JP4001514B2 - Biological denitrification method and apparatus - Google Patents

Biological denitrification method and apparatus Download PDF

Info

Publication number
JP4001514B2
JP4001514B2 JP2002190199A JP2002190199A JP4001514B2 JP 4001514 B2 JP4001514 B2 JP 4001514B2 JP 2002190199 A JP2002190199 A JP 2002190199A JP 2002190199 A JP2002190199 A JP 2002190199A JP 4001514 B2 JP4001514 B2 JP 4001514B2
Authority
JP
Japan
Prior art keywords
gas
liquid
water
sludge
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002190199A
Other languages
Japanese (ja)
Other versions
JP2004033802A (en
JP2004033802A5 (en
Inventor
康弘 本間
俊博 田中
清美 荒川
晶 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002190199A priority Critical patent/JP4001514B2/en
Publication of JP2004033802A publication Critical patent/JP2004033802A/en
Publication of JP2004033802A5 publication Critical patent/JP2004033802A5/ja
Application granted granted Critical
Publication of JP4001514B2 publication Critical patent/JP4001514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水、し尿、各種工場等より排出される廃水中の酸化態窒素(NOx−N)を、生物学的に還元して脱窒処理する生物学的脱窒方法及び装置に関し、更に詳しくは、特にガス・液・固液分離部(以下「GSS部」とも記す)を多段に有する脱窒菌、とりわけグラニュール汚泥を保持した上向流式汚泥床処理方法及び装置に関する。
【0002】
【従来の技術】
従来、生物学的脱窒方法としては、担体に脱窒菌を固定する方法や上向流式汚泥床法(以下USB法とも記す)が採用され、そのUSB法には一般に図2に示すような装置が用いられている。なお、被処理水を以下「原水」ともいう。
図2の装置では、底部に原水供給管1が接続した原水供給部及び脱窒菌グラニュール汚泥層23を有し、汚泥層23の上方にガス衝突部24、ガス捕集部25、処理水9の流出部を有する脱窒槽22において脱窒するものであり、脱窒菌の付着担体を用いることなく、脱窒菌が自己造粒したグラニュール汚泥を形成させ、脱窒槽22内に高濃度の微生物を保持するものである。このような装置では、脱窒菌グラニュール汚泥層23の堆積していない装置の上部が、浮上してきたガスをグラニュール汚泥と分離するとともに処理水とグラニュール汚泥を分離するGSS部5として構成され、装置下部が脱窒菌グラニュール汚泥を堆積させ、脱窒反応を行う反応部として構成される。
【0003】
【発明が解決しようとする課題】
しかしながら、脱窒菌をグラニュールとして保持する上向流式汚泥床法には、いまなお、以下に示すような課題がある。
(a)脱窒処理で発生する窒素ガスを付着あるいは内包したグラニュール汚泥が浮上し、処理水とともに流出するため、脱窒槽内の脱窒菌グラニュール汚泥量が減少し、処理の悪化を招くおそれがある。
(b)GSS部が装置全体の1/3〜1/2を占めており、実際の脱窒反応を行う反応部のスペースが制限されているため、装置全体が大型になる。
(c)前記(a)、(b)の理由により、高負荷処理が困難となる。
【0004】
こうしたことから、本発明は、脱窒菌、とりわけグラニュール汚泥保持量を高めることにより、高い負荷においても安定した脱窒処理を行うことの出来る上向流式汚泥床法と、この処理方法を効果的に実施することのできる脱窒処理装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、以下に記載する手段によって前記課題を解決した。
(1)脱窒菌を含有した汚泥を保持した脱窒槽により、酸化態窒素を含む廃水を生物学的に高い酸化態窒素負荷において安定した脱窒処理をする方法であって、脱窒槽として、装置本体側壁に前記側壁との角度が35度以下、かつ各占有面積が装置断面積の2分の1以上となる邪魔板により形成される発生ガス集積部を備えたガス、液及び固液分離部を脱窒菌グラニュール汚泥床内部に多段に取り付けた上向流嫌気性汚泥処理装置を用い、この装置に、酸化態窒素を含む廃水を導入し、該発生ガス集積部の窒素ガスをガスホルダーに回収するとともに、該ガスホルダーに回収された窒素ガスの一部を該ガス、液及び固液分離部よりも下部の汚泥床内部に間欠的に吹き込むことにより、ガス、液及び固液分離部内部でのスカムの形成を防止し、かつ汚泥床を混合することを特徴とする生物学的脱窒方法。
(2)前記廃水に電子供与体及び/又は消泡剤を注入したのち、リアクター内部での通水速度を0.5〜5m/hになるように調整して該リアクターに流入させることを特徴とする前記(1)に記載の生物学的脱窒方法。
(3)被処理液に消泡剤を添加することにより、前記ガス、液及び固液分離部内部での発泡及びスカムの形成を防止することを特徴とする前記(1)又は(2)に記載の生物学的脱窒方法。
(4)ガス、液及び固液分離部を多段に有する上向流式汚泥床処理装置において、前記装置本体側壁に前記側壁との角度が35度以下、かつ各占有面積が装置断面積の2分の1以上となる邪魔板により形成される発生ガス集積部を備えた該ガス、液及び固液分離部を脱窒菌グラニュール汚泥床内部に多段に取り付け、酸化態窒素を含む被処理水を流入する被処理水送液管を底部に配設し、該発生ガス集積部の窒素ガスを回収するガスホルダーを具備し、該ガスホルダーに回収された窒素ガスの一部を該ガス、液及び固液分離部よりも下部の汚泥床内部に窒素ガスを吹き込む配管を設け、装置内に脱窒菌を含有する汚泥を保持した上向流汚泥床処理装置からなることを特徴とする生物学的脱窒装置。
(5)前記上向流嫌気性汚泥床処理装置が、電子供与体及び/又は消泡剤を注入し、流入水のリアクター内部での通水速度を0.5〜5m/hになるように調節した被処理水を被処理水送液管から流入する前記(4)記載の生物学的脱窒装置。
【0007】
本発明では、脱窒により発生する窒素ガスを多段に設置したGSS部から速やかに回収し、発生ガス・処理水・汚泥の分離回収性能を高めることで、脱窒菌、とりわけグラニュール汚泥の保持量を高める効果があり、高負荷処理が可能となる。
本発明は、ガス、液及び固液分離部を多段に取り付け、嫌気性菌を含有する汚泥を保持した上向流嫌気性汚泥床処理装置を、嫌気性菌を含有する汚泥に代えて脱窒菌を含有する汚泥を入れ、脱窒作用が生じるようにして、生物学的脱窒処理を行うようにしたものである。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明するが、本発明はこれに限定されない。
図1は、生物学的脱窒処理方法を実施するのに好ましい本発明の上向流式汚泥床処理装置の一形態の概要を例示した図である。
なお、実施の形態及び実施例を説明するための全図において、同一機能を有する構成要素は同一符号を用いて示す。
図1において、下部に原水送液管1が連通し、上下を閉塞した筒状のリアクター2が設けてある。リアクター2内部の左右両側壁には、それぞれに一方の端部を固定し、他方の端部を反対側の側壁方向に向かって下降しながら延びる邪魔板3が設けてある。
【0009】
邪魔板3は、上下方向に3箇所左右交互に設けてあって、リアクター側壁との間にそれぞれ鋭角の区分スラッジゾーン4a〜4cを形成している。リアクター2側壁と邪魔板3のなす角度θは35度以下の鋭角であることが好ましく、邪魔板3の占有面積は装置断面積の1/2以上である。
なお、角度θは邪魔板3が下向きであるから、側壁に対して上向きの大きい角度と下向きの小さい角度の2つがあるが、この場合、小さいほうの角度で表す。θが35度を越える角度の場合には、スラッジゾーン4a〜4cの邪魔板3にグラニュール汚泥が堆積し、デッドスペースを生じやすくなるため、流動性が不十分となり、高負荷処理が困難となる場合がある。
また、邪魔板3の占有面積が1/2以下だと、発生ガスの捕捉が不十分となり、気液固の分離に不具合を生じる。すなわち、リアクターの中心よりガスが上方へ抜けてしまい、後記のGSS部5にガスを十分に集積することができなくなる。
【0010】
区分スラッジゾーン4a〜4cの上部はGSS部5を形成している。反応が開始すると発生ガスが集まる気相部5aには、外部と通じる発生ガス回収配管6の排出口を設けてある。
気相部5aから接続されている発生ガス回収配管6の吐出口は、水を充填した水封槽7の水中内で開口している。開口位置は水圧が異なる適宜な水深位にあり、水封槽7には発生ガス回収配管6から吐き出されたガス流量を測定するガスメータ8が設けてある。ガスメータ8の先には、ガスホルダー11が設けられている。また、リアクター2上端には上澄み液を排出する処理水配管9が開口している。
【0011】
本発明の処理の対象となる原水は、アンモニア性窒素、有機性窒素、酸化態窒素を含む廃水であり、アンモニア性窒素及び有機性窒素は好気性処理などにより酸化態窒素としてから本発明に供する。
【0012】
本発明の酸化態窒素の脱窒方法には、従属栄養細菌である脱窒菌により、原水中の有機物、あるいは系外から添加されるメタノールなどの有機物を電子供与体として利用する方法や、独立栄養性の脱窒菌により、アンモニア性窒素や硫黄などを電子供与体として利用する方法が適用できる。
【0013】
リアクター2は、脱窒菌からなるグラニュール汚泥を投入して使用するのが好ましいが、グラニュール汚泥でなくてもよい。脱窒菌は上記従属栄養細菌の脱窒菌、あるいは独立栄養性の脱窒菌の何れも適用できる。原水は送液管1からリアクター2へ導入する。原水を処理水の循環液や系外から供給する希釈水等により、必要に応じて適宜希釈を行い、流入水のリアクター2内部での通水速度が0.5〜5m/hとなるように調節することで、リアクター内部のグラニュール汚泥層の流動状態が良好となる。流入水のリアクター2内部での通水速度を6m/h以上にすると、脱窒菌グラニュール汚泥が処理水とともに流出しやすくなるため、通水速度を5m/h以下とすることが好ましい。
【0014】
リアクター2内では脱窒菌からなるグラニュール汚泥の介在によって酸化態窒素が分解し、窒素ガスが発生する。発生したガスは、各区分スラッジゾーン4a〜4b上端のGSS部5に別れて集まり、それぞれに気相部5aを形成し、発生ガス回収配管6を通じて水封槽7に至る。こうした発生ガスは、ガスメータ8でその排出量が記録され、ガスホルダー11に送られる。発生ガスの一部は、区分スラッジゾーン4a〜4b内でグラニュール汚泥に付着し、その見かけ比重を軽減させるとともに、グラニュール汚泥を同伴してGSS部5の水面に達する。こうした発生ガスは、気泡を形成して水面気泡部5bに一時的に滞留する。水面気泡部5bに集合した気泡はやがて破裂し、発生ガスとグラニュール汚泥とが分離され、グラニュール汚泥はもとの比重を回復して水中に潜り、発生ガスは、発生ガス回収配管6から水封槽7を経由して系外に排出される。酸化態窒素が分解して清澄になって水は、リアクター上端から処理水配管9を経由して系外に排出される。
【0015】
各GSS部5の気相部5aのガス圧は異なるので、その差圧は水封槽7で調整するとよい。原水送液側に近い順に水封圧は高く保つ必要がある。ガス回収の圧調整は水封槽7を使う方法以外にも多くの方法がある。例えば圧力弁等を使用してもよい。本発明の上向流式汚泥床処理方法では、各区分スラッジゾーン毎にそこで発生する発生ガスを回収できるため、リアクター単位断面積当たりの発生ガス量が少なくなる。特に処理水を流出させる処理水配管9に最も近い所では、リアクターの単位断面積当たりのガス量が小さくなる。そのため、グラニュール汚泥の系外流出量は非常に少なくすることができる。
【0016】
発泡性の原水の場合には、GSS部5内の気相部5a及び発生ガス回収配管6が閉塞し、発生ガスの回収が困難となる。このような場合、リアクター2流入水に予め消泡剤10を加えることで、GSS部5内での発泡を抑えることができる。GSS部5内に消泡剤を滴下、噴霧する方法に比べ、本手法は密閉空間での消泡に効果的である。消泡剤10は原水性状に応じた消泡効果を有する消泡剤を使用する。消泡剤の種類としてはシリコーン系消泡剤、アルコール系消泡剤の何れも適用が可能である。
【0017】
原水が高SS等の理由により、スカムを形成しやすい場合には、GSS部5内の気泡部5b表面及び内部にスカムを形成し、発生ガスの回収が困難となる。このような場合には、発生ガス吹き込み配管14を散気管12に接続し、ガスホルダー11内の発生ガスをGSS部5内に供給することで、スカムの破壊あるいはスカムの形成防止が可能となる。散気管12から吹き込まれる気泡によりスカムが破壊され、破壊されたスカムはリアクター2内の液の流れとともに処理水として排出される。
【0018】
各GSS部で吹き込みガスを回収できるため、リアクター単位断面積当たりの発生ガス量が少なく、特に処理水を流出させる処理水配管に最も近い所では、リアクターの単位断面積当たりのガス量が小さくなり、グラニュール汚泥の系外流出量を極く少なくすることができる機能は損なわれない。散気管はリアクターの下部あるいは各GSS部の下部に配置する。吹き込みガスによりグラニュール汚泥層が撹拌され、グラニュール汚泥と流入廃水の接触は良好となり、特に、リアクター本体内に流入する酸化態窒素負荷量が少ない場合には、これにより発生するガスの量も少ないため、吹き込みガスによるグラニュール汚泥層の撹拌の効果は大きい。
【0019】
GSS部5内部のスカムを破壊・除去するために、GSS部5内に吹き込む気体は酸素を含まない、脱窒処理に影響を与えない気体が好ましく、特に発生する窒素ガスを使用することが望ましい。なお、従属栄養細菌である脱窒菌を適用する場合は、通性として嫌気性細菌であるため、処理水のORPが−100mV以下を維持し、脱窒処理に影響を与えない条件であれば、空気等の酸素を含む気体を使用することができる。
ガスを吹き込む頻度は、廃水の性状にもよるが1日に1回から1週間に1回とすることで、GSS部内部のスカムを破壊・除去する効果がある。また、ガスを吹き込む頻度を1日に1回以上とすることで、汚泥層の撹拌効果がさらに高まる。
【0020】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
【0021】
図3〜4に多段型脱窒処理の実験に用いた装置の概要を示す。A系列は上向流式汚泥床法の従来法であり、図3に、図2の原水供給管1中にメタノール15を注入する方式の従来法として図示するものである。B系列は傾斜する邪魔板を3ヶ取り付け、装置側壁と邪魔板との角度を30度とし、散気管を取り付け、発生ガスの吹込みを行った系列であり、図4に示す。B系列は本発明に基づく系列である。
【0022】
図4において、原水は、リアクター2の下端に接続した原水送液管1より流入し、リアクター2上部の処理水配管9より処理水を得る。リアクター2内には有機物を分解、浄化する際に発生したガスが集まるGSS部5を有し、その上端には外部と通じる発生ガス回収配管6の排出口を設けてある。脱窒処理の電子供与体としてメタノール15を注入した。
【0023】
液層部の容量は1m3であり、リアクター内の水温は20〜25℃である。原水には、化学工場から排出される廃水(酸化態窒素100mg/リットル)に、無機栄養塩類(リンなど)を添加したものを用いた。メタノールをBODとして300mg/リットルとなるように注入した。
B系列では発生ガスの吹込みを1時間当たり1回とした。
【0024】
図5に実験経過と脱窒処理成績の変化を示す。両系列とも処理水酸化態窒素濃度を見ながら酸化態窒素負荷量を徐々に上げた。
実験経過後約80日目まではほぼ同じ負荷量で処理できた。約80日目以降、酸化態窒素負荷が3kg/m3/d以上になると、A系列では処理水酸化態窒素濃度が高くなり、90日目では酸化態窒素除去率が50%に低下した。A系列では、負荷の上昇により、発生した窒素ガスを付着あるいは内包したグラニュール汚泥が浮上し、処理水とともに流出したため、脱窒槽内の脱窒菌グラニュール汚泥量が減少し、処理性能が低下した。
【0025】
一方、GSS部を多段に配置したB系列では、酸化態窒素負荷が5kg/m3/dにおいても処理水酸化態窒素濃度は5mg/リットル以下、酸化態窒素除去率95%以上の処理が可能であった。第1表に定常状態における処理成績の比較を示す。
【0026】
【表1】

Figure 0004001514
【0027】
本発明に基づくB系列では酸化態窒素負荷5kg/m3/d、COD除去率95%、処理水VSS40〜80mg/リットルであった。一方、A系列の従来法では、酸化態窒素負荷2.5kg/m3/d、COD除去率95%、処理水VSS40〜80mg/リットルであった。このようにB系列の本発明に基づく方法では、高い酸化態窒素負荷で運転しているにもかかわらず、脱窒処理成績が安定していた。また、処理水VSS濃度は従来法とほぼ同じであった。
【0028】
【発明の効果】
本発明によれば、ガス・液・固分離部を多段に配置することにより、脱窒により発生する窒素ガスを速やかに回収し、発生ガス・処理水・浮上汚泥の分離回収性能を高めることで、脱窒菌、とりわけグラニュール汚泥の保持量を高める効果があり、高い酸化態窒素負荷においても、安定した処理を行うことの出来る生物学的脱窒方法と、そのような装置を提供することができ、高い酸化態窒素負荷の上向流式汚泥床法(USB法)の運転において、常時安定した脱窒処理成績が得られるので、極めて有益である。
【図面の簡単な説明】
【図1】本発明の上向流脱窒処理装置の一形態を例示した模式図。
【図2】従来の上向流脱窒処理装置の一形態を例示した模式図。
【図3】実験に用いた従来法の上向流脱窒処理装置の概略を例示した模式図。
【図4】実験に用いた本発明の上向流脱窒処理装置の概略を例示した模式図
【図5】実験経過と酸化態窒素負荷、酸化態窒素及び除去率の変化を示す図。
【符号の説明】
1 原水送液管
2 リアクター
3 邪魔板
4 区分スラッジゾーン
5 GSS部
5a 気相部
5b 気泡部
6 発生ガス回収配管
7 水封槽
8 ガスメータ
9 処理水配管
10 消泡剤
11 ガスホルダー
12 散気管
13 汚泥層
14 発生ガス吹込配管
15 メタノール
21 流入水
22 脱窒槽
23 細菌グラニュール汚泥層
24 ガス衝突部
25 ガス捕集部
26 窒素ガス[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biological denitrification method and apparatus for biologically reducing and denitrifying oxidized nitrogen (NO x -N) in wastewater discharged from sewage, human waste, various factories, etc., More specifically, the present invention relates to a denitrifying bacterium having multistage gas / liquid / solid / liquid separation sections (hereinafter also referred to as “GSS section”), and more particularly to an upward flow sludge bed treatment method and apparatus holding granule sludge.
[0002]
[Prior art]
Conventionally, as biological denitrification methods, a method of fixing denitrifying bacteria on a carrier or an upflow sludge bed method (hereinafter also referred to as USB method) has been adopted, and the USB method is generally as shown in FIG. The device is used. The treated water is hereinafter also referred to as “raw water”.
The apparatus shown in FIG. 2 has a raw water supply unit and a denitrifying granular sludge layer 23 connected to the raw water supply pipe 1 at the bottom, and a gas collision unit 24, a gas collection unit 25, and treated water 9 above the sludge layer 23. In the denitrification tank 22 having an outflow part, granular sludge self-granulated by the denitrifying bacteria is formed without using a carrier for denitrifying bacteria, and high-concentration microorganisms are formed in the denitrifying tank 22. It is to hold. In such an apparatus, the upper part of the apparatus in which the denitrifying granular sludge layer 23 is not deposited is configured as a GSS section 5 that separates the rising gas from the granular sludge and separates the treated water and the granular sludge. The lower part of the apparatus is configured as a reaction part that deposits denitrifying bacteria granular sludge and performs a denitrification reaction.
[0003]
[Problems to be solved by the invention]
However, the upflow sludge bed method for retaining denitrifying bacteria as granules still has the following problems.
(A) Granular sludge with attached or encapsulated nitrogen gas generated by denitrification treatment floats up and flows out along with the treated water, so that the amount of denitrifying granule sludge in the denitrification tank is reduced and the treatment may be deteriorated. There is.
(B) Since the GSS section occupies 1/3 to 1/2 of the entire apparatus, and the space of the reaction section for performing the actual denitrification reaction is limited, the entire apparatus becomes large.
(C) Due to the reasons (a) and (b), high load processing becomes difficult.
[0004]
For these reasons, the present invention is effective in improving the denitrifying bacteria, in particular, the upward sludge bed method capable of performing stable denitrification treatment even at high loads by increasing the amount of retained granular sludge, and this treatment method. An object of the present invention is to provide a denitrification treatment apparatus that can be carried out automatically.
[0005]
[Means for Solving the Problems]
The present invention has solved the above problems by the means described below.
(1) A method of stably denitrifying wastewater containing oxidized nitrogen at a biologically high oxidized nitrogen load by a denitrification tank holding sludge containing denitrifying bacteria , and the apparatus as a denitrification tank Gas, liquid, and solid-liquid separation unit provided with a generated gas accumulation unit formed on a side wall of the main body by a baffle plate having an angle with the side wall of 35 degrees or less and each occupation area being 1/2 or more of the cross-sectional area of the apparatus Using an upflow anaerobic sludge treatment device installed in multiple stages inside the denitrifying granule sludge bed, waste water containing oxidized nitrogen is introduced into this device, and nitrogen gas from the generated gas accumulation part is used as a gas holder. is recovered, a part the gas is nitrogen gas collected in the gas holder, by intermittently blowing it therein sludge bed at the bottom than the liquid and solid-liquid separation unit, a gas, inside the liquid and solid-liquid separation unit Prevent the formation of scum in the Biological denitrification method, which comprises mixing the sludge bed One.
(2) After injecting an electron donor and / or an antifoaming agent into the wastewater, the water flow rate inside the reactor is adjusted to 0.5 to 5 m / h, and the wastewater is allowed to flow into the reactor. The biological denitrification method according to (1) above.
(3) In the above (1) or (2), foaming and scum formation inside the gas, liquid and solid-liquid separation part are prevented by adding an antifoaming agent to the liquid to be treated. A biological denitrification method as described.
(4) In an upward flow type sludge bed treatment apparatus having gas, liquid and solid-liquid separation sections in multiple stages , the angle between the apparatus main body side wall and the side wall is 35 degrees or less, and each occupation area is 2 of the apparatus cross-sectional area. min the gas with the occurrence gas integrated unit formed by the baffle plate with a 1 or more, attached to the liquid and solid-liquid separation unit denitrifying bacteria granular sludge bed inside the multi-stage, the treatment water containing oxidizing nitrogen disposed at the bottom of the water to be treated liquid feed pipe flowing into the, comprising a gas holder for recovering nitrogen gas emitting product gas accumulation unit, the gas part of the nitrogen gas recovered in the gas holder, the liquid and solid-liquid separating section a pipe for blowing bottom of sludge bed inside nitrogen gas provided than, biology, characterized in that it consists of an upflow sludge bed processor holding the sludge containing the denitrifying bacteria in the device Denitrification equipment.
(5) The upward flow anaerobic sludge bed treatment apparatus injects an electron donor and / or an antifoaming agent so that the water flow rate inside the reactor of the influent water is 0.5 to 5 m / h. The biological denitrification apparatus according to (4), wherein the adjusted water to be treated flows from the liquid feed pipe for water to be treated.
[0007]
In the present invention, nitrogen gas generated by denitrification is quickly recovered from the GSS units installed in multiple stages, and the separation / recovery performance of the generated gas / treated water / sludge is improved, so that the amount of denitrifying bacteria, especially granule sludge, is retained. This makes it possible to perform high load processing.
The present invention relates to an upflow anaerobic sludge floor treatment apparatus in which gas, liquid and solid-liquid separators are attached in multiple stages and holds sludge containing anaerobic bacteria, and denitrifying bacteria instead of sludge containing anaerobic bacteria. A sludge containing selenium is added to cause a denitrification action, and a biological denitrification treatment is performed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, although an embodiment of the invention is described based on a drawing, the present invention is not limited to this.
FIG. 1 is a diagram exemplifying an outline of an embodiment of an upward flow sludge bed treatment apparatus of the present invention that is preferable for carrying out a biological denitrification treatment method.
Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments and examples.
In FIG. 1, a raw water feed pipe 1 communicates with a lower part, and a cylindrical reactor 2 closed at the top and bottom is provided. The left and right side walls inside the reactor 2 are provided with baffle plates 3 that are fixed to one end and extend while descending the other end toward the opposite side wall.
[0009]
The baffle plates 3 are alternately provided at three places in the vertical direction on the left and right sides, and form acute slanted section sludge zones 4a to 4c between the side walls of the reactor. The angle θ formed between the side wall of the reactor 2 and the baffle plate 3 is preferably an acute angle of 35 degrees or less, and the occupation area of the baffle plate 3 is ½ or more of the apparatus cross-sectional area.
In addition, since the baffle plate 3 faces downward, there are two angles θ, a large upward angle and a small downward angle with respect to the side wall. In this case, the angle θ is represented by the smaller angle. When θ is an angle exceeding 35 degrees, granular sludge is accumulated on the baffle plates 3 of the sludge zones 4a to 4c, and a dead space is likely to be generated, resulting in insufficient fluidity and high load treatment. There is a case.
On the other hand, when the occupied area of the baffle plate 3 is 1/2 or less, the trapping of the generated gas becomes insufficient, causing a problem in the separation of gas and liquid. That is, the gas escapes upward from the center of the reactor, and the gas cannot be sufficiently accumulated in the GSS section 5 described later.
[0010]
The upper part of the divided sludge zones 4a to 4c forms a GSS portion 5. In the gas phase part 5a where the generated gas collects when the reaction starts, an outlet of the generated gas recovery pipe 6 communicating with the outside is provided.
The discharge port of the generated gas recovery pipe 6 connected from the gas phase part 5a opens in the water of the water-sealed tank 7 filled with water. The opening position is at an appropriate water depth with different water pressure, and the water sealing tank 7 is provided with a gas meter 8 for measuring the flow rate of the gas discharged from the generated gas recovery pipe 6. A gas holder 11 is provided at the tip of the gas meter 8. Further, a treated water pipe 9 for discharging the supernatant liquid is opened at the upper end of the reactor 2.
[0011]
The raw water to be treated in the present invention is waste water containing ammonia nitrogen, organic nitrogen, and oxidized nitrogen, and the ammonia nitrogen and organic nitrogen are converted into oxidized nitrogen by an aerobic treatment or the like before being used in the present invention. .
[0012]
The method for denitrifying oxidized nitrogen according to the present invention includes a method of utilizing organic matter in raw water or organic matter such as methanol added from outside the system as an electron donor by denitrifying bacteria, which are heterotrophic bacteria. A method using ammonia nitrogen, sulfur, or the like as an electron donor can be applied by a neutral denitrifying bacterium.
[0013]
The reactor 2 is preferably used by introducing granular sludge composed of denitrifying bacteria, but it may not be granular sludge. As the denitrifying bacterium, any of the above heterotrophic bacteria or autotrophic denitrifying bacteria can be applied. Raw water is introduced into the reactor 2 from the liquid feeding pipe 1. The raw water is appropriately diluted with the circulating water of the treated water or diluted water supplied from outside the system as necessary, so that the water flow rate inside the inflow reactor 2 is 0.5 to 5 m / h. By adjusting, the flow state of the granular sludge layer inside the reactor becomes good. When the water flow rate inside the reactor 2 of the inflow water is 6 m / h or more, the denitrifying granular sludge easily flows out together with the treated water. Therefore, the water flow rate is preferably 5 m / h or less.
[0014]
In the reactor 2, oxidized nitrogen is decomposed by the presence of granular sludge composed of denitrifying bacteria, and nitrogen gas is generated. The generated gas is collected separately in the GSS part 5 at the upper end of each of the divided sludge zones 4a to 4b, forms a gas phase part 5a in each, and reaches the water seal tank 7 through the generated gas recovery pipe 6. The amount of such generated gas is recorded by the gas meter 8 and sent to the gas holder 11. A part of the generated gas adheres to the granular sludge in the divided sludge zones 4a to 4b, reduces the apparent specific gravity, and accompanies the granular sludge and reaches the water surface of the GSS section 5. Such generated gas forms bubbles and temporarily stays in the water surface bubble portion 5b. The air bubbles gathered in the water surface bubble portion 5b eventually burst, and the generated gas and the granular sludge are separated. The granular sludge recovers its original specific gravity and is submerged in the water. It is discharged out of the system via the water sealing tank 7. Oxidized nitrogen decomposes and becomes clarified, and water is discharged from the upper end of the reactor via the treated water pipe 9 to the outside of the system.
[0015]
Since the gas pressure in the gas phase part 5 a of each GSS part 5 is different, the differential pressure may be adjusted in the water-sealed tank 7. It is necessary to keep the water sealing pressure higher in the order closer to the raw water feed side. There are many methods for adjusting the pressure for gas recovery in addition to the method using the water-sealed tank 7. For example, a pressure valve or the like may be used. In the upward flow type sludge bed processing method of the present invention, the generated gas generated in each divided sludge zone can be recovered, so that the amount of generated gas per reactor unit cross-sectional area is reduced. In particular, at the place closest to the treated water pipe 9 through which treated water flows out, the amount of gas per unit cross-sectional area of the reactor becomes small. Therefore, the outflow amount of granule sludge can be very reduced.
[0016]
In the case of foaming raw water, the gas phase part 5a and the generated gas recovery pipe 6 in the GSS part 5 are blocked, making it difficult to recover the generated gas. In such a case, foaming in the GSS part 5 can be suppressed by adding the antifoaming agent 10 to the reactor 2 inflow water in advance. Compared with the method in which an antifoaming agent is dropped and sprayed into the GSS section 5, this method is effective for defoaming in a sealed space. As the antifoaming agent 10, an antifoaming agent having an antifoaming effect corresponding to the raw aqueous state is used. As a kind of antifoaming agent, any of a silicone type antifoaming agent and an alcohol type antifoaming agent can be applied.
[0017]
When the raw water is likely to form scum due to high SS or the like, scum is formed on the surface and inside of the bubble portion 5b in the GSS portion 5 and it becomes difficult to recover the generated gas. In such a case, the generated gas blowing pipe 14 is connected to the diffuser pipe 12, and the generated gas in the gas holder 11 is supplied into the GSS section 5, thereby making it possible to prevent the scum from breaking or the formation of the scum. . The scum is broken by the bubbles blown from the air diffuser 12, and the broken scum is discharged as treated water together with the liquid flow in the reactor 2.
[0018]
Since the gas blown in each GSS section can be collected, the amount of gas generated per reactor unit cross-sectional area is small, and the gas amount per unit cross-sectional area of the reactor is small, especially in the place closest to the treated water piping that discharges treated water. In addition, the function that can extremely reduce the outflow of granule sludge is not impaired. The air diffuser is placed at the bottom of the reactor or below each GSS section. The granular sludge layer is agitated by the blow-in gas, and the contact between the granular sludge and the influent wastewater becomes good, especially when the amount of oxidized nitrogen load flowing into the reactor body is small, the amount of gas generated by this Since there are few, the effect of the stirring of the granular sludge layer by blowing gas is large.
[0019]
In order to destroy and remove the scum inside the GSS unit 5, the gas blown into the GSS unit 5 does not contain oxygen and is preferably a gas that does not affect the denitrification treatment, and it is particularly desirable to use generated nitrogen gas. . In addition, when applying denitrifying bacteria that are heterotrophic bacteria, because it is anaerobic bacteria as facultative, so long as the ORP of the treated water is maintained at -100 mV or less, does not affect the denitrification treatment, A gas containing oxygen such as air can be used.
The frequency of blowing the gas depends on the properties of the wastewater, but once a day to once a week has an effect of destroying and removing the scum inside the GSS section. Moreover, the stirring effect of a sludge layer further increases by making the frequency which blows in gas more than once a day.
[0020]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.
[0021]
3 to 4 show an outline of the apparatus used for the multi-stage denitrification experiment. The A series is a conventional method of the upward flow type sludge bed method, and is illustrated in FIG. 3 as a conventional method of injecting methanol 15 into the raw water supply pipe 1 of FIG. The B series is a series in which three inclined baffle plates are attached, the angle between the apparatus side wall and the baffle plate is 30 degrees, an air diffuser is attached, and the generated gas is blown in, as shown in FIG. The B series is a series based on the present invention.
[0022]
In FIG. 4, raw water flows from a raw water feed pipe 1 connected to the lower end of the reactor 2, and treated water is obtained from a treated water pipe 9 at the top of the reactor 2. The reactor 2 has a GSS portion 5 where gas generated when decomposing and purifying organic substances is collected, and a discharge port of a generated gas recovery pipe 6 communicating with the outside is provided at the upper end thereof. Methanol 15 was injected as an electron donor for the denitrification treatment.
[0023]
The volume of the liquid layer part is 1 m 3 , and the water temperature in the reactor is 20-25 ° C. The raw water used was waste water discharged from a chemical factory (oxidized nitrogen 100 mg / liter) with inorganic nutrient salts (such as phosphorus) added. Methanol was injected at a BOD of 300 mg / liter.
In the B series, the generated gas was blown once per hour.
[0024]
FIG. 5 shows the changes in the experimental process and denitrification treatment results. In both series, the amount of oxidized nitrogen was gradually increased while observing the treated hydroxide nitrogen concentration.
Up to about 80 days after the course of the experiment, it was possible to process with almost the same load. After about 80 days, when the oxidized nitrogen load became 3 kg / m 3 / d or more, the treated hydroxide nitrogen concentration increased in the A series, and the oxidized nitrogen removal rate decreased to 50% on the 90th day. In the A series, due to the increase in load, the granular sludge with attached or encapsulated nitrogen gas emerged and flowed out along with the treated water, so the amount of denitrifying granular sludge in the denitrification tank decreased and the treatment performance deteriorated. .
[0025]
On the other hand, in the B series in which the GSS parts are arranged in multiple stages, even when the oxidized nitrogen load is 5 kg / m 3 / d, the treatment is possible with a treatment nitrogen concentration of 5 mg / liter or less and an oxidation nitrogen removal rate of 95% or more. Met. Table 1 shows a comparison of processing results in steady state.
[0026]
[Table 1]
Figure 0004001514
[0027]
In the B series based on the present invention, the oxidized nitrogen load was 5 kg / m 3 / d, the COD removal rate was 95%, and the treated water VSS was 40 to 80 mg / liter. On the other hand, in the conventional method of the A series, the oxidized nitrogen load was 2.5 kg / m 3 / d, the COD removal rate was 95%, and the treated water VSS was 40 to 80 mg / liter. Thus, in the method based on the present invention of the B series, the denitrification treatment results were stable even though the operation was performed at a high oxidized nitrogen load. Moreover, the treated water VSS density | concentration was substantially the same as the conventional method.
[0028]
【The invention's effect】
According to the present invention, by arranging gas / liquid / solid separation sections in multiple stages, nitrogen gas generated by denitrification can be quickly recovered, and the separation and recovery performance of generated gas / treated water / floating sludge can be improved. It is possible to provide a biological denitrification method that has an effect of increasing the amount of denitrifying bacteria, particularly granule sludge, and that can perform a stable treatment even under a high oxidized nitrogen load, and such an apparatus. This is extremely useful because a stable denitrification treatment result can be obtained at all times in the operation of the upward flow type sludge bed method (USB method) with a high oxidized nitrogen load.
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating an embodiment of an upward flow denitrification apparatus of the present invention.
FIG. 2 is a schematic view illustrating an example of a conventional upward flow denitrification apparatus.
FIG. 3 is a schematic view illustrating the outline of a conventional upward flow denitrification apparatus used in the experiment.
FIG. 4 is a schematic view illustrating the outline of the upstream denitrification apparatus of the present invention used in the experiment. FIG. 5 is a diagram showing the course of the experiment and changes in the oxidized nitrogen load, oxidized nitrogen, and removal rate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw water feed pipe 2 Reactor 3 Baffle plate 4 Division sludge zone 5 GSS part 5a Gas phase part 5b Bubble part 6 Generated gas recovery pipe 7 Water seal tank 8 Gas meter 9 Treated water pipe 10 Defoamer 11 Gas holder 12 Aeration pipe 13 Sludge layer 14 Generated gas blowing pipe 15 Methanol 21 Inflow water 22 Denitrification tank 23 Bacterial granule sludge layer 24 Gas collision part 25 Gas collection part 26 Nitrogen gas

Claims (5)

脱窒菌を含有した汚泥を保持した脱窒槽により、酸化態窒素を含む廃水を生物学的に高い酸化態窒素負荷において安定した脱窒処理をする方法であって、脱窒槽として、装置本体側壁に前記側壁との角度が35度以下、かつ各占有面積が装置断面積の2分の1以上となる邪魔板により形成される発生ガス集積部を備えたガス、液及び固液分離部を脱窒菌グラニュール汚泥床内部に多段に取り付けた上向流嫌気性汚泥処理装置を用い、この装置に、酸化態窒素を含む廃水を導入し、該発生ガス集積部の窒素ガスをガスホルダーに回収するとともに、該ガスホルダーに回収された窒素ガスの一部を該ガス、液及び固液分離部よりも下部の汚泥床内部に間欠的に吹き込むことにより、ガス、液及び固液分離部内部でのスカムの形成を防止し、かつ汚泥床を混合することを特徴とする生物学的脱窒方法。A method of stably denitrifying wastewater containing oxidized nitrogen at a biologically high oxidized nitrogen load by a denitrification tank holding sludge containing denitrifying bacteria, and as a denitrification tank , Denitrifying bacteria for gas, liquid, and solid-liquid separators with a generated gas accumulation part formed by baffle plates whose angle with the side wall is 35 degrees or less and each occupied area is one half or more of the device cross-sectional area Using an upflow anaerobic sludge treatment device installed in multiple stages inside the granular sludge bed, introducing waste water containing oxidized nitrogen into this device, and collecting the nitrogen gas of the generated gas accumulation section in a gas holder , scum of the portion of the nitrogen gas recovered in the gas holder the gas, by intermittently blowing it therein sludge bed at the bottom than the liquid and solid-liquid separation unit, a gas, within the liquid and solid-liquid separation unit Prevents the formation of dirt Biological denitrification method, which comprises mixing the floor. 前記廃水に電子供与体及び/又は消泡剤を注入したのち、リアクター内部での通水速度を0.5〜5m/hになるように調整して該リアクターに流入させることを特徴とする請求項1に記載の生物学的脱窒方法。After injecting an electron donor and / or an antifoaming agent into the waste water, the water flow rate inside the reactor is adjusted to 0.5 to 5 m / h and allowed to flow into the reactor. Item 2. The biological denitrification method according to Item 1. 被処理液に消泡剤を添加することにより、前記ガス、液及び固液分離部内部での発泡及びスカムの形成を防止することを特徴とする請求項1又は請求項2に記載の生物学的脱窒方法。The biology according to claim 1 or 2, wherein foaming and scum formation inside the gas, liquid and solid-liquid separation part are prevented by adding an antifoaming agent to the liquid to be treated. Denitrification method. ガス、液及び固液分離部を多段に有する上向流式汚泥床処理装置において、前記装置本体側壁に前記側壁との角度が35度以下、かつ各占有面積が装置断面積の2分の1以上となる邪魔板により形成される発生ガス集積部を備えた該ガス、液及び固液分離部を脱窒菌グラニュール汚泥床内部に多段に取り付け、酸化態窒素を含む被処理水を流入する被処理水送液管を底部に配設し、該発生ガス集積部の窒素ガスを回収するガスホルダーを具備し、該ガスホルダーに回収された窒素ガスの一部を該ガス、液及び固液分離部よりも下部の汚泥床内部に窒素ガスを吹き込む配管を設け、装置内に脱窒菌を含有する汚泥を保持した上向流汚泥床処理装置からなることを特徴とする生物学的脱窒装置。 In the upward flow type sludge bed processing apparatus having gas, liquid and solid-liquid separation sections in multiple stages , the angle between the apparatus main body side wall and the side wall is 35 degrees or less, and each occupied area is a half of the apparatus cross-sectional area. attached to become disturbed the gas with the occurrence gas integrated unit formed by the plate, the liquid and solid-liquid separation unit denitrifying bacteria granular sludge bed inside the multi-stage or more, flows the water to be treated containing an oxidizing nitrogen disposed at the bottom of the water to be treated liquid feed pipe, emitting raw gas accumulating portion of the nitrogen gas comprises a gas holder for recovery, the gas part of the nitrogen gas recovered in the gas holder, liquid and solid-liquid a pipe for blowing a lower portion of the sludge bed inside nitrogen gas provided than the separation unit, characterized by comprising the upflow sludge blanket treatment apparatus holding the sludge containing the denitrifying bacteria in the device biological denitrification apparatus. 前記上向流嫌気性汚泥床処理装置が、電子供与体及び/又は消泡剤を注入し、流入水のリアクター内部での通水速度を0.5〜5m/hになるように調節した被処理水を被処理水送液管から流入する請求項4記載の生物学的脱窒装置。The upward flow anaerobic sludge bed treatment apparatus injects an electron donor and / or an antifoaming agent and adjusts the water flow rate inside the reactor of the influent water so as to be 0.5 to 5 m / h. The biological denitrification apparatus according to claim 4, wherein treated water flows from a treated water feed pipe.
JP2002190199A 2002-06-28 2002-06-28 Biological denitrification method and apparatus Expired - Fee Related JP4001514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190199A JP4001514B2 (en) 2002-06-28 2002-06-28 Biological denitrification method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190199A JP4001514B2 (en) 2002-06-28 2002-06-28 Biological denitrification method and apparatus

Publications (3)

Publication Number Publication Date
JP2004033802A JP2004033802A (en) 2004-02-05
JP2004033802A5 JP2004033802A5 (en) 2005-06-09
JP4001514B2 true JP4001514B2 (en) 2007-10-31

Family

ID=31700183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190199A Expired - Fee Related JP4001514B2 (en) 2002-06-28 2002-06-28 Biological denitrification method and apparatus

Country Status (1)

Country Link
JP (1) JP4001514B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7198717B2 (en) * 2004-08-26 2007-04-03 Graham John Gibson Juby Anoxic biological reduction system

Also Published As

Publication number Publication date
JP2004033802A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP5043671B2 (en) Biological denitrification method and apparatus
JP3729332B2 (en) Wastewater treatment apparatus including upflow anaerobic reactor and wastewater treatment method using the same
JP2003024985A (en) Dentrification apparatus and dentrification method
JP3999036B2 (en) Method and apparatus for treating organic wastewater
JP2012239929A (en) Method and apparatus for anaerobic treatment of organic wastewater
KR20100089637A (en) Cleaning system for waste-water purifier
JP2006289153A (en) Method of cleaning sewage and apparatus thereof
JP2007117908A (en) Septic tank
JP2006281215A (en) Apparatus for treating organic waste water and method therefor
JP2003024981A (en) Biological denitrification method and biological denitrification apparatus
KR101037888B1 (en) Hybrid wastewater treatment equipment with sedimentation, biological degradation, filtration, phosphorus removal and uv disinfection system in a reactor
JP4001514B2 (en) Biological denitrification method and apparatus
JP4162234B2 (en) Anaerobic treatment equipment
JP4001507B2 (en) Method and apparatus for treating organic wastewater
JP3280293B2 (en) Water treatment device and water treatment method
JP2006142302A (en) Anaerobic treatment method and apparatus
JP3955431B2 (en) Anaerobic treatment method and apparatus
KR20040064579A (en) Fluids fluxion process and plant for wastewater treatment
KR101898183B1 (en) wastewater treatment system using composite/water blow apparatus and removing methods of nitrogenphosphorous thereby
JP3169117B2 (en) Biological wastewater treatment equipment
JP2709357B2 (en) Aerobic wastewater treatment equipment
JP2000070990A (en) Method for removing nitrogen and suspended matter in wastewater and removal system therefor
JP2003033793A (en) Biological denitration equipment and biological denitration method
JP2000176477A (en) Treatment of highly contaminated sewage by using microorganism-immobilized carrier, treating device therefor, and carrier separating device
JP3479566B2 (en) Phosphorus recovery device using seawater

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4001514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees