JPH0474597A - Apparatus for anaerobic treatment of sewage - Google Patents

Apparatus for anaerobic treatment of sewage

Info

Publication number
JPH0474597A
JPH0474597A JP2184353A JP18435390A JPH0474597A JP H0474597 A JPH0474597 A JP H0474597A JP 2184353 A JP2184353 A JP 2184353A JP 18435390 A JP18435390 A JP 18435390A JP H0474597 A JPH0474597 A JP H0474597A
Authority
JP
Japan
Prior art keywords
main body
sludge
sewage
stirring
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2184353A
Other languages
Japanese (ja)
Other versions
JP2952304B2 (en
Inventor
Masahiro Takahashi
正宏 高橋
Sakae Fukunaga
栄 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minister for Public Works for State of New South Wales
IHI Corp
National Research and Development Agency Public Works Research Institute
Original Assignee
Minister for Public Works for State of New South Wales
IHI Corp
Public Works Research Institute Ministry of Construction
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minister for Public Works for State of New South Wales, IHI Corp, Public Works Research Institute Ministry of Construction filed Critical Minister for Public Works for State of New South Wales
Priority to JP18435390A priority Critical patent/JP2952304B2/en
Publication of JPH0474597A publication Critical patent/JPH0474597A/en
Application granted granted Critical
Publication of JP2952304B2 publication Critical patent/JP2952304B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PURPOSE:To perform the high capacity anaerobic treatment of sewage by propagating a granular propagating body of methane producing bacteria from digested sludge by forming an unstirred zone having specific volume between the stirring blade in a reactor main body and the inner wall of the bottom part of the reactor main body. CONSTITUTION:Sewage upwardly flows through the sludge bed in a reactor main body 1 to receive the decomposition of org. matter due to anaerobic bacteria during the passage through the sludge bed to be purified and flows out of a purified water outflow pipe 3 as treated water. A stirring blade 5 is provided in the reactor main body 1 so as to be speced apart from the inner wall 9 of the bottom part of the reactor main body 1 by a predetermined distance and an unstirred zone 8 having volume 8 - 30% the volume of the main body is formed under the stirring blade 5. By this constitution, the outflow of methane producing bacteria is suppressed to the min. in the unstirred zone 8 and the granular propagation body of said bacteria is actively formed. Therefore, the granular propagation body and sewage supplied from the unstirred zone 8 are efficiently stirred and mixed in the stirring zone 10 due to the stirring blade 5 and the decomposition of org. matter is accelerated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、上向流嫌気性スラッジブランケット法(以下
、rUASB法」という。)による下水の嫌気性処理装
置に係り、特にリアクタ本体内を攪拌する攪拌翼とリア
クタ本体の底部内壁間に所定容積の無攪拌ゾーンを形成
することにより、UASB法における下水処理機能を実
質的に担うメタン生成細菌のグラニユール状増殖体(以
下、単に「グラニユール」という。)の形成が無攪拌ゾ
ーン内の汚泥によって成し得、高濃度の生物量がリアク
タ本体内に保持し得る下水の嫌気性処理装置に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a sewage anaerobic treatment device using an upward flow anaerobic sludge blanket method (hereinafter referred to as rUASB method). By forming a non-stirring zone of a predetermined volume between the agitating blade and the bottom inner wall of the reactor body, a granule-like proliferation of methane-producing bacteria (hereinafter simply referred to as "granule") that substantially performs the sewage treatment function in the UASB method is created. ) is formed by the sludge in the no-agitation zone, and a high concentration of biomass can be retained within the reactor body.

[従来の技術] UASB法による嫌気性消化処理は、従来、主として有
機物濃度か中濃度或いは高濃度の産業廃水に適用され、
有機物濃度の低い下水には適用が困難とされてきた。そ
こで現在、UASB法を下水処理に適用すべく種々の試
みが成されており、第3図及び第4図に示す嫌気性処理
装置が知られている。
[Prior art] Anaerobic digestion treatment using the UASB method has conventionally been applied mainly to industrial wastewater with medium or high concentration of organic matter.
It has been considered difficult to apply this method to sewage water with a low concentration of organic matter. Therefore, various attempts are currently being made to apply the UASB method to sewage treatment, and anaerobic treatment apparatuses shown in FIGS. 3 and 4 are known.

第3図に示す嫌気性処理装置は、下水aをリアクタ本体
すの下部に流入させ、リアクタ本体す内の汚泥層C内を
上向流で通過させつつ汚泥層C内の嫌気性消化微生物に
よって有機物を分解させ、浄化された処理水dとしてリ
アクタ本t*bの上部より流出させるよう構成されてい
る。リアクタ本体す内で発生したガスは本体す内下部に
設けられたカスドームeで回収し、カス排出管fを経て
排出される。ガスドームeは、ガス泡に付着して上昇し
た汚泥をガス泡から分離して本体すの下部へ戻す機能も
有している。
The anaerobic treatment device shown in Fig. 3 allows sewage a to flow into the lower part of the reactor main body, and while passing through the sludge layer C in the reactor main body in an upward flow, the sewage a is processed by anaerobic digestive microorganisms in the sludge layer C. It is configured to decompose organic matter and flow it out from the upper part of the reactor main t*b as purified treated water d. The gas generated within the reactor main body is collected by a cass dome e provided at the lower part of the main body, and is discharged through a cass discharge pipe f. The gas dome e also has the function of separating the sludge that has adhered to the gas bubbles and rising from the gas bubbles and returning it to the lower part of the main body.

第4図に示す装置は、上述の嫌気性処理装置を構成する
リアクタ本体すに、本体す内を攪拌するための攪拌装置
gを設けたものである。攪拌装置gは、リアクタ本体す
内下部に設けられた攪拌翼りをモータi″C−緩速回転
させて汚泥層C全体か攪拌できるように構成されている
The apparatus shown in FIG. 4 is provided with a stirring device g for stirring the inside of the reactor main body constituting the above-mentioned anaerobic treatment apparatus. The stirring device g is configured so that the entire sludge layer C can be stirred by slowly rotating a stirring blade provided in the lower part of the reactor main body by a motor i''C.

上述しないずれの嫌気性処理装置にあっても、リアクタ
本体す内にグラニユールが維持され、且つグラニユール
と下水との十分な接触があって初めて高い下水処理性能
が得られる。
In any of the above-mentioned anaerobic treatment devices, high sewage treatment performance can only be obtained if the granules are maintained within the reactor body and there is sufficient contact between the granules and the sewage.

[発明が解決しようとする課題] しかしながら、我が国の下水のように有a物濃度の低い
下水(BODが300■/1以下)に対してUASB法
による嫌気性消化処理を適用した場合には、以下のよう
な欠点が顕著にあられれる。
[Problem to be solved by the invention] However, when anaerobic digestion treatment using the UASB method is applied to sewage with a low concentration of aerobic substances (BOD of 300 μ/1 or less) like sewage in Japan, The following drawbacks are noticeable.

(1)リアクタ本体す内を攪拌するための攪拌装置gが
設けられていない嫌気性処理装置(第3図)にあっては
、リアクタ本体す内に導入される下水aの有機物濃度が
低い場合にはこれより発生するガスの量も少ないため、
発生ガスの上昇による攪拌が期待できない。従って、汚
泥の沈降堆積領域、即ちデッドスペースが広がりグラニ
ユールと下水と、の接触が不十分となる。
(1) In the case of an anaerobic treatment device (Fig. 3) that is not equipped with a stirring device g for stirring the inside of the reactor body, when the organic matter concentration of sewage a introduced into the reactor body is low. Since the amount of gas generated is smaller than this,
Stirring due to the rise of generated gas cannot be expected. Therefore, the area where the sludge settles and accumulates, that is, the dead space, expands and the contact between the granule and the sewage becomes insufficient.

(2)リアクタ本体す内を攪拌するための攪拌装置gを
有する嫌気性処理装置(第4図)にあっては、グラニユ
ールを既に多量に含んでいる汚泥をリアクタ本体す内に
投入してスタートアップすればグラニユールと下水との
接触か十分に成し得るが、この種の汚泥の入手は困誼で
あり大型の下水処理プラントには適用できない。従って
、消化汚泥からスタートアップする必要か生じるが、攪
拌することによって汚泥層Cが膨張するため汚泥を適宜
引き抜かなければならない。そのため、グラニユールを
形成するメタン生成細菌も汚泥と共に抜き出されること
になり、メタン生成細菌がリアクタ本体す内で増加しに
くい。
(2) In the case of an anaerobic treatment device (Fig. 4) that has a stirring device g for stirring the inside of the reactor body, sludge that already contains a large amount of granules is introduced into the reactor body to start up. This would allow sufficient contact between the granules and sewage, but this type of sludge is difficult to obtain and cannot be applied to large-scale sewage treatment plants. Therefore, it is necessary to start up from digested sludge, but since the sludge layer C expands by stirring, the sludge must be appropriately drawn out. Therefore, the methane-producing bacteria that form the granules are also extracted together with the sludge, making it difficult for methane-producing bacteria to increase within the reactor body.

本発明は上記課題を解消すべく創案されたものであり、
その目的はグラニユールを消化汚泥から増殖させ高性能
の嫌気性下水処理が成し得る下水の嫌気性処理装置を提
供することにある。
The present invention was created to solve the above problems,
The purpose is to provide a sewage anaerobic treatment device that can grow granules from digested sludge and perform high-performance anaerobic sewage treatment.

[課題を解決するための手段] 上記目的を達成するため、本発明は有底筒体状に形成さ
れたリアクタ本体内に緩速回転される攪拌回翼を有し、
リアクタ本体内下部に供給される下水を嫌気性消化微生
物と攪拌混合しつつ消化処理する下水の嫌気性処理装置
において、上記リアクタ本体内下部に本体容積の8%〜
30%の容積の無攪拌ゾーンを形成すべく、上記攪拌翼
をリアクタ本体の底部内壁より離間させて配置したもの
である。
[Means for Solving the Problems] In order to achieve the above object, the present invention has a stirring blade that rotates slowly in a reactor body formed in the shape of a cylinder with a bottom,
In a sewage anaerobic treatment device that digests sewage supplied to the lower part of the reactor main body while stirring and mixing it with anaerobic digestive microorganisms, 8% to 8% of the main body volume is added to the lower part of the reactor main body.
In order to form a non-stirring zone with a volume of 30%, the stirring blades were placed apart from the bottom inner wall of the reactor main body.

[作用] リアクタ本体内の無攪拌ゾーン容積がリアクタ本体容積
に占める割合と、グラニユールの増減及び嫌気性処理装
置の下水処理性能との関係を調べた実験結果を次の表に
示す。
[Function] The following table shows the results of an experiment that investigated the relationship between the ratio of the non-agitation zone volume in the reactor body volume to the reactor body volume, increase/decrease in granules, and sewage treatment performance of the anaerobic treatment device.

この実験結果によれば、グラニユールの月平均の増加率
は無攪拌ゾーン容積が本体容積に占める割合が8%以上
のときに無攪拌ゾーン容積に比例して高くなり、C0D
cr除去率は無攪拌ゾーン容積が本体容積に占める割合
が30%以下のときに高い値を示すことが判る。
According to this experimental result, the monthly average increase rate of granules increases in proportion to the non-stirring zone volume when the ratio of the non-stirring zone volume to the main body volume is 8% or more, and C0D
It can be seen that the Cr removal rate shows a high value when the ratio of the non-stirring zone volume to the main body volume is 30% or less.

従って、上記構成による本発明によれば、リアクタ本体
内下部に本体容積の8%〜30%の容積の無攪拌ゾーン
を形成すべく、攪拌翼がリアクタ本体の底部内壁より離
間させて配置されるので、リアクタ本体内に消化汚泥を
入れて下水を通水すると、無攪拌ゾーンではメタン生成
細菌の流出が最小限に抑えられてグラニユールが活発に
形成され、攪拌翼による攪拌ゾーンでは無攪拌ゾーンか
ら供給されるグラニユールと下水とが効率良く攪拌混合
されて有機物の分解が促進される。これにより、高性能
の嫌気性下水処理か達成されることになる。
Therefore, according to the present invention having the above configuration, the stirring blades are arranged at a distance from the bottom inner wall of the reactor main body in order to form a non-stirring zone with a volume of 8% to 30% of the main body volume in the lower part of the reactor main body. Therefore, when digested sludge is put into the reactor body and sewage water is passed through it, in the no-agitation zone, the outflow of methane-producing bacteria is minimized and granules are actively formed, and in the agitation zone by the agitation blades, granules are formed from the no-agitation zone. The supplied granules and sewage are efficiently stirred and mixed, promoting the decomposition of organic matter. This results in high performance anaerobic sewage treatment.

[実施例] 次に、本発明の一実施例を添付図面に従って説明する。[Example] Next, one embodiment of the present invention will be described with reference to the accompanying drawings.

第1図に示すように、リアクタ本体1は有底円筒状に形
成され、下端近傍の側壁に下水流入管2が接続され上端
近傍の側壁に浄化水流出管3が接続されている。リアク
タ本体1には、本体1内を攪拌するための攪拌装置4と
、本体1内に発生したカスを回収するためのカス回収装
置11と、本体1内より汚泥を引き出すための汚泥抜出
装置20とが設けられている。
As shown in FIG. 1, the reactor main body 1 is formed into a cylindrical shape with a bottom, and a sewage inflow pipe 2 is connected to the side wall near the lower end, and a purified water outflow pipe 3 is connected to the side wall near the upper end. The reactor main body 1 includes a stirring device 4 for stirring the inside of the main body 1, a scum collection device 11 for collecting sludge generated inside the main body 1, and a sludge extraction device for drawing out sludge from the inside of the main body 1. 20 are provided.

攪拌装置4は、リアクタ本体1の軸心上に回転自在に駆
動軸21を設け、駆動軸21の下端にフェンス状の攪拌
x5を固定すると共に上端に攪拌翼5を緩速回転させる
ための駆動モータ6を接続して構成される。モータ6は
、リアクタ本体1の上方に支持部材7を介して固定され
ている。攪拌翼5は、リアクタ本体1内下部に本体容積
の20%の容積の無攪拌ゾーン8を形成すべく、本体1
の底部内壁9より離間させて配置されている。従って、
攪拌装置4は、攪拌翼5をモータ6の駆動力で緩速回転
させることにより、無攪拌ゾーン8の上部に攪拌翼5の
回転領域としての攪拌ゾーン10を形成する。
The agitation device 4 has a drive shaft 21 rotatably provided on the axis of the reactor body 1, a fence-shaped agitation x5 fixed to the lower end of the drive shaft 21, and a drive for slowly rotating the agitation blades 5 at the upper end. It is configured by connecting a motor 6. The motor 6 is fixed above the reactor main body 1 via a support member 7. The stirring blades 5 are installed in the main body 1 in order to form a non-stirring zone 8 with a volume of 20% of the main body volume in the lower part of the reactor main body 1.
It is spaced apart from the bottom inner wall 9 of. Therefore,
The stirring device 4 forms a stirring zone 10 as a rotating region of the stirring blades 5 above the non-stirring zone 8 by rotating the stirring blades 5 at a slow speed using the driving force of the motor 6 .

カス回収装置11は、リアクタ本体1内の上端部に設け
られた二重円筒部材12とその下方に設けられた傘状部
材13とで主に構成されている。
The waste recovery device 11 is mainly composed of a double cylindrical member 12 provided at the upper end inside the reactor main body 1 and an umbrella-shaped member 13 provided below the double cylindrical member 12.

−重円筒部材12は、内筒14と外筒15とが同心状に
配置されると共に、これら内、外筒14゜15間の上端
が端板16で閉塞されて構成される。
- The heavy cylindrical member 12 has an inner cylinder 14 and an outer cylinder 15 arranged concentrically, and the upper end between the inner and outer cylinders 14 and 15 is closed with an end plate 16.

内筒14内には、上記駆動軸21が回転自在に挿通され
ている。また、端板16にはカス排出管17か接続され
ている。傘状部材13は、下端から上端にかけて縮径さ
れて形成されると共に上端に開口部18が形成されてお
り、駆動軸21が回転自在に挿通されている。本状部材
13の下端はリアクタ本体1の内径とほぼ同径またはそ
れ以上の径に形成され、開口部18は二重円筒部材12
を構成する内筒14の外径より大きく形成されている。
The drive shaft 21 is rotatably inserted into the inner cylinder 14 . Further, a waste discharge pipe 17 is connected to the end plate 16. The umbrella-shaped member 13 is formed so that its diameter is reduced from the lower end to the upper end, and an opening 18 is formed at the upper end, through which the drive shaft 21 is rotatably inserted. The lower end of the main member 13 is formed to have a diameter that is approximately the same as or larger than the inner diameter of the reactor body 1, and the opening 18 is formed in the double cylindrical member 12.
The outer diameter of the inner cylinder 14 is larger than that of the inner cylinder 14 that constitutes the inner cylinder 14.

二重円筒部材12と傘状部材13間には、駆動軸21を
拡径させてテーパ状のフランジ部19が形成されている
。これによりガス回収装置11は、リアクタ本体1内で
発生したガスを傘状部材13の下面で受けて開口部18
へ向けて集積し、フラーンジ部19によって二重円筒部
材12の内、外筒14,15間へ案内し、回収したガス
をガス排出管17を通して排出するように構成されてい
る。
A tapered flange portion 19 is formed between the double cylindrical member 12 and the umbrella-shaped member 13 by expanding the drive shaft 21 in diameter. Thereby, the gas recovery device 11 receives the gas generated within the reactor body 1 on the lower surface of the umbrella-shaped member 13 and opens the opening 18.
The flange portion 19 guides the gas toward the inside of the double cylindrical member 12 and between the outer cylinders 14 and 15, and the collected gas is discharged through the gas exhaust pipe 17.

汚泥抜出装置20は、上記攪拌翼5の上方のリアクタ本
体1側壁に接続されており、汚泥を引抜くための汚泥層
、抜管22と、引抜かれた汚泥の上澄液を本体1内へ返
送するための流通管23とを有している。汚泥引抜管2
2のリアクタ本体1側壁に対する取り付は位置は、攪拌
翼5の上端と傘状部材13の下端とのほぼ中間位置に設
定され、流通管23のリアクタ本体1011壁に対する
取り付は位置は、傘状部材13の下端と二重円筒部材1
2の下端とのほぼ中間位置に設定される。汚泥引抜管2
2の下部先端は、リアクタ本体1の近傍に設けられた汚
泥引抜槽24内に挿入されている。
The sludge extraction device 20 is connected to the side wall of the reactor main body 1 above the agitation blade 5, and includes a sludge layer for drawing out sludge, a removal tube 22, and a supernatant liquid of the drawn sludge into the main body 1. It also has a flow pipe 23 for return shipping. Sludge extraction pipe 2
2 is attached to the side wall of the reactor body 1 at a position approximately midway between the upper end of the stirring blade 5 and the lower end of the umbrella-shaped member 13, and the attachment position of the flow pipe 23 to the wall of the reactor body 1011 is set at a position approximately midway between the upper end of the stirring blade 5 and the lower end of the umbrella-shaped member 13. The lower end of the shaped member 13 and the double cylindrical member 1
It is set at a position approximately midway between the lower end of 2 and the lower end of 2. Sludge extraction pipe 2
The lower end of the reactor 2 is inserted into a sludge drawing tank 24 provided near the reactor main body 1.

汚泥引抜槽24の上面には、流通管23の下部先端が接
続されている。これにより汚泥抜出装置20は、汚泥層
が攪拌装置4による攪拌や下水中の懸濁物の蓄積等によ
って膨張し汚泥層上面が汚泥引抜管22のリアクタ本体
1側壁取り付は位置を越えると、その分の汚泥を汚泥引
抜管22を通って汚泥引抜槽24内へ流入させ、引抜汚
泥の上澄液をリアクタ本体1内へ返送するように構成さ
れる。汚泥引抜槽24内に回収された汚泥は、汚泥引抜
槽24の底部に設けられたバルブ25を開くことにより
排出されるようになっている。。また、汚泥引抜槽24
内で発生したガスは、流通管23の管路途中に接続され
たカス排出管26を介して排出できるようになっている
The lower end of the flow pipe 23 is connected to the upper surface of the sludge drawing tank 24 . As a result, the sludge extraction device 20 detects that the sludge layer expands due to stirring by the stirring device 4, accumulation of suspended matter in sewage, etc., and the upper surface of the sludge layer exceeds the position where the sludge extraction pipe 22 is attached to the side wall of the reactor main body 1. , the sludge corresponding to the amount of sludge is allowed to flow into the sludge drawing tank 24 through the sludge drawing pipe 22, and the supernatant liquid of the drawn sludge is returned into the reactor main body 1. The sludge collected in the sludge extraction tank 24 is discharged by opening a valve 25 provided at the bottom of the sludge extraction tank 24. . In addition, the sludge drawing tank 24
The gas generated inside can be discharged via a waste discharge pipe 26 connected midway through the flow pipe 23.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

リアクタ本体1内には、下水処理場の消化タンクなどか
ら採取した消化汚泥を投入し、下水を下水流入管2を通
して本体1下部に流入させる。下水は、リアクタ本体1
内の汚泥層内を上向流で流れ、汚泥層内を通過する際に
嫌気性消化微生物によって有機物が分解され、浄化され
て処理水として浄化水流出管3より流出する。上述した
如くリアクタ本体1内に攪拌翼5を底部内壁9より所定
距離離間させて設け、攪拌翼5の下部に無攪拌ゾーン8
を形成したことにより、下水は無攪拌ゾーン8内では沈
殿した消化汚泥の間隙をチャンネリングしなから流れ、
攪拌翼5による攪拌ゾーン10内では攪拌作用により汚
泥と良好に接触しながら上方へと流れる。
Digested sludge collected from a digestion tank of a sewage treatment plant is put into the reactor body 1, and sewage flows into the lower part of the body 1 through the sewage inflow pipe 2. The sewage is in the reactor body 1.
When passing through the sludge layer, organic matter is decomposed by anaerobic digestive microorganisms, purified, and flows out from the purified water outflow pipe 3 as treated water. As described above, the stirring blades 5 are provided within the reactor body 1 at a predetermined distance from the bottom inner wall 9, and the non-stirring zone 8 is provided below the stirring blades 5.
Due to the formation of the
In the stirring zone 10 by the stirring blades 5, the sludge flows upward while being in good contact with the sludge due to the stirring action.

無攪拌ゾーン8には、消化汚泥や下水中の懸濁物が沈殿
、滞積している。これらの沈殿物は攪拌によって舞い上
げられたり引抜かれたりすることがないので、それらに
付着して増殖するメタン生成細菌は無攪拌ゾーン8で増
加する。従って、メタン生成細菌の凝集粒子、即ちグラ
ニユールが無攪拌ゾーン8で増加する。このゾーン8で
は下水と微生物との接触効率は悪いので水質浄化は期待
できないが、グラニユールを形成する効果は大きい。無
攪拌ゾーン8で形成されたグラニユールは、やがて上方
の攪拌ゾーン10へと流れていく。
In the non-agitation zone 8, digested sludge and suspended matter in sewage settle and accumulate. Since these precipitates are not stirred up or pulled out by stirring, the number of methane-producing bacteria that adhere to them and proliferate increases in the no-stirring zone 8. Therefore, aggregated particles of methanogenic bacteria, ie, granules, increase in the no-agitation zone 8. In Zone 8, the contact efficiency between sewage and microorganisms is poor, so water purification cannot be expected, but the effect of forming granules is great. The granules formed in the non-stirring zone 8 eventually flow into the stirring zone 10 above.

第2図は、リアクタ本体内におけるvSS鉛直分布の経
口変化を示すグラフである。これによると、日が経つご
とに下方からグラニユールが増殖し、上方へ供給されて
いる様子が判る。上述した如く、グラニユールの月平均
の増加率並びにC0Dcr除去率は、無攪拌ゾーン容積
が本体容積に占める割合が8%〜30%のときに共に高
い値を示す。従って、本実施例におけるようにリアクタ
本体1内下部に本体容積の20%の容積の無攪拌ゾーン
8を形成することにより、無攪拌ゾーン8ではメタン生
成細菌の流出が最小限に抑えられてグラニユールが活発
に形成され、攪拌翼5による攪拌ゾーン10では無攪拌
ゾーン8から供給されるグラニユールと下水とが効率良
く攪拌混合されて有機物の分解が促進される。これによ
り、高牲能の嫌気性下水処理が達成されることになる。
FIG. 2 is a graph showing oral changes in vSS vertical distribution within the reactor body. According to this, it can be seen that granules multiply from below and are supplied upwards as the days pass. As described above, the monthly average increase rate of granules and the C0Dcr removal rate both exhibit high values when the ratio of the non-agitation zone volume to the main body volume is 8% to 30%. Therefore, by forming the non-stirring zone 8 with a volume of 20% of the main body volume in the lower part of the reactor main body 1 as in this embodiment, the outflow of methane-producing bacteria is minimized in the non-stirring zone 8 and the granule is actively formed, and in the stirring zone 10 by the stirring blades 5, the granules and sewage supplied from the non-stirring zone 8 are efficiently stirred and mixed, promoting the decomposition of organic matter. Thereby, high performance anaerobic sewage treatment will be achieved.

嫌気的有機物分解に伴って発生したガスは、ガス回収装
置11で集められ、ガス排出管17を経て取り出される
。ガス泡に付着して上昇した汚泥は、傘状部材13の壁
面に当ったり二重円筒部材12内の水面でガス攪拌され
なりすることによりガスと分離し、再びリアクタ本体1
内の下部に沈降する。駆動軸21に、傘状部材13の開
口部18から出たガスを二重円筒部材12内へ案内する
ためのフランジ部19が形成されているので、ガスが内
筒14内を通ってリアクタ本体1外へ漏れるのが防止さ
れる。
Gas generated as a result of anaerobic decomposition of organic matter is collected by a gas recovery device 11 and taken out via a gas exhaust pipe 17. The sludge that adheres to the gas bubbles and rises hits the wall surface of the umbrella-shaped member 13 or is agitated by the water surface in the double cylindrical member 12, and is separated from the gas, and returns to the reactor body 1.
It settles to the bottom of the inside. Since the drive shaft 21 is formed with a flange portion 19 for guiding the gas coming out from the opening 18 of the umbrella-shaped member 13 into the double cylindrical member 12, the gas passes through the inner cylinder 14 and reaches the reactor main body. 1. Leakage to the outside is prevented.

汚泥層が攪拌装置5による攪拌や下水中の懸濁物の蓄積
等によって膨張した場合、汚泥層上面が汚泥引抜管22
のリアクタ本体1側壁取り付は位置を越えると、その分
の汚泥が汚泥引抜管22を通って汚泥引抜槽24内へ流
入する。これにより汚泥層が膨張して汚泥が浄化水流出
管3から流出するのが防止される。汚泥引抜槽24内に
流入した汚泥の上澄液は流通管23を介してリアクタ本
体1内へ返送される。汚泥引抜槽24内の汚泥量が増し
た場合には、バルブ25を開いて汚泥を排出する。
When the sludge layer expands due to stirring by the stirring device 5 or accumulation of suspended matter in the sewage, the upper surface of the sludge layer expands into the sludge withdrawal pipe 22.
When the mounting position on the side wall of the reactor main body 1 exceeds the position, the corresponding amount of sludge flows into the sludge drawing tank 24 through the sludge drawing pipe 22. This prevents the sludge layer from expanding and sludge from flowing out from the purified water outflow pipe 3. The supernatant liquid of the sludge that has flowed into the sludge extraction tank 24 is returned into the reactor main body 1 via the flow pipe 23. When the amount of sludge in the sludge drawing tank 24 increases, the valve 25 is opened to discharge the sludge.

上述した如く、グラニユールはリアクタ本体l内の下方
から増殖し上方へ供給される。汚泥抜出装置20は、汚
泥層表面から汚泥を抜出すよう構成されるので、グラニ
ユール含有率の低い汚泥を選択的に抜出す効果がある。
As mentioned above, the granules grow from the bottom inside the reactor body l and are supplied to the top. Since the sludge extraction device 20 is configured to extract sludge from the surface of the sludge layer, it has the effect of selectively extracting sludge with a low granule content.

また、ガス回収装置11はガス泡に付着して浮上するグ
ラニユールをガスと分離する機能も有するので、浄化水
流出管3からのグラニユールの流出が防止できる。
Furthermore, since the gas recovery device 11 also has a function of separating the granules floating on the gas bubbles from the gas, it is possible to prevent the granules from flowing out from the purified water outflow pipe 3.

このように、リアクタ本体1内の下部に本体容積の8%
〜30%(本実施例にあっては本体容積の20%)の容
積の無攪拌ゾーンを形成すべく、上記攪拌翼をリアクタ
本体の底部内壁より離間させて配置したことにより、消
化汚泥がらのグラニユールの形成、並びにグラニユール
と下水との十分な接触が両立できるので、UASB法に
よる効果的な下水処理か可能となる。
In this way, 8% of the body volume is placed in the lower part of the reactor body 1.
In order to form a non-agitation zone with a volume of ~30% (in this example, 20% of the main body volume), the above-mentioned agitation blades are arranged at a distance from the bottom inner wall of the reactor main body, so that the digested sludge particles are Since both the formation of granules and sufficient contact between the granules and sewage can be achieved, effective sewage treatment by the UASB method is possible.

[発明の効果] 以上要するに本発明によれば、消化汚泥からのグラニユ
ールの形成、並びにグラニユールと下水との十分な接触
が両立でき、グラニユールを消化汚泥から増殖させUA
SB法による高性能の嫌気性下水処理が成し得る。
[Effects of the Invention] In summary, according to the present invention, it is possible to form granules from digested sludge and to have sufficient contact between the granules and sewage, and to propagate granules from digested sludge, thereby increasing UA.
High performance anaerobic sewage treatment can be achieved using the SB method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す縦断面図、第2図はリ
アクタ本体内におけるvSS鉛直分布の経口変化を示す
グラフ、第3図および第4図は従来例を示す縦断面図で
ある。 図中、1はリアクタ本体、5は攪拌翼、8は無攪拌ゾー
ン、9は底部内壁である。 特許出願人 建設省土木研究所長 石川島播磨重工業株式会社
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention, FIG. 2 is a graph showing oral changes in the vSS vertical distribution within the reactor body, and FIGS. 3 and 4 are longitudinal sectional views showing conventional examples. be. In the figure, 1 is a reactor main body, 5 is a stirring blade, 8 is a non-stirring zone, and 9 is a bottom inner wall. Patent applicant: Ministry of Construction Civil Engineering Research Institute Nagashishi Kawajima Harima Heavy Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、有底筒体状に形成されたリアクタ本体内に緩速回転
される攪拌翼を有し、リアクタ本体内下部に供給される
下水を嫌気性消化微生物と攪拌混合しつつ消化処理する
下水の嫌気性処理装置において、上記リアクタ本体内下
部に本体容積の8%〜30%の容積の無攪拌ゾーンを形
成すべく、上記攪拌翼をリアクタ本体の底部内壁より離
間させて配置したことを特徴とする下水の嫌気性処理装
置。
1. A reactor body formed in the shape of a cylinder with a bottom has a stirring blade that rotates slowly, and the sewage supplied to the lower part of the reactor body is stirred and mixed with anaerobic digestion microorganisms to digest the sewage. The anaerobic treatment apparatus is characterized in that the stirring blades are arranged at a distance from the bottom inner wall of the reactor main body so as to form a non-stirring zone with a volume of 8% to 30% of the main body volume in the lower part of the reactor main body. Anaerobic treatment equipment for sewage.
JP18435390A 1990-07-13 1990-07-13 Anaerobic sewage treatment equipment Expired - Lifetime JP2952304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18435390A JP2952304B2 (en) 1990-07-13 1990-07-13 Anaerobic sewage treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18435390A JP2952304B2 (en) 1990-07-13 1990-07-13 Anaerobic sewage treatment equipment

Publications (2)

Publication Number Publication Date
JPH0474597A true JPH0474597A (en) 1992-03-09
JP2952304B2 JP2952304B2 (en) 1999-09-27

Family

ID=16151770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18435390A Expired - Lifetime JP2952304B2 (en) 1990-07-13 1990-07-13 Anaerobic sewage treatment equipment

Country Status (1)

Country Link
JP (1) JP2952304B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002057189A1 (en) * 2001-01-19 2002-07-25 Global Technology Dt. Inc. An anaerobic bioreactor for the wastewater-treatment plant
JP2003320390A (en) * 2001-06-29 2003-11-11 Asahi Beer Eng:Kk Wastewater treatment apparatus
CN100436342C (en) * 2007-02-02 2008-11-26 浙江大学 Rotary multi-cut-piece anaerobic biological reactor
JP2012035194A (en) * 2010-08-06 2012-02-23 Kobelco Eco-Solutions Co Ltd Anaerobic treatment device and anaerobic treatment method
JP2012055837A (en) * 2010-09-09 2012-03-22 Kobelco Eco-Solutions Co Ltd Anaerobic treatment apparatus and anaerobic treatment method
CN109851166A (en) * 2019-01-30 2019-06-07 沈阳工业大学 Internal-circulation type anaerobism while denitrification methane-producing reactor and sewage water treatment method
CN110845006A (en) * 2019-12-10 2020-02-28 云南师范大学 Multi-bed anaerobic reactor
WO2021059554A1 (en) * 2019-09-27 2021-04-01 株式会社フジタ Biogas generation device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002057189A1 (en) * 2001-01-19 2002-07-25 Global Technology Dt. Inc. An anaerobic bioreactor for the wastewater-treatment plant
JP2003320390A (en) * 2001-06-29 2003-11-11 Asahi Beer Eng:Kk Wastewater treatment apparatus
CN100436342C (en) * 2007-02-02 2008-11-26 浙江大学 Rotary multi-cut-piece anaerobic biological reactor
JP2012035194A (en) * 2010-08-06 2012-02-23 Kobelco Eco-Solutions Co Ltd Anaerobic treatment device and anaerobic treatment method
JP2012055837A (en) * 2010-09-09 2012-03-22 Kobelco Eco-Solutions Co Ltd Anaerobic treatment apparatus and anaerobic treatment method
CN109851166A (en) * 2019-01-30 2019-06-07 沈阳工业大学 Internal-circulation type anaerobism while denitrification methane-producing reactor and sewage water treatment method
CN109851166B (en) * 2019-01-30 2023-09-29 沈阳工业大学 Internal circulation type anaerobic and denitrification methane-generating reactor and sewage treatment method
WO2021059554A1 (en) * 2019-09-27 2021-04-01 株式会社フジタ Biogas generation device
CN110845006A (en) * 2019-12-10 2020-02-28 云南师范大学 Multi-bed anaerobic reactor

Also Published As

Publication number Publication date
JP2952304B2 (en) 1999-09-27

Similar Documents

Publication Publication Date Title
CN206014509U (en) A kind of two-phase laminated flow inner-outer circulation anaerobic reactor
US7297274B2 (en) Fixed-film anaerobic digestion of flushed waste
EP2436655B1 (en) Wastewater treatment installation comprising a rectangular upstream anaerobic reaction tank and method using the same
JP3729332B2 (en) Wastewater treatment apparatus including upflow anaerobic reactor and wastewater treatment method using the same
CN109694130B (en) Device for realizing sludge suspension and avoiding sludge loss and use method thereof
CN109052827A (en) Food waste percolate enhanced processing method and system
JP2002336885A (en) Method for aerobic treatment of waste water
CN109761449A (en) A kind of novel anaerobic reactor and processing system based on UASB
CN109133510A (en) High concentration garlic wastewater processing unit
CN108328858A (en) The recycling treatment system and method for train toilet waste collector fecaluria waste liquid
JPH0474597A (en) Apparatus for anaerobic treatment of sewage
CN100500593C (en) Combined type wastewater treatment method and equipment
CN207525100U (en) A kind of drum type brake integrated sewage treating apparatus
CN206828316U (en) A kind of cleaning system of marine alga processing sewage
CN215975192U (en) Dynamic rotational flow aerator
JPH06142682A (en) Anaerobic water treatment device
JPS63315196A (en) Anaerobic bioreactor
CN210261287U (en) Mixed bed biochemical treatment device
CN106673372A (en) Treatment method of traditional Chinese medicine wastewater
JP2017029870A (en) Agitation operational method for anaerobic fermentation tank
JP2004160343A (en) Method and equipment for treating organic waste
CN111470715A (en) Method for treating and recycling rice puffed food wastewater
JP3700935B2 (en) Anaerobic treatment method and apparatus
CN215480887U (en) Three-phase separation complete mixing type anaerobic reactor
JP4765041B2 (en) Water treatment equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 11

EXPY Cancellation because of completion of term