JP5329495B2 - Biological wastewater treatment equipment - Google Patents

Biological wastewater treatment equipment Download PDF

Info

Publication number
JP5329495B2
JP5329495B2 JP2010189597A JP2010189597A JP5329495B2 JP 5329495 B2 JP5329495 B2 JP 5329495B2 JP 2010189597 A JP2010189597 A JP 2010189597A JP 2010189597 A JP2010189597 A JP 2010189597A JP 5329495 B2 JP5329495 B2 JP 5329495B2
Authority
JP
Japan
Prior art keywords
tank
treated
water
treated water
wastewater treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010189597A
Other languages
Japanese (ja)
Other versions
JP2012045481A (en
Inventor
治之 知久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Environment Co Ltd
Original Assignee
Sumitomo Heavy Industries Environment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Environment Co Ltd filed Critical Sumitomo Heavy Industries Environment Co Ltd
Priority to JP2010189597A priority Critical patent/JP5329495B2/en
Publication of JP2012045481A publication Critical patent/JP2012045481A/en
Application granted granted Critical
Publication of JP5329495B2 publication Critical patent/JP5329495B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、微生物汚泥を用いて排水を処理する生物学的排水処理装置に関する。 The present invention relates to a biological waste water treatment equipment for processing waste water using the microbial sludge.

有害物質を分解する微生物汚泥を用い、排水中の有害物質を除去する生物学的排水処理装置が知られている(例えば、特許文献1参照)。   A biological wastewater treatment apparatus that removes harmful substances in wastewater using microbial sludge that decomposes harmful substances is known (see, for example, Patent Document 1).

特許第4001514号Japanese Patent No. 4001514

ここで、微生物汚泥は、有害物質を分解する際にメタノール等の水素供与体を必要とする。このため、生物学的排水処理装置では、水素供与体が排水に供給される。また、微生物汚泥は有機物質の分解に伴って増殖する。このため、生物学的排水処理装置では、余剰汚泥の廃棄処分が行われる。このような事情から、生物学的排水処理装置では、供給すべき水素供与体にかかるコスト及び余剰汚泥の廃棄処分にかかるコストが問題となっていた。   Here, microbial sludge requires a hydrogen donor such as methanol when decomposing harmful substances. For this reason, in the biological wastewater treatment apparatus, a hydrogen donor is supplied to the wastewater. Moreover, microbial sludge grows with the decomposition of organic substances. For this reason, in the biological waste water treatment apparatus, surplus sludge is disposed of. Under such circumstances, in the biological wastewater treatment apparatus, the cost for the hydrogen donor to be supplied and the cost for disposal of excess sludge have been problems.

本発明は、このような課題を解決するためになされたものであり、水素供与体の供給量及び余剰汚泥の発生量を削減することが可能な生物学的排水処理装置の提供を目的とする。 The present invention has been made to solve the above problems, and aims to provide a supply amount and that can reduce the amount of generated excess sludge biological waste water treatment equipment of the hydrogen donor To do.

ここで、本発明者等は、以下のような事象を見出した。微生物汚泥は、排水中の有害物質を分解して増殖する性質だけでなく、排水中の溶存酸素を吸収して増殖する性質を有し、溶存酸素を吸収する際にも水素供与体を消費する。このため、排水中の溶存酸素が多くなる(排水の溶存酸素濃度が高くなる)と、溶存酸素の吸収に多くの水素供与体が消費されると共に、溶存酸素の吸収によって多くの余剰汚泥が生じる。本発明者等は、上記事象に基づき本発明に至った。   Here, the present inventors have found the following phenomenon. Microbial sludge not only has the property of decomposing and multiplying harmful substances in wastewater, but also has the property of absorbing and growing dissolved oxygen in wastewater, and consumes hydrogen donors when absorbing dissolved oxygen. . For this reason, when the amount of dissolved oxygen in the wastewater increases (the concentration of dissolved oxygen in the wastewater increases), a lot of hydrogen donors are consumed to absorb the dissolved oxygen, and a lot of excess sludge is generated due to the absorption of the dissolved oxygen. . The inventors of the present invention have arrived at the present invention based on the above events.

