JP2011050902A - Water treatment system for sewage - Google Patents
Water treatment system for sewage Download PDFInfo
- Publication number
- JP2011050902A JP2011050902A JP2009203856A JP2009203856A JP2011050902A JP 2011050902 A JP2011050902 A JP 2011050902A JP 2009203856 A JP2009203856 A JP 2009203856A JP 2009203856 A JP2009203856 A JP 2009203856A JP 2011050902 A JP2011050902 A JP 2011050902A
- Authority
- JP
- Japan
- Prior art keywords
- water
- treatment system
- aerobic
- spiral
- anaerobic reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
本発明は、食品工場の製造過程で排出される有機性廃水または下水等を処理する汚水の水処理システムに関する。 The present invention relates to a wastewater treatment system for treating organic wastewater or sewage discharged in the manufacturing process of a food factory.
従来の水処理技術として、嫌気性固定床やUASB(Upflow Anaerobic Sludge Blanket)法などの上向流式の嫌気性リアクタを前段に配し、後段に下向流式の好気性リアクタを配した水処理システムが知られている(特許文献1)。特許文献1は、図11に示すような構成になっている。図中の符番1は嫌気性リアクタであり、原水ポンプ2より有機性廃水が供給されるようになっている。嫌気性リアクタ1には、担体(図示せず)が充填されたろ床3が配置された好気性リアクタ4が接続されている。この好気性リアクタ4には、ブロワ5が接続されている。前記嫌気性リアクタ1には、該嫌気性リアクタ1からバイオガスガ供給されるガス処理塔6が接続されている。なお、図11において、実線は水の流れ、点線はガスの流れを示す。
As conventional water treatment technology, an anaerobic fixed bed or UASB (Upflow Anaerobic Sludge Blanket) method and other upstream anaerobic reactors are arranged in the front stage, and a downstream aerobic reactor is arranged in the rear stage. A system is known (Patent Document 1).
この水処理システムでは、原水を嫌気性リアクタ1に導入し、嫌気性リアクタ1においてメタン生成菌を中心とした嫌気性微生物の働きにより、原水中の有機物を分解する。この嫌気性処理水を後段の好気性リアクタ4に導入し、嫌気性リアクタ1で分解しきれなかった有機物を、酸素を利用し、有機物を分解する好気性微生物の働きにより、分解するものである。
In this water treatment system, raw water is introduced into the
嫌気性処理は、(1)空気の供給が必要なく低コストである、(2)微生物の増殖速度が比較的遅いことから汚泥の発生量が少ない(処分費が高い)、(3)バイオガスからボイラや発電機を使って、エネルギーを回収できるというメリットがある。 Anaerobic treatment is (1) low supply cost with no need for air supply, (2) low growth rate of microorganisms due to relatively slow growth rate of microorganisms (high disposal costs), (3) biogas There is an advantage that energy can be recovered using a boiler or generator.
一方、嫌気性処理の場合、発生するバイオガス中には腐食性ガスである硫化水素、温室効果係数の高いガスであるメタン等の未処理で大気に放出できないガスが発生し、ガスの処理が必要であるという課題がある。また、好気性処理に比べると、有機物の処理性能(BOD、COD等)が劣り、例えば処理水のBOD 10mg/L以下など、処理目標値が厳しい場合には、嫌気性処理のみでは目標水質の達成が難しいという課題がある。 On the other hand, in the case of anaerobic treatment, in the generated biogas, gas such as hydrogen sulfide, which is a corrosive gas, and methane, which is a gas with a high greenhouse effect, is generated and cannot be released into the atmosphere. There is a problem that it is necessary. In addition, compared to aerobic treatment, the treatment performance of organic substances (BOD, COD, etc.) is inferior. For example, when the treatment target value is severe, such as BOD of treated water of 10 mg / L or less, the target water quality is not obtained with anaerobic treatment alone. There is a problem that it is difficult to achieve.
