the discharge port of the generated gas recovery pipe 6 connected from the gas phase part 5a is opened in the water of the water-sealed tank 7 filled with water. The opening position is at an appropriate water depth with different water pressure, and the water sealing tank 7 is provided with a gas meter 8 for measuring the flow rate of the gas discharged from the generated gas recovery pipe 6. A gas holder 11 is provided at the tip of the gas meter 8. Further, a treated water pipe 9 for discharging the supernatant liquid is opened at the upper end of the reactor 2.
[0014]
The reactor 2 is used by introducing granular sludge made of anaerobic bacteria. The anaerobic treatment that is the subject of the present invention is an anaerobic treatment in all temperature ranges, such as a medium temperature methane fermentation treatment with an optimum temperature of 30 ° C. to 35 ° C., and a high temperature methane fermentation treatment with an optimum temperature of 50 ° C. to 55 ° C. It is intended for sex processing. Granule sludge composed of anaerobic bacteria is introduced into the reactor 2, and raw water containing organic waste is introduced into the reactor 2 from the liquid feeding pipe 1. The raw water is appropriately diluted with the circulating water from the anaerobic treatment process or the aerobic treatment process, or the dilution water supplied from outside the system, as necessary. The water speed is adjusted to 1 to 5 m / h.
[0015]
The activated sludge generated in the aerobic treatment process is added in advance to the inflow portion into the reactor 2 from the activated sludge inflow pipe 15, and substances that inhibit the raw water anaerobic treatment process are adsorbed or adhered to the activated sludge in the reactor. Pass through 2. Therefore, anaerobic treatment can be performed without being affected by substances that inhibit the anaerobic treatment process. Depending on the properties of the raw water, it is appropriate that the acid fermentation treatment in the acid fermenter is about 4 hours to 4 days before flowing into the reactor. In this case, by supplying the activated sludge to the acid fermentation tank, the effect of adsorbing or adhering substances that inhibit the anaerobic treatment step contained in the raw water is increased.
The activated sludge here refers to microorganisms generated by aerobic treatment, such as return sludge and concentrated sludge in the activated sludge treatment process, microorganisms in the filter bed washing waste water of the aerobic fixed bed, and the like.
[0016]
In the reactor 2, organic waste is decomposed by the presence of granule sludge composed of anaerobic bacteria, and decomposed gas is generated. The generated gas is collected separately in the GSS part 5 at the upper end of each of the divided sludge zones 4a to 4b, forms a gas phase part 5a in each, and reaches the water seal tank 7 through the generated gas recovery pipe 6. The amount of such generated gas is recorded by the gas meter 8 and sent to the gas holder 11. A part of the generated gas adheres to the granular sludge in the divided sludge zones 4a to 4b, reduces the apparent specific gravity, and accompanies the granular sludge and reaches the water surface of the GSS section 5. Such generated gas forms bubbles and temporarily stays in the water surface bubble portion 5b. The air bubbles gathered in the water surface bubble portion 5b eventually burst, and the generated gas and granulated sludge are separated, and the granular sludge recovers its original specific gravity and is submerged in the water. It is discharged out of the system via the sealing tank 7. The organic matter is decomposed and clarified, and water is discharged from the upper end of the reactor 2 to the outside of the system through the treated water pipe 9.
[0017]
Since the gas pressure in the gas phase part 5 a of each GSS part 5 is different, the differential pressure may be adjusted in the water-sealed tank 7. It is necessary to keep the water sealing pressure higher in the order closer to the raw water feed side. There are many methods for adjusting the pressure for gas recovery in addition to the method using the water-sealed tank 7. For example, a pressure valve or the like may be used. In the anaerobic treatment method of the present invention, the generated gas generated in each sludge zone can be recovered, so that the generated gas amount per reactor unit cross-sectional area is reduced. In particular, at the place closest to the treated water pipe 9 through which treated water flows out, the amount of gas per unit cross-sectional area of the reactor becomes small. Therefore, the outflow amount of granule sludge can be very reduced.
[0018]
In a reactor with GSS units installed in multiple stages, the flow rate of 1-5 m / h improves the flow state of the granular sludge layer, and more than 90% of the granular sludge in the reactor has a particle size Is 0.5 to 1.5 mm, and the sedimentation speed is 5 to 40 m / h. Since activated sludge has a lower sedimentation rate than granule sludge and its sedimentation rate is lower than the water flow rate in the reactor, the activated sludge flows out together with the treated water without accumulating in the reactor. On the other hand, granular sludge remains in the reactor.
[0019]
Substances adsorbing or adhering to the activated sludge flowing out from the anaerobic treatment process and inhibiting the anaerobic treatment process are decomposed and removed in the aerobic treatment process. Therefore, even if the activated sludge of the aerobic treatment process is caused to flow into the anaerobic treatment process, the anaerobic treatment process is not inhibited.
[0020]
In the case of foaming raw water, the gas phase part 5a and the generated gas recovery pipe 6 in the GSS part 5 are blocked, making it difficult to recover the generated gas. In such a case, foaming in the GSS part 5 can be suppressed by adding the antifoaming agent 10 to the reactor 2 inflow water in advance. Compared with the method in which an antifoaming agent is dropped and sprayed into the GSS section 5, this method is effective for defoaming in a sealed space. The antifoaming agent 10 has an antifoaming effect corresponding to the raw aqueous state, and does not lose the antifoaming effect at medium temperature (30 to 35 ° C.) or high temperature (50 to 55 ° C.) suitable for defoaming the fermentation broth. Use antifoam. As a kind of antifoaming agent, any of a silicone type antifoaming agent and an alcohol type antifoaming agent can be applied.
[0021]
When scum is likely to be formed due to the influence of the raw water state or the like, scum is formed on the surface and inside of the bubble part 5b in the GSS part 5 and recovery of the generated gas becomes difficult. In such a case, the generated gas blow-in pipe 13 is connected to the generated gas recovery pipe 6 or the diffuser pipe 12, and the generated gas in the gas holder 11 is supplied into the GSS unit 5 to destroy the scum or Formation prevention is possible.
[0022]
When the generated gas blowing pipe 13 is connected to the generated gas recovery pipe 6 and the scum in the GSS section 5-1 is destroyed / removed, the valve 14a is closed, and the entire GSS section 5-1 is entirely disposed in the gas phase section 5-1. -A is set, and the scum is discharged from the GSS unit 5-1. Since this discharged scum stays in the GSS section 5-2, the valve 14b is closed, the entire GSS section 5-2 is made the gas phase section 5-2a, and the scum is discharged from the GSS section 5-2. This is discharged with treated water.
[0023]
Further, when the generated gas blowing pipe 13 is connected to the diffuser pipe 12, the scum is broken by the bubbles blown from the diffuser pipe 12, and the broken scum is discharged as treated water together with the flow of the liquid in the reactor 2. In the case of this method, the valves 14a and 14b can be opened and closed. When the valves 14 a and 14 b are opened and operated, the gas blown from the diffuser pipe 12 is recovered from the generated gas recovery pipe 6. When the valves 14a and 14b are closed and operated, in addition to the scum destruction effect due to the air bubbles blown from the diffuser pipe 12, the scum discharge effect when the generated gas blowing pipe 13 is connected to the generated gas recovery pipe 6 can also be expected. . In addition, in order to destroy and remove the scum in the GSS unit 5, the gas blown into the GSS unit 5 does not contain oxygen such as nitrogen gas, and can apply a gas that does not affect biological treatment such as methane fermentation. It is desirable to use gas generated by anaerobic treatment. The frequency of blowing the gas into the GSS unit 5 depends on the properties of the waste water, but it is effective to destroy and remove the scum inside the GSS unit 5 by changing from once a day to once a week.
[0024]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[0025]
Example and Comparative Example FIG. 2 shows an outline of an upflow anaerobic sludge bed (UASB) apparatus used in the experiment. The A to C series devices have the same structure, two sloping baffle plates are attached, the angle between the device side wall and the baffle plate is 30 degrees, an antifoaming agent is added to the raw water, and the generated gas is blown from the air diffuser. Added scum destruction / removal function. The generated gas was blown from the diffuser once per day. The capacity of the liquid layer part is 1 m 3 . The temperature of the water in the reactor is controlled to 35 ° C.
The raw water used was kraft pulp black liquor wastewater (COD: about 25000 mg / liter, SS about 500 mg / liter) to which inorganic nutrient salts (nitrogen, phosphorus, etc.) were added.
[0026]
FIG. 3 shows an outline of the processing flow.
In addition, the same part as the part shown in FIG. 1 is shown using the same code | symbol.
The activated sludge treatment was performed as an aerobic treatment in the A to C series. The capacity of the aeration tank is 2 m 3 , and the inner diameter of the sedimentation basin is φ0.5 m. The MLSS of the aeration tank was set to 5000 mg / liter.
[0027]
In the A series, the activated sludge treatment was performed after the UASB treatment. The return sludge concentration was 20000 mg / liter, and the return ratio was 0.25 times the raw water. (See Fig. 3 (a))
In the B series, the raw water is acid-fermented and then diluted by 10 times with the sedimentation basin overflow water (activated sludge treated water), which decomposes and removes substances that inhibit the anaerobic treatment by activated sludge treatment, and this was subjected to UASB treatment. Then, the activated sludge process was performed. The return sludge concentration was 20000 mg / liter, and the return ratio was 3 times the raw water. (See Fig. 3 (b))
In the C series, return sludge was added to the raw water, adjusted to SS 4000 mg / liter, acid fermentation treatment was performed, UASB treatment was performed, and then activated sludge treatment was conducted. A part of the UASB effluent was allowed to flow into the UASB along with the acid fermentation treated water, and the water flow rate was set to 2 m / h. The return sludge concentration was 20000 mg / liter, and the return ratio was 0.25 times the raw water to the acid fermentation tank and 0.1 times the raw water to the aeration tank. The C series is a series based on the present invention. (See Fig. 3 (c))
[0028]
4 to 7 show the course of the experiment, and Table 1 shows the results of the processing results.
In the A series, the experiment was started at a UASB COD load (hereinafter simply referred to as COD load) of 1 kg / m 3 / d, but COD was hardly removed by the UASB treatment. (See Figure 5)
[0029]
In the B series, the COD load of 8 kg / m 3 / d until the 60th day was a treatment with a COD of 3000 mg / liter of UASB treated water, a COD of treated water of 1000 mg / liter, and a COD removal rate of 96%. When the COD load was set to 12 kg / m 3 / d after 60 days, the activated sludge treatment was carried out due to the shortened residence time of the aeration tank and the increased water area load in the settling basin due to the increase in the amount of water in the activated sludge treatment. Since it deteriorated and the treated water COD rose to 5000 mg / liter, the capacity of the aeration tank was increased to 5 m 3 and the inner diameter of the sedimentation tank was increased to φ1.2 m. As a result, at a COD load of 15 kg / m 3 / d up to the 100th day, the COD of UASB treated water was 3000 mg / liter, the COD of treated water was 1000 mg / liter, and the COD removal rate was 96%. After the 100th day, when the COD load was 20 kg / m 3 / d, the water flow rate in the UASB increased, a large amount of granulated sludge flowed out, and the UASB treatment could not be performed, and the COD of the treated water was 8000 mg / It worsened to liters. (See Figure 6)
[0030]
In C series, after 110 days, COD load 25kg / m 3 / d, UASB treated water COD 7000mg / liter, soluble COD 2500mg / liter, treated water COD 1000mg / liter or less, COD removal rate 96% can be processed. there were. The reason why the COD of the UASB treated water is as high as 7000 mg / liter is that the return sludge flowing into the UASB flows out of the UASB as it is, and the SS of the UASB treated water is as high as 4000 to 5000 mg / liter. (See Figure 7)
The C series, which is the method of the present invention, has a higher COD removal performance and a space-saving processing method than the conventional A and B series.
[0031]
[Table 1]
Figure 0003999036
[0032]
【The invention's effect】
In the present invention, sludge generated in the aerobic treatment step is added to the anaerobic treatment step, and a substance that inhibits the anaerobic treatment step is adsorbed or adhered to the sludge, and the added sludge is not treated in the reactor. In addition, by flowing out of the system, the gas, liquid, and solid separation performance in the reactor is enhanced, and it is possible to maintain a high concentration of granular sludge in the reactor, and organic substances that contain substances that impede anaerobic treatment. High-efficiency wastewater can be treated with high efficiency anaerobic sludge bed. The C series, which is the method of the present invention, has a higher COD removal performance and a space-saving processing method than the conventional A and B series.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an organic wastewater treatment apparatus of the present invention.
FIG. 2 is a schematic explanatory view showing an example of an upward circulation gas processing apparatus used in the present invention.
FIG. 3 is a block diagram showing a configuration of a conventional (A series, B series) and organic wastewater treatment apparatus of the present invention (C series) used in Examples.
FIG. 4 is a diagram showing a relationship between the COD load of the A to C series used in the experiment and the elapsed days.
FIG. 5 is a diagram showing a relationship between conventional (A-series) COD and elapsed days.
FIG. 6 is a diagram showing a relationship between conventional (B-series) COD and elapsed days.
FIG. 7 is a diagram showing the relationship between COD and elapsed days in the present invention (C-series).
[Explanation of symbols]
1 Stock solution feed pipe 2 Reactor 3 Baffle plate 4a Division sludge zone 4b Division sludge zone 5-1a Gas phase portion 5-2a Gas phase portion 5-1b Liquid phase portion 5-2b Liquid phase portion 6 Generated gas recovery piping 7 Water seal Tank 8 Gas meter 9 Treated water pipe 10 Defoamer injection pipe 11 Gas holder 12 Aeration pipe 13 Generated gas suction pipe 14a Valve 14b Valve 15 Activated sludge inflow pipe 21 Raw water 22 Acid fermentation tank 23 UASB
24 Aeration tank 25 Sedimentation basin 26 Treated water 27 UASB treated water circulation piping 28 Activated sludge piping 29 Return sludge piping 30 Activated sludge treated water piping

Claims (8)

嫌気性処理に阻害を及ぼす物質を含む有機性廃水を嫌気性処理工程で、上向流嫌気性汚泥床処理装置に導き、嫌気性処理を行った後、その流出液を好気性処理工程に導き、好気性処理を行う方法において、前記嫌気性処理工程に、前記上向流嫌気性汚泥床処理装置の本体側壁との角度が35度以下、かつ各占有面積が装置断面積の2分の1以上となる邪魔板により形成される、ガス・液・固分離部を多段に有する上向流嫌気性汚泥床処理装置を用い、前記好気性処理工程で発生する汚泥の一部を該上向流嫌気性汚泥床処理装置に流入させ、該汚泥に有機性廃水に含まれる物質であって、嫌気性処理に阻害を及ぼす物質を吸着あるいは付着させ、該上向流嫌気性汚泥床処理装置の流出液の一部あるいは全量とともに好気性処理工程に流入させることを特徴とする有機性廃水の処理方法。  Organic wastewater containing substances that interfere with anaerobic treatment is guided to an upflow anaerobic sludge bed treatment device in the anaerobic treatment process. After anaerobic treatment, the effluent is led to the aerobic treatment process. In the aerobic treatment method, in the anaerobic treatment step, the angle with the main body side wall of the upward flow anaerobic sludge bed treatment device is 35 degrees or less, and each occupied area is a half of the device cross-sectional area. Using the upward flow anaerobic sludge bed treatment device formed by the baffle plate as described above and having gas, liquid, and solid separation parts in multiple stages, a part of the sludge generated in the aerobic treatment step Flow into the anaerobic sludge bed treatment device, adsorb or adhere to the sludge, a substance contained in organic wastewater that inhibits anaerobic treatment, and flow out of the upflow anaerobic sludge bed treatment device Let it flow into the aerobic treatment process along with some or all of the liquid Method of treating organic waste water, wherein the door. 前記上向流嫌気性汚泥床処理装置内の通水速度を1〜5m/hとすることを特徴とする請求項1に記載の有機性廃水の処理方法。  The method for treating organic wastewater according to claim 1, wherein a water flow rate in the upward flow anaerobic sludge bed treatment apparatus is 1 to 5 m / h. 流入する有機性廃水と前記汚泥とを混合し、酸発酵した後に嫌気性処理をすることを特徴とする請求項1又は請求項2に記載の有機性廃水の処理方法。  The method for treating organic wastewater according to claim 1 or 2, wherein the inflowing organic wastewater and the sludge are mixed and subjected to anaerobic treatment after acid fermentation. 流入する有機性廃水に消泡剤を添加することで、前記ガス・液・固液分離部内部での発泡及びスカムの形成を防止することを特徴とする、請求項2又は請求項3に記載の有機性廃水の処理方法。  The antifoaming agent is added to the inflowing organic waste water to prevent foaming and scum formation inside the gas / liquid / solid-liquid separation part. Treatment method of organic wastewater. 嫌気性処理に阻害を及ぼす物質を含む有機性廃水を導入する上向流嫌気性汚泥床処理装置と、該上向流嫌気性汚泥床処理装置からの流出液を好気性処理槽に導いて好気性処理を行う有機性廃水の処理装置において、前記上向流嫌気性汚泥床処理装置が本体側壁との角度が35度以下、かつ各占有面積が装置断面積の2分の1以上となる邪魔板により形成される、ガス・液・固分離部を多段に有しており、前記好気性処理槽で発生する汚泥を導入して、前記汚泥に前記の嫌気性処理に阻害を及ぼす物質を吸着あるいは付着させて、その汚泥を槽外に流出させる上向流嫌気性汚泥床処理装置であり、該上向流嫌気性汚泥床処理装置からの嫌気性処理液を導入して好気性処理する好気性処理槽と、該好気性処理槽にて発生する汚泥の一部を原水送液管へ送るための汚泥配管とを備えることを特徴とする有機性廃水の処理装置。An upflow anaerobic sludge bed treatment device that introduces organic wastewater containing substances that impede anaerobic treatment, and the effluent from the upflow anaerobic sludge bed treatment device is guided to an aerobic treatment tank. In an organic wastewater treatment apparatus for performing a temper treatment, the upward flow anaerobic sludge bed treatment apparatus has an angle of 35 degrees or less with respect to the side wall of the main body, and each occupation area is one half or more of the sectional area of the apparatus. It has multiple stages of gas, liquid, and solid separation formed by plates, and introduces sludge generated in the aerobic treatment tank to adsorb substances that inhibit the anaerobic treatment to the sludge. or by adhering, good the sludge is upflow anaerobic sludge blanket apparatus which flow out in Sogai and to aerobic treatment by introducing the anaerobic treatment liquid from the upper countercurrent anaerobic sludge bed processor and temper treatment tank, raw water feeding part of the sludge generated in the said aerobic treatment vessel Processor of organic wastewater characterized in that it comprises a sludge pipe for sending to. 前記上向流嫌気性処理汚泥床処理装置内の通水速度を1〜5m/hとすることを特徴とする請求項5に記載の有機性廃水の処理装置。  The organic wastewater treatment apparatus according to claim 5, wherein a water flow rate in the upward flow anaerobic treatment sludge bed treatment apparatus is 1 to 5 m / h. 前記上向流嫌気性汚泥床処理装置の前段に、原水を流入させる原水送液管及び前記好気性処理槽にて発生する汚泥の一部を供給する活性汚泥配管を備えた酸発酵槽を設けたことを特徴とする請求項5又は請求項6に記載の有機性廃水の処理装置。 An acid fermentation tank equipped with a raw water feed pipe that feeds raw water and an activated sludge pipe that supplies a part of the sludge generated in the aerobic treatment tank is provided in the upstream of the upward flow anaerobic sludge bed treatment apparatus. The apparatus for treating organic wastewater according to claim 5 or 6, wherein the apparatus is an organic wastewater treatment apparatus. 前記原水送液管に消泡剤の供給管が連通されていることを特徴とする請求項5〜7のいずれか1項に記載の有機性廃水の処理装置。  The apparatus for treating organic wastewater according to any one of claims 5 to 7, wherein a defoamer supply pipe is communicated with the raw water feed pipe.
JP2002135534A 2002-05-10 2002-05-10 Method and apparatus for treating organic wastewater Expired - Fee Related JP3999036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135534A JP3999036B2 (en) 2002-05-10 2002-05-10 Method and apparatus for treating organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135534A JP3999036B2 (en) 2002-05-10 2002-05-10 Method and apparatus for treating organic wastewater

Publications (2)

Publication Number Publication Date
JP2003326295A JP2003326295A (en) 2003-11-18
JP3999036B2 true JP3999036B2 (en) 2007-10-31

Family

ID=29697836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135534A Expired - Fee Related JP3999036B2 (en) 2002-05-10 2002-05-10 Method and apparatus for treating organic wastewater

Country Status (1)

Country Link
JP (1) JP3999036B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4428188B2 (en) * 2004-10-13 2010-03-10 荏原エンジニアリングサービス株式会社 Organic wastewater treatment method and treatment apparatus
JP2007014864A (en) * 2005-07-06 2007-01-25 Sumitomo Heavy Ind Ltd Anaerobic treatment method and treatment apparatus of waste water
JP5215800B2 (en) * 2008-09-30 2013-06-19 日本製紙株式会社 Anaerobic treatment method for pulp wastewater
JP2011050902A (en) * 2009-09-03 2011-03-17 Toshiba Corp Water treatment system for sewage
JP5811563B2 (en) * 2011-03-31 2015-11-11 栗田工業株式会社 Method and apparatus for anaerobic treatment of kraft pulp drainage
JP2012210584A (en) * 2011-03-31 2012-11-01 Kurita Water Ind Ltd Method for treating kraft pulp wastewater
JP5873736B2 (en) * 2012-02-29 2016-03-01 水ing株式会社 Organic wastewater treatment method and treatment apparatus
JP5880217B2 (en) * 2012-03-30 2016-03-08 栗田工業株式会社 Treatment method for oil-containing wastewater
JP6005547B2 (en) * 2013-02-25 2016-10-12 住友重機械エンバイロメント株式会社 Methane fermentation system and methane fermentation method
JP5628955B2 (en) * 2013-03-29 2014-11-19 水ing株式会社 Organic waste water treatment apparatus and treatment method
JP6820079B2 (en) * 2017-03-28 2021-01-27 住友重機械エンバイロメント株式会社 Water treatment equipment
CN107720960A (en) * 2017-11-23 2018-02-23 河南小威环境科技有限公司 A kind of rotation water distributing Formulas I C anaerobic reactors
CN114906979A (en) * 2022-04-14 2022-08-16 郯城瑞源无害化处理有限公司 Photocatalytic anaerobic treatment process for sewage treatment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE440498B (en) * 1983-08-10 1985-08-05 Sca Development Ab SET TO BIOLOGICALLY CLEAN THE WASTE WATER FROM MANUFACTURE OF PEROXID BLACK PASS
SE451262B (en) * 1983-08-10 1987-09-21 Purac Ab SEE ANAEROBIC CLEANING OF WASTE WATER FROM MANUFACTURE OF MECHANICAL OR CHEMICAL MECHANICAL CELLULOSAMASSA
JPH0679295A (en) * 1992-09-07 1994-03-22 Kurita Water Ind Ltd Treatment of organic waste water
JPH08112600A (en) * 1994-10-18 1996-05-07 Kurita Water Ind Ltd Combination septic tank
JP2000218288A (en) * 1999-02-01 2000-08-08 Kurita Water Ind Ltd Batch anaerobic treatment and device therefor
JP4972817B2 (en) * 2000-03-10 2012-07-11 栗田工業株式会社 Anaerobic treatment method for organic wastewater

Also Published As

Publication number Publication date
JP2003326295A (en) 2003-11-18

Similar Documents

Publication Publication Date Title
JP3999036B2 (en) Method and apparatus for treating organic wastewater
WO2006041128A1 (en) Organic wastewater treatment method and apparatus
JP5043671B2 (en) Biological denitrification method and apparatus
JP2012239929A (en) Method and apparatus for anaerobic treatment of organic wastewater
JPH11114596A (en) Production of ultrapure water and ultrapure water producing device
JP2006281215A (en) Apparatus for treating organic waste water and method therefor
JP4080046B2 (en) Anaerobic treatment method and apparatus
JP4001507B2 (en) Method and apparatus for treating organic wastewater
US6752921B1 (en) Bioreactor tank internally chambered to sequentially perform biological treatment and membrane filtration
JP4162234B2 (en) Anaerobic treatment equipment
CN206562379U (en) A kind of suspending type biological fluid bed
JP2003190986A (en) Anaerobic treatment method and apparatus therefor
CN111825269A (en) Industrial wastewater advanced treatment system
JPH04141293A (en) Dephosphorization apparatus
JP2698310B2 (en) Anaerobic wastewater treatment system and its operation method
CN110451635B (en) Biological treatment system and method for high-salt high-organic matter industrial wastewater
JP3700935B2 (en) Anaerobic treatment method and apparatus
JP2006142302A (en) Anaerobic treatment method and apparatus
CN113998784A (en) Wastewater treatment system and wastewater treatment method
CN207903981U (en) A kind of efficient up-flow biological reaction apparatus
JP3955431B2 (en) Anaerobic treatment method and apparatus
CN111606524A (en) Chemical sewage treatment process
KR20030076549A (en) Nutrient removal of wastewater using Struvite crystalization
JP3369714B2 (en) Anaerobic water treatment equipment
JP4001514B2 (en) Biological denitrification method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060130

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070808

R150 Certificate of patent or registration of utility model

Ref document number: 3999036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees