JP2012035194A - Anaerobic treatment device and anaerobic treatment method - Google Patents

Anaerobic treatment device and anaerobic treatment method Download PDF

Info

Publication number
JP2012035194A
JP2012035194A JP2010177485A JP2010177485A JP2012035194A JP 2012035194 A JP2012035194 A JP 2012035194A JP 2010177485 A JP2010177485 A JP 2010177485A JP 2010177485 A JP2010177485 A JP 2010177485A JP 2012035194 A JP2012035194 A JP 2012035194A
Authority
JP
Japan
Prior art keywords
granule
tank
stirring
anaerobic
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010177485A
Other languages
Japanese (ja)
Other versions
JP5453196B2 (en
Inventor
Hideki Yokoyama
英樹 横山
Masahiko Miura
雅彦 三浦
Akihiko Sumi
晃彦 隅
Akira Akashi
昭 赤司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2010177485A priority Critical patent/JP5453196B2/en
Publication of JP2012035194A publication Critical patent/JP2012035194A/en
Application granted granted Critical
Publication of JP5453196B2 publication Critical patent/JP5453196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anaerobic treatment device capable of decomposing organic substances efficiently.SOLUTION: The anaerobic treatment device 1 includes a granule tank 21 having a granule filling layer 21a filled with granules containing acid-producing bacteria and methanogenic bacteria. Waste water including organic substances is supplied from a lower part of the granule tank 21, and treatment water is discharged from an upper part of the granule tank 21 to outside of the granule tank 21. The anaerobic treatment device 1 further includes a stirring device 22 having a rotating shaft 22a extended along the vertical direction of the granule tank 21 and stirring water on the lower side of the granule filling layer 21a in the peripheral direction of the rotating shaft 22a. A stirring region 23 where water is stirred in the peripheral direction by the stirring by the stirring device 22 is formed on the lower side of the granule filling layer 21a. In the stirring region 23, the waste water including the organic substances is supplied to inside of the granule tank 21, and an upward flow region 24 is formed above the stirring region 23.

Description

本発明は、嫌気処理装置及び嫌気処理方法に関する。   The present invention relates to an anaerobic treatment apparatus and an anaerobic treatment method.

従来より、有機物含有廃水(例えば、し尿廃水、下水、工場廃水(食品工場、化学工場、電子産業工場、パルプ工場等の工場からの廃水)等)の浄化処理においては、嫌気性微生物(例えば、酸生成菌、メタン生成菌等)を含有するグラニュール状の汚泥(以下、「グラニュール」ともいう。)を有するグラニュール槽内で有機物含有廃水を嫌気性微生物によって嫌気処理することにより、有機物含有廃水から有機物を除去することが行われている。嫌気処理においては、例えば、有機物含有廃水中の有機物(例えば、たんぱく質や多糖類等)が、加水分解による低分子化および酸生成菌による有機酸(例えば、酢酸等)の生成を経てメタン生成菌によりガス(例えば、メタンガス、炭酸ガス等)に分解されることにより、有機物含有廃水から有機物が除去される。   Conventionally, anaerobic microorganisms (e.g., wastewater from organic matter-containing wastewater (e.g., human waste, sewage, factory wastewater (wastewater from food factories, chemical factories, electronics industry factories, pulp factories, etc.)) By treating anaerobic microorganisms with anaerobic microorganisms in an anaerobic microorganism in a granule tank containing granular sludge containing acid-producing bacteria, methanogens, etc.) Organic substances are removed from the wastewater contained. In anaerobic treatment, for example, organic substances (for example, proteins and polysaccharides) in waste water containing organic substances are converted to methane-producing bacteria through hydrolysis, reduction of molecular weight and generation of organic acids (for example, acetic acid) by acid-producing bacteria. Is decomposed into gas (for example, methane gas, carbon dioxide gas, etc.), thereby removing the organic matter from the organic matter-containing wastewater.

嫌気処理装置としては、例えば、図3に示すように、グラニュールが充填されたグラニュール充填層102aを有するグラニュール槽102と、該グラニュール充填層102a全体を撹拌する撹拌装置103とが設けられてなり、前記グラニュール槽102の下部から該グラニュール槽102内に有機物含有廃水100Aが供給され、前記グラニュール槽102内において嫌気性微生物により有機物含有廃水100Aを嫌気処理して嫌気処理水100Bが得られ、前記グラニュール槽102の上部から該グラニュール槽102外へ前記嫌気処理水100Bが排出されるように構成されてなり、嫌気処理により生じたガス100Cである気泡が付着することによってグラニュール槽102の水中で浮力により上昇したグラニュールから、ガス100Cが取り除かれることにより、グラニュールを沈降させるガスドーム104が備えられてなる嫌気処理装置101が知られている(例えば、特許文献1)。
この嫌気処理装置101は、前記撹拌装置103によって前記グラニュール充填層102a全体を撹拌することにより、有機物及び嫌気性微生物の接触効率が高められて嫌気処理を促進する構造となっている。
As an anaerobic treatment apparatus, for example, as shown in FIG. 3, a granule tank 102 having a granule packed bed 102a filled with granules and an agitator 103 for stirring the entire granule packed bed 102a are provided. The organic substance-containing wastewater 100A is supplied into the granule tank 102 from the lower part of the granule tank 102, and the organic substance-containing wastewater 100A is anaerobically treated by anaerobic microorganisms in the granule tank 102. 100B is obtained, and the anaerobic treated water 100B is discharged from the upper part of the granule tank 102 to the outside of the granule tank 102, and bubbles which are gas 100C generated by the anaerobic treatment are attached. From the granule raised by buoyancy in the water of the granule tank 102 by the gas 1 By 0C is removed, anaerobic treatment apparatus 101 of provided with a gas dome 104 to precipitate granule is known (e.g., Patent Document 1).
The anaerobic treatment device 101 has a structure in which the contact efficiency of the organic matter and anaerobic microorganisms is enhanced by agitating the entire granule packed bed 102a by the agitation device 103, thereby promoting the anaerobic treatment.

特許第2952304号公報Japanese Patent No. 2952304

しかしながら、斯かる嫌気処理装置では、有機物含有廃水から有機物を十分に効率良く除去することができないという問題がある。   However, such an anaerobic treatment apparatus has a problem that organic substances cannot be sufficiently efficiently removed from organic substance-containing wastewater.

本発明は、上記問題点に鑑み、有機物含有廃水から有機物を十分に効率良く除去することを課題とする。   This invention makes it a subject to remove organic substance from organic substance containing wastewater fully efficiently in view of the said problem.

本発明は、酸生成菌及びメタン生成菌を含有するグラニュールが充填されたグラニュール充填層を有するグラニュール槽が設けられてなり、該グラニュール槽の下部から該グラニュール槽内に有機物含有廃水が供給され、前記グラニュール槽内において酸生成菌及びメタン生成菌により有機物含有廃水を嫌気処理して嫌気処理水が得られ、前記グラニュール槽の上部からグラニュール槽外へ前記嫌気処理水が排出されるように構成されてなる嫌気処理装置であって、
前記グラニュール槽の上下方向に沿って延びる回転軸を有し、該回転軸の周方向に前記グラニュール充填層の下部の水を撹拌する撹拌装置が備えられてなり、前記グラニュール充填層の下部には、該撹拌装置による撹拌によって水が前記周方向に撹拌される撹拌領域が形成され、該撹拌領域において前記グラニュール槽内に前記有機物含有廃水が供給され、該撹拌領域の上方には、水が上向流で流れる上向流領域が形成されるように構成されてなることを特徴とする嫌気処理装置にある。
The present invention is provided with a granule tank having a granule packed bed filled with granules containing acid-producing bacteria and methanogens, and contains an organic substance in the granule tank from the lower part of the granule tank. Wastewater is supplied, and anaerobic treatment water is obtained by anaerobically treating the organic wastewater containing acid-producing bacteria and methanogens in the granule tank, and the anaerobic treated water from the upper part of the granule tank to the outside of the granule tank. Is an anaerobic treatment device configured to be discharged,
A rotating shaft extending along the vertical direction of the granule tank; and a stirring device that stirs water below the granule packed bed in the circumferential direction of the rotating shaft. A stirring region in which water is stirred in the circumferential direction by stirring by the stirring device is formed in the lower portion, and the organic substance-containing wastewater is supplied into the granule tank in the stirring region, and above the stirring region The anaerobic treatment apparatus is characterized in that an upward flow region in which water flows upward is formed.

斯かる嫌気処理装置によれば、前記撹拌装置による撹拌により、前記グラニュール充填層の下部(撹拌領域)では、有機物(例えば、たんぱく質や多糖類等)と酸生成菌とが接触されやすくなり、酸生成菌が優先種となり、有機酸の生成が良好に行われる条件にできる。また、前記グラニュール充填層全体を均一には撹拌しないため、上向流領域には、前記グラニュール充填層の下部で生成した有機酸が順次供給され、メタン発酵が良好に行われる条件にできる。よって、反応効率が向上する。さらに、アルカリ等のpH調整薬剤の使用量も削減できる。
従って、斯かる嫌気処理装置によれば、まず前記撹拌領域では前記上向流領域に比して有機酸の生成が活発に行われ、一方前記上向流領域ではメタンの生成が活発に行われるため、有機物含有廃水から有機物を十分に効率良く除去し得る。また、有機物を十分に効率良く除去し得るため、グラニュール槽をコンパクト化し得るという利点もある。
According to such an anaerobic treatment apparatus, organic substances (for example, proteins and polysaccharides) and acid-producing bacteria are easily brought into contact with each other in the lower part (stirring region) of the granule packed bed by stirring by the stirring apparatus. Acid-producing bacteria become the preferred species, and the conditions under which organic acid generation is favorably performed can be achieved. In addition, since the entire granule packed bed is not uniformly stirred, the organic acid generated in the lower part of the granule packed bed is sequentially supplied to the upward flow region, and the conditions for good methane fermentation can be achieved. . Therefore, the reaction efficiency is improved. Furthermore, the amount of a pH adjusting agent such as alkali can be reduced.
Therefore, according to such an anaerobic treatment apparatus, first, the organic acid is actively generated in the stirring region as compared with the upward flow region, while the methane is actively generated in the upward flow region. Therefore, organic substances can be removed sufficiently efficiently from the organic substance-containing wastewater. Moreover, since organic substances can be removed sufficiently efficiently, there is an advantage that the granule tank can be made compact.

これに対して、特許文献1の如く、撹拌装置によりグラニュール充填層全体を撹拌する嫌気処理装置では、撹拌装置によりグラニュールが存在する領域全体の撹拌によって、グラニュール充填層が有機酸の生成が活発に行われる領域と、メタンの生成が活発に行われる領域とに分かれ難くなる。従って、斯かる嫌気処理装置では、有機物含有廃水から有機物を効率良く除去することができない。
また、撹拌装置が設けられていない嫌気処理装置では、グラニュール槽内のうち、有機物含有廃水が供給された部分付近に於いて、有機物の濃度が高まり酸生成菌により有機酸が生成されやすくなり、その結果、局所的にpHが低下して、局所的にpHが低下した部分のメタン生成菌の活性が低下してしまう。さらに、有機物と嫌気性微生物との接触効率が低い。従って、斯かる嫌気処理装置では、有機物含有廃水から有機物を効率良く除去することができない。
On the other hand, in the anaerobic treatment device that stirs the entire granule packed bed with the stirring device as in Patent Document 1, the granule packed bed generates organic acid by stirring the entire region where the granule exists with the stirring device. It is difficult to separate into a region where the methane is actively generated and a region where the methane production is actively performed. Therefore, such an anaerobic treatment apparatus cannot efficiently remove organic substances from organic substance-containing wastewater.
In addition, in an anaerobic treatment device that is not provided with a stirring device, the concentration of organic matter increases in the vicinity of the portion of the granule tank where the organic matter-containing wastewater is supplied, and organic acids are likely to be produced by acid-producing bacteria. As a result, the pH is locally lowered, and the activity of the methanogenic bacteria in the portion where the pH is locally lowered is lowered. Furthermore, the contact efficiency between organic matter and anaerobic microorganisms is low. Therefore, such an anaerobic treatment apparatus cannot efficiently remove organic substances from organic substance-containing wastewater.

また、本発明に係る嫌気処理装置においては、好ましくは、前記グラニュール槽より排出された嫌気処理水を、該嫌気処理水よりもグラニュールの含有率が低い固液分離処理水と、該嫌気処理水よりもグラニュールの含有率が高い濃縮水とに固液分離する固液分離部が備えられ、前記撹拌領域を介さずに前記上向流領域に前記濃縮水を返送するように構成されてなる。   Further, in the anaerobic treatment apparatus according to the present invention, preferably, the anaerobic treated water discharged from the granule tank is treated with solid-liquid separation treated water having a lower granule content than the anaerobic treated water, and the anaerobic treatment water. A solid-liquid separation unit for solid-liquid separation into concentrated water having a higher granule content than the treated water is provided, and is configured to return the concentrated water to the upward flow region without passing through the stirring region. It becomes.

前記グラニュール槽より排出された処理水中のグラニュールは、撹拌領域に比して、酸生成菌の量に対するメタン生成菌の量の比が大きいものであるため、斯かる嫌気処理装置によれば、前記上向流領域に於いて、メタン生成菌の濃度が高まり、有機酸や単糖類がメタン生成菌に接触されやすくなりメタンガスや、炭酸ガスにまで分解され、その結果、有機物含有廃水から有機物をより一層効率よく除去し得るという利点がある。   Since the granules in the treated water discharged from the granule tank have a larger ratio of the amount of methanogenic bacteria to the amount of acid producing bacteria than the stirring region, according to such an anaerobic treatment apparatus, In the upward flow region, the concentration of methanogens increases, and organic acids and monosaccharides are easily contacted with methanogens and decomposed into methane gas and carbon dioxide gas. There is an advantage that can be removed more efficiently.

また、本発明は、前記嫌気処理装置を用いて、有機物含有廃水から有機物を除去することを特徴とする嫌気処理方法にある。   Moreover, this invention exists in the anaerobic processing method characterized by removing an organic substance from an organic substance containing wastewater using the said anaerobic processing apparatus.

以上のように、本発明によれば、有機物含有廃水から有機物を十分に効率良く除去し得るという効果が奏される。   As described above, according to the present invention, there is an effect that organic substances can be sufficiently efficiently removed from organic substance-containing wastewater.

また、通常のグラニュール槽を用いる嫌気性処理装置では、底部のグラニュールや有機物の濃度を均一化させるべく、グラニュール槽内に原水を均等に流入させるための分配機構を設置することが多いが、本発明によれば、分配機構を簡素化した場合であっても撹拌装置により底部のグラニュールや有機物の濃度を均一化し得るという利点もある。   In addition, in an anaerobic treatment apparatus using a normal granule tank, a distribution mechanism for evenly flowing raw water into the granule tank is often installed in order to make the concentration of granules and organic substances at the bottom uniform. However, according to the present invention, there is an advantage that even if the distribution mechanism is simplified, the concentration of the granule and organic matter at the bottom can be made uniform by the stirring device.

一実施形態に係る嫌気処理装置の概略図。1 is a schematic diagram of an anaerobic treatment apparatus according to an embodiment. 一実施形態に係る嫌気処理装置における嫌気処理部の概略図。Schematic of the anaerobic processing part in the anaerobic processing apparatus which concerns on one Embodiment. 従来の嫌気処理装置の概略図。Schematic of the conventional anaerobic processing apparatus.

以下、添付図面を参照しつつ、本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1に示すように、本実施形態の嫌気処理装置1は、酸生成菌及びメタン生成菌が含有されたグラニュールが充填されたグラニュール充填層21aを有するグラニュール槽21が設けられ、該グラニュール槽21内において酸生成菌及びメタン生成菌により有機物含有廃水Aが嫌気処理されて嫌気処理水及びバイオガスDを得る嫌気処理部2が備えられてなる。一方で、前記グラニュール槽21には、ガスドーム、即ち、気固液分離手段が備えられていない。
前記嫌気処理は、酸素を介さずに、前記有機物含有廃水Aに含まれる有機物を酸生成菌及びメタン生成菌で分解する処理を意味し、嫌気処理では、前記バイオガスDとしてメタン、炭酸ガス等を含有するガスが生成される。
As shown in FIG. 1, the anaerobic treatment apparatus 1 of the present embodiment is provided with a granule tank 21 having a granule packed bed 21a filled with granules containing acid-producing bacteria and methanogens, An anaerobic treatment unit 2 is provided in the granule tank 21 to obtain anaerobic treated water and biogas D by anaerobically treating the organic substance-containing wastewater A by acid producing bacteria and methanogenic bacteria. On the other hand, the granule tank 21 is not provided with a gas dome, that is, a gas-solid-liquid separation means.
The anaerobic process means a process of decomposing an organic substance contained in the organic substance-containing wastewater A with acid-producing bacteria and methane-producing bacteria without using oxygen. In the anaerobic process, as the biogas D, methane, carbon dioxide gas, etc. A gas containing is produced.

また、本実施形態の嫌気処理装置1は、前記グラニュール槽21より排出された嫌気処理水を、該嫌気処理水よりもグラニュールの含有率が低い固液分離処理水B、及び該嫌気処理水よりもグラニュールの含有率が高い濃縮水Cに固液分離する固液分離部3が備えられてなる。   Moreover, the anaerobic treatment apparatus 1 of the present embodiment uses the anaerobic treated water discharged from the granule tank 21 as a solid-liquid separation treated water B having a lower granule content than the anaerobic treated water, and the anaerobic treatment. The solid-liquid separation part 3 which solid-liquid-separates into the concentrated water C whose granule content rate is higher than water is provided.

さらに、本実施形態の嫌気処理装置1は、前記グラニュール槽21の下部から該グラニュール槽21内に有機物含有廃水Aが供給されるように構成されてなる。
また、本実施形態の嫌気処理装置1は、前記グラニュール槽21の上部からグラニュール槽21外へ前記嫌気処理水が排出されるように構成されてなる。具体的には、嫌気処理水中のグラニュールからガスを取り除く処理がグラニュール槽21内で意図的には行われずに、前記グラニュール槽21の上部からグラニュール槽21外へ前記嫌気処理水が排出されるように構成されてなる。
Furthermore, the anaerobic treatment apparatus 1 of the present embodiment is configured such that the organic substance-containing wastewater A is supplied into the granule tank 21 from the lower part of the granule tank 21.
Moreover, the anaerobic treatment apparatus 1 of the present embodiment is configured such that the anaerobic treated water is discharged from the upper part of the granule tank 21 to the outside of the granule tank 21. Specifically, the treatment for removing the gas from the granules in the anaerobic treated water is not intentionally performed in the granule tank 21, and the anaerobic treated water is discharged from the upper part of the granule tank 21 to the outside of the granule tank 21. It is configured to be discharged.

また、本実施形態の嫌気処理装置1は、前記グラニュール槽21から排出された嫌気処理水が固液分離部3に移送され、固液分離処理水Bが固液分離処理水貯留槽(図示せず)に移送され、濃縮水Cが濃縮水貯留槽(図示せず)及びグラニュール槽21に移送され、バイオガスDがバイオガス貯留槽(図示せず)に移送されるように構成されてなる。   Moreover, in the anaerobic treatment apparatus 1 of the present embodiment, the anaerobic treated water discharged from the granule tank 21 is transferred to the solid-liquid separation unit 3, and the solid-liquid separated treated water B is stored in the solid-liquid separated treated water storage tank (FIG. The concentrated water C is transferred to the concentrated water storage tank (not shown) and the granule tank 21, and the biogas D is transferred to the biogas storage tank (not shown). It becomes.

さらに、本実施形態の嫌気処理装置1は、有機物含有廃水Aをグラニュール槽21に移送する廃水移送経路4aと、嫌気処理水を固液分離部3に移送する嫌気処理水移送経路4bと、固液分離処理水Bを固液分離処理水貯留槽(図示せず)に移送する固液分離処理水移送経路4cと、濃縮水Cを濃縮水貯留槽(図示せず)に移送する濃縮水移送経路4dと、濃縮水Cを嫌気処理部2に移送(返送)する濃縮水返送経路4eと、バイオガスDをバイオガス貯留槽(図示せず)に移送するバイオガス移送経路4fとを備えてなる。   Furthermore, the anaerobic treatment apparatus 1 of the present embodiment includes a wastewater transfer path 4a for transferring the organic matter-containing wastewater A to the granule tank 21, an anaerobic treated water transfer path 4b for transferring the anaerobic treated water to the solid-liquid separation unit 3, and Solid-liquid separation treated water transfer path 4c for transferring solid-liquid separation treated water B to a solid-liquid separation treated water storage tank (not shown), and concentrated water for transferring concentrated water C to a concentrated water storage tank (not shown). A transfer path 4d, a concentrated water return path 4e for transferring (returning) concentrated water C to the anaerobic treatment unit 2, and a biogas transfer path 4f for transferring biogas D to a biogas storage tank (not shown). It becomes.

前記有機物含有廃水Aは、前記嫌気性微生物により生物分解され得る有機物等を含有する廃水であれば、特に限定されるものではないが、該有機物含有廃水Aとしては、例えば、し尿廃水、下水、工場廃水(食品工場、化学工場、電子産業工場、パルプ工場等の工場からの廃水)等が挙げられる。前記グラニュール槽21入口(有機物含有廃水Aのグラニュール槽内への流入口)における前記有機物含有廃水AのBOD濃度は、例えば、10〜10000mg/L以下であり、より具体的には20〜2000mg/Lである。また、前記グラニュール槽21入口における前記有機物含有廃水AのCODcr濃度は、20〜20000mg/L以下であり、より具体的には40〜4000mg/Lである。   The organic matter-containing wastewater A is not particularly limited as long as it contains organic matter that can be biodegraded by the anaerobic microorganisms. Examples of the organic matter-containing wastewater A include human waste wastewater, sewage, Factory waste water (waste water from factories such as food factories, chemical factories, electronics industry factories, pulp factories). The BOD concentration of the organic matter-containing wastewater A at the inlet of the granule tank 21 (inlet into the granule tank of the organic matter-containing wastewater A) is, for example, 10 to 10,000 mg / L or less, more specifically 20 to 2000 mg / L. Moreover, the CODcr concentration of the organic substance-containing wastewater A at the inlet of the granule tank 21 is 20 to 20000 mg / L or less, and more specifically 40 to 4000 mg / L.

前記嫌気処理部2は、前記グラニュール槽21に於いて、グラニュールが、好ましくは、運転時(廃水供給時)に、底部から水面の高さの3/4以上充填され、より好ましくは槽内の略全体に充填されるように構成されてなる。   In the granule tank 21, the anaerobic treatment unit 2 is preferably filled with 3/4 or more of the water level from the bottom during operation (when wastewater is supplied), more preferably the tank. It is comprised so that the substantially whole inside may be filled.

前記嫌気処理部2は、前記グラニュール槽21の上下方向に伸びる回転軸22aを有し、該回転軸の周方向に前記グラニュール充填層21aの下部の水が撹拌されて撹拌領域23を形成する撹拌装置22が備えられてなる。前記回転軸22aは、軸回転するように構成されてなる。   The anaerobic treatment unit 2 has a rotating shaft 22a extending in the vertical direction of the granule tank 21, and the water below the granule packed bed 21a is stirred in the circumferential direction of the rotating shaft to form a stirring region 23. The stirring device 22 is provided. The rotating shaft 22a is configured to rotate.

前記グラニュール槽21は、円筒状に形成されてなる。   The granule tank 21 is formed in a cylindrical shape.

前記嫌気処理部2は、前記回転軸22aと、円筒状のグラニュール槽21における仮想軸とが略同軸となるように形成されてなる。   The anaerobic treatment unit 2 is formed such that the rotating shaft 22a and the virtual axis in the cylindrical granule tank 21 are substantially coaxial.

さらに、前記嫌気処理部2は、前記グラニュール充填層21aの下部に、該撹拌装置22による撹拌によって水が前記周方向に撹拌される撹拌領域23が形成され、該撹拌領域23において前記グラニュール槽21内に前記有機物含有排水Aが供給され、該撹拌領域23の上方に、水が上向流で流れる上向流領域24を形成するように構成されてなる。前記嫌気処理部2は、斯かる構成を有することにより、前記撹拌領域23におけるメタン生成菌の量に対する酸生成菌の量の比が前記上向流領域24における比に対して相対的に大きい酸生成菌層を前記撹拌領域23に形成し、且つ前記上向流領域24における酸生成菌量に対するメタン生成菌の量の比が前記撹拌領域23における比に対して相対的に大きいメタン生成菌層を前記上向流領域24に形成し得る。
前記グラニュール充填層21aにおいて、前記撹拌領域23および前記上向流領域24のグラニュールの濃度は、好ましくは20000〜100000mg-SS/L、より好ましくは30000〜100000mg-SS/Lである。
Furthermore, the anaerobic treatment unit 2 is formed with a stirring region 23 in which water is stirred in the circumferential direction by stirring by the stirring device 22 below the granule packed bed 21a. The organic substance-containing waste water A is supplied into the tank 21, and an upward flow region 24 in which water flows upward is formed above the stirring region 23. Since the anaerobic treatment unit 2 has such a configuration, the ratio of the amount of acid producing bacteria to the amount of methanogenic bacteria in the stirring region 23 is relatively large with respect to the ratio in the upward flow region 24. And a ratio of the amount of methanogenic bacteria to the amount of acid producing bacteria in the upward flow area 24 is relatively larger than the ratio in the stirring area 23. Can be formed in the upward flow region 24.
In the granule packed bed 21a, the concentration of granules in the stirring region 23 and the upward flow region 24 is preferably 20,000 to 100,000 mg-SS / L, more preferably 30,000 to 100,000 mg-SS / L.

また、前記嫌気処理部2は、必要に応じて、撹拌領域23の原水供給部付近、撹拌領域23と上向流領域24との境目付近、上向流領域24の処理水流出部付近のpHを測定するpH計(図示せず)がそれぞれ設けられ、pHを測定するように構成されてなる。また、前記嫌気処理部2は、撹拌領域23、及び上向流領域24にpH調整用の薬剤を添加するpH調整薬剤添加機構(図示せず)を備えてなることが好ましい。pH調整用の薬剤添加口の位置は、撹拌領域23及び上向流領域24に設けて各領域毎に調整するのが好ましい。pHの範囲は、上向流領域24では6〜8に調整するが、撹拌領域23では6以下となっても問題はない。   In addition, the anaerobic treatment unit 2 may adjust the pH in the vicinity of the raw water supply unit in the stirring region 23, in the vicinity of the boundary between the stirring region 23 and the upward flow region 24, and in the vicinity of the treated water outflow portion in the upward flow region 24 as necessary. Each is provided with a pH meter (not shown) for measuring pH and configured to measure pH. The anaerobic treatment unit 2 is preferably provided with a pH adjusting agent addition mechanism (not shown) for adding a pH adjusting agent to the stirring region 23 and the upward flow region 24. The position of the pH-adjusting drug addition port is preferably provided in the stirring region 23 and the upward flow region 24 and adjusted for each region. The pH range is adjusted to 6 to 8 in the upward flow region 24, but there is no problem even if it is 6 or less in the stirring region 23.

前記撹拌装置22は、パドル状の羽根板が、面が垂直方向となるように設置された撹拌翼22bを備えてなる。該羽根板は、前記回転軸22aの軸回転により、該回転軸22aの周方向に水を押し出すように構成されてなる。   The stirring device 22 includes a stirring blade 22b in which a paddle-shaped blade is installed so that its surface is in a vertical direction. The slats are configured to push water in the circumferential direction of the rotary shaft 22a by rotating the rotary shaft 22a.

また、前記嫌気処理部2は、好ましくは前記グラニュール槽21の槽内側底面部から水面高さLの1/3の高さ、より好ましくは1/4の高さまでの範囲内に、前記撹拌翼22b全体が収まるように構成されてなる(寸法の符号は図2に示す。)。   In addition, the anaerobic treatment unit 2 is preferably within the range from the tank inner bottom surface of the granule tank 21 to a height of 1/3 of the water surface height L, more preferably to a height of 1/4. The entire wing 22b is configured to be accommodated (size symbols are shown in FIG. 2).

さらに、前記嫌気処理部2は、前記グラニュール槽21の水深(槽内側底面部から水面までの高さ)Lに対する、前記撹拌翼22bの翼高(撹拌翼22bの上辺と下辺との距離)hの比が、好ましくは0.1〜0.4、より好ましくは0.15〜0.2である。
本実施形態の嫌気処理装置1は、L/hが0.1以上であることにより、前記グラニュール槽21の水を収容しうる部分に対して撹拌翼22bを大きくすることができるため、前記グラニュール槽21内の下部の水を十分に撹拌することができるという利点がある。
また、本実施形態の嫌気処理装置1は、L/hが0.4以下であることにより、前記グラニュール槽21内の上部の水が撹拌され難くなるため、グラニュール槽21の水の上下方向の混合が生じ難くなり、メタン生成菌の量に対する酸生成菌の量の比に関して、酸生成菌層とメタン生成菌層との差を大きくすることができるという利点がある。また、前記グラニュール槽21の槽内側底面部に撹拌翼22bが接触し難くなり、グラニュールの破壊を極力抑制できるという利点がある。
Further, the anaerobic treatment unit 2 is configured such that the blade height of the stirring blade 22b (distance between the upper side and the lower side of the stirring blade 22b) with respect to the water depth (height from the bottom surface inside the tank to the water surface) L of the granule tank 21. The ratio of h is preferably 0.1 to 0.4, more preferably 0.15 to 0.2.
The anaerobic treatment apparatus 1 of the present embodiment can increase the agitation blade 22b with respect to the portion of the granule tank 21 that can accommodate water when L / h is 0.1 or more. There exists an advantage that the water of the lower part in the granule tank 21 can fully be stirred.
Moreover, since the water of the upper part in the said granule tank 21 becomes difficult for the anaerobic processing apparatus 1 of this embodiment to be 0.4 or less because L / h is 0.4 or less, the upper and lower sides of the water of the granule tank 21 are the top and bottom. Mixing in the direction is less likely to occur, and there is an advantage that the difference between the acid-producing bacteria layer and the methanogenic bacteria layer can be increased with respect to the ratio of the amount of acid-producing bacteria to the amount of methanogen. Further, the stirring blade 22b is less likely to contact the inner bottom surface of the granule tank 21, and there is an advantage that the destruction of the granules can be suppressed as much as possible.

また、前記嫌気処理部2は、前記グラニュール槽21の内径Dに対する、前記撹拌翼22bの翼径(回転軸22aの軸から撹拌翼22bの先端までの距離)dの比(d/D)が、好ましくは0.6〜0.9、より好ましくは0.7〜0.8である。
本実施形態の嫌気処理装置1は、d/Dが0.6以上であることにより、前記グラニュール槽21の水を収容しうる部分に対して撹拌翼22bを大きくすることができるため、前記グラニュール槽21内の下部の水を十分に撹拌することができるという利点がある。また、d/Dが0.9以下であることにより、グラニュール槽21の内周壁面に撹拌翼22bが接触し難くなり、グラニュールの破壊を極力抑制できるという利点がある。
Further, the anaerobic treatment unit 2 is configured such that the ratio (d / D) of the blade diameter of the stirring blade 22b (distance from the axis of the rotating shaft 22a to the tip of the stirring blade 22b) d with respect to the inner diameter D of the granule tank 21. However, Preferably it is 0.6-0.9, More preferably, it is 0.7-0.8.
Since the anaerobic treatment apparatus 1 of the present embodiment has a d / D of 0.6 or more, the stirring blade 22b can be enlarged with respect to the portion of the granule tank 21 that can accommodate water. There exists an advantage that the water of the lower part in the granule tank 21 can fully be stirred. Moreover, since d / D is 0.9 or less, the stirring blade 22b becomes difficult to contact the inner peripheral wall surface of the granule tank 21, and there is an advantage that the destruction of the granule can be suppressed as much as possible.

前記撹拌翼22bの回転数は、好ましくは1〜30rpm、より好ましくは2〜20rpmである。
本実施形態の嫌気処理装置1は、該回転数が1rpm以上であることにより、前記グラニュール槽21内の下部の水を十分に撹拌することができるという利点がある。
また、本実施形態の嫌気処理装置1は、該回転数が30rpm以下であることにより、撹拌翼21bがグラニュールに衝突することにより生じる衝撃力が抑制されるため、グラニュールが潰れ難くなるという利点がある。また、グラニュール槽21の撹拌翼の上部の水の上下方向の混合が生じ難くなり、メタン生成菌の量に対する酸生成菌の量の比に関して、酸生成菌層とメタン生成菌層との差を大きくすることができるという利点がある。
The rotation speed of the stirring blade 22b is preferably 1 to 30 rpm, more preferably 2 to 20 rpm.
The anaerobic treatment apparatus 1 of the present embodiment has an advantage that the water in the lower part in the granule tank 21 can be sufficiently stirred when the rotational speed is 1 rpm or more.
In addition, the anaerobic treatment device 1 of the present embodiment has a rotational speed of 30 rpm or less, so that the impact force generated when the stirring blade 21b collides with the granule is suppressed, so that the granule is not easily crushed. There are advantages. Moreover, mixing of water in the vertical direction of the upper part of the stirring blade of the granule tank 21 is less likely to occur, and regarding the ratio of the amount of acid producing bacteria to the amount of methanogenic bacteria, the difference between the acid producing bacteria layer and the methanogenic bacteria layer. There is an advantage that can be increased.

前記固液分離部3は、グラニュールの重力沈降により、嫌気処理水から固液分離処理水Bと濃縮水Cとを生成する重力沈降槽31が備えられてなる。   The solid-liquid separation unit 3 includes a gravity sedimentation tank 31 that generates solid-liquid separation treated water B and concentrated water C from anaerobic treated water by gravity sedimentation of granules.

本実施形態の嫌気処理装置1は、前記重力沈降槽31に移送されたグラニュールに付着しており且つ重力沈降槽31内で分離されたバイオガスDと、前記重力沈降槽31内での嫌気処理により生じたバイオガスDとが、バイオガス貯留槽(図示せず)に移送されるように構成されてなる。   The anaerobic treatment apparatus 1 according to this embodiment is attached to the granule transferred to the gravity settling tank 31 and separated in the gravity settling tank 31, and anaerobic in the gravity settling tank 31. The biogas D generated by the processing is configured to be transferred to a biogas storage tank (not shown).

また、本実施形態の嫌気処理装置1は、撹拌領域23を介さずに、上向流領域24に濃縮水Cを返送するように構成されてなる。具体的には、濃縮水Cを撹拌翼の上端部より高い位置に返送するように構成されている。   Moreover, the anaerobic treatment apparatus 1 of the present embodiment is configured to return the concentrated water C to the upward flow region 24 without passing through the stirring region 23. Specifically, the concentrated water C is returned to a position higher than the upper end of the stirring blade.

本実施形態の嫌気処理装置は、上記の如く構成されてなるが、次ぎに、本実施形態の嫌気処理方法について説明する。   The anaerobic treatment apparatus of the present embodiment is configured as described above. Next, the anaerobic treatment method of the present embodiment will be described.

本実施形態の嫌気処理方法では、本実施形態の固液分離装置1を用いて、有機物含有廃水Aから有機物を除去する。
具体的には、本実施形態の嫌気処理方法では、前記グラニュール槽21の下部から該グラニュール槽21内に有機物含有廃水Aを供給する。次に、前記撹拌装置22による撹拌によって、前記グラニュール槽21の下部に、該撹拌装置22による撹拌によって水が前記周方向に撹拌される撹拌領域23を形成し、該撹拌領域23の上方に、水が上向流で流れる上向流領域24を形成しながら、酸生成菌及びメタン生成菌により有機物含有廃水Aを嫌気処理して嫌気処理水を得る。
In the anaerobic treatment method of the present embodiment, the organic matter is removed from the organic matter-containing wastewater A using the solid-liquid separation device 1 of the present embodiment.
Specifically, in the anaerobic treatment method of the present embodiment, the organic substance-containing wastewater A is supplied into the granule tank 21 from the lower part of the granule tank 21. Next, a stirring region 23 in which water is stirred in the circumferential direction by stirring by the stirring device 22 is formed in the lower part of the granule tank 21 by stirring by the stirring device 22, and above the stirring region 23. The organic matter-containing waste water A is anaerobically treated with acid-producing bacteria and methanogens while forming an upward flow region 24 in which water flows in an upward flow to obtain anaerobic treated water.

本実施形態の嫌気処理装置及び嫌気処理方法は、上記のように構成されているので、撹拌領域23と上向流領域24との機能分担による処理の効率化に加えて、以下の利点を有するものである。   Since the anaerobic treatment apparatus and the anaerobic treatment method of the present embodiment are configured as described above, the following advantages are provided in addition to the efficiency of the processing by the functional sharing between the stirring region 23 and the upward flow region 24. Is.

即ち、本実施形態の嫌気処理装置1は、前記嫌気処理水中のグラニュールからガスを取り除く処理が前記グラニュール槽内で意図的には行われずに、前記グラニュール槽21の上部からグラニュール槽21外へ前記嫌気処理水が排出されるように構成されてなることにより、即ち、気固液分離手段が備えられないことにより、最大でグラニュール槽21の水面直下までグラニュールを充填することができ、反応領域が拡大する結果、前記グラニュール槽21の単位容積当りの処理量を大きくすることができる。
これに対して、グラニュール槽内に気固液分離手段が備えられてなる嫌気処理装置では、グラニュールが存在せず有機物の分解に寄与しない領域の比率が大きい分、単位容積当りの処理量は小さくなる。
従って、本実施形態の嫌気処理装置では、有機物含有廃水から有機物を効率良く除去することができる。
That is, the anaerobic treatment apparatus 1 of the present embodiment is such that the process of removing the gas from the granules in the anaerobic treated water is not intentionally performed in the granule tank, and the granule tank is started from the upper part of the granule tank 21. By being configured so that the anaerobic treated water is discharged to the outside of 21, that is, by not having a gas-solid-liquid separation means, the granule is filled up to just below the water surface of the granule tank 21. As a result of the expansion of the reaction region, the processing amount per unit volume of the granule tank 21 can be increased.
On the other hand, in an anaerobic treatment apparatus in which a gas-solid-liquid separation means is provided in a granule tank, the amount of treatment per unit volume is large due to the large proportion of areas where no granule exists and does not contribute to decomposition of organic matter Becomes smaller.
Therefore, in the anaerobic treatment apparatus of this embodiment, organic substances can be efficiently removed from organic substance-containing wastewater.

尚、本実施形態の嫌気処理装置及び嫌気処理方法は、上記構成を有するものであったが、本発明の嫌気処理装置及び嫌気処理方法は、上記構成に限定されず、適宜設計変更可能である。
例えば、前記撹拌翼22bは、1段の垂直パドル翼に限らず、2段交差パドル翼、格子翼、門型翼、傾斜パドル翼、プロペラ翼、三枚後退翼であってもよい。
In addition, although the anaerobic processing apparatus and the anaerobic processing method of this embodiment had the said structure, the anaerobic processing apparatus and the anaerobic processing method of this invention are not limited to the said structure, A design change is possible suitably. .
For example, the stirring blade 22b is not limited to a single vertical paddle blade, but may be a two-stage cross paddle blade, a lattice blade, a gate blade, an inclined paddle blade, a propeller blade, or a three-blade retracted blade.

また、本実施形態の嫌気処理装置1は、撹拌領域23と上向流領域24とをより確実に分けるために、撹拌領域23と上向流領域24との間に水の上下方向の流れを抑制する部材(邪魔板、棒状部材等)が設けられても良い。   In addition, the anaerobic treatment device 1 of the present embodiment distributes the water in the vertical direction between the stirring region 23 and the upward flow region 24 in order to more reliably separate the stirring region 23 and the upward flow region 24. A suppressing member (baffle plate, rod-shaped member, etc.) may be provided.

さらに、本実施形態の嫌気処理装置1は、前記嫌気処理水中のグラニュールからガスを取り除く処理が前記グラニュール槽21内で意図的には行われないように構成されてなるが、本発明の嫌気処理装置1は、前記嫌気処理水中のグラニュールからガスを取り除く処理が前記グラニュール槽21内で意図的に行われるように構成されてもよい。即ち、本発明の嫌気処理装置1は、グラニュールからガスを取り除く気固液分離手段が前記グラニュール槽21内に備えられてもよい。   Furthermore, the anaerobic treatment apparatus 1 of the present embodiment is configured such that the process of removing gas from the granules in the anaerobic treated water is not intentionally performed in the granule tank 21. The anaerobic treatment apparatus 1 may be configured such that the treatment for removing gas from the granules in the anaerobic treated water is intentionally performed in the granule tank 21. That is, the anaerobic treatment apparatus 1 of the present invention may be provided with gas-solid-liquid separation means for removing gas from granules in the granule tank 21.

1:嫌気処理装置、2:嫌気処理部、3:固液分離部、4a:廃水移送経路、4b:嫌気処理水移送経路、4c:固液分離処理水移送経路、4d:濃縮水移送経路、4e:濃縮水返送経路、4f:バイオガス移送経路、21:グラニュール槽、21a:グラニュール充填層、22:撹拌装置、22a:回転軸、22b:撹拌翼、23:撹拌領域、24:上向流領域、31:重力沈降槽、A:有機物含有廃水、B:固液分離処理水、C:濃縮水、D:バイオガス、101:嫌気処理装置、102:グラニュール槽、102a:グラニュール充填層、103:撹拌装置、104:ガスドーム、100A:有機物含有廃水、100B:嫌気処理水、100C:ガス   1: Anaerobic treatment device, 2: Anaerobic treatment unit, 3: Solid-liquid separation unit, 4a: Waste water transfer route, 4b: Anaerobic treatment water transfer route, 4c: Solid-liquid separation treated water transfer route, 4d: Concentrated water transfer route, 4e: Concentrated water return path, 4f: Biogas transfer path, 21: Granule tank, 21a: Granule packed bed, 22: Stirring device, 22a: Rotating shaft, 22b: Stirring blade, 23: Stirring zone, 24: Top Countercurrent region, 31: gravity sedimentation tank, A: organic matter-containing wastewater, B: solid-liquid separation treated water, C: concentrated water, D: biogas, 101: anaerobic treatment device, 102: granule tank, 102a: granule Packed bed, 103: Stirrer, 104: Gas dome, 100A: Waste water containing organic matter, 100B: Anaerobic treated water, 100C: Gas

Claims (3)

酸生成菌及びメタン生成菌を含有するグラニュールが充填されたグラニュール充填層を有するグラニュール槽が設けられてなり、該グラニュール槽の下部から該グラニュール槽内に有機物含有廃水が供給され、前記グラニュール槽内において酸生成菌及びメタン生成菌により有機物含有廃水を嫌気処理して嫌気処理水が得られ、前記グラニュール槽の上部からグラニュール槽外へ前記嫌気処理水が排出されるように構成されてなる嫌気処理装置であって、
前記グラニュール槽の上下方向に沿って延びる回転軸を有し、該回転軸の周方向に前記グラニュール充填層の下部の水を撹拌する撹拌装置が備えられてなり、前記グラニュール充填層の下部には、該撹拌装置による撹拌によって水が前記周方向に撹拌される撹拌領域が形成され、該撹拌領域において前記グラニュール槽内に前記有機物含有廃水が供給され、該撹拌領域の上方には、水が上向流で流れる上向流領域が形成されるように構成されてなることを特徴とする嫌気処理装置。
A granule tank having a granule packed bed filled with granules containing acid-producing bacteria and methanogen is provided, and organic substance-containing wastewater is supplied into the granule tank from the lower part of the granule tank. The anaerobic treated water is obtained by anaerobically treating the organic waste water with acid producing bacteria and methanogenic bacteria in the granule tank, and the anaerobic treated water is discharged from the upper part of the granule tank to the outside of the granule tank. An anaerobic treatment device configured as described above,
A rotating shaft extending along the vertical direction of the granule tank; and a stirring device that stirs water below the granule packed bed in the circumferential direction of the rotating shaft. A stirring region in which water is stirred in the circumferential direction by stirring by the stirring device is formed in the lower portion, and the organic substance-containing wastewater is supplied into the granule tank in the stirring region, and above the stirring region An anaerobic treatment device characterized in that an upward flow region in which water flows upward is formed.
前記グラニュール槽より排出された嫌気処理水を、該嫌気処理水よりもグラニュールの含有率が低い固液分離処理水と、該嫌気処理水よりもグラニュールの含有率が高い濃縮水とに固液分離する固液分離部が備えられ、前記撹拌領域を介さずに前記上向流領域に前記濃縮水を返送するように構成されてなる請求項1記載の嫌気処理装置。   Anaerobic treated water discharged from the granule tank into solid-liquid separation treated water having a lower granule content than the anaerobic treated water and concentrated water having a higher granule content than the anaerobic treated water. The anaerobic treatment apparatus according to claim 1, further comprising a solid-liquid separation unit that performs solid-liquid separation, and configured to return the concentrated water to the upward flow region without passing through the stirring region. 前記請求項1又は2記載の嫌気処理装置を用いて、有機物含有廃水から有機物を除去することを特徴とする嫌気処理方法。   An anaerobic treatment method comprising removing organic matter from organic matter-containing wastewater using the anaerobic treatment device according to claim 1.
JP2010177485A 2010-08-06 2010-08-06 Anaerobic treatment apparatus and anaerobic treatment method Active JP5453196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010177485A JP5453196B2 (en) 2010-08-06 2010-08-06 Anaerobic treatment apparatus and anaerobic treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010177485A JP5453196B2 (en) 2010-08-06 2010-08-06 Anaerobic treatment apparatus and anaerobic treatment method

Publications (2)

Publication Number Publication Date
JP2012035194A true JP2012035194A (en) 2012-02-23
JP5453196B2 JP5453196B2 (en) 2014-03-26

Family

ID=45847809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010177485A Active JP5453196B2 (en) 2010-08-06 2010-08-06 Anaerobic treatment apparatus and anaerobic treatment method

Country Status (1)

Country Link
JP (1) JP5453196B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016016347A (en) * 2014-07-07 2016-02-01 新日鐵住金株式会社 Biological nitrogen removal method

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596991A (en) * 1982-07-05 1984-01-14 Ishikawajima Harima Heavy Ind Co Ltd Disposal of flithy water
JPS59173197A (en) * 1983-03-24 1984-10-01 Chiyoda Chem Eng & Constr Co Ltd Fermentating method of organic waste liquid
JPS59183895A (en) * 1983-03-24 1984-10-19 ベルタン・エ・コンパニ Fuel gas producing method and apparatus
JPS6048194A (en) * 1983-08-05 1985-03-15 ダンカン・ラグニ−ズ・アンド・アソシエ−ツ・インコ−ポレ−テツド Reaction tank for anaerobic treatment of industrial waste water and method of treating said waste water
JPS621497A (en) * 1985-06-25 1987-01-07 Sumitomo Heavy Ind Ltd Methane fermentation method
JPS63305994A (en) * 1987-06-06 1988-12-13 Shinko Fuaudoraa Kk Pulsation type anaerobic treating method for organic waste water
JPH01293189A (en) * 1988-05-19 1989-11-27 Toshiba Corp Fluidized bed type water treatment device
JPH0243997A (en) * 1988-08-04 1990-02-14 Kajima Corp Bioreactor
JPH0243996A (en) * 1988-08-03 1990-02-14 Kajima Corp Scum crushing type anaerobic bioreactor
JPH02273598A (en) * 1989-04-14 1990-11-08 Taisei Corp Upward flow type anaerobic waste water treatment apparatus
JPH0474597A (en) * 1990-07-13 1992-03-09 Pub Works Res Inst Ministry Of Constr Apparatus for anaerobic treatment of sewage
JPH06142682A (en) * 1992-11-05 1994-05-24 Toshiba Corp Anaerobic water treatment device
JPH09155382A (en) * 1995-12-11 1997-06-17 Nippon Steel Corp Device and process for biological treatment of drain
JPH1094794A (en) * 1996-09-20 1998-04-14 Kurita Water Ind Ltd Organic waste water anaerobic treatment device
JPH10216784A (en) * 1997-02-06 1998-08-18 Shinko Pantec Co Ltd Device and method for water treatment
JPH11197690A (en) * 1998-01-13 1999-07-27 Hitachi Plant Eng & Constr Co Ltd Anaerobic biological treatment method and apparatus for organic solid-containing waste water
JPH11319880A (en) * 1998-05-14 1999-11-24 Kankyo Eng Co Ltd Biological treatment of organic waste water
JP2006051490A (en) * 2004-01-15 2006-02-23 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus and method
WO2006075414A1 (en) * 2005-01-11 2006-07-20 Sumitomo Heavy Industries, Ltd. Anaerobic treatment apparatus and method of anaerobic treatment
JP2008100151A (en) * 2006-10-18 2008-05-01 Kobelco Eco-Solutions Co Ltd Organic wastewater treatment method and organic waste water treatment device

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596991A (en) * 1982-07-05 1984-01-14 Ishikawajima Harima Heavy Ind Co Ltd Disposal of flithy water
JPS59173197A (en) * 1983-03-24 1984-10-01 Chiyoda Chem Eng & Constr Co Ltd Fermentating method of organic waste liquid
JPS59183895A (en) * 1983-03-24 1984-10-19 ベルタン・エ・コンパニ Fuel gas producing method and apparatus
JPS6048194A (en) * 1983-08-05 1985-03-15 ダンカン・ラグニ−ズ・アンド・アソシエ−ツ・インコ−ポレ−テツド Reaction tank for anaerobic treatment of industrial waste water and method of treating said waste water
JPS621497A (en) * 1985-06-25 1987-01-07 Sumitomo Heavy Ind Ltd Methane fermentation method
JPS63305994A (en) * 1987-06-06 1988-12-13 Shinko Fuaudoraa Kk Pulsation type anaerobic treating method for organic waste water
JPH01293189A (en) * 1988-05-19 1989-11-27 Toshiba Corp Fluidized bed type water treatment device
JPH0243996A (en) * 1988-08-03 1990-02-14 Kajima Corp Scum crushing type anaerobic bioreactor
JPH0243997A (en) * 1988-08-04 1990-02-14 Kajima Corp Bioreactor
JPH02273598A (en) * 1989-04-14 1990-11-08 Taisei Corp Upward flow type anaerobic waste water treatment apparatus
JPH0474597A (en) * 1990-07-13 1992-03-09 Pub Works Res Inst Ministry Of Constr Apparatus for anaerobic treatment of sewage
JPH06142682A (en) * 1992-11-05 1994-05-24 Toshiba Corp Anaerobic water treatment device
JPH09155382A (en) * 1995-12-11 1997-06-17 Nippon Steel Corp Device and process for biological treatment of drain
JPH1094794A (en) * 1996-09-20 1998-04-14 Kurita Water Ind Ltd Organic waste water anaerobic treatment device
JPH10216784A (en) * 1997-02-06 1998-08-18 Shinko Pantec Co Ltd Device and method for water treatment
JPH11197690A (en) * 1998-01-13 1999-07-27 Hitachi Plant Eng & Constr Co Ltd Anaerobic biological treatment method and apparatus for organic solid-containing waste water
JPH11319880A (en) * 1998-05-14 1999-11-24 Kankyo Eng Co Ltd Biological treatment of organic waste water
JP2006051490A (en) * 2004-01-15 2006-02-23 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus and method
WO2006075414A1 (en) * 2005-01-11 2006-07-20 Sumitomo Heavy Industries, Ltd. Anaerobic treatment apparatus and method of anaerobic treatment
JP2008100151A (en) * 2006-10-18 2008-05-01 Kobelco Eco-Solutions Co Ltd Organic wastewater treatment method and organic waste water treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016016347A (en) * 2014-07-07 2016-02-01 新日鐵住金株式会社 Biological nitrogen removal method

Also Published As

Publication number Publication date
JP5453196B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
US20180237734A1 (en) Methods and bioreactors for microbial digestion using immobilized biofilms
KR101408302B1 (en) Hydraulic screw stirrer type anaerobic digestion unit for organic waste
CN104649524B (en) A kind of livestock and poultry cultivation sewage water treatment method
CN200964376Y (en) Sludge anaerobic reaction device
CN202830029U (en) Crust-breaking anaerobic fermentation device
JP2011515212A (en) Biogas production method
WO2009104002A1 (en) A gas actuated mixing system and method
CN104803473B (en) High-efficiency pulse biological reaction apparatus
JP2015217322A (en) Methane fermentation apparatus and treatment method of water-containing organic waste
CN103626295B (en) Sewage disposal device and processing method
CN104193082B (en) A kind of quick treatment device of kitchen garbage, waste-water and method
JP2008086862A (en) Anaerobic treatment method and arrangement
CN103623730B (en) A kind of broken shell agitating device
CN204569530U (en) High-efficiency pulse biological reaction apparatus
CN107760584A (en) The multilayer agitating device of large-scale feces of livestock and poultry mixed stalk raw material anaerobic fermentation tank
JP2012055837A (en) Anaerobic treatment apparatus and anaerobic treatment method
CN102010113B (en) Anaerobic solid reactor
JP5453196B2 (en) Anaerobic treatment apparatus and anaerobic treatment method
JP2016047490A (en) Oil- and fat-containing wastewater treatment method and apparatus
CN107760585A (en) A kind of efficient broken shell integrated system of feces of livestock and poultry mixed stalk raw material anaerobic fermentation
CN111995047B (en) Shell-breaking full-mixing type anaerobic reactor
RU2408546C2 (en) Sludge digestion tank for anaerobic treatment of organic wastes
JP2019042692A (en) Biological treatment device and methane gas manufacturing method
US7332083B2 (en) Process and device for biological treatment of a suspension in a bioreactor
CN207121472U (en) A kind of aerobic integrated sewage-treating reactor device of internal circulating anaerobic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Ref document number: 5453196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250