そこで、本発明による生物学的排水処理装置は、微生物汚泥を用いて排水を処理する生物学的排水処理装置において、密閉された第1槽を有し、排水である被処理水を第1槽内に導入し、被処理水に水素供与体を供給し、被処理水を第1槽外へ排出するコンディショニング装置と、粒状に凝集された微生物を含む微生物汚泥床を収容して密閉された第2槽を有し、第1槽外へ排出された被処理水を第2槽内に導入し、被処理水を上昇させて第2槽内に上向流を形成し、被処理水を処理水として第2槽外へ排出する反応装置と、第2槽外へ排出された処理水の一部を第1槽に戻す返送ラインと、を備えたことを特徴とする。   Therefore, a biological wastewater treatment apparatus according to the present invention is a biological wastewater treatment apparatus that treats wastewater using microbial sludge. The biological wastewater treatment apparatus has a sealed first tank, and the treated water that is wastewater is the first tank. A conditioning apparatus for supplying a hydrogen donor to the treated water and discharging the treated water to the outside of the first tank, and a microbial sludge bed containing the microorganisms agglomerated in a granular form. There are two tanks, the treated water discharged outside the first tank is introduced into the second tank, the treated water is raised to form an upward flow in the second tank, and the treated water is treated. It is characterized by comprising a reaction device that discharges water as the outside of the second tank, and a return line that returns a part of the treated water discharged outside the second tank to the first tank.

このような生物学的排水処理装置によれば、第1層及び第2槽が密閉されているため、各槽内の被処理水に、各槽を取り巻く空気中の酸素が溶け込むことはない。そして、第2槽内に導入された被処理水は第2槽内を上昇し、微生物汚泥床と向流接触する。この際、微生物汚泥床の働きによって排水中の溶存酸素が吸収されるため、第2槽外へ排出される処理水の溶存酸素濃度は低くなる。この処理水が返送ラインによって第1槽に戻され、第1槽内の被処理水と混合されるため、第1槽内の被処理水の溶存酸素濃度が低くなる。その結果、第1槽外へ排出されて第2槽内に導入される被処理水の溶存酸素濃度が低くなり、溶存酸素の吸収に消費される水素供与体と、溶存酸素の吸収に伴って生じる余剰汚泥とが削減される。また、第2槽から排出される処理水に残存している水素供与体が、返送ラインによって第1槽内に戻されて再利用されるため、水素供与体の供給量が削減される。 According to such biological wastewater treatment equipment, since the first layer and the second tank is sealed, the water to be treated in each vessel, will not to blend oxygen in the air surrounding each tank . And the to-be-processed water introduce | transduced in the 2nd tank raises the inside of a 2nd tank, and countercurrent-contacts with a microorganisms sludge bed. At this time, since dissolved oxygen in the wastewater is absorbed by the action of the microbial sludge bed, the dissolved oxygen concentration of the treated water discharged to the outside of the second tank becomes low. Since this treated water is returned to the first tank by the return line and mixed with the treated water in the first tank, the dissolved oxygen concentration of the treated water in the first tank becomes low. As a result, the dissolved oxygen concentration of the water to be treated discharged to the outside of the first tank and introduced into the second tank is lowered, and the hydrogen donor consumed for absorption of dissolved oxygen and the absorption of dissolved oxygen The excess sludge produced is reduced. Further, since the hydrogen donor remaining in the treated water discharged from the second tank is returned to the first tank by the return line and reused, the supply amount of the hydrogen donor is reduced.

また、酸素含有ガスを第2槽内の下部に供給する散気手段を備えるので、反応装置の停止中や始動時等に、第2槽内の下部に酸素含有ガスを供給し、微生物汚泥床の硬化や嫌気性腐敗を防止することができる。 Further, Runode comprises a diffuser means for supplying an oxygen-containing gas into the lower portion of the second tank, or the like at the time of or during stopping reactor startup, the oxygen-containing gas is supplied to the lower portion of the second tank, microbial sludge Floor hardening and anaerobic rot can be prevented.

このように本発明によれば、水素供与体の供給量及び余剰汚泥の発生量を削減することが可能な生物学的排水処理装置を提供することができる。 Thus, according to the present invention, it is possible to provide a biological wastewater treatment equipment which can reduce the generation amount of the supply amount and the excess sludge hydrogen donor.

本発明の第1実施形態に係る生物学的排水処理方法を採用した生物学的排水処理装置の概略構成図である。It is a schematic block diagram of the biological waste water treatment apparatus which employ | adopted the biological waste water treatment method which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る生物学的排水処理方法を採用した生物学的排水処理装置の概略構成図である。It is a schematic block diagram of the biological waste water treatment apparatus which employ | adopted the biological waste water treatment method which concerns on 2nd Embodiment of this invention.

以下、本発明による生物学的排水処理方法を採用した生物学的排水処理装置の好適な実施形態について添付図面を参照しながら説明する。なお、各図において、同一の要素には同一の符号を付し、重複する説明は省略する。   Hereinafter, a preferred embodiment of a biological wastewater treatment apparatus employing a biological wastewater treatment method according to the present invention will be described with reference to the accompanying drawings. Note that, in each drawing, the same elements are denoted by the same reference numerals, and redundant description is omitted.

先ず、本発明による生物学的排水処理装置の第1実施形態を説明する。図1は本発明の第1実施形態に係る生物学的排水処理方法を採用した生物学的排水処理装置の概略構成図であり、本実施形態では生物学的排水処理装置を生物学的脱窒処理装置として説明する。   First, a first embodiment of a biological wastewater treatment apparatus according to the present invention will be described. FIG. 1 is a schematic configuration diagram of a biological wastewater treatment apparatus employing the biological wastewater treatment method according to the first embodiment of the present invention. In this embodiment, the biological wastewater treatment apparatus is a biological denitrification. The processing apparatus will be described.

生物学的脱窒処理装置100は、排水である被処理水を収容する原水調整槽1と、被処理水に水素供与体(ここではメタノール)を供給するコンディショニング装置2と、メタノールの供給された被処理水の脱窒処理を行う反応装置3とを備えている。   The biological denitrification treatment apparatus 100 includes a raw water adjustment tank 1 that stores treated water that is wastewater, a conditioning apparatus 2 that supplies a hydrogen donor (methanol in this case) to the treated water, and methanol. And a reactor 3 that performs denitrification treatment of water to be treated.

また、生物学的脱窒処理装置100は、原水調整槽1からコンディショニング装置2に被処理水を送るラインL1と、コンディショニング装置2から反応装置3に被処理水を送るラインL2と、脱窒処理のなされた被処理水を処理水として反応装置3から後段に送り出すラインL3と、反応装置3からコンディショニング装置2へ処理水の一部を戻す返送ラインであるラインL4と、コンディショニング装置2へメタノール等を供給するラインL5と、コンディショニング装置2及び反応装置3からガスを送り出すラインL6とを備えている。ラインL1やラインL2には、圧送用のポンプP1が設けられている。   In addition, the biological denitrification treatment apparatus 100 includes a line L1 for sending water to be treated from the raw water adjustment tank 1 to the conditioning device 2, a line L2 for sending water to be treated from the conditioning device 2 to the reaction device 3, and a denitrification treatment. The treated water is treated as treated water, the line L3 is sent to the subsequent stage, the line L4 is a return line for returning a part of the treated water from the reactor 3 to the conditioning device 2, and methanol is supplied to the conditioning device 2. And a line L6 for sending gas from the conditioning device 2 and the reaction device 3. The line L1 and the line L2 are provided with a pump P1 for pressure feeding.

コンディショニング装置2は、密閉された第1槽であるコンディショニング槽4を有している。コンディショニング装置2は、ラインL1を介し、原水調整槽1から排出された被処理水をコンディショニング槽4内に導入する。また、コンディショニング装置2は、ラインL5を介し、メタノールをコンディショニング槽4内に導入し、被処理水に供給する。さらに、コンディショニング装置2は、コンディショニング槽4内で発生したガスをラインL6に排出する。   The conditioning device 2 has a conditioning tank 4 that is a sealed first tank. The conditioning device 2 introduces the water to be treated discharged from the raw water adjustment tank 1 into the conditioning tank 4 via the line L1. Moreover, the conditioning apparatus 2 introduce | transduces methanol into the conditioning tank 4 via the line L5, and supplies it to to-be-processed water. Furthermore, the conditioning device 2 discharges the gas generated in the conditioning tank 4 to the line L6.

コンディショニング槽4には、pH計5が付設されている。pH計5は、コンディショニング槽4内の液体のpHを測定する。ここで、pH計5の測定値が所定範囲にない場合には、ラインL5を介してコンディショニング槽4内の液体にpH調整剤(ここでは塩化水素)を供給することが可能となっている。所定範囲とは、微生物(後述)の生息に適した範囲(例えば、pH6〜9.5)である。   A pH meter 5 is attached to the conditioning tank 4. The pH meter 5 measures the pH of the liquid in the conditioning tank 4. Here, when the measured value of the pH meter 5 is not within the predetermined range, a pH adjuster (here, hydrogen chloride) can be supplied to the liquid in the conditioning tank 4 via the line L5. The predetermined range is a range (for example, pH 6 to 9.5) suitable for inhabiting microorganisms (described later).

反応装置3は、密閉された第2槽である反応槽6を有している。反応槽6内の下部には、粒状に凝集された微生物(ここでは脱窒菌)を含む微生物汚泥床9が収容されている。脱窒菌は、嫌気的条件下において、被処理水中の有害物質(ここでは窒素化合物)を分解してガス(ここでは窒素ガス)を生成し、増殖する。その際に、脱窒菌はメタノールを消費する。また、脱窒菌は、被処理水中の溶存酸素を吸収して増殖する。その際にも、脱窒菌はメタノールを消費する。   The reaction apparatus 3 has a reaction tank 6 that is a sealed second tank. A microorganism sludge bed 9 containing microorganisms aggregated in a granular form (here, denitrifying bacteria) is accommodated in the lower part of the reaction tank 6. Under anaerobic conditions, a denitrifying bacterium decomposes harmful substances (here, nitrogen compounds) in water to be treated to generate gas (here, nitrogen gas) and grows. At that time, the denitrifying bacteria consume methanol. In addition, denitrifying bacteria absorb the dissolved oxygen in the treated water and grow. At that time, denitrifying bacteria consume methanol.

反応装置3は、ラインL2を介し、コンディショニング槽4から反応槽6の下部に被処理水を導入し、その被処理水を上昇させて反応槽6内に上向流を形成する。反応槽6内を上昇する被処理水は、微生物汚泥床9と向流接触し、微生物汚泥床9に含まれる脱窒菌の働きによって脱窒処理(窒素化合物を分解し、窒素ガスを発生する処理)がなされる。このように、反応槽6は、USB(Upflow Sludge Blanket)反応槽を構成している。   The reactor 3 introduces water to be treated from the conditioning tank 4 to the lower part of the reaction tank 6 via the line L2, and raises the water to be treated to form an upward flow in the reaction tank 6. The treated water rising in the reaction tank 6 is in countercurrent contact with the microbial sludge bed 9 and denitrified by the action of the denitrifying bacteria contained in the microbial sludge bed 9 (treatment that decomposes nitrogen compounds and generates nitrogen gas). ) Is made. Thus, the reaction vessel 6 constitutes a USB (Upflow Sludge Blanket) reaction vessel.

反応槽6内の上部には、気固液分離部8が設けられている。気固液分離部8は、微生物等の固形物と、反応槽6内で発生した窒素ガス等のガスと、脱窒処理のなされた処理水とを分離する。反応装置3は、ラインL3を介し、気固液分離部8によって分離された処理水を反応槽6外へ排出する。また、反応装置3は、ラインL4を介し、気固液分離部8によって分離された処理水の一部をコンディショニング槽4へ戻す。また、反応装置3は、気固液分離部8によって分離されたガスをラインL6へ排出する。   A gas-solid-liquid separator 8 is provided in the upper part of the reaction tank 6. The gas-solid liquid separation unit 8 separates solids such as microorganisms, gas such as nitrogen gas generated in the reaction tank 6, and treated water subjected to denitrification treatment. The reaction apparatus 3 discharges the treated water separated by the gas-solid-liquid separation unit 8 to the outside of the reaction tank 6 through the line L3. Moreover, the reactor 3 returns a part of the treated water separated by the gas-solid-liquid separator 8 to the conditioning tank 4 via the line L4. Moreover, the reaction apparatus 3 discharges the gas separated by the gas-solid-liquid separation unit 8 to the line L6.

生物学的脱窒処理装置100は、酸素含有ガスを反応槽6内の下部に供給する散気手段7を備えている。散気手段7は、反応槽6内の下部に設けられた複数のノズル7aと、ノズル7aに酸素含有ガスを供給するラインL7とを有している。また、散気手段7は、酸素含有ガスの供給の有無を自在に切り替える開閉装置(不図示)を有している。   The biological denitrification apparatus 100 includes an air diffuser 7 that supplies an oxygen-containing gas to the lower part of the reaction tank 6. The air diffuser 7 has a plurality of nozzles 7a provided in the lower part of the reaction tank 6, and a line L7 for supplying an oxygen-containing gas to the nozzles 7a. In addition, the air diffuser 7 has an opening / closing device (not shown) that freely switches whether or not the oxygen-containing gas is supplied.

続いて、このように構成された生物学的脱窒処理装置100の作用について説明する。原水調整槽1に収容された被処理水は、コンディショニング槽4内に導入され、その被処理水にメタノールが供給される。コンディショニング槽4は密閉されているため、コンディショニング槽4を取り巻く空気中の酸素が被処理水に溶け込むことはない。   Next, the operation of the biological denitrification apparatus 100 configured as described above will be described. The treated water accommodated in the raw water adjustment tank 1 is introduced into the conditioning tank 4, and methanol is supplied to the treated water. Since the conditioning tank 4 is sealed, oxygen in the air surrounding the conditioning tank 4 does not dissolve in the water to be treated.

コンディショニング槽4でメタノールが供給された被処理水は、反応槽6内に導入され、反応槽6内を上昇する。その際、微生物汚泥床9と向流接触し、微生物汚泥床9に含まれる脱窒菌の働きによって脱窒処理される。また、脱窒菌の働きによって被処理水中の溶存酸素が吸収される。反応槽6は密閉されているため、反応槽6を取り巻く空気中の酸素が被処理水に溶け込むことはない。反応槽6内を上昇して脱窒処理された処理水は、気固液分離部8によって窒素ガスや微生物等から分離され、反応槽6外へ排出される。   The treated water supplied with methanol in the conditioning tank 4 is introduced into the reaction tank 6 and rises in the reaction tank 6. At this time, the microbial sludge bed 9 is counter-flow contacted and denitrified by the action of denitrifying bacteria contained in the microbial sludge bed 9. In addition, dissolved oxygen in the water to be treated is absorbed by the action of denitrifying bacteria. Since the reaction tank 6 is sealed, oxygen in the air surrounding the reaction tank 6 does not dissolve in the water to be treated. The treated water that has risen in the reaction tank 6 and has been denitrified is separated from nitrogen gas, microorganisms, and the like by the gas-solid-liquid separation unit 8, and discharged out of the reaction tank 6.

反応槽6から排出された処理水の一部は、ラインL4を介してコンディショニング槽4に戻され、コンディショニング槽4内の被処理水と混合される。処理水の溶存酸素濃度は、上記脱窒菌の働きによって低くなっているため、処理水と混合された被処理水の溶存酸素濃度は低くなる。その結果、コンディショニング槽4外へ排出されて反応槽6内に導入される被処理水の溶存酸素濃度が低くなり、溶存酸素の吸収に消費されるメタノールと、溶存酸素の吸収に伴って生じる余剰汚泥とが削減される。   A part of the treated water discharged from the reaction tank 6 is returned to the conditioning tank 4 via the line L4 and mixed with the treated water in the conditioning tank 4. Since the dissolved oxygen concentration of the treated water is lowered by the action of the denitrifying bacteria, the dissolved oxygen concentration of the treated water mixed with the treated water is lowered. As a result, the dissolved oxygen concentration of the water to be treated that is discharged out of the conditioning tank 4 and introduced into the reaction tank 6 becomes low, and methanol that is consumed for the absorption of dissolved oxygen and surplus that accompanies the absorption of the dissolved oxygen. Sludge is reduced.

また、反応槽6から排出される処理水に残存しているメタノールが、ラインL4によってコンディショニング槽4内に戻されて再利用されるため、メタノールの供給量が削減される。   Moreover, since the methanol remaining in the treated water discharged from the reaction tank 6 is returned to the conditioning tank 4 by the line L4 and reused, the supply amount of methanol is reduced.

このように、本実施形態においては、メタノールの供給量及び余剰汚泥の発生量を削減することができる。   Thus, in this embodiment, the supply amount of methanol and the generation amount of excess sludge can be reduced.

なお、反応装置3が停止し、微生物汚泥床9の硬化や嫌気性腐敗のおそれがある場合には、散気手段7により、反応槽6内の下部に酸素含有ガスが供給される。散気手段7による酸素含有ガスの供給は、例えば、反応装置3の停止中や始動時に行われる。これにより、微生物汚泥床9の硬化や嫌気性腐敗を防止することができる。散気手段7は、酸素含有ガスの供給の有無を自在に切り替える開閉装置を有しており、脱窒処理に必要な嫌気的条件は維持される。   In addition, when the reaction apparatus 3 stops and there exists a possibility of hardening of the microbial sludge bed 9 or anaerobic decay, oxygen-containing gas is supplied to the lower part in the reaction tank 6 by the air diffuser 7. The supply of the oxygen-containing gas by the air diffuser 7 is performed, for example, when the reaction device 3 is stopped or started. Thereby, hardening of the microbial sludge bed 9 and anaerobic decay can be prevented. The air diffuser 7 has an open / close device that freely switches whether or not the oxygen-containing gas is supplied, and anaerobic conditions necessary for the denitrification treatment are maintained.

また、反応槽6は、USB反応槽を構成し、脱窒処理を高負荷とすることができるため、反応槽6の設置面積を小さくすることができる。   Moreover, since the reaction tank 6 comprises a USB reaction tank and can make a denitrification process high load, the installation area of the reaction tank 6 can be made small.

次に、本発明による生物学的排水処理装置の第2実施形態を説明する。図2は、本発明の第2実施形態に係る生物学的排水処理方法を採用した生物学的排水処理装置の概略構成図であり、本実施形態では生物学的排水処理装置を生物学的脱窒処理装置として説明する。   Next, a second embodiment of the biological waste water treatment apparatus according to the present invention will be described. FIG. 2 is a schematic configuration diagram of a biological wastewater treatment apparatus adopting the biological wastewater treatment method according to the second embodiment of the present invention. In this embodiment, the biological wastewater treatment apparatus is biologically detached. It demonstrates as a nitrogen treatment apparatus.

第2実施形態の生物学的脱窒処理装置200が第1実施形態の生物学的脱窒処理装置100と違う点は、ラインL3に排出された処理水に残存する水素供与体(ここではメタノール)を微生物汚泥によって除去する水素供与体除去装置20を備えた点である。   The biological denitrification apparatus 200 according to the second embodiment is different from the biological denitrification apparatus 100 according to the first embodiment in that a hydrogen donor (here, methanol) remaining in the treated water discharged to the line L3. ) Is removed by microbial sludge.

水素供与体除去装置20は、水素供与体の除去処理を行う曝気槽21と、被処理液から微生物汚泥を分離して沈殿させる沈殿槽22とを有している。また、水素供与体除去装置20は、曝気槽21から沈殿槽22に被処理液を送るラインL21と、沈殿槽22から処理液を後段に送り出すラインL22と、沈殿槽22から曝気槽21へ後述の凝集フロックを戻すラインL23とを有している。   The hydrogen donor removing apparatus 20 includes an aeration tank 21 that performs a hydrogen donor removing process, and a precipitation tank 22 that separates and precipitates microbial sludge from the liquid to be treated. In addition, the hydrogen donor removing device 20 has a line L21 for sending the liquid to be treated from the aeration tank 21 to the precipitation tank 22, a line L22 for sending the treatment liquid from the precipitation tank 22 to the subsequent stage, and a line L22 from the precipitation tank 22 to the aeration tank 21 to be described later. And a line L23 for returning the aggregated floc.

曝気槽21は、微生物汚泥を収容し、反応槽6から排出された処理水を被処理液として導入する。曝気槽21に収容された微生物汚泥は、好気的条件下においてメタノールを消費して増殖する。曝気槽21の下部には複数のノズル21aが設けられており、ラインL7から分岐して曝気槽21内に酸素含有ガスが供給される。ノズル21aから供給される酸素含有ガスによって、曝気槽21内の被処理液と微生物汚泥とが撹拌され、メタノールの好気性処理がなされる。   The aeration tank 21 accommodates microbial sludge and introduces treated water discharged from the reaction tank 6 as a liquid to be treated. The microbial sludge accommodated in the aeration tank 21 consumes methanol and grows under aerobic conditions. A plurality of nozzles 21 a are provided in the lower part of the aeration tank 21, branching off from the line L <b> 7, and supplying oxygen-containing gas into the aeration tank 21. The liquid to be treated and the microbial sludge in the aeration tank 21 are agitated by the oxygen-containing gas supplied from the nozzle 21a, and aerobic treatment of methanol is performed.

沈殿槽22は、高速凝集沈殿槽と称されるもので、その内部にミキシングチャンバ23を有している。ミキシングチャンバ23は、沈殿槽22内に直立状態で配置され、微生物汚泥を含む被処理液を収容し、収容された被処理液に凝集剤を添加し、撹拌翼23bの回転により撹拌混合することで微生物汚泥の凝集フロックを形成するものである。ミキシングチャンバ23には、ラインL21を介し、曝気槽21から被処理液が導入される。ミキシングチャンバ23の底部には、水平且つ放射状に延び、回転する分配管23aが設けられており、ミキシングチャンバ23内の被処理液が凝集フロックと共に分配管23aから排出される。分配管23aから排出された凝集フロックは被処理液から分離して沈殿し、被処理液は上昇して処理液となる。沈殿槽22の下部には、凝集フロックの濃縮汚泥層24が形成され、上部には、処理液の上澄層25が形成される。上澄層25の処理液は、ラインL22を介して沈殿槽22から後段に排出される。濃縮汚泥層24の凝集フロックは、ラインL23を介して曝気槽21に戻される。   The sedimentation tank 22 is called a high-speed coagulation sedimentation tank, and has a mixing chamber 23 therein. The mixing chamber 23 is arranged in an upright state in the settling tank 22 and contains a liquid to be treated containing microbial sludge, adds a flocculant to the liquid to be treated, and stirs and mixes by rotation of the stirring blade 23b. It forms the flocs of microbial sludge. The liquid to be processed is introduced into the mixing chamber 23 from the aeration tank 21 via the line L21. At the bottom of the mixing chamber 23, there is provided a horizontal distribution pipe 23a that extends radially and rotates, and the liquid to be treated in the mixing chamber 23 is discharged from the distribution pipe 23a together with the aggregation floc. The agglomerated floc discharged from the distribution pipe 23a is separated from the liquid to be treated and precipitates, and the liquid to be treated rises to become the treatment liquid. A concentrated sludge layer 24 of coagulated flocs is formed in the lower part of the settling tank 22, and a supernatant layer 25 of the processing liquid is formed in the upper part. The processing liquid of the supernatant layer 25 is discharged from the sedimentation tank 22 to the subsequent stage via the line L22. The aggregated floc of the concentrated sludge layer 24 is returned to the aeration tank 21 through the line L23.

続いて、このように構成された生物学的脱窒処理装置200の作用について説明する。反応槽6から排出された処理水は、被処理液として曝気槽21に導入され、被処理液中に残存していたメタノールが除去される。曝気槽21においてメタノールが除去された被処理液は、沈殿槽22において濃縮汚泥層24と上澄層25とに分離され、上澄層25の処理液は、適宜排出される。濃縮汚泥層24の凝集フロックは、ラインL23を介して曝気槽21に戻され、曝気槽21内の微生物濃度が高く保たれる。   Next, the operation of the biological denitrification apparatus 200 configured as described above will be described. The treated water discharged from the reaction tank 6 is introduced into the aeration tank 21 as a liquid to be treated, and the methanol remaining in the liquid to be treated is removed. The liquid to be treated from which methanol has been removed in the aeration tank 21 is separated into the concentrated sludge layer 24 and the supernatant layer 25 in the precipitation tank 22, and the treatment liquid in the supernatant layer 25 is appropriately discharged. The aggregated floc of the concentrated sludge layer 24 is returned to the aeration tank 21 via the line L23, and the microorganism concentration in the aeration tank 21 is kept high.

このように、生物学的脱窒処理装置200では、反応槽6による脱窒処理後の処理水に残存しているメタノールが、水素供与体除去装置20によって確実に除去される。   As described above, in the biological denitrification treatment apparatus 200, the methanol remaining in the treated water after the denitrification treatment by the reaction tank 6 is reliably removed by the hydrogen donor removal apparatus 20.

また、水素供与体除去装置20の沈殿槽22は高速凝集沈殿槽を構成するため、沈殿槽22の設置面積を小さくすることができる。また、曝気槽21には、微生物の凝集した凝集フロックが戻されるため、曝気槽21内の微生物濃度が高くなる。このため、曝気槽21内のメタノールの除去処理を高負荷とすることができ、曝気槽21の設置面積を小さくすることができる。従って、水素供与体除去装置20を付設することに伴う設置面積の増加を小さく抑えることができる。   Moreover, since the sedimentation tank 22 of the hydrogen donor removal apparatus 20 comprises a high-speed coagulation sedimentation tank, the installation area of the precipitation tank 22 can be made small. Moreover, since the flocs aggregated with microorganisms are returned to the aeration tank 21, the concentration of microorganisms in the aeration tank 21 increases. For this reason, the removal process of the methanol in the aeration tank 21 can be made into a high load, and the installation area of the aeration tank 21 can be made small. Therefore, the increase in the installation area accompanying attaching the hydrogen donor removal apparatus 20 can be suppressed small.

なお、本実施形態では、水素供与体除去装置20として、曝気槽21と沈殿槽22を有する構成を示したが、この限りではない。例えば、下向流スポンジキューブ懸垂型(Downflow Hanging Sponge:DHS)リアクターを用いた構成としてもよい。   In addition, in this embodiment, although the structure which has the aeration tank 21 and the precipitation tank 22 was shown as the hydrogen donor removal apparatus 20, it is not this limitation. For example, it is good also as a structure using a downward flow sponge cube hanging type | mold (Downflow Hanging Sponge: DHS) reactor.

以上、第1〜第2実施形態では生物学的排水処理装置を生物学的脱窒処理装置として説明したが、本発明は必ずしも脱窒処理に限られるものではなく、その要旨を逸脱しない範囲で他の様々な排水処理への適用が可能である。   As described above, in the first and second embodiments, the biological wastewater treatment apparatus has been described as a biological denitrification treatment apparatus, but the present invention is not necessarily limited to the denitrification treatment and is within the scope not departing from the gist thereof. It can be applied to various other wastewater treatment.

また、水素供与体はメタノールに限られるものではなく、例えば、IPA(イソプロピルアルコール)や、酢酸及び廃糖蜜等の有機廃液を用いることができる。   Further, the hydrogen donor is not limited to methanol, and for example, IPA (isopropyl alcohol), organic waste liquid such as acetic acid and molasses can be used.

2…コンディショニング装置、3…反応装置、4…コンディショニング槽、6…反応槽、7…散気手段、9…微生物汚泥床、22…高速凝集沈殿槽、100…生物学的脱窒処理装置、L4…ライン。   DESCRIPTION OF SYMBOLS 2 ... Conditioning apparatus, 3 ... Reaction apparatus, 4 ... Conditioning tank, 6 ... Reaction tank, 7 ... Aeration means, 9 ... Microbial sludge bed, 22 ... High-speed coagulation sedimentation tank, 100 ... Biological denitrification processing apparatus, L4 …line.

Claims (1)

微生物汚泥を用いて排水を処理する生物学的排水処理装置において、
密閉された第1槽を有し、排水である被処理水を前記第1槽内に導入し、前記被処理水に水素供与体を供給し、前記被処理水を前記第1槽外へ排出するコンディショニング装置と、
粒状に凝集された微生物を含む微生物汚泥床を収容して密閉された第2槽を有し、前記第1槽外へ排出された前記被処理水を前記第2槽内に導入し、前記被処理水を上昇させて前記第2槽内に上向流を形成し、前記被処理水を処理水として前記第2槽外へ排出する反応装置と、
前記第2槽外へ排出された前記処理水の一部を前記第1槽に戻す返送ラインと、
酸素含有ガスを前記第2槽内の下部に供給する散気手段と、を備えたことを特徴とする生物学的排水処理装置。
In biological wastewater treatment equipment that treats wastewater using microbial sludge,
It has a sealed first tank, water to be treated as waste water is introduced into the first tank, a hydrogen donor is supplied to the water to be treated, and the water to be treated is discharged out of the first tank. A conditioning device to
A second tank sealed and containing a microbial sludge bed containing microorganisms aggregated in a granular form; the treated water discharged outside the first tank is introduced into the second tank; A reactor for raising treated water to form an upward flow in the second tank, and discharging the treated water as treated water to the outside of the second tank;
A return line for returning a part of the treated water discharged outside the second tank to the first tank;
A biological wastewater treatment apparatus , comprising: a diffuser for supplying an oxygen-containing gas to a lower portion in the second tank .
JP2010189597A 2010-08-26 2010-08-26 Biological wastewater treatment equipment Expired - Fee Related JP5329495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010189597A JP5329495B2 (en) 2010-08-26 2010-08-26 Biological wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010189597A JP5329495B2 (en) 2010-08-26 2010-08-26 Biological wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2012045481A JP2012045481A (en) 2012-03-08
JP5329495B2 true JP5329495B2 (en) 2013-10-30

Family

ID=45900998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010189597A Expired - Fee Related JP5329495B2 (en) 2010-08-26 2010-08-26 Biological wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP5329495B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6435108B2 (en) * 2014-03-26 2018-12-05 パナソニック株式会社 Denitrification device and method of operating denitrification device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085783A (en) * 1996-09-12 1998-04-07 Nippon Steel Corp Denitrification method and apparatus for drainage containing nitric acid type nitrogen
JP2007014864A (en) * 2005-07-06 2007-01-25 Sumitomo Heavy Ind Ltd Anaerobic treatment method and treatment apparatus of waste water
JP2008155072A (en) * 2006-12-20 2008-07-10 Sumitomo Heavy Industries Environment Co Ltd Anaerobic treatment apparatus and method
JP5092840B2 (en) * 2008-03-27 2012-12-05 栗田工業株式会社 Biological denitrification equipment

Also Published As

Publication number Publication date
JP2012045481A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP3350364B2 (en) Wastewater treatment method and wastewater treatment device
JP5566147B2 (en) Rice processing wastewater treatment method and equipment
US20080006577A1 (en) Method and apparatus for wastewater treatment using nitrogen/phosphorous removal process combined with floatation separation of activated sludge
JP2010505603A (en) Wastewater ozone treatment to reduce sludge or control foam and bulking
CN1789169A (en) Organic sulfur compound containing water discharge apparatus
KR101603540B1 (en) Waste water treatment system for high density nitrogen remove and sludge reduction with anaerobic inter-barrier and fluidized media
JP2015217322A (en) Methane fermentation apparatus and treatment method of water-containing organic waste
KR102171918B1 (en) Recycling and water quality purification treatment system of livestock manure
US8163179B2 (en) Apparatus for removing dissolved hydrogen sulfide in anaerobic treatment
US9446972B2 (en) Activated sludge treatment method, and method for upgrading existing waste water treatment equipment using said method
JP5064338B2 (en) Wastewater treatment equipment
KR101278475B1 (en) Sludge Treatment Facility Combining Swirl Flow Type Inorganic Sludge Selective Discharge Device and Bioreactor
JP5329495B2 (en) Biological wastewater treatment equipment
EP2526067B1 (en) A process for the thermophilic aerobic treatment of concentrated organic waste water and the related plant
CN107055963A (en) The efficient advanced treatment apparatus of percolate and processing method
CN108569817A (en) A kind of coal chemical industrial waste water biochemical system processing unit
JP2004089858A (en) Organic waste processing method and apparatus
JP5930798B2 (en) Organic wastewater treatment method and apparatus
KR100352177B1 (en) Wastewater treatment plant for disintegration and separation of pollutants
JP5329499B2 (en) Biological wastewater treatment equipment
JP4490659B2 (en) Sewage treatment system
JP5873744B2 (en) Organic wastewater and organic waste treatment method and treatment equipment
KR200176101Y1 (en) The multiple S.B.R SYSTEM involving media and membrane to treat the waste water which contains high concentration organic material, nitrogen and phosphorus.
JP2002186988A (en) Wastewater treatment device and method for treating wastewater
KR101433314B1 (en) Organic acid generator using food wastewater and Effective Microorganism and sewage treatment apparatus comprising the same

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20121116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5329495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees