JP3700935B2 - Anaerobic treatment method and apparatus - Google Patents

Anaerobic treatment method and apparatus Download PDF

Info

Publication number
JP3700935B2
JP3700935B2 JP2001394227A JP2001394227A JP3700935B2 JP 3700935 B2 JP3700935 B2 JP 3700935B2 JP 2001394227 A JP2001394227 A JP 2001394227A JP 2001394227 A JP2001394227 A JP 2001394227A JP 3700935 B2 JP3700935 B2 JP 3700935B2
Authority
JP
Japan
Prior art keywords
gas
water
anaerobic treatment
organic waste
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001394227A
Other languages
Japanese (ja)
Other versions
JP2003190996A5 (en
JP2003190996A (en
Inventor
康弘 本間
俊博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001394227A priority Critical patent/JP3700935B2/en
Publication of JP2003190996A publication Critical patent/JP2003190996A/en
Publication of JP2003190996A5 publication Critical patent/JP2003190996A5/ja
Application granted granted Critical
Publication of JP3700935B2 publication Critical patent/JP3700935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種工場、下水、し尿、畜産業施設等より排出される有機性の固形廃棄物等を対象とし、これを無害化する嫌気性汚泥床処理方法及び装置に関し、更に詳しくは、特に、ガス・液・固分離部(以下、「GSS部」とも記す)を多段に有する上向流嫌気性汚泥床処理方法及び装置に関する。
【0002】
【従来の技術】
廃水中の有機性固形分、厨芥、その他の有機性廃棄物を処理するメタン発酵処理法は、活性汚泥法等の好気性処理に比べると曝気のためのエネルギーが不要であり、余剰汚泥の発生量が少なく、発生するバイオガスからエネルギーを回収できるため、省エネルギーの点で優れている。しかし、メタン生成菌又はメタン発酵菌は増殖量が少なく、沈降性が悪いので微生物が処理水とともに流出しやすい。そのため、メタン発酵処理に用いる発酵槽内の微生物濃度を上げることが困難であった。さらに、コストや敷地等の面で問題点を抱えていた。
【0003】
微生物濃度の高い高効率型の発酵槽として、上向流嫌気性汚泥床法(以下、「UASB」とも記す)がある。これは近年普及してきた方法で、メタン菌等の嫌気性菌をグラニュール状に造粒化することにより、リアクター内のメタン菌の濃度を高濃度に維持できるという特徴があり、その結果、廃水中の有機物の濃度が相当高い場合でも効率よく処理できる。
【0004】
【発明が解決しようとする課題】
しかしながら、廃水中の有機性固形分、厨芥、その他の有機性廃棄物を対象とした従来のUASB処理法(図2)には、いまなお、以下に示すような課題がある。
(イ)有機性固形分を含む廃水を処理するとリアクター内に固形分が堆積し、グラニュール汚泥が処理水とともに流出し、処理性能が低下する。
(ロ)GSS部内部でスカムを形成し、発生ガスの捕集が困難となる。とりわけ、負荷が低く、発生ガス量が少ない場合には、発生ガスによるスカムの破壊・除去作用が小さく、スカムを形成しやすい。
(ハ)前記(ロ)の結果、GSS部での発生ガスを捕集し、排出する効果を失い、汚泥の多大な流出を招き、処理悪化の原因となる。
【0005】
このような実情に鑑み、本発明は、廃水中の有機性固形分、厨芥、その他の有機性廃棄物を対象とした、高性能な上向流嫌気性汚泥床処理方法及び装置の提供を目的とする。
【0006】
【課題を解決するための手段】
本発明は、以下に記載する手段によって前記課題を解決した。
(1)有機性廃棄物を嫌気処理する方法において、装置本体側壁との角度が35度以下、かつ各占有面積が装置断面積の2分の1以上となる邪魔板により形成されるガス・液・固分離部を多段に有する上向流嫌気性汚泥床処理装置を用い、かつ、流入する有機性廃棄物を粉砕し、平均粒径200μm以下のスラリーとして供給し、更に、有機性廃棄物を含む被処理水を直接、もしくは希釈して、処理を行うことを特徴とする嫌気性処理方法。
【0007】
(2)被処理水に消泡剤を添加することにより、前記ガス・液・固分離部内部での発泡及びスカムの形成を防止することを特徴とする前記(1)記載の嫌気性処理方法。
(3)装置内に酸素を含有しない空気を吹き込み、汚泥層の攪拌及びガス・液・固分離部内部でのスカムの形成を防止し、かつ、装置内に吹き込まれた酸素を含有しない気体をガス・液・固分離部より排出することを特徴とする前記(1)又は(2)記載の嫌気性処理方法。
(4)流入する有機性廃棄物と前記嫌気性処理装置の処理水の一部とを混合し、酸発酵した後に嫌気性処理を行うことを特徴とする前記(1)記載の嫌気性処理方法。
【0008】
(5)ガス・液・固分離部を多段に有する上向流嫌気性汚泥床処理装置において、装置本体側壁との角度が35度以下、かつ各占有面積が装置断面積の2分の1以上となる邪魔板により形成されるガス・液・固分離部を多段に取り付け、流入する有機性廃棄物を平均粒径200μm以下に粉砕する粉砕機を設置してスラリー化した被処理水を流入する供給管を底部に設けたことを特徴とする嫌気性処理装置。
【0009】
本発明の骨子は、「流入する有機性廃棄物を粉砕し、平均粒径200μm以下のスラリーとし、原水を処理水の循環液や系外から供給する希釈水により必要に応じて適宜希釈を行う」ことにより、一貫して、流入水のリアクター内部における装置断面積基準の通水速度0.05〜5m/hとなるように調節することができるようにして、原水中の固形分はリアクター内にとどまることなく処理水とともに系外に流出することがないようにしたものであり、さらに、その際の嫌気性処理装置として、「装置本体側壁との角度が35度以下、かつ各占有面積が装置断面積の2分の1以上となる邪魔板により形成されるガス・液・固分離部を多段に有する上向流嫌気汚泥床処理装置」を用いることでリアクター内のガス・液・固分離性能が高まるため、リアクター内にグラニュール汚泥を高濃度に保持することが可能となり、廃水中の有機性固形分、厨芥、その他の有機性廃棄物を対象とした高性能な上向流嫌気性汚泥床処理が達成できることにある。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照して説明するが、本発明はこれに限定されない。
図1は、嫌気性処理方法を実施するのに好ましい本発明の上向流嫌気性処理装置の一形態の概要を例示した図である。
図1において、原水送液管1が連通し、上下を閉塞した筒状のリアクター2の内部の左右両側壁には、それぞれに一方の端部を固定し、他方の端部を反対側の側壁を反対側の側壁方向に向かって、下降しながら延びている邪魔板3が設置されている。
【0011】
邪魔板3は、上下方向に3箇所左右交互に設けてあって、リアクター2の側壁との間にそれぞれ鋭角の区分スラッジゾーン4a、4b、4cを形成している。
リアクター2の側壁と邪魔板3のなす角度θは35度以下の鋭角であり、占有面積は装置断面積の1/2以上である。
35度を越える角度の場合には、スラッジゾーン4a、4b、4cの邪魔板3にグラニュール汚泥が堆積し、流動性が不十分となり、デッドスペースが形成される。
また、邪魔板3の占有面積が1/2以下であると、発生ガスの捕捉が不十分となり、気液固の分離に不具合を生じる。つまり、リアクター2の中心よりガスが上方へ抜けてしまい後記のGSS部5にガスを十分に集積することができなくなる。
【0012】
区分スラッジゾーン4a、4b、4c上部はGSS部5を形成している。反応が開始すると発生ガスが集まる気相部5aには、外部と通じる発生ガス回収配管6への排出口を設けてある。
なお、気相部5aから接続されている発生ガス回収配管6の吐出口は、水を充填した水封槽7の水中内で開口している。開口位置は水圧が異なる適宜な水深位にあり、水封槽7には発生ガス回収配管6から吐き出されたガス流量を測定するガスメーター8を設けられている。ガスメーター8の先には、ガスホルダー11が設けられている。また、リアクター2の上端には上澄み液を排出する処理水配管9が開口している。
【0013】
リアクター2には嫌気性菌からなるグラニュール汚泥を投入して使用する。本発明の対象となる嫌気性処理は、30℃〜35℃を至適温度とした中温メタン発酵処理、50℃〜55℃を至適温度とした高温メタン発酵処理の温度範囲の嫌気性処理を対象としている。嫌気性菌からなるグラニュール汚泥を投入し、平均粒径200μm以下に粉砕した廃水中の有機性固形分、厨芥、その他の有機性廃棄物15を含む原水を送液管1からリアクター2へ導入する。原水を処理水の循環液や系外から供給する希釈水等により必要に応じて適宜希釈を行い、流入する有機性廃棄物15の液化状況に応じて酸発酵処理を行うが、酸発酵処理は4時間から4日程度が妥当である。
【0014】
流入水のリアクター2内部での通水速度が0.05〜5m/hとなるように調節する。リアクター2内では嫌気性菌の介在によって有機性廃棄物が分解し、分解ガスが発生する。発生したガスは、各区分スラッジゾーン4a、4b、4c上端のGSS部5に別れて集まり、それぞれに気相部5aを形成し、発生ガス回収配管6を通じて水封槽7に至る。こうした発生ガスは、ガスメーター8でその排出量が記録され、ガスホルダー11に送られる。
【0015】
発生ガスの一部は、区分スラッジゾーン4a、4b、4c内でグラニュール汚泥に付着し、その見かけ比重を軽減させるとともに、グラニュール汚泥を同伴してGSS部5の水面に達する。こうした発生ガスは、気泡を形成して水面気泡部5bに一時的に滞留する。水面気泡部5bに集合した気泡はやがて破裂し、発生ガスとグラニュール汚泥とが分離され、グラニュール汚泥はもとの比重を回復して水中に潜り、発生ガスは発生ガス回収配管6から水封槽7を経由して、系外に排出される。有機物が分解して清澄になって水はリアクター2の上端から、処理水配管9を経由して系外に排出される。
【0016】
各GSS部5の気相部のガス圧は異なるので、その差圧は水封槽7で調整するとよい。原水送液側に近い順に水封圧は高く保つ必要がある。ガス回収の圧調整は、水封槽7を使う方法以外にも多くの方法がある。例えば圧力弁等を使用してもよい。
本発明の嫌気性処理方法においては、各区分スラッジゾーン4a、4b、4c毎に、そこで発生する発生ガスを回収できるため、リアクター2の単位断面積当たりの発生ガス量が少なくなる。
特に処理水を流出させる処理水配管9に最も近い所では、リアクター2の単位断面積当たりのガス量が小さくなる。そのため、グラニュール汚泥の系外流出量を極く少なくすることができる。
【0017】
GSS部5を多段に設置したリアクター2では、通水速度を0.05〜5m/h、好ましくは0.5〜5m/hとすることにより、グラニュール汚泥層の流動状態が良好となり、また、リアルター2内の90%以上のグラニュール汚泥は、粒径0.5〜1.5mmとなる。そのため、廃水中の有機性固形分、厨芥、その他の有機性廃棄物15を粉砕機14で粉砕し、平均粒径を200μm以下、好ましくは50μm以下の原水とすることによって、グラニュール汚泥層の流動が良好になるため、有機性廃棄物由来の固形分がリアクター2内に堆積することなく、メタン発酵処理を受け、さらに、通水速度を0.05〜5m/hと高めることにより処理水とともに流出する。一方、原水に比べ、粒径、比重の大きいグラニュール汚泥はリアクター2内にとどまる。
【0018】
本発明の嫌気性処理は、30℃〜35℃を至適温度とした中温メタン発酵処理、50℃〜55℃を至適温度とした高温メタン発酵処理であり、水温が30℃以上であるため、リアクター2内の有機性廃棄物15を粉砕機14で粉砕し、平均粒径を200μm以下とした原水の粘性は低下する。そのため、原水の粘性によるグラニュール汚泥層の流動状態の悪化、及びグラニュール汚泥の系外への流出は生じない。
【0019】
発泡性の原水の場合には、GSS部5内の気相部5a及び発生ガス回収配管6が閉塞し、発生ガスの回収が困難となる。このような場合、リアクター2への流入水に予め消泡剤10を加えることにより、GSS部5内での発泡を抑えることができる。GSS部5内に消泡剤10を滴下、噴霧する方法に比べ、本手法は密閉空間での消泡に効果的である。消泡剤10は原水性状に応じた消泡効果を有し、発酵液の消泡に適した、中温(30〜35℃)あるいは高温(50℃〜55℃)において消泡効果をなくすことのない消泡剤を使用する。消泡剤10の種類としては、シリコーン系消泡剤、アルコール系消泡剤の何れも使用が可能である。また、原水の性状によっては、発泡を抑制することによりスカムの形成を防止することが可能となる。
【0020】
原水が高SSである場合には、GSS部5内の気泡部表面及び内部にスカムを形成するため、発生ガスの回収が困難となる。このような場合には、発生ガス吹き込み配管13を散気管12に接続し、ガスホルダー11内の発生ガスをGSS部5内に供給することによってスカムの破壊あるいはスカムの形成防止が可能となる。破壊されたスカムはリアクター2内の液の流れとともに処理水として排出される。
【0021】
各GSS部5で吹き込みガスを回収できるため、リアクター2の単位断面積当たりの発生ガス量が少なく、特に処理水を流出させる処理水配管9に最も近い所では、リアクター2の単位断面積当たりのガス量が小さくなり、グラニュール汚泥の系外流出量を極く少なくすることができる機能を損なわない。散気管12はリアクター2の下部あるいは各GSS部5の下部に配置する。吹き込みガスによりグラニュール汚泥層が攪拌され、グラニュール汚泥と流入廃水の接触は良好となり、特に、リアクター2本体内に流入する有機物負荷量が少ない場合には、これにより発生するガスの量も少ないため、吹き込みガスによるグラニュール汚泥層の攪拌の効果は大きい。
【0022】
なお、GSS部5内部のスカムを破壊・除去するためにGSS部5内に吹き込む気体は、窒素ガス等の酸素を含まない、メタン発酵等の生物処理に影響を与えない気体を使用できるが、嫌気性処理によって発生したガスを使用することが望ましい。ガスを吹き込む頻度は、廃水の性状にもよるが、1日に1回から1週間に1回とすることによって、GSS部5内部のスカムを破壊・除去の効果がある。また、ガスを吹き込む頻度を1日に1回以上とすることで、汚泥層の攪拌効果が、さらに高まる。
【0023】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
【0024】
実施例1
図3に、実験に用いた上向流嫌気性汚泥床装置の概要を示す。A系列は嫌気処理の従来法であり、(a)に従来法として図示するものである。B系列はUASBの従来法であり、(b)に示すように図2の構造を有するものである。C系列は傾斜する邪魔板を3個取り付け、装置側壁と邪魔板との角度を30度とし、原水に消泡剤を添加し、散気管から発生ガスを吹き込むスカムの破壊・除去機能を付加した系列である。C系列は本発明に基づく系列であり、(c)に示すように図1に示す構成からなるものである。
【0025】
液層部の容量は1m3である。リアクター内の水温は、56℃になるように温度制御されている。原水には、食品工場から排出される有機性廃棄物と活性汚泥処理設備の余剰汚泥の混合物を用いた。原水のTSは10g/リットル、CODCr(以下、「COD」と記す)は18g/リットルである。A系列及びB系列では原水を酸発酵処理した後、リアクターに供給した。C系列では原水を粉砕機で粉砕し、平均粒径を50μm以下として酸発酵処理をした後リアクターに供給した。
C系列での発生ガスの散気管からの吹き込みは、1日当たり2回とした。C系列では、流出液を原水とともにリアクターに流入させ、通水速度を1m/hに設定した。
【0026】
図4に実験経過と流出液の酢酸濃度、COD分解率の処理成績の変化を示し、(d)はCOD負荷の変化を、(e)は流出液酢酸濃度の変化を、(f)はCOD分解率の変化を示す。 A系列では90日後にCOD負荷を7kg/m3/dとしたところ、過負荷のため、流出液の酢酸濃度が1300mg/リットルと高くなり、分解率が30%まで低下した。100日後以降にCOD負荷を5kg/m3/dとしたところ、流出液の酢酸濃度は500mg/リットル以下で安定し、COD分解率は65%になった。
【0027】
B系列では、80日後にCOD負荷を4kg/m3/dとしたところ、過負荷のため、流出液の酢酸濃度が1300mg/リットルと高くなり、COD分解率が30%まで低下した。90日後以降にCOD負荷を3kg/m3/dとしたところ、流出液の酢酸濃度は500mg/リットル以下で安定し、COD分解率は65%になった。GSS部内部の発泡、スカムの形成が認められ、発生ガスの回収が不十分となり、また、原水の固形物成分がリアクター内に堆積したが、投入したCOD負荷が低く、発生ガス量も少ないため、発生ガスの上昇による汚泥層の攪拌が弱くなる。この結果、汚泥のデッドスペースが広がり、汚泥と流入廃水の接触が不十分となり、負荷を高めることが困難であった。
【0028】
一方、原水を粉砕機で粉砕し、平均粒径を50μm以下とし、GSS部を多段とすることでグラニュール汚泥保持性能が向上し、消泡剤を添加することことによってGSS部内部の発泡を抑制し、発生ガスを吹き込むことによりGSS部内部のスカム形成の防止、及びグラニュール汚泥層の良好な攪拌を行ったC系列では、110日後以降にCOD負荷15kg/m3/dで流出液の酢酸濃度が500mg/リットル以下、COD分解率75%の処理が可能であった。本発明法であるC系列では、従来法のA、B系列に比べ、3倍以上の高負荷処理が可能となり、COD分解率が向上した。
第1表に各系列の処理成績の比較を示す。
【0029】
【表1】

Figure 0003700935
【0030】
実施例2
C,D系列ともに、傾斜する邪魔板を3ケ取り付け、装置側壁と邪魔板との角度を30度とし、原水に消泡剤を添加し、散気管から発生ガスを吹き込む、スカムの破壊・除去機能を付加した系列である。
液層部の容量は1m3である。リアクター内の水温は56℃になるように温度制御されている。原水には、食品工場から排出される有機性廃棄物及び活性汚泥処理設備の余剰汚泥の混合物を用いた。原水のTSは10g/リットル、CODCr(以下、CODと記す)は18g/リットルである。A系列及びB系列では原水を酸発酵処理した後、リアクターに供給した。C系列では原水を粉砕機で粉砕し、平均粒径を50μm以下として酸発酵処理した後、リアクターに供給した。D系列では平均粒径2mmの原水を粉砕しないで酸発酵処理した後、リアクターに供給した。C系列が本発明法である。
【0031】
C,D系列ともに発生ガスの散気管からの吹き込みは1日当たり2回とし、流出液を原水とともにリアクターに流入させ、通水速度を1m/hに設定した。
図5に実験経過と流出液の酢酸濃度、COD分解率の処理成績の変化を示し、(g)はCOD負荷の変化を、(h)は流出液酢酸濃度の変化を、(i)はCOD分解率の変化を示す。
C系列では、110日後以降にCOD負荷15kg/m3/dで流出液の酢酸濃度が500mg/リットル以下、COD分解率75%の処理が可能であった。
一方、D系列ではCOD負荷を1kg/m3/dで運転を行っていたが、20日後以降、流出液の酢酸濃度が1000mg/リットル以上と高くなり、COD分解率が30%以下に低下した。これは平均粒径2mmの固形分を含む廃水を処理することでリアクター内に固形分が堆積し、グラニュール汚泥が処理水とともに流出し、処理性能が低下したためである。
【0032】
【発明の効果】
本発明によれば、装置本体側壁との角度が35度以下、かつ、各占有面積が装置断面積の2分の1以上となる邪魔板により形成されるガス・液・固分離部を多段に有する上向流嫌気性汚泥床処理装置を使用することにより、リアクター内の発生ガス・処理水・汚泥の分離性能が向上し、リアクター内のグラニュール汚泥保持量が高まり、かつ流入する有機性廃棄物を粉砕し、平均粒径200μm以下のスラリーとし、原水を処理水の循環液や系外から供給する希釈水により必要に応じて適宜希釈を行うことにより、一貫して、流入水のリアクター内部における装置断面積基準の通水速度が0.05〜5m/hとなるように調節することができ、それによって原水中の固形分はリアクター内にとどまることなく処理水とともに系外に流出させることができる。
さらに、消泡剤を添加することによって、前記ガス・液・固分離部内部での発泡及びスカムの形成を防止すること、及びガス・液・固分離部内部に酸素を含有しない気体を吹き込むことにより、このガス・液・固分離部内部でのスカムの形成を防止することができる。
これらにより、廃水中の有機性固形分、厨芥、その他の有機性廃棄物を対象とした高性能な上向流嫌気性汚泥床処理が達成できる嫌気性処理方法と、これを実施する装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の上向流嫌気性処理装置の一形態を例示した模式図。
【図2】従来の上向流嫌気性処理装置の一形態を例示した模式図。
【図3】実験に用いたA〜C系列で使用した処理装置を示す図であり、(a)はA系列で、(b)はB系列で、(c)はC系列でそれぞれ使用した処理装置である。
【図4】実施例1における実験経過と流出液酢酸濃度とCOD処理成績の変化を示す図であり、(d)はCOD負荷の変化を、(e)は流出液酢酸濃度の変化を、(f)はCOD分解率の変化を示す。
【図5】実施例2における実験経過と流出液酢酸濃度とCOD処理成績の変化を示す図であり、(g)はCOD負荷の変化を、(h)は流出液酢酸濃度の変化を、(i)はCOD分解率の変化を示す。
【符号の説明】
1 原水送液管
2 リアクター
3 邪魔板
4a 区分スラッジゾーン
4b 区分スラッジゾーン
4c 区分スラッジゾーン
5 GSS部
5a 気相部
5b 気泡部
6 発生ガス回収配管
7 水封槽
8 ガスメータ
9 処理水配管
10 消泡剤
11 ガスホルダー
12 散気管
13 発生ガス吹き込み配管
14 粉砕機
15 有機性廃棄物
21 流入原水
22 リアクター
23 汚泥層
24 処理水
25 GSS部
26 ガス排出管
27 攪拌装置
28 攪拌翼
29 モーター[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anaerobic sludge bed treatment method and apparatus for detoxifying organic solid waste, etc. discharged from various factories, sewage, human waste, livestock industry facilities, etc. The present invention relates to a method and apparatus for treating an upflow anaerobic sludge bed having multiple stages of gas / liquid / solid separation sections (hereinafter also referred to as “GSS sections”).
[0002]
[Prior art]
Compared with aerobic treatment such as activated sludge method, the methane fermentation treatment method that treats organic solids, soot, and other organic waste in wastewater does not require energy for aeration and generates excess sludge Since the amount is small and energy can be recovered from the generated biogas, it is excellent in terms of energy saving. However, since methane producing bacteria or methane fermenting bacteria have a small amount of growth and poor sedimentation, microorganisms easily flow out together with the treated water. Therefore, it was difficult to increase the microorganism concentration in the fermenter used for the methane fermentation treatment. Furthermore, there were problems in terms of cost and site.
[0003]
There is an upflow anaerobic sludge bed method (hereinafter also referred to as “UASB”) as a high-efficiency fermenter having a high microorganism concentration. This is a method that has become widespread in recent years. It is characterized by maintaining a high concentration of methane bacteria in the reactor by granulating anaerobic bacteria such as methane bacteria into granules. Even when the concentration of the organic matter in it is considerably high, it can be processed efficiently.
[0004]
[Problems to be solved by the invention]
However, the conventional UASB treatment method (FIG. 2) for organic solids, waste, and other organic waste in wastewater still has the following problems.
(I) When waste water containing organic solids is treated, solids are accumulated in the reactor, and granular sludge flows out together with the treated water, resulting in a reduction in treatment performance.
(B) A scum is formed inside the GSS part, and it becomes difficult to collect the generated gas. In particular, when the load is low and the amount of generated gas is small, the scum destruction / removal action by the generated gas is small and scum is easily formed.
(C) As a result of (b) above, the effect of collecting and discharging the generated gas in the GSS section is lost, causing a large outflow of sludge and causing deterioration of the process.
[0005]
In view of such circumstances, the present invention aims to provide a high-performance upward-flow anaerobic sludge bed treatment method and apparatus for organic solids, waste, and other organic waste in wastewater. And
[0006]
[Means for Solving the Problems]
The present invention has solved the above problems by the means described below.
(1) In a method for anaerobically treating organic waste, a gas / liquid formed by a baffle plate having an angle with the side wall of the apparatus main body of 35 degrees or less and each occupation area being 1/2 or more of the apparatus cross-sectional area · using a solid separation unit upflow anaerobic sludge blanket processing apparatus having the multiple stages, and grinding the organic waste flows, supplied by the following slurry average particle size 200 [mu] m, further, the organic waste An anaerobic treatment method characterized in that treatment is performed by directly or diluting water to be treated .
[0007]
(2) The anaerobic treatment method according to (1), wherein foaming and scum formation are prevented inside the gas / liquid / solid separation part by adding an antifoaming agent to the water to be treated. .
(3) Air that does not contain oxygen is blown into the apparatus to prevent stirring of the sludge layer and formation of scum inside the gas / liquid / solid separation part, and gas that does not contain oxygen blown into the apparatus. The anaerobic treatment method according to the above (1) or (2), wherein the gas / liquid / solid separation part is discharged .
(4) The anaerobic treatment method according to (1), wherein the inflowing organic waste and a part of the treated water of the anaerobic treatment device are mixed and subjected to anaerobic treatment after acid fermentation. .
[0008]
(5) In an upflow anaerobic sludge bed treatment apparatus having gas, liquid, and solid separation sections in multiple stages, the angle with the apparatus side wall is 35 degrees or less, and each occupied area is more than half of the apparatus cross-sectional area. Gas / liquid / solid separation parts formed by the baffle plates to be used are attached in multiple stages, and a pulverizer that pulverizes the inflowing organic waste to an average particle size of 200 μm or less is installed to flow in the water to be treated. An anaerobic treatment apparatus characterized in that a supply pipe is provided at the bottom.
[0009]
The essence of the present invention is that “the inflowing organic waste is pulverized to form a slurry having an average particle size of 200 μm or less, and the raw water is appropriately diluted with the circulating water of the treated water or the dilution water supplied from outside the system. Thus, the solid water content in the raw water can be adjusted so that the flow rate is 0.05 to 5 m / h based on the cross-sectional area of the apparatus inside the reactor. In addition, as an anaerobic treatment device at that time, “the angle with the side wall of the device body is 35 degrees or less and each occupied area is Gas / liquid / solid separation in reactor by using “upward-flow anaerobic sludge bed treatment device with multiple stages of gas / liquid / solid separation part formed by baffle plate that is more than half of the device cross-sectional area” Performance increased It is possible to maintain a high concentration of granular sludge in the reactor, and a high-performance upflow anaerobic sludge bed treatment for organic solids, soot, and other organic waste in wastewater. It can be achieved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
FIG. 1 is a diagram illustrating an outline of an embodiment of the upward flow anaerobic treatment apparatus of the present invention that is preferable for carrying out the anaerobic treatment method.
In FIG. 1, one end is fixed to each of the left and right side walls of a cylindrical reactor 2 in which a raw water feed pipe 1 communicates and is closed at the top and bottom, and the other end is connected to the opposite side wall. A baffle plate 3 extending while descending toward the opposite side wall is installed.
[0011]
The baffle plates 3 are alternately provided at three places in the vertical direction on the left and right sides, and form acute slanted section sludge zones 4 a, 4 b, 4 c between the side walls of the reactor 2.
The angle θ formed between the side wall of the reactor 2 and the baffle plate 3 is an acute angle of 35 degrees or less, and the occupied area is ½ or more of the apparatus cross-sectional area.
When the angle exceeds 35 degrees, granular sludge accumulates on the baffle plates 3 in the sludge zones 4a, 4b, and 4c, resulting in insufficient fluidity and formation of dead spaces.
Moreover, when the occupation area of the baffle plate 3 is 1/2 or less, the trapping of the generated gas becomes insufficient, resulting in a problem in the separation of gas and liquid. That is, the gas escapes upward from the center of the reactor 2, and the gas cannot be sufficiently accumulated in the GSS portion 5 described later.
[0012]
The upper part of the divided sludge zones 4a, 4b and 4c forms a GSS part 5. The gas phase part 5a where the generated gas collects when the reaction starts is provided with an outlet to the generated gas recovery pipe 6 that communicates with the outside.
In addition, the discharge port of the generated gas recovery pipe 6 connected from the gas phase part 5a is opened in the water of the water-sealed tank 7 filled with water. The opening position is at an appropriate water depth with different water pressure, and the water sealing tank 7 is provided with a gas meter 8 for measuring the flow rate of the gas discharged from the generated gas recovery pipe 6. A gas holder 11 is provided at the tip of the gas meter 8. Further, a treated water pipe 9 for discharging the supernatant liquid is opened at the upper end of the reactor 2.
[0013]
The reactor 2 is used with granule sludge made of anaerobic bacteria. The anaerobic treatment which is the object of the present invention is an anaerobic treatment in a temperature range of a medium temperature methane fermentation treatment with an optimum temperature of 30 ° C to 35 ° C and a high temperature methane fermentation treatment with an optimum temperature of 50 ° C to 55 ° C. It is targeted. Raw water containing organic solids, waste, and other organic waste 15 in the wastewater, which has been crushed to an average particle size of 200 μm or less, is introduced into the reactor 2 through the feed pipe 1. To do. The raw water is appropriately diluted with the circulating water of the treated water or diluted water supplied from outside the system, and the acid fermentation treatment is performed according to the liquefaction state of the inflowing organic waste 15. 4 hours to 4 days is appropriate.
[0014]
It adjusts so that the water flow rate in the reactor 2 of inflow water may be 0.05-5 m / h. In the reactor 2, the organic waste is decomposed by the anaerobic bacteria, and a decomposition gas is generated. The generated gas is gathered separately in the GSS section 5 at the upper end of each of the divided sludge zones 4a, 4b, 4c, forms a gas phase section 5a in each, and reaches the water sealing tank 7 through the generated gas recovery pipe 6. The amount of the generated gas is recorded by the gas meter 8 and sent to the gas holder 11.
[0015]
Part of the generated gas adheres to the granular sludge in the divided sludge zones 4a, 4b, and 4c, reduces the apparent specific gravity, and accompanies the granular sludge and reaches the water surface of the GSS section 5. Such generated gas forms bubbles and temporarily stays in the water surface bubble portion 5b. The air bubbles gathered in the water surface bubble portion 5b eventually burst, and the generated gas and granulated sludge are separated, and the granular sludge recovers its original specific gravity and is submerged in the water. It is discharged out of the system via the sealing tank 7. The organic matter is decomposed and clarified, and water is discharged from the upper end of the reactor 2 to the outside of the system through the treated water pipe 9.
[0016]
Since the gas pressure in the gas phase part of each GSS part 5 is different, the differential pressure may be adjusted in the water sealing tank 7. It is necessary to keep the water sealing pressure higher in the order closer to the raw water feed side. There are many methods for adjusting the pressure for gas recovery in addition to the method using the water-sealed tank 7. For example, a pressure valve or the like may be used.
In the anaerobic treatment method of the present invention, the generated gas generated in each of the divided sludge zones 4a, 4b, 4c can be recovered, so that the amount of generated gas per unit cross-sectional area of the reactor 2 is reduced.
In particular, the gas amount per unit cross-sectional area of the reactor 2 becomes small at a place closest to the treated water pipe 9 through which treated water flows out. Therefore, the outflow amount of granule sludge can be extremely reduced.
[0017]
In the reactor 2 in which the GSS units 5 are installed in multiple stages, the flow rate of the granular sludge layer is improved by setting the water flow rate to 0.05 to 5 m / h, preferably 0.5 to 5 m / h. The granular sludge of 90% or more in the realter 2 has a particle size of 0.5 to 1.5 mm. Therefore, the organic solid content, waste, and other organic waste 15 in the wastewater are pulverized by a pulverizer 14 to obtain raw water having an average particle size of 200 μm or less, preferably 50 μm or less, thereby forming a granular sludge layer. Since the flow becomes good, the solid content derived from the organic waste is not deposited in the reactor 2 but is subjected to the methane fermentation treatment, and the treated water is increased by increasing the water flow rate to 0.05 to 5 m / h. Leaks with. On the other hand, granular sludge having a larger particle size and specific gravity than the raw water remains in the reactor 2.
[0018]
The anaerobic treatment of the present invention is a medium temperature methane fermentation treatment with an optimum temperature of 30 ° C. to 35 ° C., a high temperature methane fermentation treatment with an optimum temperature of 50 ° C. to 55 ° C., and the water temperature is 30 ° C. or higher. The organic waste 15 in the reactor 2 is pulverized by the pulverizer 14 so that the viscosity of the raw water having an average particle size of 200 μm or less is lowered. Therefore, deterioration of the flow state of the granular sludge layer due to the viscosity of the raw water and outflow of the granular sludge to the outside of the system do not occur.
[0019]
In the case of foaming raw water, the gas phase part 5a and the generated gas recovery pipe 6 in the GSS part 5 are blocked, making it difficult to recover the generated gas. In such a case, foaming in the GSS portion 5 can be suppressed by adding the antifoaming agent 10 to the inflow water to the reactor 2 in advance. Compared with the method in which the antifoaming agent 10 is dropped and sprayed into the GSS section 5, the present method is effective for defoaming in a sealed space. The antifoaming agent 10 has an antifoaming effect according to the raw aqueous state, and is suitable for defoaming the fermentation broth to eliminate the antifoaming effect at an intermediate temperature (30 to 35 ° C.) or high temperature (50 to 55 ° C.). Use no antifoam. As the type of the antifoaming agent 10, any of a silicone-based antifoaming agent and an alcohol-based antifoaming agent can be used. Further, depending on the properties of the raw water, it is possible to prevent the formation of scum by suppressing foaming.
[0020]
When the raw water has a high SS, scum is formed on the surface of the bubble portion in the GSS portion 5 and inside thereof, so that it is difficult to recover the generated gas. In such a case, the generated gas blowing pipe 13 is connected to the diffuser pipe 12, and the generated gas in the gas holder 11 is supplied into the GSS section 5 so that scum can be destroyed or scum can be prevented from being formed. The broken scum is discharged as treated water together with the liquid flow in the reactor 2.
[0021]
Since each of the GSS units 5 can recover the blown gas, the amount of generated gas per unit cross-sectional area of the reactor 2 is small, and particularly in the place closest to the treated water pipe 9 through which the treated water flows out, the per unit cross-sectional area of the reactor 2 The amount of gas is reduced, and the function that can significantly reduce the outflow of granule sludge is not impaired. The air diffuser 12 is disposed below the reactor 2 or below each GSS unit 5. The granular sludge layer is agitated by the blown gas, and the contact between the granular sludge and the influent wastewater becomes good. Especially, when the organic substance load flowing into the reactor 2 main body is small, the amount of gas generated is small. Therefore, the effect of stirring the granular sludge layer by blowing gas is great.
[0022]
The gas blown into the GSS unit 5 to destroy / remove the scum inside the GSS unit 5 does not contain oxygen such as nitrogen gas, and can use a gas that does not affect biological treatment such as methane fermentation. It is desirable to use gas generated by anaerobic treatment. The frequency of blowing the gas depends on the properties of the wastewater, but once a day to once a week, there is an effect of destroying and removing the scum inside the GSS section 5. Moreover, the stirring effect of a sludge layer further increases by making the frequency which blows in gas once or more a day.
[0023]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.
[0024]
Example 1
In FIG. 3, the outline | summary of the upward flow anaerobic sludge bed apparatus used for experiment is shown. The A series is a conventional method of anaerobic treatment, and is illustrated as a conventional method in (a). The B series is a conventional method of UASB, and has the structure shown in FIG. 2 as shown in FIG. In the C series, three sloping baffle plates are attached, the angle between the device side wall and the baffle plate is 30 degrees, a defoaming agent is added to the raw water, and a scum destruction / removal function that blows the generated gas from the air diffuser is added. It is a series. The C series is a series based on the present invention, and has the configuration shown in FIG. 1 as shown in (c).
[0025]
The capacity of the liquid layer part is 1 m 3 . The temperature of the water in the reactor is controlled to 56 ° C. The raw water used was a mixture of organic waste discharged from food factories and excess sludge from activated sludge treatment equipment. The raw water TS is 10 g / liter, and COD Cr (hereinafter referred to as “COD”) is 18 g / liter. In series A and series B, the raw water was subjected to an acid fermentation treatment and then supplied to the reactor. In the C series, raw water was pulverized by a pulverizer, acid-fermented with an average particle size of 50 μm or less, and then supplied to the reactor.
In the C series, the generated gas was blown from the air diffuser twice per day. In Series C, the effluent was introduced into the reactor together with the raw water, and the water flow rate was set to 1 m / h.
[0026]
FIG. 4 shows the course of the experiment and changes in the treatment results of the acetic acid concentration and COD decomposition rate of the effluent, (d) shows the change in COD load, (e) shows the change in effluent acetic acid concentration, and (f) shows the COD. The change in decomposition rate is shown. In the A series, when the COD load was set to 7 kg / m 3 / d after 90 days, the acetic acid concentration in the effluent became as high as 1300 mg / liter due to overload, and the decomposition rate decreased to 30%. When the COD load was 5 kg / m 3 / d after 100 days, the acetic acid concentration in the effluent was stable at 500 mg / liter or less, and the COD decomposition rate was 65%.
[0027]
In the B series, when the COD load was set to 4 kg / m 3 / d after 80 days, the acetic acid concentration in the effluent increased to 1300 mg / liter due to overload, and the COD decomposition rate decreased to 30%. After 90 days, when the COD load was set at 3 kg / m 3 / d, the acetic acid concentration in the effluent was stabilized at 500 mg / liter or less, and the COD decomposition rate became 65%. Foaming and scum formation inside the GSS part were observed, and the recovery of the generated gas was insufficient, and the solid components of raw water were deposited in the reactor, but the COD load input was low and the amount of generated gas was small In addition, the stirring of the sludge layer due to the rise of the generated gas becomes weak. As a result, the dead space of the sludge spreads, the contact between the sludge and the influent wastewater becomes insufficient, and it is difficult to increase the load.
[0028]
On the other hand, the raw water is pulverized by a pulverizer, the average particle size is 50 μm or less, and the GSS part is multistaged to improve granule sludge retention performance. By adding an antifoaming agent, foaming inside the GSS part is achieved. In the C series, which suppresses the formation of scum inside the GSS section by blowing in the generated gas and performs good stirring of the granular sludge layer, the effluent is discharged at a COD load of 15 kg / m 3 / d after 110 days. Treatment with an acetic acid concentration of 500 mg / liter or less and a COD decomposition rate of 75% was possible. In the C series which is the method of the present invention, it is possible to perform a high-load process three times or more compared to the conventional A and B series, and the COD decomposition rate is improved.
Table 1 shows a comparison of processing results for each series.
[0029]
[Table 1]
Figure 0003700935
[0030]
Example 2
For both C and D series, three inclined baffle plates are attached, the angle between the device side wall and the baffle plate is 30 degrees, an antifoaming agent is added to the raw water, and the generated gas is blown from the air diffuser. This is a series with added functions.
The capacity of the liquid layer part is 1 m 3 . The water temperature in the reactor is controlled to 56 ° C. The raw water used was a mixture of organic waste discharged from food factories and excess sludge from activated sludge treatment equipment. The raw water TS is 10 g / liter, and COD Cr (hereinafter referred to as COD) is 18 g / liter. In series A and series B, the raw water was subjected to an acid fermentation treatment and then supplied to the reactor. In the C series, raw water was pulverized with a pulverizer, acid fermented with an average particle size of 50 μm or less, and then supplied to the reactor. In the D series, raw water having an average particle diameter of 2 mm was subjected to an acid fermentation treatment without being pulverized, and then supplied to the reactor. Series C is the method of the present invention.
[0031]
In both C and D series, the generated gas was blown from the air diffuser twice per day, the effluent was introduced into the reactor together with the raw water, and the water flow rate was set to 1 m / h.
FIG. 5 shows the experimental process, changes in the acetic acid concentration of the effluent, and the processing results of the COD decomposition rate, (g) shows the change in the COD load, (h) shows the change in the effluent acetic acid concentration, and (i) shows the COD. The change in decomposition rate is shown.
In the C series, after 110 days, COD loading of 15 kg / m 3 / d allowed treatment with an acetic acid concentration of effluent of 500 mg / liter or less and a COD decomposition rate of 75%.
On the other hand, in the D series, the operation was performed at a COD load of 1 kg / m 3 / d. However, after 20 days, the acetic acid concentration of the effluent increased to 1000 mg / liter or more and the COD decomposition rate decreased to 30% or less. . This is because by treating wastewater containing solids having an average particle size of 2 mm, solids are deposited in the reactor, and granule sludge flows out together with the treated water, resulting in a reduction in treatment performance.
[0032]
【The invention's effect】
According to the present invention, the gas / liquid / solid separation portion formed by the baffle plate having an angle with the side wall of the apparatus main body of 35 degrees or less and each occupation area being 1/2 or more of the cross-sectional area of the apparatus is provided in multiple stages. By using the upward flow anaerobic sludge bed treatment equipment, the separation performance of the generated gas, treated water and sludge in the reactor is improved, the retained amount of granular sludge in the reactor is increased, and the inflowing organic waste The slurry is pulverized into a slurry with an average particle diameter of 200 μm or less, and the raw water is diluted appropriately as needed with the circulating water of the treated water or the dilution water supplied from outside the system. Can be adjusted so that the water flow rate based on the cross-sectional area of the apparatus becomes 0.05 to 5 m / h, so that the solid content in the raw water flows out of the system together with the treated water without staying in the reactor. Door can be.
Further, by adding an antifoaming agent, preventing foaming and scum formation inside the gas / liquid / solid separation part, and blowing a gas not containing oxygen into the gas / liquid / solid separation part. Thus, the formation of scum inside the gas / liquid / solid separation portion can be prevented.
By these, we provide an anaerobic treatment method that can achieve high-performance upflow anaerobic sludge bed treatment for organic solids, soot, and other organic waste in wastewater, and an apparatus that implements this method can do.
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating one embodiment of an upward flow anaerobic treatment apparatus of the present invention.
FIG. 2 is a schematic view illustrating an example of a conventional upward flow anaerobic treatment apparatus.
FIGS. 3A and 3B are diagrams showing processing apparatuses used in the A to C series used in the experiment, where FIG. 3A is a series A, FIG. 3B is a B series, and FIG. 3C is a process used in the C series; Device.
4 is a graph showing changes in the experimental process, effluent acetic acid concentration, and COD treatment results in Example 1, (d) shows the change in COD load, (e) shows the change in effluent acetic acid concentration, ( f) shows the change in the COD decomposition rate.
FIG. 5 is a graph showing changes in the experimental course, effluent acetic acid concentration and COD treatment results in Example 2, (g) shows the change in COD load, (h) shows the change in effluent acetic acid concentration, ( i) shows the change in the COD decomposition rate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw water feed pipe 2 Reactor 3 Baffle plate 4a Division sludge zone 4b Division sludge zone 4c Division sludge zone 5 GSS part 5a Gas phase part 5b Bubble part 6 Generated gas recovery pipe 7 Water seal tank 8 Gas meter 9 Treated water pipe 10 Defoaming Agent 11 Gas holder 12 Aeration pipe 13 Generated gas blowing pipe 14 Pulverizer 15 Organic waste 21 Inflow raw water 22 Reactor 23 Sludge layer 24 Treated water 25 GSS section 26 Gas discharge pipe 27 Stirrer 28 Stirring blade 29 Motor

Claims (5)

有機性廃棄物を嫌気処理する方法において、装置本体側壁との角度が35度以下、かつ各占有面積が装置断面積の2分の1以上となる邪魔板により形成されるガス・液・固分離部を多段に有する上向流嫌気性汚泥床処理装置を用い、かつ、流入する有機性廃棄物を粉砕し、平均粒径200μm以下のスラリーとして供給し、更に、有機性廃棄物を含む被処理水を直接、もしくは希釈して、処理を行うことを特徴とする嫌気性処理方法。Gas, liquid, and solid separation formed by baffle plates whose angle with the side wall of the device body is 35 degrees or less and each occupied area is more than half of the device cross-sectional area in the method of anaerobically treating organic waste part using upflow anaerobic sludge blanket processing apparatus having the multiple stages, and grinding the organic waste flows, supplied by the following slurry average particle size 200 [mu] m, further, the comprise organic waste An anaerobic treatment method comprising performing treatment by directly or diluting treated water . 被処理水に消泡剤を添加することにより、前記ガス・液・固分離部内部での発泡及びスカムの形成を防止することを特徴とする請求項1記載の嫌気性処理方法。The anaerobic treatment method according to claim 1 , wherein foaming and scum formation inside the gas / liquid / solid separation part are prevented by adding an antifoaming agent to the water to be treated . 装置内に酸素を含有しない空気を吹き込み、汚泥層の攪拌及びガス・液・固分離部内部でのスカムの形成を防止し、かつ、装置内に吹き込まれた酸素を含有しない気体をガス・液・固分離部より排出することを特徴とする請求項1又は請求項2記載の嫌気性処理方法。 Air that does not contain oxygen is blown into the device to prevent sludge layer agitation and scum formation inside the gas / liquid / solid separation section, and gas that does not contain oxygen blown into the device -The anaerobic treatment method according to claim 1 or 2, wherein the anaerobic treatment method is performed by discharging from the solid separation unit . 流入する有機性廃棄物と前記嫌気性処理装置の処理水の一部とを混合し、酸発酵した後に嫌気性処理を行うことを特徴とする請求項1記載の嫌気性処理方法。The anaerobic treatment method according to claim 1, wherein an anaerobic treatment is performed after mixing the inflowing organic waste and a part of the treated water of the anaerobic treatment apparatus and subjecting to acid fermentation . ガス・液・固分離部を多段に有する上向流嫌気性汚泥床処理装置において、装置本体側壁との角度が35度以下、かつ各占有面積が装置断面積の2分の1以上となる邪魔板により形成されるガス・液・固分離部を多段に取り付け、流入する有機性廃棄物を平均粒径200μm以下に粉砕する粉砕機を設置してスラリー化した被処理水を流入する供給管を底部に設けたことを特徴とする嫌気性処理装置。In an upflow anaerobic sludge bed treatment device having gas, liquid, and solid separation sections in multiple stages, the angle with the side wall of the device main body is 35 degrees or less, and each occupation area is one half or more of the cross sectional area of the device. Gas / liquid / solid separation parts formed by plates are installed in multiple stages, and a supply pipe for inflowing water to be treated into slurry by installing a crusher for crushing inflowing organic waste to an average particle size of 200 μm or less An anaerobic treatment apparatus characterized by being provided at the bottom.
JP2001394227A 2001-12-26 2001-12-26 Anaerobic treatment method and apparatus Expired - Fee Related JP3700935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001394227A JP3700935B2 (en) 2001-12-26 2001-12-26 Anaerobic treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001394227A JP3700935B2 (en) 2001-12-26 2001-12-26 Anaerobic treatment method and apparatus

Publications (3)

Publication Number Publication Date
JP2003190996A JP2003190996A (en) 2003-07-08
JP2003190996A5 JP2003190996A5 (en) 2005-02-03
JP3700935B2 true JP3700935B2 (en) 2005-09-28

Family

ID=27601022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001394227A Expired - Fee Related JP3700935B2 (en) 2001-12-26 2001-12-26 Anaerobic treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3700935B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014864A (en) * 2005-07-06 2007-01-25 Sumitomo Heavy Ind Ltd Anaerobic treatment method and treatment apparatus of waste water
JP4852954B2 (en) * 2005-09-30 2012-01-11 栗田工業株式会社 Method and apparatus for treating organic waste
KR101219494B1 (en) 2010-06-10 2013-01-11 한성국 Pretreatment method of high concentrated ogranic sludges to applying for uasb
CN102626708B (en) * 2012-04-01 2014-06-18 农业部沼气科学研究所 Household garbage bioreactor and aerobic-anaerobic-semi-aerobic circulation treatment method

Also Published As

Publication number Publication date
JP2003190996A (en) 2003-07-08

Similar Documents

Publication Publication Date Title
US5733454A (en) Process and apparatus for the treatment of flowable waste
JP5114780B2 (en) Anaerobic treatment method and apparatus
JP3729332B2 (en) Wastewater treatment apparatus including upflow anaerobic reactor and wastewater treatment method using the same
CN105174601A (en) Cassava alcohol wastewater biological treatment technology
JP2002336885A (en) Method for aerobic treatment of waste water
CN108046516A (en) A kind of OCO activated sludge modified technique and device for being used to strengthen urban wastewater treatment
JP3999036B2 (en) Method and apparatus for treating organic wastewater
JP2008086862A (en) Anaerobic treatment method and arrangement
JP2652841B2 (en) Operating method of wastewater treatment equipment
JP2008136955A (en) Ammonia inhibition-suppressing methane fermentation apparatus
JP2012239929A (en) Method and apparatus for anaerobic treatment of organic wastewater
JP2006110424A (en) Method and apparatus for treating organic waste water
JP3700935B2 (en) Anaerobic treatment method and apparatus
JP4162234B2 (en) Anaerobic treatment equipment
JP3175480B2 (en) Anaerobic treatment equipment
JP2006281215A (en) Apparatus for treating organic waste water and method therefor
CN207121472U (en) A kind of aerobic integrated sewage-treating reactor device of internal circulating anaerobic
JP4001507B2 (en) Method and apparatus for treating organic wastewater
JP2003190986A (en) Anaerobic treatment method and apparatus therefor
JPH11207384A (en) Anaerobic treating method and device therefor
CN105254123B (en) Coking advanced waste treatment system and its reuse technology
JP2006142302A (en) Anaerobic treatment method and apparatus
JPH0474597A (en) Apparatus for anaerobic treatment of sewage
CN110451635B (en) Biological treatment system and method for high-salt high-organic matter industrial wastewater
JP3955431B2 (en) Anaerobic treatment method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050707

R150 Certificate of patent or registration of utility model

Ref document number: 3700935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees