JP2007014864A - Anaerobic treatment method and treatment apparatus of waste water - Google Patents

Anaerobic treatment method and treatment apparatus of waste water Download PDF

Info

Publication number
JP2007014864A
JP2007014864A JP2005197943A JP2005197943A JP2007014864A JP 2007014864 A JP2007014864 A JP 2007014864A JP 2005197943 A JP2005197943 A JP 2005197943A JP 2005197943 A JP2005197943 A JP 2005197943A JP 2007014864 A JP2007014864 A JP 2007014864A
Authority
JP
Japan
Prior art keywords
gas
tank
reaction tank
wastewater
anaerobic treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005197943A
Other languages
Japanese (ja)
Inventor
Tetsushi Suzuki
哲史 鈴木
Akinori Kato
明徳 加藤
Shigeru Noritake
繁 則武
Seiji Imabayashi
誠二 今林
Kazuo Uechi
和男 上地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Breweries Ltd
Sumitomo Heavy Industries Ltd
Asahi Beer Engineering Ltd
Original Assignee
Asahi Breweries Ltd
Sumitomo Heavy Industries Ltd
Asahi Beer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Breweries Ltd, Sumitomo Heavy Industries Ltd, Asahi Beer Engineering Ltd filed Critical Asahi Breweries Ltd
Priority to JP2005197943A priority Critical patent/JP2007014864A/en
Publication of JP2007014864A publication Critical patent/JP2007014864A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anaerobic treatment method of waste water which enables a sufficient agitation inside a tank even when low concentration waste water is treated without requiring power such as a blower, and a treatment apparatus. <P>SOLUTION: In the treatment apparatus having an acid generation tank 1 and, for example, a UASB (up flow anaerobic sludge blanket process) type anaerobic reactor 2, a gas generated in the acid generation tank 1 or the anaerobic reactor 2 is stored in a gas storage tank 3 through exhaust pipes 41 to 43 and a supply pipe 44, and introduced there from an air diffusion nozzle 22a of an air diffusion pipe 22 provided on the bottom of the reactor 2, thereby agitating the granule sludge bed 20 of the reactor 2 by a gas lift effect. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、廃水の処理方法および処理装置に関し、特に、廃水を嫌気性処理により処理する方法および装置に関する。   The present invention relates to a wastewater treatment method and treatment apparatus, and more particularly, to a method and apparatus for treating wastewater by anaerobic treatment.

ビール製造、紙パルプ製造、食品加工および畜産加工などの分野で排出される高濃度有機性廃水を処理する方法として、上向流嫌気性汚泥床(UASB:Upflow Anaerobic Sludge Bed)や膨張粒状汚泥床(EGSB:Expanded Granular Sludge Bed)を用いた方法が知られている。両者は原理が共通するため、以下、UASBについて述べる。   Upflow Anaerobic Sludge Bed (UASB) and expanded granular sludge bed are methods for treating highly concentrated organic wastewater discharged in fields such as beer production, pulp and paper production, food processing and livestock processing. A method using (EGSB: Expanded Granular Sludge Bed) is known. Since both have the same principle, UASB will be described below.

UASB反応槽では、反応槽内にメタン菌などの嫌気性微生物が自己凝集して微粒子化した汚泥(グラニュール汚泥と称する。)を充填することでグラニュール汚泥床を形成し、被処理水を反応槽の底部から供給してグラニュール汚泥と接触させることで処理を行う。グラニュール汚泥床には、微生物を高濃度に保持することができるため、高濃度の有機性廃水を効率的に処理することができる。   In the UASB reaction tank, a sludge bed (referred to as granule sludge) is formed by self-aggregating anaerobic microorganisms such as methane bacteria into the reaction tank to form a granular sludge bed. The treatment is performed by supplying from the bottom of the reaction tank and bringing it into contact with the granular sludge. In the granular sludge bed, microorganisms can be kept at a high concentration, and thus high concentration organic wastewater can be treated efficiently.

グラニュール汚泥の生物汚泥床の効果を発揮させるためには、供給される被処理水の短絡流を防止し、被処理水とグラニュール汚泥との接触効率を増大させる必要がある。グラニュール汚泥床は静置された状態では硬く厚くなり、被処理水との接触がその表面のみにとどまったり、グラニュール汚泥床に部分的に流路(孔)が形成されると、その部分のみから被処理水が短絡してしまい、被処理水と汚泥との接触が十分に行われないからであり、これを解消する必要がある。   In order to exert the effect of the biological sludge bed of granular sludge, it is necessary to prevent the short-circuit flow of the treated water to be supplied and increase the contact efficiency between the treated water and the granular sludge. The granule sludge bed becomes hard and thick when it is left standing, and when the contact with the water to be treated stays only on the surface or when a channel (hole) is partially formed in the granule sludge bed, This is because the water to be treated is short-circuited only from this and the contact between the water to be treated and the sludge is not sufficiently performed, and it is necessary to eliminate this.

UASBタイプの反応槽では、被処理水が底部から供給されるので、被処理水の上向流によって汚泥床を膨張させる効果が得られるが、それのみで十分な膨張・攪拌効果が得られるわけではない。有機物の分解によって発生するガス(メタンガスや炭酸ガスなど)のガスリフトによる攪拌効果によって、グラニュール汚泥床がさらに膨張することで、グラニュールと被処理水との接触が効率的に行われるのである。   In the UASB type reaction tank, since the water to be treated is supplied from the bottom, the effect of expanding the sludge bed by the upward flow of the water to be treated is obtained, but it is possible to obtain a sufficient expansion and stirring effect by itself. is not. The granule sludge bed further expands due to the agitation effect of the gas lift of gas (methane gas, carbon dioxide gas, etc.) generated by the decomposition of organic matter, so that the contact between the granule and the water to be treated is performed efficiently.

特にガス発生量が20kg−CODcr/m/日を超えるような高濃度廃水においては、十分なガスリフト効果が得られ、さらに濃度が高い場合には、反応槽内の処理水の流れを乱すほどのガスリフト効果を得ることができる。 Especially in high concentration wastewater whose gas generation amount exceeds 20 kg-CODcr / m 3 / day, sufficient gas lift effect is obtained, and when the concentration is higher, the flow of treated water in the reaction tank is disturbed. The gas lift effect can be obtained.

しかしながら、低濃度廃水(例えば、CODcrが500mg/l)を高負荷処理(例えば、20kg−CODcr/m/日)する場合には、発生するガス量が少なく、ガスリフト効果による攪拌が不十分で、処理効率が低下するという問題がある。 However, when low-concentration wastewater (for example, CODcr is 500 mg / l) is subjected to high-load treatment (for example, 20 kg-CODcr / m 3 / day), the amount of gas generated is small, and the agitation due to the gas lift effect is insufficient. There is a problem that processing efficiency decreases.

このように発生ガス量が少ない場合でもグラニュール汚泥と被処理水との接触を効果的に行う技術として、特許文献1記載の技術が知られている。この技術では、槽内底部に供給される被処理水の供給流路(供給ノズル)を上下2段に分岐配置し、それぞれの供給ノズルより槽内に被処理水を供給して槽内を攪拌することにより、被処理水とグラニュール汚泥とを効率よく接触させることができる旨記載されている。
特開平7−308686号公報
As described above, the technique described in Patent Document 1 is known as a technique for effectively bringing the granular sludge into the water to be treated even when the amount of generated gas is small. In this technology, the supply flow path (supply nozzle) of the water to be treated supplied to the bottom of the tank is branched into two stages, and the water to be treated is supplied into the tank from each supply nozzle to stir the tank. By doing so, it is described that the water to be treated and the granular sludge can be efficiently contacted.
JP-A-7-308686

しかしながら、被処理水の供給によって槽内を十分に攪拌するためには、大量の処理水を供給する必要があり、被処理水の反応槽内での滞留時間が短くなって処理効率が低下してしまうという問題がある。   However, in order to sufficiently stir the inside of the tank by supplying the water to be treated, it is necessary to supply a large amount of water, and the residence time in the reaction tank of the water to be treated is shortened and the processing efficiency is lowered. There is a problem that it ends up.

また、他の攪拌方法として、下水汚泥の消化などに使用されているスラリー用発酵槽の攪拌で使用されている、回収ガスをブロア等を用いて槽内へと吹き込む方法が考えられるが、この方法では、ブロアを駆動するための動力を必要とする。   In addition, as another stirring method, a method of blowing the recovered gas into the tank using a blower or the like, which is used in the stirring of the slurry fermenter used for sewage sludge digestion, can be considered. The method requires power to drive the blower.

本発明は、ブロア等の動力を必要とすることなく、低濃度廃水を処理する場合でも十分な槽内の攪拌を行うことを可能とした廃水の嫌気性処理方法および処理装置を提供することを課題とする。   It is an object of the present invention to provide an anaerobic treatment method and treatment apparatus for wastewater that can perform sufficient agitation in a tank even when treating low-concentration wastewater without requiring power such as a blower. Let it be an issue.

上記課題を解決するため、本発明に係る廃水の嫌気性処理方法は、被処理水を酸生成槽内で酸生成菌により有機酸に分解し、この酸生成槽の被処理水を反応槽へ導入し、反応槽内のグラニュール汚泥床によって嫌気性処理する廃水の嫌気性処理方法において、酸生成槽と反応槽の少なくともいずれか一方で発生したガスを気相部からガス貯留槽に導き、ガス貯留槽から圧力を調整して反応槽の下部へと導き、グラニュール汚泥床を攪拌することを特徴とする。   In order to solve the above-mentioned problems, the anaerobic treatment method of wastewater according to the present invention decomposes water to be treated into an organic acid by acid-producing bacteria in an acid generation tank, and the water to be treated in this acid generation tank is transferred to a reaction tank. Introducing the anaerobic treatment method of wastewater that is anaerobically treated by the granular sludge bed in the reaction tank, the gas generated in at least one of the acid generation tank and the reaction tank is led from the gas phase to the gas storage tank, The pressure is adjusted from the gas storage tank to the lower part of the reaction tank, and the granular sludge bed is stirred.

一方、本発明に係る廃水の嫌気性処理装置は、酸生成菌を有する酸生成槽と、グラニュール汚泥床を有する反応槽と、酸生成槽から反応槽へとポンプにより被処理水を移送する移送ラインと、多数の開孔を有し、反応槽の下層部に配置され、移送ラインに接続されることで反応槽内に被処理水を注入するノズル部と、を備えている廃水の嫌気性処理装置において、酸生成槽と反応槽の少なくともいずれか一方で発生したガスを槽の三相分離部の気相部から導いて貯留するガス貯留槽と、ガス貯留槽で調圧されたガスを反応槽の下部に導入するガス移送ラインとを備えていることを特徴とする。   On the other hand, the anaerobic treatment apparatus for wastewater according to the present invention transfers the water to be treated by a pump from an acid generation tank having acid-producing bacteria, a reaction tank having a granular sludge bed, and from the acid generation tank to the reaction tank. Anaerobic wastewater having a transfer line and a nozzle part that is arranged in the lower layer of the reaction tank and has a nozzle part that injects water to be treated into the reaction tank by being connected to the transfer line. The gas storage tank that guides and stores the gas generated in at least one of the acid generation tank and the reaction tank from the gas phase part of the three-phase separation part of the tank, and the gas that is pressure-regulated in the gas storage tank And a gas transfer line for introducing the gas into the lower part of the reaction vessel.

本発明においては、酸生成槽や反応槽で発生したガスを貯留しておき、この貯留したガスを調圧して反応槽の下部へと導入する。下部に導入されたガスは、反応槽内で新たに発生するガスとともにガスリフト効果により、反応槽内を攪拌することにより、グラニュール汚泥床の膨潤と攪拌を行う。   In the present invention, the gas generated in the acid generation tank or the reaction tank is stored, and the stored gas is regulated and introduced into the lower part of the reaction tank. The gas introduced into the lower part swells and stirs the granular sludge bed by stirring the inside of the reaction tank by the gas lift effect together with the newly generated gas in the reaction tank.

ここで、ガス移送ラインは、移送ラインの途中に接続され、ガス貯留槽から反応槽へと移送中の処理水にガス貯留槽からの導入ガスを合流させるようにしてもよいし、多数の開孔を有し、反応槽の下層部に配置され、ガス移送ラインに接続されることで反応槽へとガスを注入する第2のノズル部をさらに備えていることでガスと処理水とを別々に導入するようにしてもよい。   Here, the gas transfer line is connected in the middle of the transfer line, and the introduced gas from the gas storage tank may be joined to the treated water being transferred from the gas storage tank to the reaction tank, or a large number of open lines may be opened. Gas and treated water are separately provided by having a second nozzle portion that has a hole, is arranged in the lower layer of the reaction tank, and is connected to a gas transfer line to inject gas into the reaction tank. You may make it introduce in.

ここで、ガス移送ライン上に弁を配置していると好ましい。この弁が開閉弁であれば、開閉を時間的に切り換えることで、反応槽へと導くガス流量が調整される。さらに、流量調整弁であると細かい調整を行える。   Here, it is preferable to arrange a valve on the gas transfer line. If this valve is an on-off valve, the gas flow rate led to the reaction vessel is adjusted by switching the opening and closing over time. Furthermore, fine adjustment can be performed with the flow rate adjusting valve.

この反応槽を中心とする廃水処理システムの許容容積負荷は、20kg−CODcr/m/日以下を対象とするものである。20kg−CODcr/m/日を超える高濃度廃水の場合には、発生するガスのみで十分なガスリフト効果が得られるため、ガスリフトを促進する必要がないからである。 The allowable volume load of the wastewater treatment system centering on this reaction tank is targeted for 20 kg-CODcr / m 3 / day or less. This is because in the case of high-concentration wastewater exceeding 20 kg-CODcr / m 3 / day, a sufficient gas lift effect can be obtained with only the generated gas, and it is not necessary to promote the gas lift.

本発明によれば、酸生成槽や反応槽で発生したガス(メタンガスや炭酸ガス)を反応漕底部へと導入することで、反応槽内の循環を効率よく行うことができ、微生物と処理水との接触効率が向上し、低濃度廃水においても処理能力が向上する。また、この種の処理施設では、酸生成槽や反応槽で発生したガスを処理する施設が必要であるから、これに調圧機能と、移送ラインとを設置するだけで良く、新設の場合のほか、既存施設の改良の場合にも設備費の増加が少ない。   According to the present invention, by introducing gas (methane gas or carbon dioxide gas) generated in an acid generation tank or a reaction tank to the bottom of the reaction tank, circulation in the reaction tank can be efficiently performed, and microorganisms and treated water can be obtained. Contact efficiency is improved, and the treatment capacity is improved even in low-concentration wastewater. In addition, this type of processing facility requires a facility for processing the gas generated in the acid generation tank and reaction tank. Therefore, it is only necessary to install a pressure adjustment function and a transfer line. In addition, there is little increase in equipment costs when upgrading existing facilities.

ガス移送ラインを被処理水の移送ラインへと接続すると、特に、既存施設への導入が容易である。一方、反応槽内に処理水の供給ノズルとは別の散気ノズルを設けると、散気、処理水供給のそれぞれに最適な位置、形状のノズルを選択することが可能となる。   When the gas transfer line is connected to the transfer line of the water to be treated, it is particularly easy to introduce the existing facility. On the other hand, if a diffuser nozzle different from the treated water supply nozzle is provided in the reaction tank, it is possible to select nozzles having positions and shapes that are optimal for the diffused gas and treated water supply.

以下、添付図面を参照して本発明の好適な実施の形態について詳細に説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の参照番号を附し、重複する説明は省略する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same reference numerals are given to the same components in the drawings as much as possible, and duplicate descriptions are omitted.

図1は、本発明に係る廃水の嫌気性処理装置の第1の実施形態を示すブロック構成図である。この処理装置100は、酸生成菌を保有する酸生成槽1と、UASBタイプでグラニュール汚泥床20を有する反応槽2と、発生したガスを貯留する貯留槽3およびガスホルダ4を備えている。   FIG. 1 is a block configuration diagram showing a first embodiment of an anaerobic treatment apparatus for wastewater according to the present invention. This processing apparatus 100 includes an acid generation tank 1 that holds acid-producing bacteria, a reaction tank 2 that is a UASB type and has a granular sludge bed 20, a storage tank 3 that stores the generated gas, and a gas holder 4.

酸生成槽1と反応槽2の下部は、被処理水の移送ラインである送液管11で接続されており、この送液管11上には被処理水を反応槽2へと輸送するポンプPが配置されている。また、反応槽2内には送液管11に接続された供給管21が配置されており、この供給管21上には、送られてきた被処理水を反応槽2の底部へと均一に分配供給するための開孔である給水ノズル21aが所定の位置に配置されている。この給水ノズル21aの孔径は処理水中に混入する懸濁物質(SS)によるノズルの詰まりを防止するために、10mm以上とすることが好ましい。   The lower part of the acid generation tank 1 and the reaction tank 2 is connected by a liquid feed pipe 11 that is a transfer line of the water to be treated, and a pump that transports the water to be treated to the reaction tank 2 on the liquid feed pipe 11. P is arranged. In addition, a supply pipe 21 connected to the liquid supply pipe 11 is disposed in the reaction tank 2, and the treated water that has been sent is uniformly distributed on the supply pipe 21 to the bottom of the reaction tank 2. A water supply nozzle 21a, which is an opening for distributing and supplying, is disposed at a predetermined position. The diameter of the water supply nozzle 21a is preferably 10 mm or more in order to prevent clogging of the nozzle due to suspended substances (SS) mixed in the treated water.

酸生成槽1の上部には、被処理水を導入する廃水導入管10が接続されている。一方、反応槽2の液相上部には、発生ガス、処理液、固形物(汚泥等)をそれぞれ分離する三相分離部23が設けられており、三相分離部23の液相分離部23aには、分離された処理液を排出する排出管25が接続されている。この排出管25からは、送液管26が分岐されて酸生成槽1へと接続され、処理液の一部を酸生成槽1へと返送可能な構成となっている。   A waste water introduction pipe 10 for introducing the water to be treated is connected to the upper part of the acid generation tank 1. On the other hand, a three-phase separation unit 23 for separating the generated gas, the treatment liquid, and solids (sludge etc.) is provided at the upper part of the liquid phase of the reaction tank 2. Is connected to a discharge pipe 25 for discharging the separated processing liquid. From this discharge pipe 25, a liquid feed pipe 26 is branched and connected to the acid generation tank 1, so that a part of the processing liquid can be returned to the acid generation tank 1.

酸生成槽1、反応槽2の気相部にはガス排出管41、42がそれぞれ接続されており、これらはガス排出管43に合流している。ガス排出管43は、回収ガスを貯蔵するガスホルダ4に接続されている。一方、ガス排出管43からは、ガス供給管44が分岐されており、ガス貯留槽3に接続されている。そして、ガス貯留槽3には、反応槽2に接続されたガス供給管45が接続されている。   Gas discharge pipes 41 and 42 are connected to the gas phase portions of the acid generation tank 1 and the reaction tank 2, respectively, and merge with the gas discharge pipe 43. The gas discharge pipe 43 is connected to the gas holder 4 that stores the recovered gas. On the other hand, a gas supply pipe 44 is branched from the gas discharge pipe 43 and is connected to the gas storage tank 3. A gas supply pipe 45 connected to the reaction tank 2 is connected to the gas storage tank 3.

ガス排出管43のガス供給管45への分岐部とガスホルダ4との間、および、ガス供給管44、45上には、それぞれ弁V1〜V3が配置されている。このうち、V1は開閉弁、V2は逆止弁または開閉弁、V3は流量調節弁であることが好ましい。ガス供給管45上には、さらに図示していない別の逆止弁または開閉弁やガス流量計、圧力計を配置してもよい。また、V3は開閉弁であってもよい。   Valves V <b> 1 to V <b> 3 are arranged between the branch portion of the gas discharge pipe 43 to the gas supply pipe 45 and the gas holder 4 and on the gas supply pipes 44 and 45, respectively. Among these, it is preferable that V1 is an on-off valve, V2 is a check valve or on-off valve, and V3 is a flow control valve. On the gas supply pipe 45, another check valve or on-off valve, a gas flow meter, and a pressure gauge, which are not shown, may be disposed. V3 may be an on-off valve.

反応槽2内の供給管21の下部には、ガス供給管45に接続された散気管22が接続されている。この散気管22上には送られてきたガスを反応槽2内へと供給する開孔である散気ノズル22aが所定の位置に配置されている。この散気ノズル22aの孔径は、圧力の低いガスを長時間連続して噴出することができるよう、上述の給水ノズル21aの孔径に比べて十分に小さくすることが好ましく、例えば、1mm以下とすることが好ましい。   A diffuser pipe 22 connected to a gas supply pipe 45 is connected to the lower part of the supply pipe 21 in the reaction tank 2. On the diffuser tube 22, an diffuser nozzle 22 a which is an opening for supplying the gas sent into the reaction tank 2 is disposed at a predetermined position. The hole diameter of the aeration nozzle 22a is preferably sufficiently smaller than the hole diameter of the water supply nozzle 21a described above so that a low-pressure gas can be continuously ejected for a long time, for example, 1 mm or less. It is preferable.

次に、本実施形態の動作、すなわち、本発明に係る廃水の嫌気性処理方法について具体的に説明する。処理対象の有機性廃水(被処理水)は、導入管10を通じて酸生成槽1へと導入される。廃水中の有機物は、酸生成槽1内の酸生成菌等の作用により、有機酸等に分解される。有機酸の一部は、送液管26を通じて反応槽2から酸生成槽1へと送られてきたメタン菌により分解され、メタンや炭酸ガスが発生する。これらの発生ガスはガス排出管41を通じて排出される。なお、酸生成槽1には、必要に応じてライン50から中和のためのアルカリ剤等を投入することが可能である。   Next, the operation of the present embodiment, that is, the anaerobic treatment method for wastewater according to the present invention will be specifically described. The organic waste water to be treated (treated water) is introduced into the acid generation tank 1 through the introduction pipe 10. The organic matter in the wastewater is decomposed into an organic acid or the like by the action of acid producing bacteria in the acid producing tank 1. A part of the organic acid is decomposed by methane bacteria sent from the reaction tank 2 to the acid generation tank 1 through the liquid feeding pipe 26, and methane and carbon dioxide gas are generated. These generated gases are discharged through the gas discharge pipe 41. In addition, it is possible to introduce | transduce into the acid production tank 1 the alkali agent for neutralization from the line 50 as needed.

酸生成槽1内の被処理水は、ポンプPによって送液管11を通じて反応槽2へと移送される。このとき、被処理水は、供給管21上の給水ノズル21aから反応槽2の底部へと送り込まれる。一方、後述するようにガス貯留槽3には、酸生成槽1と反応槽2で発生したガスの一部が貯留されている。このガスが後述するように適宜の間隔でガス供給管45から散気管22へと送られ、散気ノズル22aより反応槽2へと送り込まれることで、そのガスリフト効果によって上向流が形成され、グラニュール汚泥床20は攪拌される。これにより、被処理水とグラニュール汚泥との接触が促進され、グラニュールを形成するメタン生成菌などによる有機性廃水中の有機酸分解が促進される。この結果、メタンや炭酸ガス等が生成される。   The treated water in the acid generation tank 1 is transferred to the reaction tank 2 through the liquid supply pipe 11 by the pump P. At this time, the water to be treated is sent from the water supply nozzle 21 a on the supply pipe 21 to the bottom of the reaction tank 2. On the other hand, as will be described later, a part of the gas generated in the acid generation tank 1 and the reaction tank 2 is stored in the gas storage tank 3. As will be described later, this gas is sent from the gas supply pipe 45 to the diffuser pipe 22 at an appropriate interval, and sent to the reaction tank 2 from the diffuser nozzle 22a, whereby an upward flow is formed by the gas lift effect, The granule sludge bed 20 is agitated. Thereby, the contact of to-be-processed water and granule sludge is accelerated | stimulated, and the organic acid decomposition | disassembly in organic wastewater by the methanogen etc. which form a granule is accelerated | stimulated. As a result, methane, carbon dioxide gas and the like are generated.

こうして、有機分が分解された処理水は、三相分離部23により発生ガス等の気相分やグラニュール汚泥等の固形分から分離され、液相分離部23aに接続された排出管25によって排出される。処理水の一部は、酸生成槽1内の酸生成菌の維持や酸生成槽1に投入する中和剤の節約、さらには、排出される処理水中の有機物濃度のさらなる低減を狙いとして、送液管26により酸生成槽1へと戻される。   In this way, the treated water, in which the organic content has been decomposed, is separated from the gas phase content such as the generated gas and the solid content such as granule sludge by the three-phase separation section 23 and discharged by the discharge pipe 25 connected to the liquid phase separation section 23a. Is done. A part of the treated water aims to maintain acid producing bacteria in the acid producing tank 1 and save the neutralizing agent to be added to the acid producing tank 1, and further reduce the concentration of organic substances in the discharged treated water. The solution is returned to the acid generation tank 1 by the liquid feeding pipe 26.

酸生成槽1および反応槽2で発生したガスは、それぞれガス排出管41、42を通じて排出され、ガス排出管43を通じてガスホルダ4へと送られる。このうち、一部はガス供給管44によりガス貯留槽3へと送られる。弁V1を閉じ、弁V2を開けることでガス貯留槽3へとガスを貯留し、貯留槽内の圧力を高めることができる。一方、弁V2を閉じ、V1を開けると、発生ガス(循環ガスを含む。)は、ガスホルダ4へと送られることになる。ここで、弁V1とガスホルダ4の間には、図示していないが、ガス洗浄装置を設け、臭気成分等を除去することが好ましい。ガスホルダ4へ貯留されたガスは、燃料や原料として再利用される。   Gases generated in the acid generation tank 1 and the reaction tank 2 are discharged through gas discharge pipes 41 and 42, respectively, and sent to the gas holder 4 through the gas discharge pipe 43. Among these, a part is sent to the gas storage tank 3 through the gas supply pipe 44. By closing the valve V1 and opening the valve V2, gas can be stored in the gas storage tank 3, and the pressure in the storage tank can be increased. On the other hand, when the valve V <b> 2 is closed and V <b> 1 is opened, the generated gas (including the circulating gas) is sent to the gas holder 4. Here, although not shown, it is preferable to provide a gas cleaning device between the valve V1 and the gas holder 4 to remove odor components and the like. The gas stored in the gas holder 4 is reused as fuel or raw material.

ガス貯留槽3の圧力が所定圧力(散気ノズル22a部分における水圧より高い所定の圧力である。)を超えたら、弁V2を閉じ、V3を開くことで、ガス貯留槽3内のガスは、ガス供給管45、散気管22、散気ノズル22aを経て、反応槽2の底部へと送り込まれる。このとき、V2を閉じておくことで、ガス供給管44と排出管41〜43を通じて反応槽2や酸生成槽1の気相部へと貯留ガスが逆流するのを効果的に予防することができる。もちろん、V2の上流または下流、あるいはV2に代えて逆止弁を設けておいてもよい。この所定圧力は、0.7〜1kg/cm(約70〜100kPa)程度である。これ以上のガス圧を実現するには、反応槽2、ガス貯留槽3に耐圧性の容器が必要となるため、好ましくない。 When the pressure of the gas storage tank 3 exceeds a predetermined pressure (a predetermined pressure higher than the water pressure in the diffuser nozzle 22a portion), the valve V2 is closed and V3 is opened so that the gas in the gas storage tank 3 is The gas is supplied to the bottom of the reaction tank 2 through the gas supply pipe 45, the air diffusion pipe 22, and the air diffusion nozzle 22a. At this time, by closing V2, it is possible to effectively prevent the stored gas from flowing back to the gas phase part of the reaction tank 2 or the acid generation tank 1 through the gas supply pipe 44 and the discharge pipes 41 to 43. it can. Of course, a check valve may be provided upstream or downstream of V2, or instead of V2. This predetermined pressure is about 0.7 to 1 kg / cm 2 (about 70 to 100 kPa). In order to realize a gas pressure higher than this, a pressure-resistant container is required for the reaction tank 2 and the gas storage tank 3, which is not preferable.

散気ノズル22aにより反応槽2の底部へと供給されるガスが供給開始時に一気に流れ込むことで、反応槽2のグラニュール汚泥床20が不用意に攪乱されるのを防止するため、ガス流量を流量調節弁V3により調整することが好ましい。なお、V3が単なる開閉弁である場合には、V3を適宜、間欠的に開閉することで流量調整を行うとよい。   In order to prevent the granulated sludge bed 20 of the reaction tank 2 from being inadvertently disturbed by the gas supplied to the bottom of the reaction tank 2 from the diffuser nozzle 22a flowing at the start of the supply, the gas flow rate is reduced. It is preferable to adjust by the flow control valve V3. In addition, when V3 is a mere on-off valve, it is good to adjust flow volume by opening and closing V3 intermittently suitably.

反応槽2へと貯留ガスを供給することでガス貯留槽3の圧力が、例えば、反応槽2の水深に相当する圧力(水圧)程度(水深5mなら0.5kg/cm=約50kPa程度)まで低下したら、弁V3およびV1を閉じ、V2を開くことで、再度、ガス貯留槽3にガスを貯留する。これを繰り返すことで、反応槽2の底部へのガス供給を行う。 By supplying the stored gas to the reaction tank 2, the pressure of the gas storage tank 3 is, for example, about the pressure (water pressure) corresponding to the water depth of the reaction tank 2 (0.5 kg / cm 2 = about 50 kPa if the water depth is 5 m). When the pressure drops to V, the valves V3 and V1 are closed and V2 is opened, whereby the gas is again stored in the gas storage tank 3. By repeating this, gas supply to the bottom of the reaction vessel 2 is performed.

これらの弁V1〜V3の操作は、シーケンスを組んで、制御装置によりガス貯留槽3に配置した圧力計の信号を基にして行ってもよい。   The operation of these valves V1 to V3 may be performed based on a signal from a pressure gauge arranged in the gas storage tank 3 by a control device in a sequence.

本実施形態によれば、低濃度廃水を高負荷処理するようなガス発生量の少ない場合でも、散気ノズル22aから供給するガスによって十分なガスリフト効果を得ることができるので、グラニュール汚泥床20を十分に膨張させることができ、被処理水とグラニュール汚泥との接触効率を高め、その処理効率を十分に発揮することができる。一方、ガス発生量の多い高負荷廃水の場合には、発生ガスのみで十分なガスリフト効果を得ることができるから、散気ノズル22aからのガス供給を停止するだけですむ。   According to the present embodiment, a sufficient gas lift effect can be obtained by the gas supplied from the aeration nozzle 22a even when the amount of gas generated is low, such as when high-load treatment of low-concentration wastewater is performed. Can be sufficiently expanded, the contact efficiency between the water to be treated and the granular sludge can be increased, and the treatment efficiency can be sufficiently exhibited. On the other hand, in the case of high-load wastewater with a large amount of gas generation, a sufficient gas lift effect can be obtained with only the generated gas, and it is only necessary to stop the gas supply from the aeration nozzle 22a.

このため、低負荷廃水から高負荷廃水まで同一の設備により処理することが可能となり、負荷変動の大きな廃水処理設備に対してもUASBタイプの嫌気性処理装置の適用が可能となる。   For this reason, it is possible to treat from low load wastewater to high load wastewater by the same equipment, and it is possible to apply the UASB type anaerobic treatment apparatus to wastewater treatment equipment having a large load fluctuation.

また、低負荷のガス発生量が少ない場合でも、散気により反応槽2内の十分な攪拌が行われるので、有機性廃水とともに大量の懸濁物質が流入した場合でも、ガスリフト効果により、この懸濁物質がグラニュールに付着するのを防止し、処理水とともに排出することができる。このため、反応槽2底部への懸濁物質の蓄積を防止することができ、処理能力が低下することがない。   In addition, even when the amount of gas generated at low load is small, sufficient agitation is performed in the reaction tank 2 by aeration, so even if a large amount of suspended matter flows in along with the organic waste water, this suspension is caused by the gas lift effect. Suspended substances can be prevented from adhering to the granules and discharged together with the treated water. For this reason, accumulation of suspended substances at the bottom of the reaction tank 2 can be prevented, and the processing capacity does not decrease.

さらに、散気を行うガス配管上にポンプやブロアのような動力源を設ける必要がないため、無動力で効果的な攪拌を行うことができ、処理プラントの動力費の低減に役立つ。   Furthermore, since it is not necessary to provide a power source such as a pump or a blower on the gas pipe for performing air diffusion, effective stirring can be performed without power, which helps to reduce the power cost of the processing plant.

ここでは、ガス供給管44をガス排出管43から分岐したが、ガス排出管41または42から分岐させてもよい。これらの場合には、酸生成槽1または反応槽2のいずれか一方のみから排出されたガスのみを散気用のガスとして用いることになる。   Although the gas supply pipe 44 is branched from the gas discharge pipe 43 here, it may be branched from the gas discharge pipe 41 or 42. In these cases, only the gas discharged from either the acid generation tank 1 or the reaction tank 2 is used as the gas for aeration.

図2は、第1の実施形態の変形例における供給管と散気管の配置例を示す図である。この変形例では、複数の散気管22x〜22zのそれぞれが反応槽2の底部の深さの異なる位置に配置されている点が第1の実施形態と相違している。   FIG. 2 is a diagram illustrating an arrangement example of a supply pipe and an air diffusion pipe in a modification of the first embodiment. This modification is different from the first embodiment in that each of the plurality of diffuser tubes 22x to 22z is arranged at a position where the depth of the bottom of the reaction tank 2 is different.

ガス供給管45は、分岐管45x〜45zを介して各散気管22x〜22zへと接続され、分岐管45x〜45z上には、それぞれ弁Vx〜Vzが配置される。ここでは、3つの深度にそれぞれ散気管を配置する例を示したが、2つまたは4つ以上の深度に配置を行ってもよい。各散気管22x〜22zの散気ノズルの孔径は同一であってもよいが、深度に合わせて異ならせてもよい。   The gas supply pipe 45 is connected to the diffuser pipes 22x to 22z via branch pipes 45x to 45z, and valves Vx to Vz are arranged on the branch pipes 45x to 45z, respectively. Here, an example in which an air diffuser is arranged at three depths has been shown, but the arrangement may be performed at two or four or more depths. The hole diameters of the air diffuser nozzles of the air diffuser tubes 22x to 22z may be the same, or may be different according to the depth.

本変形例の場合には、ガス貯留槽3の圧力や反応槽2の運転条件に応じて、例えば、弁Vx〜Vzのうち一つを開き、他を閉じることで、散気位置を調整することが可能となる。ここでは、散気管22x〜22zのうち有効な散気管をいずれか一つとして切り換えて使用する例を説明したが、例えば、真ん中の散気管22yを常に有効とし、これに散気管22x、22zのいずれかを追加して有効とするようにしてもよい。あるいは、3つの散気管それぞれの有効/無効の組み合わせを変更するようにしてもよい。2つ、または4つ以上の散気管を有する場合にも考え方は同様である。   In the case of this modification, according to the pressure of the gas storage tank 3 and the operating conditions of the reaction tank 2, for example, one of the valves Vx to Vz is opened and the other is closed to adjust the aeration position. It becomes possible. Here, an example in which one of the effective diffusing tubes 22x to 22z is switched and used has been described. However, for example, the middle diffusing tube 22y is always effective, and the diffusing tubes 22x and 22z are connected to each other. Any one of them may be added and validated. Alternatively, the valid / invalid combination of each of the three air diffusers may be changed. The idea is the same when two or four or more diffusers are provided.

図3は、本発明に係る廃水の嫌気性処理装置の第2の実施形態を示すブロック構成図である。この実施形態では、ガス貯留槽3から延びるガス供給管45を、ポンプP下流の送液管11へと接続しており、図1に示される第1の実施形態では存在した専用の散気管22が存在しない。   FIG. 3 is a block diagram showing a second embodiment of the anaerobic treatment apparatus for wastewater according to the present invention. In this embodiment, the gas supply pipe 45 extending from the gas storage tank 3 is connected to the liquid supply pipe 11 downstream of the pump P, and the dedicated diffuser pipe 22 that existed in the first embodiment shown in FIG. Does not exist.

この実施形態では、既存の反応槽2の給水ノズル21aを利用してガス供給を行うことができるため、既存の施設を改造して付加的に設置することが容易であるという利点がある。本実施形態においても、散気によりガスリフト効果を高め、グラニュール汚泥床20の効果的な攪拌を行うことができるなど、第1の実施形態と同様の効果を得ることができる。   In this embodiment, since gas can be supplied using the water supply nozzle 21a of the existing reaction tank 2, there is an advantage that it is easy to retrofit and additionally install an existing facility. Also in this embodiment, the same effects as those of the first embodiment can be obtained, for example, the gas lift effect can be enhanced by aeration, and the granular sludge bed 20 can be effectively stirred.

以上の説明では、UASBタイプの嫌気性反応槽を用いた廃水処理装置および廃水処理方法について説明してきたが、本発明はEGSBタイプなどの他の上向流嫌気性処理装置に対しても好適に適用することができる。   In the above description, the wastewater treatment apparatus and the wastewater treatment method using the UASB type anaerobic reaction tank have been described, but the present invention is also suitable for other upflow anaerobic treatment apparatuses such as the EGSB type. Can be applied.

本発明に係る廃水の嫌気性処理装置の第1の実施形態を示すブロック構成図である。It is a block block diagram which shows 1st Embodiment of the anaerobic treatment apparatus of the wastewater which concerns on this invention. 第1の実施形態の変形例における供給管と散気管の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the supply pipe | tube and aeration pipe | tube in the modification of 1st Embodiment. 本発明に係る廃水の嫌気性処理装置の第2の実施形態を示すブロック構成図である。It is a block block diagram which shows 2nd Embodiment of the anaerobic processing apparatus of the wastewater which concerns on this invention.

符号の説明Explanation of symbols

1…酸生成槽、2…反応槽、3…ガス貯留槽、4…ガスホルダ、10…廃水導入管、11…送液管、20…グラニュール汚泥床、21…供給管、21a…給水ノズル、22a…散気ノズル、22、22x〜22z…散気管、23…三相分離部、23a…液相分離部、25…排出管、26…送液管、41〜43…ガス排出管、44、45…ガス供給管、45x〜45z…分岐管、50…ライン、100…廃水処理装置、P…ポンプ、V1〜V3、Vx〜Vz…弁。   DESCRIPTION OF SYMBOLS 1 ... Acid production tank, 2 ... Reaction tank, 3 ... Gas storage tank, 4 ... Gas holder, 10 ... Waste water introduction pipe, 11 ... Liquid feed pipe, 20 ... Granule sludge bed, 21 ... Supply pipe, 21a ... Water supply nozzle, 22a ... Aeration nozzle, 22, 22x to 22z ... Aeration tube, 23 ... Three-phase separation section, 23a ... Liquid phase separation section, 25 ... Discharge pipe, 26 ... Liquid feed pipe, 41-43 ... Gas discharge pipe, 44, 45 ... Gas supply pipe, 45x-45z ... Branch pipe, 50 ... Line, 100 ... Waste water treatment device, P ... Pump, V1-V3, Vx-Vz ... Valve.

Claims (10)

被処理水を酸生成槽内で酸生成菌により有機酸に分解し、該酸生成槽の被処理水を反応槽へ導入し、反応槽内のグラニュール汚泥床によって嫌気性処理する廃水の嫌気性処理方法において、
前記酸生成槽と前記反応槽の少なくともいずれか一方で発生したガスを該槽の気相部からガス貯留槽に導き、前記ガス貯留槽から圧力を調整して前記反応槽下部へと導き、前記グラニュール汚泥床を攪拌することを特徴とする廃水の嫌気性処理方法。
The water to be treated is decomposed into an organic acid by acid-producing bacteria in the acid generation tank, the water to be treated in the acid generation tank is introduced into the reaction tank, and the anaerobic treatment of the wastewater is performed by the granular sludge bed in the reaction tank. In the sex treatment method,
The gas generated in at least one of the acid generation tank and the reaction tank is led from the gas phase part of the tank to the gas storage tank, and the pressure is adjusted from the gas storage tank to the lower part of the reaction tank, An anaerobic treatment method for wastewater, characterized by stirring a granular sludge bed.
前記ガス貯留槽から前記反応槽へと移送中の処理水に前記ガス貯留槽からの導入ガスを合流させることを特徴とする請求項1記載の廃水の嫌気性処理方法。   The anaerobic treatment method of wastewater according to claim 1, wherein the introduced gas from the gas storage tank is joined to the treated water being transferred from the gas storage tank to the reaction tank. 前記反応槽へと導くガス流量を調整することを特徴とする請求項1または2に記載の廃水の嫌気性処理方法。   The method for anaerobic treatment of wastewater according to claim 1 or 2, wherein a gas flow rate leading to the reaction vessel is adjusted. 前記反応槽を中心とする廃水処理システムの許容容積負荷が20kg−CODcr/m/日以下であることを特徴とする請求項1〜3のいずれかに記載の廃水の嫌気性処理方法。 Anaerobic treatment method of the waste water according to any one of claims 1 to 3, wherein the tolerance volume loading of the wastewater treatment system centered on the reactor is less than 20kg-CODcr / m 3 / day. 酸生成菌を有する酸生成槽と、グラニュール汚泥床を有する反応槽と、前記酸生成槽から前記反応槽へとポンプにより被処理水を移送する移送ラインと、多数の開孔を有し、前記反応槽の下層部に配置され、前記移送ラインに接続されることで前記反応槽内に被処理水を注入するノズル部と、を備えている廃水の嫌気性処理装置において、
前記酸生成槽と前記反応槽の少なくともいずれか一方で発生したガスを該槽の三相分離部の気相部から導いて貯留するガス貯留槽と、
前記ガス貯留槽で調圧されたガスを前記反応槽の下部に導入するガス移送ラインとを備えていることを特徴とする廃水の嫌気性処理装置。
An acid generation tank having acid-producing bacteria, a reaction tank having a granular sludge bed, a transfer line for transferring the water to be treated from the acid generation tank to the reaction tank by a pump, and a large number of openings. In the anaerobic treatment apparatus for wastewater, which is disposed in the lower layer part of the reaction tank and has a nozzle part for injecting water to be treated into the reaction tank by being connected to the transfer line,
A gas storage tank that guides and stores the gas generated in at least one of the acid generation tank and the reaction tank from the gas phase part of the three-phase separation part of the tank;
An anaerobic treatment apparatus for wastewater, comprising a gas transfer line for introducing a gas regulated in the gas storage tank into a lower part of the reaction tank.
多数の開孔を有し、前記反応槽の下層部に配置され、前記ガス移送ラインに接続されることで前記反応槽へとガスを注入する第2のノズル部をさらに備えていることを特徴とする請求項5記載の廃水の嫌気性処理装置。   It has a number of apertures, and is further provided with a second nozzle part that is arranged in the lower layer part of the reaction tank and that is connected to the gas transfer line to inject gas into the reaction tank. An anaerobic treatment apparatus for wastewater according to claim 5. 前記ガス移送ラインは、前記移送ラインの途中に接続されていることを特徴とする請求項5記載の廃水の嫌気性処理装置。   The wastewater anaerobic treatment apparatus according to claim 5, wherein the gas transfer line is connected to the transfer line. 前記ガス移送ライン上に弁を配置していることを特徴とする請求項5〜7のいずれかに記載の廃水の嫌気性処理装置。   An anaerobic treatment apparatus for wastewater according to any one of claims 5 to 7, wherein a valve is disposed on the gas transfer line. 前記ガス移送ライン上に配置された弁は流量調整弁であることを特徴とする請求項8記載の廃水の嫌気性処理装置。   The anaerobic treatment apparatus for wastewater according to claim 8, wherein the valve disposed on the gas transfer line is a flow rate adjusting valve. 許容容積負荷が20kg−CODcr/m/日以下であることを特徴とする請求項5〜9のいずれかに記載の廃水の嫌気性処理装置。 Anaerobic treatment apparatus wastewater according to any one of claims 5-9 for acceptable volume load is equal to or less than 20kg-CODcr / m 3 / day.
JP2005197943A 2005-07-06 2005-07-06 Anaerobic treatment method and treatment apparatus of waste water Pending JP2007014864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005197943A JP2007014864A (en) 2005-07-06 2005-07-06 Anaerobic treatment method and treatment apparatus of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005197943A JP2007014864A (en) 2005-07-06 2005-07-06 Anaerobic treatment method and treatment apparatus of waste water

Publications (1)

Publication Number Publication Date
JP2007014864A true JP2007014864A (en) 2007-01-25

Family

ID=37752475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005197943A Pending JP2007014864A (en) 2005-07-06 2005-07-06 Anaerobic treatment method and treatment apparatus of waste water

Country Status (1)

Country Link
JP (1) JP2007014864A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914690B1 (en) 2007-11-08 2009-08-28 김태곤 Microbe reactor
JP2012045481A (en) * 2010-08-26 2012-03-08 Sumitomo Heavy Industries Environment Co Ltd Biological wastewater treatment apparatus and method
JP2012081403A (en) * 2010-10-08 2012-04-26 Swing Corp Organic wastewater treatment apparatus and treating method
CN105668782A (en) * 2016-04-05 2016-06-15 许中华 Sinking-flow-deflection anaerobic reactor
KR101844033B1 (en) * 2016-04-05 2018-04-02 정은표 An organic waste deodorizing system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660688A (en) * 1979-10-22 1981-05-25 Hitachi Plant Eng & Constr Co Ltd Anaerobic digestion treatment
JPS63501624A (en) * 1985-03-05 1988-06-23 ユニオン・アンデュストリエル・エ・デントルプリ−ズ Methods and apparatus for decomposing organic products, by-products and/or wastes of human, animal and/or plant origin in an anaerobic medium
JPH02208994A (en) * 1989-02-08 1990-08-20 Matsushita Electric Ind Co Ltd Printed board
JPH03161094A (en) * 1989-11-21 1991-07-11 Komatsu Ltd Waste water treatment process
JP2000157994A (en) * 1998-11-30 2000-06-13 Toshiba Corp Methane fermentation method and device therefor
JP2000218288A (en) * 1999-02-01 2000-08-08 Kurita Water Ind Ltd Batch anaerobic treatment and device therefor
JP2003190996A (en) * 2001-12-26 2003-07-08 Ebara Corp Anaerobic treatment method and apparatus therefor
JP2003190986A (en) * 2001-12-26 2003-07-08 Ebara Corp Anaerobic treatment method and apparatus therefor
JP2003326295A (en) * 2002-05-10 2003-11-18 Ebara Corp Method and apparatus for treating organic waste water
JP2005125203A (en) * 2003-10-22 2005-05-19 Sumitomo Heavy Ind Ltd Organic waste water treatment apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660688A (en) * 1979-10-22 1981-05-25 Hitachi Plant Eng & Constr Co Ltd Anaerobic digestion treatment
JPS63501624A (en) * 1985-03-05 1988-06-23 ユニオン・アンデュストリエル・エ・デントルプリ−ズ Methods and apparatus for decomposing organic products, by-products and/or wastes of human, animal and/or plant origin in an anaerobic medium
JPH02208994A (en) * 1989-02-08 1990-08-20 Matsushita Electric Ind Co Ltd Printed board
JPH03161094A (en) * 1989-11-21 1991-07-11 Komatsu Ltd Waste water treatment process
JP2000157994A (en) * 1998-11-30 2000-06-13 Toshiba Corp Methane fermentation method and device therefor
JP2000218288A (en) * 1999-02-01 2000-08-08 Kurita Water Ind Ltd Batch anaerobic treatment and device therefor
JP2003190996A (en) * 2001-12-26 2003-07-08 Ebara Corp Anaerobic treatment method and apparatus therefor
JP2003190986A (en) * 2001-12-26 2003-07-08 Ebara Corp Anaerobic treatment method and apparatus therefor
JP2003326295A (en) * 2002-05-10 2003-11-18 Ebara Corp Method and apparatus for treating organic waste water
JP2005125203A (en) * 2003-10-22 2005-05-19 Sumitomo Heavy Ind Ltd Organic waste water treatment apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914690B1 (en) 2007-11-08 2009-08-28 김태곤 Microbe reactor
JP2012045481A (en) * 2010-08-26 2012-03-08 Sumitomo Heavy Industries Environment Co Ltd Biological wastewater treatment apparatus and method
JP2012081403A (en) * 2010-10-08 2012-04-26 Swing Corp Organic wastewater treatment apparatus and treating method
CN105668782A (en) * 2016-04-05 2016-06-15 许中华 Sinking-flow-deflection anaerobic reactor
KR101844033B1 (en) * 2016-04-05 2018-04-02 정은표 An organic waste deodorizing system
CN105668782B (en) * 2016-04-05 2018-07-17 山东许中华环保科技有限公司 Heavy stream is turned back anaerobic reactor

Similar Documents

Publication Publication Date Title
US7695622B2 (en) System and method for eliminating sludge via ozonation
EP1976804B1 (en) Ozonation of wastewater for reduction of sludge or foam and bulking control
US20080078719A1 (en) System and method for treating wastewater
KR20070026405A (en) Drain treating device
JP2007014864A (en) Anaerobic treatment method and treatment apparatus of waste water
JPH1190496A (en) Apparatus and method for ozone treatment of biological sludge
JP2003033780A (en) Method for wastewater treatment
JP2007275845A (en) Granular microorganism sludge preparation arrangement and granular microorganism sludge producing method
KR101162533B1 (en) Venturi Tube Having Mocro Bubble Generator and Sludge Treatment Equipment Using the Venturi Tube
KR20200101793A (en) Biogas reactors
KR101030097B1 (en) Anaerobic digestion promoting apparatus and anaerobic digestion apparatus comprising the same
KR101916230B1 (en) Apparatus for processing waste water using ultrasonic waves and microorganism
KR100983074B1 (en) Apparatus for production of bio-gas
JP2004041902A (en) Sludge treatment equipment and sludge treatment method
KR20200073089A (en) Jinseng processing organic wasted water treating apparatus
KR100334124B1 (en) Method for supplying pure oxygen to aerobic digestion process and apparatus therefor
KR102311782B1 (en) Liquid fertilizer Manufacturing System
KR20110072605A (en) Apparatus for concentrating the anaerobic miro-organism
JP2002186988A (en) Wastewater treatment device and method for treating wastewater
JP5329495B2 (en) Biological wastewater treatment equipment
KR20090130276A (en) Anaerobic digestion system
JP2007229657A (en) Method for feeding organic matter-containing liquid into fermentation tank, and treatment apparatus for the organic matter-containing liquid
JP2023149241A (en) Wastewater treatment device, and wastewater treatment method
KR20040020807A (en) Apparatus and method for reducing sludge volume, apparatus and method for treating wastewater using the same
JP2007090168A (en) Anaerobic treatment apparatus and anaerobic treatment method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100805

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131