一方で、好気性処理は嫌気性処理に比べ、酸素の供給が必要である。また、汚泥の発生量が多いことからコストはかかるものの、比較的良好な水質を得られるというメリットがある。後段の好気性処理に関しては、図11に示すようにブロア5により水中に空気または酸素ガスを送り込むことにより、好気微生物が利用するための酸素を供給する方法が主流である。しかし、本出願人は、上記従来技術を改良するため、先に図12のように、好気性リアクタ4の上部に散水部7を設けた構成の技術を提案した(非特許文献1)。こうこのように、嫌気性処理水を散水部7から散水する散水型の好気性リアクタ4とすることにより、大幅な省エネルギーが可能となった。
On the other hand, aerobic treatment requires supply of oxygen compared to anaerobic treatment. Moreover, since there is much generation amount of sludge, although it costs, there exists a merit that a comparatively favorable water quality can be obtained. As for the aerobic treatment at the latter stage, as shown in FIG. 11, a method of supplying oxygen for use by aerobic microorganisms by sending air or oxygen gas into water by a blower 5 is the mainstream. However, in order to improve the above-described conventional technique, the present applicant has previously proposed a technique in which the
しかしながら、図12に示す好気性リアクタにおいては、広い敷地面積が必要である。また、散水が不均一である場合、部分的にまったく処理を行わない部分(デッドスペース)が生じ、処理効率が悪くなる。更に、担体への生物の付着量が多くなると、ろ床3が閉塞してきて、酸素が十分に行き渡らず、処理効率が悪くなる。
一方、嫌気性リアクタにおいては、外気温が低下する冬季においては、生物の活性が低下し、処理性能が悪化するという問題があった。
However, the aerobic reactor shown in FIG. 12 requires a large site area. Moreover, when watering is non-uniform | heterogenous, the part which does not process at all (dead space) arises, and processing efficiency worsens. Furthermore, when the amount of organisms attached to the carrier increases, the filter bed 3 becomes clogged, oxygen does not spread sufficiently, and the processing efficiency deteriorates.
On the other hand, in the anaerobic reactor, there is a problem that in winter when the outside air temperature decreases, the activity of the organism decreases and the processing performance deteriorates.
本発明はこうした事情を考慮してなされたもので、好気性リアクタの省スペース化、好気性微生物と被処理水の接触効率の向上、好気性微生物が利用する水中への酸素の溶解効率の向上、及び嫌気性リアクタの保温性の向上により、装置のイニシャルコストの低減および好気性リアクタにおける有機物分解性能の向上、及び窒素を除去しえる汚水の水処理システムを提供する目的としている。 The present invention has been made in consideration of such circumstances, and it is possible to save space in an aerobic reactor, improve contact efficiency of aerobic microorganisms and treated water, and improve dissolution efficiency of oxygen in water used by aerobic microorganisms. The purpose of the present invention is to reduce the initial cost of the apparatus by improving the heat retention of the anaerobic reactor, improve the organic matter decomposition performance in the aerobic reactor, and provide a wastewater treatment system capable of removing nitrogen.
本発明に係る汚泥の水処理システムは、有機性廃水を下部から上部に流す上向流式の嫌気性リアクタと、この嫌気性リアクタの外側に螺旋状に巻きつけられた配管又は水路とを具備し、前記嫌気性リアクタの上部からの流出水が螺旋状配管又は螺旋状水路をつたって、上部から下部に自然流下によって流れる構成の汚水の水処理システムであって、前記螺旋状配管又は螺旋状水路の内部に微生物を付着させるための担体を備え、水流の表面部から空気中の酸素を取り込むことにより好気性処理を行うことを特徴とする。 The sludge water treatment system according to the present invention comprises an upward flow type anaerobic reactor for flowing organic waste water from the lower part to the upper part, and a pipe or water channel spirally wound around the outside of the anaerobic reactor. A wastewater treatment system in which effluent water from the upper part of the anaerobic reactor flows by natural flow from the upper part to the lower part through a spiral pipe or spiral water channel, and the spiral pipe or spiral A carrier for attaching microorganisms to the inside of the water channel is provided, and aerobic treatment is performed by taking in oxygen in the air from the surface portion of the water flow.
本発明によれば、装置のイニシャルコストの低減および好気性リアクタにおける有機物分解性能の向上、及び窒素を除去しえる汚水の水処理システムを提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the reduction of the initial cost of an apparatus, the improvement of the organic substance decomposition | disassembly performance in an aerobic reactor, and the wastewater treatment system which can remove nitrogen can be provided.
以下、本発明の汚泥の水処理システムについて更に詳しく説明する。
本発明において、螺旋状配管又は螺旋状水路の内部に配置される担体としては、微生物が付着しやすい素材であればどのようなものであってもよい。具体的には、例えば、1cm程度の円筒中空状のポリプロピレンやポリエチレン、ビニロン、塩化ビニリデンなどを素材とするプラスチック状担体を敷き詰めたものであってもよいし、配管の下部にこれら素材からなるシートを敷き詰めたものであってもよい。また、素材に関してはプラスチックに限らず、微生物が付着しやすいものであれば何でもよく、セラミック、炭素繊維、金属性の素材、スポンジ、不織布、砕石、木材チップ、活性炭等、どのようなものでもあってよい。担体の形状に関しても、円筒中空状やシート状のものに限らず、角型のものであってもよいし、ひも状の接触材を配管の内部にしきつめたものであってもよい。
Hereinafter, the sludge water treatment system of the present invention will be described in more detail.
In the present invention, the carrier disposed inside the spiral pipe or the spiral water channel may be any material as long as microorganisms are easily attached thereto. Specifically, for example, a plastic hollow carrier made of, for example, a cylindrical hollow polypropylene of about 1 cm, polyethylene, vinylon, vinylidene chloride, etc. may be laid, or a sheet made of these materials under the pipe It may be one that has been spread. In addition, the material is not limited to plastic, and any material can be used as long as it is easy for microorganisms to adhere to it, such as ceramic, carbon fiber, metallic material, sponge, non-woven fabric, crushed stone, wood chip, activated carbon, etc. You can. The shape of the carrier is not limited to a cylindrical hollow shape or a sheet shape, but may be a square shape, or may be one in which a string-like contact material is tightened inside the pipe.
本発明において、螺旋状配管の傾斜は1/50〜1/100程度とし、水流が早くなりすぎないようにする。配管の流量はマニングの式やクッターの式(「水理公式集」:土木学会発行)により求められる。原水の流入流量が設計上の最大流量となる場合に、螺旋状配管内が満管とならないように配管径は決定される。なお、原水の流量変動が大きい場合は、流量調整槽を嫌気性リアクタの前段部かもしくは、嫌気性リアクタの後段に設けた方がよい。 In the present invention, the inclination of the spiral pipe is set to about 1/50 to 1/100 so that the water flow does not become too fast. The flow rate of the pipe can be obtained by Manning's formula or Kutta's formula ("Hydrologic Official Collection" published by Japan Society of Civil Engineers) The pipe diameter is determined so that the spiral pipe does not become full when the inflow rate of the raw water is the maximum designed flow rate. In addition, when the flow rate fluctuation | variation of raw | natural water is large, it is better to provide the flow control tank in the front | former part of an anaerobic reactor, or the back | latter stage of an anaerobic reactor.
次に、本発明の実施形態に係る汚水の水処理システムについて図面を参照して説明する。なお、本実施形態は下記に述べることに限定されない。
(第1の実施形態)
第1の実施形態に係る汚泥の水処理システムについて、図1を参照する。本水処理システムは、嫌気性リアクタの上部からの流出水が螺旋状の好気性処理配管(以下、好気性処理廃刊と呼ぶ)をつたって、上部から下部に自然流下によって流れる構成となっている。
Next, a wastewater treatment system according to an embodiment of the present invention will be described with reference to the drawings. Note that the present embodiment is not limited to the following description.
(First embodiment)
The sludge water treatment system according to the first embodiment will be described with reference to FIG. In this water treatment system, the effluent from the upper part of the anaerobic reactor is connected by a spiral aerobic treatment pipe (hereinafter referred to as aerobic treatment abolition) and flows from the upper part to the lower part by natural flow. .
図中の符番11は、有機性廃水を下部から上部に流す上向流式の嫌気性リアクタである。ここで、有機性排水としては、例えば食品工場からの排水、養豚場からの糞尿排水、都市下水が挙げられる。上向流式の嫌気性リアクタには、例えば嫌気性ろ床法、UASB法(Upflow Anaerobic Sludge Blanket:上向流式汚泥ブランケット法)、EGSB法(Expanded Granular Sludge Bed:膨張粒状汚泥床法)、ICリアクタ、嫌気性流動床法がある。この嫌気性リアクタ11の外側には、螺旋状の好気性処理配管12が巻きつけられている。
この好気性処理配管12は、図2に示すように、内部に微生物を付着させるための1cm程度の円筒中空状のポリプロピレン製担体13を備え、水流の表面部から空気中の酸素を取り込むことにより好気性処理を行うようになっている。前記嫌気性リアクタ11には、原水ポンプ14が接続されている。前記好気性処理配管12には、沈殿池15が接続されている。前記嫌気性リアクタ11には、該嫌気性リアクタ11からバイオガスが供給されるガス処理塔16が接続されている。なお、図1において、実線は水の流れ、点線はガスの流れを示す。
As shown in FIG. 2, the
こうした構成の水処理システムの作用は次のとおりである。
まず、有機性廃水は、上向流式の嫌気性リアクタ11に導入される。この嫌気性リアクタ11では嫌気性処理が行われる。嫌気性処理では、有機性廃水中の有機物を加水分解菌、酸生成菌、メタン生成菌の働きにより、メタンガスまで分解することにより、排水中の有機分の大部分を除去する。この時、嫌気性処理で生じるバイオガスはメタンを主成分とし、二酸化炭素を含んだガスである。しかし、原水中に硫黄分が含まれる場合は、嫌気性細菌の一種である硫酸還元菌の働きにより還元され、バイオガス中に硫化水素が生成する。
このバイオガスはガス処理塔16へと導入され、脱硫処理、脱臭処理をされる。この処理ガスは、メタンガスを主成分とし、ボイラやガスエンジンなどのエネルギー源として利用される。
The operation of the water treatment system having such a configuration is as follows.
First, the organic waste water is introduced into the upward flow
This biogas is introduced into the
一方で、嫌気性処理の処理水は、上部より越流する。この越流水は図2に示すような下部にポリプロピレン製担体13が敷き詰められた好気性処理配管12に導入され、自然流下により好気性処理配管12に沿って落下する際に、水表面上の空気から酸素を取り込み、水中に酸素が溶解する。担体13に付着した好気性微生物は、この水中に溶解した酸素を利用して、嫌気性処理で除去しきれなかった有機物を二酸化炭素まで分解する。また、好気性処理配管12の上・中段部で生物分解性の有機物が完全に除去されれば、好気性処理配管12の下段部では、硝化菌が増殖し、硝化菌の働きにより被処理水中の窒素分(大部分はアンモニア態の窒素)を亜硝酸塩(NO2 −)又は硝酸塩(NO3 −)まで酸化する。
On the other hand, the anaerobic treatment water overflows from the top. The overflow water is introduced into an
本発明に係る汚水の水処理システムは、図1に示すように、有機性廃水を下部から上部に流す上向流式の嫌気性リアクタ11と、この嫌気性リアクタ11の外側に巻きつけられた螺旋状の好気性処理配管12を具備し、嫌気性リアクタ11の上部からの流出水が好気性処理配管12を伝うとともに、上部から下部に自然流下によって流れる構成であり、好気性処理配管12の内部に担体13を備え、水流の表面部から空気中の酸素を取り込むことにより好気性処理を行うように構成されている。係る水処理システムによれば、以下の効果を有する。
As shown in FIG. 1, the wastewater treatment system according to the present invention is wound around an
(1) 嫌気性リアクタ11に巻きつけられた好気性処理配管12内で好気性処理を行うため、別途リアクタを設けるよりも省スペースとなる。
(2) 上部から散水する図12のような方式の好気性リアクタよりも、水と担体に付着した微生物の接触効率が高く、処理性能が高い。
(3) 上部から散水する図12のような方式の好気性リアクタよりも、水と担体に付着した微生物の接触効率が高く、処理性能が高い。
(4) 好気性処理配管12の上部の気相部から空気中の酸素を取り込めるため、図12のような方式よりも酸素の溶解効率が高い。
(1) Since the aerobic treatment is performed in the
(2) Compared with the aerobic reactor of the type shown in FIG. 12 that sprinkles water from the top, the contact efficiency between the microorganisms adhering to the water and the carrier is higher, and the processing performance is higher.
(3) Compared with the aerobic reactor of the type shown in FIG. 12 that sprinkles water from the top, the contact efficiency between the microorganisms adhering to the water and the carrier is higher, and the treatment performance is higher.
(4) Since oxygen in the air can be taken in from the gas phase portion at the top of the
なお、水温の低下は、嫌気性リアクタ11の処理性能の劣化を引き起こす。通常、冬季においては、廃水の温度は外気より高い。嫌気性リアクタ11の外側に好気性処理配管12を巻きつけることにより、次の効果を有する。
(5) 嫌気性リアクタ11が外気に直接触れる面積が減少するため、嫌気性リアクタ11の保温効果があり、低温期の温度低下による嫌気性リアクタ11の処理性能の劣化を緩和することができる。
(6) 雨天時に、嫌気性リアクタ11へ直接、雨が当たるのを防ぐことができるため、雨による嫌気性リアクタ11の温度低下を防ぐことができる。
In addition, the fall of water temperature causes deterioration of the processing performance of the
(5) Since the area where the
(6) Since rain can be prevented from directly hitting the
なお、第1の実施形態では、図2のように、配管の下部に複数の円筒中空状のポリプロピレン製担体が敷き詰められた場合について述べたが、これに限らず、図3に示すように上記単体と同素材からなるプラスチック製シート17が好気性処理配管の下部に配置されている場合でもよい。
In the first embodiment, as shown in FIG. 2, the case where a plurality of cylindrical hollow polypropylene carriers are spread in the lower part of the pipe is described, but not limited thereto, as shown in FIG. The case where the
(第2の実施形態)
本発明の第2の実施形態に係る汚水の水処理システムについて図4を参照する。但し、図1,図2と同部材は同符番を付して説明を省略する。
図中の符番21はボイラを示す。即ち、本水処理システムは、図1に示すような無加温のシステムでなくてもよく、例えば図4のように発生したメタンガスをボイラ21により燃焼させ、嫌気性リアクタ11を加温する構成にしたものである。本水処理システムにおいて、嫌気性リアクタ11は中温メタン菌であれば、35℃付近で活性が最大となり、温度の低下とともに活性が小さくなる。
(Second Embodiment)
The sewage water treatment system according to the second embodiment of the present invention will be described with reference to FIG. However, the same members as those in FIG. 1 and FIG.
Reference numeral 21 in the figure indicates a boiler. That is, the present water treatment system does not have to be an unheated system as shown in FIG. 1. For example, the methane gas generated as shown in FIG. 4 is burned by the boiler 21 and the
第2の実施形態によれば、嫌気性リアクタ11が加温された熱を外側に巻きつけられた好気性処理配管12にも伝熱させることができるため、嫌気性処理の性能だけでなく、好気性処理の性能も向上する。
According to the second embodiment, since the heat generated by the
(第3の実施形態)
本発明の第3の実施形態に係る汚水の水処理システムについて図5(A),(B)及び図6を参照する。ここで、図5(A)は同水処理システムの要部の概略図、図5(B)は同水処理システムの一構成である好気性水路の切断図である。図6は、図5(A)の水処理システムの一構成である好気性水路の一部を示す説明図である。但し、図1,図2と同部材は同符番を付して説明を省略する。
本実施形態は、図5に示すように、嫌気性リアクタ11に螺旋状の好気性水路31が形成され、更にこの好気性水路31内の途中に堰32が配置された構成であることを特徴とする。こうした構成の水処理システムでは、水が堰32の存在する位置まで溜まって、堰32を矢印Pのように越流し、下段の螺旋状の水路に流れていく。
(Third embodiment)
The sewage water treatment system according to the third embodiment of the present invention will be described with reference to FIGS. Here, FIG. 5A is a schematic view of the main part of the water treatment system, and FIG. FIG. 6 is an explanatory diagram showing a part of an aerobic water channel which is one configuration of the water treatment system of FIG. However, the same members as those in FIG. 1 and FIG.
As shown in FIG. 5, the present embodiment is characterized in that a spiral
第3の実施形態によれば、嫌気性リアクタ11に螺旋状の好気性水路31を設け、この好気性水路31内の途中に堰32が配置されている構成になっているため、下記の効果を有する。
(1) 好気性水路31の下部に敷き詰めた担体13が水流により、下流に流れ出ないようにするための役割を果たす。
(2) 水が堰32を越える際に分散され、気液の接触面が大きくなるため、この時に空気中の酸素を取り込み、酸素の溶解効率が高くなる。
(3) 螺旋状の好気性水路31の下部では遠心力が増大してくるため、流速が早くなる。堰32を作ることにより、その流速を緩和することができ、担体13に付着した微生物と水との接触時間を長くとることができるため、有機物の分解性能を向上させることができる。
According to the third embodiment, a spiral
(1) The
(2) Since water is dispersed when it passes over the
(3) Since the centrifugal force increases in the lower part of the spiral
(第4の実施形態)
本発明の第4の実施形態に係る汚水の水処理システムについて図7を参照する。但し、図1、図2、図5、図6と同部材は同符番を付して説明を省略する。
第4の実施形態の水処理システムは、螺旋状の好気性水路31の途中で好気性水路31a,31bが切れた構成になっている。ここで、処理水は好気性水路31aの切れた部分(段差部)33から落下し、下部の螺旋状の好気性水路31bに落ちるようになっている。なお、水が外側に溢れるのを回避するため、下段側の好気性水路31bの幅は上段側の好気性水路31aより若干広く設計されている。
(Fourth embodiment)
The sewage water treatment system according to the fourth embodiment of the present invention will be described with reference to FIG. However, the same members as those in FIGS. 1, 2, 5, and 6 are denoted by the same reference numerals, and the description thereof is omitted.
The water treatment system of the fourth embodiment has a configuration in which the
第5の実施形態によれば、水が落下する際、気液の接触面が大きくなるため、この時に空気中の酸素を取り込み酸素の溶解効率が高くなる。
また、連続した螺旋状の好気性水路の下部では遠心力が増大してくるため、流速が早くなる。そのため、図7のようにいったん好気性水路31を切ってやり、この遠心力を緩和することにより、水流を遅くすることができ、担体に付着した微生物と水との接触時間を長くとることができるため、有機物の分解性能を向上させることができる。
その他の実施例として、配管内に段差を設け、段差部で気液接触面を高めることによって、酸素の溶解効率を高めるものであってもよい。
According to the fifth embodiment, when the water falls, the contact surface of the gas-liquid becomes large. At this time, oxygen in the air is taken in and the oxygen dissolution efficiency is increased.
Further, since the centrifugal force increases at the lower part of the continuous spiral aerobic water channel, the flow velocity becomes faster. Therefore, once the
As another embodiment, the oxygen dissolution efficiency may be improved by providing a step in the pipe and increasing the gas-liquid contact surface at the step.
(第5の実施形態)
本発明の第5の実施形態に係る汚水の水処理システムについて図8を参照する。但し、図1、図2、図5、図6と同部材は同符番を付して説明を省略する。
第5の実施形態の水処理システムは、図8に示すように、螺旋状の好気性水路31内に任意の間隔でメッシュ34を入れ、担体13の流出防止を図ったものである。ここで、メッシュ34の孔径は、目詰まりせず、担体を下側に流出させない径であり、担体13よりも小さいメッシュ幅で、可能な限り大きいものが望ましい。
(Fifth embodiment)
The sewage water treatment system according to the fifth embodiment of the present invention will be described with reference to FIG. However, the same members as those in FIGS. 1, 2, 5, and 6 are denoted by the same reference numerals, and the description thereof is omitted.
In the water treatment system of the fifth embodiment, as shown in FIG. 8, meshes 34 are inserted at arbitrary intervals in a spiral
(第6の実施形態)
本発明の第6の実施形態に係る汚水の水処理システムについて図9を参照する。但し、図1、図2、図5、図6と同部材は同符番を付して説明を省略する。
第6の実施形態の水処理システムは、図9に示すように、担体13を網目状のネット35に入れて、任意の間隔で堰32を設けて、担体13がそれ以上下部に流出しないようにしたものである。
(Sixth embodiment)
The sewage water treatment system according to the sixth embodiment of the present invention will be described with reference to FIG. However, the same members as those in FIGS. 1, 2, 5, and 6 are denoted by the same reference numerals, and the description thereof is omitted.
In the water treatment system of the sixth embodiment, as shown in FIG. 9, the
(第7の実施形態)
本発明の第7の実施形態に係る汚水の水処理システムについて図10を参照する。但し、図1、図2、図5、図6と同部材は同符番を付して説明を省略する。
図中の41は、沈殿池15から処理水を供給する配管42と、嫌気性リアクタ11の周囲の螺旋状の好気性処理配管12間を接続する配管であり、該配管41に循環ポンプ43が介装されている。即ち、第8の実施形態の水処理システムは、好気性処理配管12で好気性微生物に処理された水を好気性処理配管12の前段部に循環する構成となっている。好気性処理配管12の下段部で、硝化菌の働きにより被処理水中の窒素分を亜硝酸塩(NO2 −)又は硝酸塩(NO3 −)まで酸化される。この水を循環ポンプ43により、好気性処理配管12に循環をする。この水中に含まれる亜硝酸塩または硝酸塩は、水路中の酸素が不足している部分(担体に付着した微生物の内部部分で無酸素状態になっている部分)で脱窒菌の働きにより、脱窒反応が生じ、窒素ガスまで分解される。これにより水中の窒素を低減させることができる。
第7の実施形態によれば、処理水の放流先における富栄養化の原因物質である窒素の除去を行うことが可能となる。
(Seventh embodiment)
The sewage water treatment system according to the seventh embodiment of the present invention will be described with reference to FIG. However, the same members as those in FIGS. 1, 2, 5, and 6 are denoted by the same reference numerals, and the description thereof is omitted.
41 in the figure is a pipe connecting the
According to the seventh embodiment, it is possible to remove nitrogen that is a causative substance of eutrophication at the treated water discharge destination.
なお、図10の水処理システムでは、沈殿処理後の水を返送している構成となっているが、沈殿池に流入する前の水を返送するものであってもよい。また、水路の上端部に返流するのではなく、水路の途中部に返流する構成であってもよい。
更に、外側に巻きつけた配管を、光を透過する素材(透明のビニールチューブ等)とすることにより、配管内に藻類を繁殖させ、光合成により窒素、りんの除去能力を有する構成としたものであってもよい。
In addition, although it has the structure which returns the water after a precipitation process in the water treatment system of FIG. 10, the water before flowing in into a sedimentation basin may be returned. Moreover, the structure which returns to the middle part of a water channel instead of returning to the upper end part of a water channel may be sufficient.
Furthermore, the pipe wound around the outside is made of a material that transmits light (transparent vinyl tube, etc.), so that algae can be propagated in the pipe, and it has the ability to remove nitrogen and phosphorus by photosynthesis. There may be.
なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。 Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.
11…嫌気性リアクタ、12…螺旋状の好気性処理配管、13…担体、14…原水ポンプ、15…沈殿池、16…ガス処理塔、17…プラスチック製担体、21…ボイラ、31…好気性水路、32…堰、33…段差部、34…メッシュ、35…網状ネット、41,42…配管、43…循環ポンプ。
DESCRIPTION OF
Claims (6)
この嫌気性リアクタの外側に螺旋状に巻きつけられた配管又は水路とを具備し、
前記嫌気性リアクタの上部からの流出水が螺旋状配管又は螺旋状水路をつたって、上部から下部に自然流下によって流れる構成の汚水の水処理システムであって、
前記螺旋状配管又は螺旋状水路の内部に微生物を付着させるための担体を備え、水流の表面部から空気中の酸素を取り込むことにより好気性処理を行うことを特徴とする汚水の水処理システム。 An upflow anaerobic reactor that flows organic wastewater from bottom to top;
Comprising a pipe or water channel spirally wound around the anaerobic reactor,
The sewage water treatment system is configured such that effluent water from the upper part of the anaerobic reactor flows through a spiral pipe or a spiral water channel and flows naturally from the upper part to the lower part,
A sewage water treatment system comprising a carrier for adhering microorganisms inside the spiral pipe or the spiral water channel, and performing aerobic treatment by taking oxygen in the air from a surface portion of a water flow.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009203856A JP2011050902A (en) | 2009-09-03 | 2009-09-03 | Water treatment system for sewage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009203856A JP2011050902A (en) | 2009-09-03 | 2009-09-03 | Water treatment system for sewage |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011050902A true JP2011050902A (en) | 2011-03-17 |
Family
ID=43940494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009203856A Pending JP2011050902A (en) | 2009-09-03 | 2009-09-03 | Water treatment system for sewage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011050902A (en) |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5071158A (en) * | 1973-10-29 | 1975-06-12 | ||
JPS5071156A (en) * | 1973-10-29 | 1975-06-12 | ||
JPS5069858U (en) * | 1973-10-29 | 1975-06-20 | ||
JPS5191957U (en) * | 1975-01-21 | 1976-07-23 | ||
JPS5329164U (en) * | 1976-08-20 | 1978-03-13 | ||
JPS56126484A (en) * | 1980-02-06 | 1981-10-03 | Celanese Corp | Biological filter and its method |
JPS62103498U (en) * | 1985-12-16 | 1987-07-01 | ||
JPS63501408A (en) * | 1985-08-20 | 1988-06-02 | ブル−ム、アルベルト | Post-clarification device |
JPH04176392A (en) * | 1990-11-08 | 1992-06-24 | Ishikawajima Harima Heavy Ind Co Ltd | Treating equipment for anaerobic waste water |
JPH04176391A (en) * | 1990-11-08 | 1992-06-24 | Toshiba Corp | Treating equipment for anaerobic water |
JPH04108614U (en) * | 1991-03-01 | 1992-09-21 | 清水建設株式会社 | Purification weir |
JPH07155790A (en) * | 1993-12-07 | 1995-06-20 | Kirin Brewery Co Ltd | Waste water treating device |
JPH07284796A (en) * | 1994-04-20 | 1995-10-31 | Toshiba Corp | Anaerobic water treatment apparatus |
JPH091181A (en) * | 1995-06-22 | 1997-01-07 | Ishikawajima Harima Heavy Ind Co Ltd | Floating photosynthesis reactor |
JPH10156389A (en) * | 1996-12-04 | 1998-06-16 | Daikin Ind Ltd | Fluid purifier |
JPH11285696A (en) * | 1998-04-01 | 1999-10-19 | Tokyu Constr Co Ltd | Device and method for sewage treatment |
JP2000005793A (en) * | 1998-06-18 | 2000-01-11 | Mitsubishi Kakoki Kaisha Ltd | Upward current anaerobic treating apparatus and treatment |
JP2000218288A (en) * | 1999-02-01 | 2000-08-08 | Kurita Water Ind Ltd | Batch anaerobic treatment and device therefor |
JP2001121181A (en) * | 1999-10-29 | 2001-05-08 | N Ii T Kk | Water treatment method and apparatus |
JP2002045878A (en) * | 2000-08-07 | 2002-02-12 | Sonar:Kk | Water cleaning system |
JP2003311294A (en) * | 2002-04-25 | 2003-11-05 | Sangaku Renkei Kiko Kyushu:Kk | Tubular body for purification of sewage and method for purifying sewage by using the same |
JP2003326295A (en) * | 2002-05-10 | 2003-11-18 | Ebara Corp | Method and apparatus for treating organic waste water |
JP2006272117A (en) * | 2005-03-29 | 2006-10-12 | Ariake Kankyo Seibi Kosha | Water cleaning system |
JP2007307530A (en) * | 2006-05-22 | 2007-11-29 | Toshiba Corp | Aerationless water treatment apparatus |
JP2009028720A (en) * | 2007-07-04 | 2009-02-12 | Toshiba Corp | Aeration-less water treatment apparatus |
JP2009195778A (en) * | 2008-02-19 | 2009-09-03 | Toshiba Corp | Aeration-less water treatment apparatus |
-
2009
- 2009-09-03 JP JP2009203856A patent/JP2011050902A/en active Pending
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5071158A (en) * | 1973-10-29 | 1975-06-12 | ||
JPS5071156A (en) * | 1973-10-29 | 1975-06-12 | ||
JPS5069858U (en) * | 1973-10-29 | 1975-06-20 | ||
JPS5191957U (en) * | 1975-01-21 | 1976-07-23 | ||
JPS5329164U (en) * | 1976-08-20 | 1978-03-13 | ||
JPS56126484A (en) * | 1980-02-06 | 1981-10-03 | Celanese Corp | Biological filter and its method |
JPS63501408A (en) * | 1985-08-20 | 1988-06-02 | ブル−ム、アルベルト | Post-clarification device |
JPS62103498U (en) * | 1985-12-16 | 1987-07-01 | ||
JPH04176392A (en) * | 1990-11-08 | 1992-06-24 | Ishikawajima Harima Heavy Ind Co Ltd | Treating equipment for anaerobic waste water |
JPH04176391A (en) * | 1990-11-08 | 1992-06-24 | Toshiba Corp | Treating equipment for anaerobic water |
JPH04108614U (en) * | 1991-03-01 | 1992-09-21 | 清水建設株式会社 | Purification weir |
JPH07155790A (en) * | 1993-12-07 | 1995-06-20 | Kirin Brewery Co Ltd | Waste water treating device |
JPH07284796A (en) * | 1994-04-20 | 1995-10-31 | Toshiba Corp | Anaerobic water treatment apparatus |
JPH091181A (en) * | 1995-06-22 | 1997-01-07 | Ishikawajima Harima Heavy Ind Co Ltd | Floating photosynthesis reactor |
JPH10156389A (en) * | 1996-12-04 | 1998-06-16 | Daikin Ind Ltd | Fluid purifier |
JPH11285696A (en) * | 1998-04-01 | 1999-10-19 | Tokyu Constr Co Ltd | Device and method for sewage treatment |
JP2000005793A (en) * | 1998-06-18 | 2000-01-11 | Mitsubishi Kakoki Kaisha Ltd | Upward current anaerobic treating apparatus and treatment |
JP2000218288A (en) * | 1999-02-01 | 2000-08-08 | Kurita Water Ind Ltd | Batch anaerobic treatment and device therefor |
JP2001121181A (en) * | 1999-10-29 | 2001-05-08 | N Ii T Kk | Water treatment method and apparatus |
JP2002045878A (en) * | 2000-08-07 | 2002-02-12 | Sonar:Kk | Water cleaning system |
JP2003311294A (en) * | 2002-04-25 | 2003-11-05 | Sangaku Renkei Kiko Kyushu:Kk | Tubular body for purification of sewage and method for purifying sewage by using the same |
JP2003326295A (en) * | 2002-05-10 | 2003-11-18 | Ebara Corp | Method and apparatus for treating organic waste water |
JP2006272117A (en) * | 2005-03-29 | 2006-10-12 | Ariake Kankyo Seibi Kosha | Water cleaning system |
JP2007307530A (en) * | 2006-05-22 | 2007-11-29 | Toshiba Corp | Aerationless water treatment apparatus |
JP2009028720A (en) * | 2007-07-04 | 2009-02-12 | Toshiba Corp | Aeration-less water treatment apparatus |
JP2009195778A (en) * | 2008-02-19 | 2009-09-03 | Toshiba Corp | Aeration-less water treatment apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106316004B (en) | A kind of method of the direct deep purifying of high concentrated organic wastewater | |
CN101759323B (en) | Treatment combined process for pig farm waste water with high nitrogen content | |
CN102863081B (en) | Three-dimensional ecological deodorization dephosphorization denitrification method as well as device and application | |
CN103265144B (en) | Town wastewater treatment process and device with intensified nitrogen and phosphorus removing function | |
CN203768124U (en) | Ecological filter for micro-polluted water treatment | |
ES2441399T3 (en) | System and method for processing organic waste material | |
CN204324990U (en) | Be applicable to the multi-stage biological filter tank-ecological pond purification system into lake landscape water body | |
Kalogo et al. | Development of anaerobic sludge bed (ASB) reactor technologies for domestic wastewater treatment: motives and perspectives | |
CN101817615A (en) | Anaerobic-sequencing batch biofilm reactor-artificial wetland method for treating piggery wastewater | |
CN201864647U (en) | Underground unpowered domestic sewage and soil treatment device | |
CN201864644U (en) | Integrated denitrification and dephosphorization sewage treatment pond | |
CN103951064A (en) | Ecological filter used for micro-polluted water treatment | |
CN101602563A (en) | The method of biology, ecological sectional purifying treatment sanitary sewage | |
CN103896442A (en) | Pig farm wastewater treatment method | |
CN102503033A (en) | Technique for treating pig raising liquid waste by circular anaerobic reactor, sequencing batch biofilm, constructed wetland and facultative lagoon | |
CN106396298A (en) | Purification device for treating poultry farming wastewater through solar bio-floating bed | |
CN102259979A (en) | Novel bio-reaction bed and treatment method for landfill leachate | |
CN204779058U (en) | Compound wetland system of biological filter | |
CN114315012A (en) | Excrement wastewater treatment system and method applied to scenic spot | |
CN105314797B (en) | A kind of Worm biological filter tank of sewage sludge synchronization process and its application | |
CN207973636U (en) | The sewage disposal system on pig farm | |
CN110183032A (en) | A kind of livestock breeding wastewater recycling treatment system | |
CN107381802B (en) | Efficient nitrogen and phosphorus removal sewage treatment method | |
CN203346171U (en) | Baffled biological aerated filter (BBAF) | |
CN109879536A (en) | A kind of domestic sewage in rural areas purification system and purification method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120313 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121002 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121130 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130507 |