JPH1094794A - Organic waste water anaerobic treatment device - Google Patents

Organic waste water anaerobic treatment device

Info

Publication number
JPH1094794A
JPH1094794A JP24992096A JP24992096A JPH1094794A JP H1094794 A JPH1094794 A JP H1094794A JP 24992096 A JP24992096 A JP 24992096A JP 24992096 A JP24992096 A JP 24992096A JP H1094794 A JPH1094794 A JP H1094794A
Authority
JP
Japan
Prior art keywords
sedimentation
rising
water
section
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24992096A
Other languages
Japanese (ja)
Inventor
Motoyuki Yoda
元之 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP24992096A priority Critical patent/JPH1094794A/en
Publication of JPH1094794A publication Critical patent/JPH1094794A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W10/12

Abstract

PROBLEM TO BE SOLVED: To gather treated water in which sludge is not mixed and also to forcibly return sludge which has been subjected to sedimentation to a reaction part to completely subject organic matter to biological treatment irrespective of the case in which the quantity of a CODcr load of organic waste water (raw water) to be treated is high and the generated quantity of anaerobic gas is large. SOLUTION: A treating tank 20 is provided with a reaction part 21 having an anaerobic sludge bed 22 and a water supply pipe 23 for feeding organic waste water in a upflow into the sludge bed 22, in the bottom part thereof. Inside the treating tank 20 and above the reaction part 21, a sedimentation part 24 having the bottom whose upper end part is projected above the surface of the water in the tank 20 is arranged. And outside the sedimentation part 24, a partition 28 whose upper end is projected above the surface of the water in the tank is arranged leaving a space along the sedimentation part 24. The space is made a rising waterway 29 into which a part of treated water rising from the reaction part 21 flows. The rising waterway 29 and the inside of the sedimentation part 24 are made to communicate with each other, and also below the lower end of the rising waterway 29, a baffle plate 32 for preventing anaerobic gas from entering the rising waterway 29 is provided. And between the bottom part 24' of the sedimentation part 24 and the reaction part 21, a returning pipe 31 for returning the sludge settled on the bottom of the sedimentation part 24 to the reaction part 31 is provided, and treated water is taken out to outside the tank from the upper part in the sedimentation part 24.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は有機性排水中の有
機物を、沈積層を構成する嫌気性微生物からなる自己造
粒汚泥(グラニュール)で最終的にメタンと二酸化炭素
を主成分とする嫌気性ガスに分解して有機物を除去し、
有機物の分解が済んだ処理水を、発生した嫌気性ガス、
及びグラニュールから分離して取出すUASB式(上向
流スラッジブランケット式)嫌気性処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for converting organic matter in an organic wastewater into an anaerobic mixture mainly composed of methane and carbon dioxide by means of self-granulated sludge (granules) composed of anaerobic microorganisms constituting sediment. Decomposes into volatile gases to remove organic matter,
The anaerobic gas generated,
And a UASB type (upflow sludge blanket type) anaerobic treatment apparatus which is separated and taken out from granules.

【0002】[0002]

【従来の技術】図4に示すように、頂部にガス抜き管1
1を有する有蓋の処理槽10と、上端部が槽内の水面上
に突出し、水面下で傾斜して下端が槽内の高さの中程に
位置する傾斜分離板12と、この傾斜分離板により槽内
に隔離して設けられた汚泥沈殿室13、及び反応室14
と、反応室の槽底部上に形成される嫌気性汚泥層15
と、該嫌気性汚泥層中に有機性排水を供給する給水管1
6と、前記汚泥沈殿室の上部に、傾斜分離板に接して設
けられた処理水の溢流トラフ17と、前記反応室の内部
で、汚泥沈殿室の下部に傾斜して設けられたガス分離板
18とを備えた有機性排水の嫌気性処理装置は従来から
公知である。処理槽10の平面形状は円筒形でも、角筒
形でもよいが、円筒形の場合は傾斜分離板12は直径が
下向きに小さくなった円錐筒であり、ガス分離板18は
陣笠形である。尚、傾斜分離板の円錐板は上半部12a
と、上部が上半部の下部よりも直径が少し大きい下半部
12bとからなり、上半部の下部と下半部の上部は内外
に同心状に嵌合し、その間に陣笠状のガス分離板の周面
に向う円錐形の通路12´を形成している。このような
構成により、汚泥沈殿室13の下部開口部は、流路を残
してガス分離板18によって下方から覆われた状態とな
っている。
2. Description of the Related Art As shown in FIG.
1, an inclined separating plate 12 whose upper end protrudes above the water surface in the tank, is inclined below the water surface, and whose lower end is located at the middle of the height of the tank. Sludge sedimentation chamber 13 and reaction chamber 14 provided separately in the tank by
And an anaerobic sludge layer 15 formed on the bottom of the tank in the reaction chamber.
And a water supply pipe 1 for supplying organic wastewater into the anaerobic sludge layer.
6, an overflow trough 17 for treated water provided in contact with an inclined separation plate in the upper part of the sludge settling chamber, and a gas separation inclined in the lower part of the sludge settling chamber inside the reaction chamber. An anaerobic treatment device for organic wastewater comprising a plate 18 is conventionally known. The planar shape of the treatment tank 10 may be a cylindrical shape or a rectangular tube shape. In the case of the cylindrical shape, the inclined separating plate 12 is a conical tube having a diameter decreasing downward, and the gas separating plate 18 is a jinkasa shape. In addition, the conical plate of the inclined separation plate has an upper half 12a.
And the upper part is composed of a lower half part 12b whose diameter is slightly larger than the lower part of the upper half part. The lower part of the upper half and the upper part of the lower half are fitted concentrically inside and outside, and a gas-like gas between them A conical passage 12 'is formed toward the peripheral surface of the separator. With such a configuration, the lower opening of the sludge settling chamber 13 is covered with the gas separation plate 18 from below, leaving the flow path.

【0003】給水管16から処理槽内に供給された原水
(有機性排水)は、嫌気性汚泥層中を上昇する際に、含
有する有機物を該汚泥層を構成するグラニュールにより
分解されて処理水となり、処理水は分解により生成した
嫌気性ガスの上昇に随伴して一部のグラニュールを伴っ
て反応室14内を上向流する。そして、一部の処理水は
ガス分離板18の回りから、汚泥沈殿室13内に下端の
入口から入って室内を上昇する上昇流Aになる。汚泥沈
殿室の下端の入口はガス分離板18で遮られ、グラニュ
ールを伴った処理水が直接、汚泥分離室に上向流しない
ので、ガスは分離され、汚泥沈殿室に流入した処理水の
上昇流Aに含まれたグラニュールは室内で分離し、グラ
ニュールは汚泥沈殿室に流入する処理水に抗して沈殿室
の下端の入口からガス分離板上に落下し、ガス分離板の
回りから嫌気性汚泥層15上に沈下する。従って、グラ
ニュールを分離した処理水は溢流トラフ17に溢入し、
排出管19から取出される。又、発生した嫌気性ガスの
一部はガス分離板18の下に集まり、ガス分離板の回り
や、処理槽が角筒状の場合は山形断面のガス分離板の両
端から沈殿室の外の液面に浮上し、ガス抜き管11から
放出される。
[0003] Raw water (organic wastewater) supplied to the treatment tank from the water supply pipe 16 is decomposed by the granules constituting the sludge layer to treat the organic matter contained therein when the raw water (organic wastewater) rises in the anaerobic sludge layer. The treated water flows upward in the reaction chamber 14 with some granules accompanying the rise of the anaerobic gas generated by the decomposition. Then, a part of the treated water enters the sludge settling chamber 13 from the periphery of the gas separation plate 18 through an inlet at the lower end, and becomes an upward flow A rising in the chamber. The inlet at the lower end of the sludge sedimentation chamber is blocked by the gas separation plate 18, and the treated water with the granules does not directly flow upward into the sludge separation chamber, so that the gas is separated and the treated water flowing into the sludge sedimentation chamber is separated. The granules contained in the upward flow A are separated in the room, and the granules fall on the gas separation plate from the inlet at the lower end of the sedimentation room against the treated water flowing into the sludge sedimentation room, and around the gas separation plate. And settles on the anaerobic sludge layer 15. Therefore, the treated water separated from the granules overflows into the overflow trough 17,
It is taken out from the discharge pipe 19. In addition, a part of the generated anaerobic gas collects under the gas separation plate 18, and from around the gas separation plate or from both ends of the gas separation plate having a chevron-shaped cross section when the processing tank has a rectangular tube shape, outside the sedimentation chamber. It floats on the liquid surface and is discharged from the gas vent tube 11.

【0004】汚泥沈殿室に流入しなかったグラニュール
を含んだ残りの処理水は嫌気性ガスに随伴して傾斜分離
板12の回りの反応室の上部に上昇し、嫌気性ガスは反
応室の液面に浮上し、ガス抜き管11から放出される。
嫌気性ガスに随伴して上昇する処理水の上昇速度は、原
水中のCODcr負荷量、つまり生成される嫌気性ガスの
量によって定まり、CODcr負荷量が高い程、嫌気性ガ
スの生成量は大になるので処理水の上昇速度は早まる。
こうして、反応室内で嫌気性ガスを放出した処理水は、
嫌気性ガスによる上昇流Bの反転流Cとして反応室内の
傾斜分離板12の外側に沿って傾斜分離板の下方の円錐
形の通路12´中を下降し、処理水に含まれるグラニュ
ールは嫌気性汚泥層15上に沈下する。
[0004] The remaining treated water containing the granules that have not flowed into the sludge sedimentation chamber rises to the upper part of the reaction chamber around the inclined separation plate 12 with the anaerobic gas, and the anaerobic gas is removed from the reaction chamber. It floats on the liquid surface and is discharged from the gas vent tube 11.
The rising speed of the treated water that rises with the anaerobic gas is determined by the CODcr load in the raw water, that is, the amount of anaerobic gas generated. The higher the CODcr load, the larger the amount of anaerobic gas generated. And the rate of rise of the treated water is increased.
Thus, the treated water that released the anaerobic gas in the reaction chamber
As a reverse flow C of the upward flow B due to the anaerobic gas, the flow descends along the outside of the inclined separation plate 12 in the conical passage 12 'below the inclined separation plate in the reaction chamber, and the granules contained in the treated water are anaerobic. It settles on the activated sludge layer 15.

【0005】[0005]

【発明が解決しようとする課題】上記従来装置はCOD
cr負荷量が15kg/COD/m3 /日程度までの有機
性排水であれば、充分に処理を行うことができるが、C
OD負荷量が20kg/COD/m3 /日、或いはそれ
以上に高い有機性排水の場合は、生成する嫌気ガスの量
が多いので反応室内の上昇流Bと、その後の傾斜分離板
の外側に沿って通路12´中を下降する反転流Cは高速
になり、ガス分離板18上に激しく衝突し、一部が反射
的な上向きの衝突流Dになって沈殿室13の内部に浸入
し、沈殿室でのグラニュールの沈殿を妨げたり、沈殿す
べきグラニュールが溢流トラフ17に流入し、排出管1
9から取出される処理水にグラニュールが混ざることが
ある。つまり、反応室内の傾斜分離板12に沿って下降
する反転流Cが、嫌気性ガスによって反応室内を上昇す
る上昇流Bの反転流を利用したものであるため、COD
cr負荷量の上昇に伴う上昇流Bの流速の上昇が反転流C
の流速の上昇につながり、結果として沈殿室13内に反
射的に上昇して室内を攪拌する垂直上向きの衝突流Dが
無視できない悪影響を及ぼし、前述したように沈殿室で
のグラニュールの沈殿を妨げたり、グラニュールが排出
管19に流出するのである。又、汚泥沈殿室内で分離し
たグラニュールは該室に流入して上昇流Aとなる処理水
の流れに抗してガス分離板上に落下しなければならない
ので汚泥沈殿室にグラニュールが滞流し、嫌気性汚泥層
15の汚泥量が不足することがある。
SUMMARY OF THE INVENTION The above-mentioned conventional apparatus is a COD.
If the organic wastewater has a cr load of up to about 15 kg / COD / m 3 / day, it can be sufficiently treated.
In the case of an organic wastewater having an OD load of 20 kg / COD / m 3 / day or higher, the amount of generated anaerobic gas is large, so that the ascending flow B in the reaction chamber and the subsequent outside of the inclined separation plate The reverse flow C descending along the passage 12 ′ along the path becomes high speed, violently impinges on the gas separating plate 18, and partly becomes a reflective upward impinging flow D and enters the inside of the sedimentation chamber 13, The granules to be settled in the settling chamber are prevented or the settled granules flow into the overflow trough 17 and the discharge pipe 1
Granules may be mixed in the treated water taken out from the tub 9. That is, since the reverse flow C descending along the inclined separation plate 12 in the reaction chamber utilizes the reverse flow of the upward flow B rising in the reaction chamber due to the anaerobic gas, COD
The rise in the flow velocity of the updraft B with the rise in the cr load is the reverse flow C
As a result, the vertically upward impinging flow D, which rises reflexively into the sedimentation chamber 13 and agitates the inside of the chamber, has a non-negligible adverse effect. Obstruction or granulation flows out to the discharge pipe 19. Also, the granules separated in the sludge sedimentation chamber must flow into the chamber and fall on the gas separation plate against the flow of the treated water that becomes the upflow A, so that the granules stay in the sludge sedimentation chamber. However, the amount of sludge in the anaerobic sludge layer 15 may be insufficient.

【0006】[0006]

【課題を解決するための手段】そこで本発明は、原水の
CODcr負荷量が高くても、嫌気性ガスによる処理水の
上昇流の影響を受けることなく処理水中に含まれている
グラニュールを確実に沈殿分離し、分離したグラニュー
ルを強制的に嫌気性汚泥層に返送することにより上記し
た従来装置の問題点を完全に解消したもので、有機性排
水の嫌気性処理装置として、底部に嫌気性汚泥層と、該
汚泥層中に有機性排水を上向流で供給する給水管とを有
する反応部を備えた処理槽の内部の、上記反応部の上方
に、上端部が槽内の水面上に突出した有底の沈殿部を配
置し、この沈殿部内の上部に処理水を処理槽外に取出す
ための溢流トラフを設け、該沈殿部の外には、上端部が
槽内の水面上に突出した仕切壁を沈殿部沿いに間隔を保
って配置し、沈殿部と仕切壁との間の上記間隔を反応部
から上昇する処理水の一部が流入する上昇水路にし、こ
の上昇水路と沈殿部の内部を連通すると共に、前記上昇
水路の下端の下方に、該上昇水路中に嫌気性ガスが進入
するのを防ぐじゃま板を設け、且つ沈殿部の底と反応部
との間には沈殿部の底上に沈降した汚泥を反応部に返送
する返送管を設けたことを特徴とする。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a method for assuring the presence of granules contained in treated water without being affected by the upward flow of treated water due to anaerobic gas even when the CODcr load of raw water is high. The above-mentioned problems of the conventional device are completely eliminated by forcibly returning the separated granules to the anaerobic sludge layer, and the anaerobic treatment device for the organic wastewater has an anaerobic Inside a treatment tank provided with a reaction section having an activated sludge layer and a water supply pipe for supplying organic wastewater into the sludge layer in an upward flow, above the reaction section, the upper end has a water surface in the tank. A settling part with a bottom protruding upward is arranged, and an overflow trough for taking out treated water out of the treatment tank is provided at an upper part in the settling part. Outside the sedimentation part, an upper end part has a water surface in the tank. Place the partition walls that protrude upward along the sedimentation section with The above-mentioned space between the partition wall and the partition wall is a rising channel into which a part of the treated water rising from the reaction section flows, and communicates with the inside of the rising channel and the sedimentation section. A baffle plate is provided to prevent anaerobic gas from entering the ascending channel, and a return pipe is provided between the bottom of the sedimentation section and the reaction section to return sludge settled on the bottom of the sedimentation section to the reaction section. It is characterized by having.

【0007】[0007]

【発明の実施の形態】前記沈殿部の内部に、上端部が槽
内の水面上に突出し、下端が沈殿部中に位置するフィー
ドウェルを立設し、前記上昇水路と、フィードウェルと
の間には上昇水路の水面から溢入する処理水をフィード
ウェルを介して沈殿部に供給する連絡水路を設け、又、
沈殿部内のフィードウェルの下端の下方にバッフルを設
けることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Inside the settling section, an upper end protrudes above the water surface in the tank, and a lower end has a feed well located in the settling section, and a feed well is provided between the rising channel and the feed well. A communication channel is provided to supply treated water overflowing from the surface of the rising channel to the sedimentation section via the feed well.
It is preferable to provide a baffle below the lower end of the feed well in the settling section.

【0008】[0008]

【実施例】図1,2の各実施例において、20は頂部に
ガス抜き管20´を有する有蓋の処理槽、22は処理槽
の内部に形成されたグラニュールからなる嫌気性汚泥
層、23は上記嫌気性汚泥層中に原水(有機性排水)を
供給して上向流させる給水管であり、嫌気性汚泥層を構
成するグラニュールは上向流する原水により処理槽の高
さの中程まで流動状態に展開する。原水の給水管23
と、流動状態に展開する嫌気性汚泥層22とにより処理
槽内の下半部に反応部20が構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In each of the embodiments shown in FIGS. 1 and 2, reference numeral 20 denotes a covered processing tank having a gas vent pipe 20 'at the top, reference numeral 22 denotes an anaerobic sludge layer made of granules formed inside the processing tank, and reference numeral 23 denotes a processing tank. Is a water supply pipe for supplying raw water (organic wastewater) into the above-described anaerobic sludge layer and flowing the water upward, and the granules constituting the anaerobic sludge layer are formed in the height of the treatment tank by the raw water flowing upward. To a fluid state. Raw water supply pipe 23
And the anaerobic sludge layer 22 that develops into a fluidized state constitutes a reaction section 20 in the lower half of the treatment tank.

【0009】処理槽の内部の上記反応部21の上方に、
上端部が槽内の水面W上に突出した有底の沈殿部24を
配置する。沈殿部24の底24´は、図示の実施例では
夫々断面V字形に閉じ、前記反応部21の上に離れて位
置する。この沈殿部内の上部には沈殿部内の処理水が溢
入する溢流トラフ25が設けてあり、溢流トラフに溢入
した処理水は排水管26で槽外に取出される。
Above the reaction section 21 inside the processing tank,
A sedimentation part 24 with a bottom whose upper end protrudes above the water surface W in the tank is arranged. The bottoms 24 ′ of the sedimentation sections 24 are each closed in a V-shaped cross section in the illustrated embodiment, and are located at a distance above the reaction section 21. An overflow trough 25 into which the treated water in the settling section overflows is provided in the upper part of the settling section, and the treated water overflowing the overflow trough is taken out of the tank by a drain pipe 26.

【0010】上記沈殿部24の内部には、上端が槽内の
水面上に突出したフィードウェル27が立設してある。
フィードウェルの下端は沈殿部の高さの中程に位置す
る。このフィードウェルは円筒形でも、角筒形でもよ
い。このようにフィードウェル27を設けると、沈殿部
内の上部の水流が攪乱されることがないので好ましい。
Inside the sedimentation section 24, there is provided a feed well 27 having an upper end protruding above the water surface in the tank.
The lower end of the feed well is located at the middle of the height of the settling section. The feedwell may be cylindrical or rectangular. Providing the feed well 27 in this manner is preferable because the water flow in the upper part in the settling part is not disturbed.

【0011】沈殿部24の外には、上端部が槽内の水面
上に突出した仕切壁28を沈殿部沿いに間隔を保って配
置し、沈殿部と仕切壁との間の上記間隔で、反応部21
から上昇する処理水が流入する上昇水路29を形成す
る。そして、この上昇水路29と、前記フィードウェル
27との間には上昇水路の水面から溢入する処理水をフ
ィードウェルの内部の水面下に導入し、フィードウェル
の下端から沈殿部の内部に供給する連絡水路30を設け
る。
Outside the sedimentation section 24, a partition wall 28 whose upper end protrudes above the water surface in the tank is arranged at intervals along the sedimentation section, and at the above-mentioned interval between the sedimentation section and the partition wall, Reaction unit 21
The rising water channel 29 into which the treated water rising from the inflow flows. Then, between the rising water channel 29 and the feed well 27, treated water overflowing from the surface of the rising water channel is introduced below the water surface inside the feed well, and supplied from the lower end of the feed well to the inside of the sedimentation section. A communication channel 30 is provided.

【0012】図1〜3では好ましい実施例を示している
が、フィードウェル、連絡水路を省略し、上昇水路中の
水を沈殿部内に直接、導入するようにしてもよい。例え
ば、沈殿部を構成する壁に上昇水路と沈殿部の内部とを
連通する連絡開口を設け、上昇水路から沈殿部に水を直
接、供給してもよい。
Although a preferred embodiment is shown in FIGS. 1 to 3, the feed well and the connecting water channel may be omitted, and the water in the rising water channel may be directly introduced into the settling section. For example, a communication opening communicating the rising channel and the inside of the sedimentation section may be provided on a wall constituting the sedimentation section, and water may be supplied directly from the rising channel to the sedimentation section.

【0013】沈殿部24の底と、反応部21との間には
沈殿部の底に沈降した汚泥を反応部に返送する返送管3
1を設ける。返送管31にはポンプPを接続し、ポンプ
を連続的、又は間欠的に運転し、沈殿部の底から汚泥を
反応部に供給する。
A return pipe 3 for returning sludge settled at the bottom of the settling section to the reaction section is provided between the bottom of the settling section 24 and the reaction section 21.
1 is provided. A pump P is connected to the return pipe 31, and the pump is operated continuously or intermittently to supply sludge from the bottom of the settling section to the reaction section.

【0014】沈殿部の外面と、仕切壁の内面との間の間
隔に形成された上昇水路29の下端の下方に、反応部2
1から浮上した嫌気性ガスが上昇水路に流入するのを防
止するじゃま板32を配置する。沈殿部の底24´が図
示のようにV形に閉じ、仕切壁28の下端が沈殿部の下
半部のV形に上から短く沿って終る図1の実施例の場合
は、仕切壁28の下端から下に少し離して沈殿部のV形
の下半部に対しほゞ直角のハ字形にじゃま板を沈殿部の
下半部に固定する。又、仕切壁28の下端が、沈殿部の
V形に閉じた底の近くにまで沿って長く延びている図2
の実施例の場合は仕切壁28の二つの下端から下に少し
離して山形断面のじゃま板を配置する。
Below the lower end of the rising water channel 29 formed at the interval between the outer surface of the settling section and the inner surface of the partition wall, the reaction section 2 is provided.
A baffle plate 32 for preventing the anaerobic gas floating from 1 from flowing into the rising water channel is arranged. In the case of the embodiment of FIG. 1 in which the bottom 24 'of the sedimentation section is closed in a V shape as shown and the lower end of the partition wall 28 ends shortly from the top with the V shape of the lower half of the sedimentation section, the partition wall 28 is used. The baffle is fixed to the lower half of the sedimentation section at a slight angle from the lower end of the sedimentation section, at a right angle to the V-shaped lower half of the sedimentation section. FIG. 2 shows that the lower end of the partition wall 28 extends long along the vicinity of the V-shaped closed bottom of the sedimentation section.
In the case of this embodiment, a baffle plate having a chevron cross section is arranged slightly below the two lower ends of the partition wall 28.

【0015】又、沈殿部24の内部には、フィードウェ
ル27の下端から下に少し離して山形断面のバッフル3
3を配置してもよい。
A baffle 3 having a chevron cross section is located slightly below the lower end of the feed well 27 inside the settling section 24.
3 may be arranged.

【0016】処理槽20と、沈殿部24の平面形状は円
形でも、角形でもよい。更に、処理槽の平面形状が角
形、沈殿部の平面形状が円形でもよいし、逆に処理槽の
平面形状が円形、沈殿部の平面形状が角形でもよい。図
3(A)は処理槽、沈殿部がともに円形で、同心状に配
置された場合を示す。この場合は、沈殿部の上半部は円
筒形、その下半部と底24´は尖端を下に向けた円錐形
になり、これに伴い仕切壁28も沈殿部の上半部に沿う
部分は円筒形、その下半部と底24´に沿う部分は下向
きに直径を減少した円錐形になり、図1のじゃま板32
は逆に下向きに直径を拡大した円錐形であり、図2のじ
ゃま板は陣笠形になる。そして、溢流トラフ25は円筒
形の沈殿部の上部内周に沿って設け、フィードウェル2
7は円筒形で、沈殿部の中心に立設し、フィードウェル
の下方には陣笠形のバッフル33を同心状に配置する。
沈殿部、仕切壁、図2の陣笠形のじゃま板は、図示して
いないが放射状の支持体で処理槽に支持する。
The plan shapes of the treatment tank 20 and the sedimentation section 24 may be circular or square. Further, the planar shape of the treatment tank may be square and the planar shape of the sedimentation section may be circular. Conversely, the planar shape of the treatment tank may be circular and the planar shape of the sedimentation section may be rectangular. FIG. 3A shows a case where both the treatment tank and the sedimentation section are circular and are arranged concentrically. In this case, the upper half of the sedimentation section is cylindrical, and the lower half and the bottom 24 'are conical with the tip pointed downward, and the partition wall 28 is also formed along the upper half of the sedimentation part. Is cylindrical, and the lower half and the portion along the bottom 24 'are conical with the diameter decreasing downward, and the baffle plate 32 of FIG.
Is a conical shape whose diameter is enlarged downward, and the baffle plate in FIG. The overflow trough 25 is provided along the upper inner periphery of the cylindrical settling portion, and the feed well 2
Reference numeral 7 denotes a cylindrical shape, which stands upright at the center of the sedimentation section, and has a baffle-shaped baffle 33 arranged concentrically below the feed well.
The sedimentation section, the partition wall, and the baffle-shaped baffle plate in FIG. 2 are supported on the treatment tank by a radial support (not shown).

【0017】これに対して、図3(B)は処理槽の平面
形状を四角にした場合を示す。この場合は処理槽の相対
向した2つの側壁20aと20bから内側に少し離して
下端がV字形に閉じたコーン形の沈殿部24と、沈殿部
の両方の外側に沿う2枚の仕切壁28,28を固定す
る。沈殿部と、2枚の仕切壁28,28の側壁20a,
20bと対向する端部は端壁で塞ぐ。そして、沈殿部の
中央に立設するフィードウェル27は両側壁20aと2
0bとの間に1つに限定されず、図示の如く2つなど、
複数設けることができる。又、溢流トラフ25は、沈殿
部の直立した2つの上半部の内側上部に個々に設けても
よいし、この両方の溢流トラフを、沈殿部の両端を塞ぐ
端壁に沿って設けたトラフ25´,25´で図示の如く
接続して回廊状にしてもよい。図1のじゃま板32は、
仕切壁28,28の下端から下に離して沈殿部の左右の
下半部にハ字形に固定する。又、図2のじゃま板32
は、山形断面板を沈殿部の底から下に少し離して配置す
る。そして、フィードウェルの下方に配置するバッフル
33は、山形断面板の両端を沈殿部の両端を塞ぐ端壁に
固定して設置する。沈殿部、及び仕切壁の両方の端壁と
図2の山形断面板のバッフル33は、図示していないが
処理槽の両方の側壁20a,20bに支持体で支持し、
側壁20a,20bとの間に間隔を保つ。
On the other hand, FIG. 3B shows a case where the planar shape of the processing tank is square. In this case, a cone-shaped sedimentation section 24 slightly inwardly spaced from the two opposed side walls 20a and 20b of the processing tank and having a V-shaped lower end closed, and two partition walls 28 along both outer sides of the sedimentation section. , 28 are fixed. The sedimentation section and the side walls 20a of the two partition walls 28, 28;
The end facing 20b is closed with an end wall. The feed well 27 erected at the center of the sedimentation section is connected to both side walls 20a and 2a.
0b, the number is not limited to one, and two as shown in FIG.
A plurality can be provided. Further, the overflow troughs 25 may be individually provided on the inner upper portions of the two upper halves of the sedimentation section, or both overflow troughs may be provided along the end walls closing both ends of the sedimentation section. The troughs 25 ', 25' may be connected as shown to form a corridor. The baffle 32 of FIG.
Separated downward from the lower ends of the partition walls 28, 28, and fixed to the lower left and right halves of the sedimentation section in a C shape. Also, the baffle plate 32 of FIG.
, Place the chevron plate slightly below the bottom of the sedimentation section. And the baffle 33 arrange | positioned below a feed well is fixed, and both ends of a chevron cross-section board are fixed to the end wall which closes both ends of a sedimentation part. The settling part, both end walls of the partition wall and the baffle 33 of the chevron section plate in FIG. 2 are supported by the support on both side walls 20a and 20b of the processing tank, not shown.
An interval is maintained between the side walls 20a and 20b.

【0018】給水管23から処理槽内に供給されて反応
部21中を上向流し、嫌気性汚泥層22を流動状態に展
開した原水(有機性排水)は、流動状態に展開する汚泥
(グラニュール)と接触して含有する有機物を分解され
て処理水となる。そして、処理水は分解により生成して
浮上する嫌気性ガスに随伴し、一部のグラニュールを伴
って反応部21から更に上向流する。
Raw water (organic wastewater) supplied from the water supply pipe 23 into the treatment tank and flowing upward in the reaction section 21 to develop the anaerobic sludge layer 22 in a fluidized state is converted into sludge (granulated) in a fluidized state. ) And the contained organic matter is decomposed into treated water. Then, the treated water accompanies the anaerobic gas generated and floated by the decomposition, and further flows upward from the reaction section 21 with some granules.

【0019】上向流する処理水の一部は上昇水路29に
下から流入して水路中を上昇し、又、処理水の残部は処
理槽仕切壁28の外を上昇し、この処理水に含まれてい
る嫌気性ガスの気泡は処理槽の水面に浮上し、ガス抜き
管20´から外に放出される。上昇水路29に流入して
上昇する一部の処理水中に嫌気性ガスが含まれていて
も、嫌気性ガスは上昇水路の液面に浮上してガス抜き管
20´から放出されるので支障はないが、上昇水路の下
端の下方に離してじゃま板32を設けておくと、上昇水
路に流入する処理水は、主にじゃま板に向かって上昇
し、じゃま板の縁を迂回して来るものであるため、この
処理水に含まれている嫌気性ガスはじゃま板の下に蓄積
し、上昇水路29に進入するのを防止でき、ガスと共に
巻き上げられたグラニュールが沈殿部に流入するのを大
部分、防止できる。
A part of the treated water flowing upward flows into the rising water passage 29 from below and rises in the water passage, and the remaining part of the treated water rises outside the treatment tank partition wall 28, and flows into the treated water. Bubbles of the contained anaerobic gas float on the water surface of the treatment tank and are discharged to the outside through the vent pipe 20 '. Even if the anaerobic gas is contained in some of the treated water flowing into the ascending channel 29 and rising, the anaerobic gas floats on the liquid surface of the ascending channel and is discharged from the degassing pipe 20 ′. However, if the baffle plate 32 is provided below and below the lower end of the rising channel, the treated water flowing into the rising channel rises mainly toward the baffle plate and bypasses the edge of the baffle plate. Therefore, the anaerobic gas contained in the treated water accumulates under the baffle plate and can be prevented from entering the ascending channel 29, and the granules rolled up with the gas are prevented from flowing into the sedimentation section. Most can be prevented.

【0020】上昇水路29に流入した処理水は、水面上
に開口した連絡水路30の上端に溢入し、該水路内を流
れてフィードウェル27の内部に流入し、フィードウェ
ルの下端から沈殿部24の高さの中程に供給される。沈
殿部は上端部が処理槽内の水面上に突出し、底は閉じて
いるため、仕切壁28の外方を上向流する処理水や、浮
上する嫌気性ガスによる水流の影響を受けることがない
ので、沈殿部に供給された処理水に含まれているグラニ
ュールや、その前駆体(小粒径のグラニュール)は、そ
れ自身の沈降性に従って沈殿部の底に自由沈降し、グラ
ニュールを分離した上澄み処理水は溢流トラフ25に溢
入し、排水管26から槽外に流出する。沈殿部内での処
理水の上昇流速は3〜30m/時程度が良い。
The treated water flowing into the rising water channel 29 overflows into the upper end of the connecting water channel 30 opened above the water surface, flows through the water channel, flows into the feed well 27, and flows from the lower end of the feed well to the sedimentation section. It is supplied in the middle of a height of 24. Since the upper end of the settling portion projects above the water surface in the treatment tank and the bottom is closed, the sedimentation portion may be affected by the treated water flowing upward outside the partition wall 28 or the water flow by the anaerobic gas floating. Therefore, granules contained in the treated water supplied to the sedimentation section and its precursors (small particle size granules) settle freely at the bottom of the sedimentation section according to its own sedimentation property, The supernatant treated water separated from the water flows into the overflow trough 25 and flows out of the tank from the drain pipe 26. The rising flow rate of the treated water in the settling section is preferably about 3 to 30 m / hour.

【0021】フィードウェル27の下方にバッフル33
を設けておくと、フィードウェルの下端から沈殿部内に
下向きに供給される処理水はバッフルによって向きを斜
め下向きに変え、沈殿部の下端上に沈積したグラニュー
ルを舞い上げたり、沈降しようとするグラニュールを乱
したりすることがないので好ましい。
A baffle 33 is provided below the feed well 27.
If provided, the treated water supplied downward from the lower end of the feed well into the sedimentation section is turned obliquely downward by the baffle, so as to sow or settle the granules deposited on the lower end of the sedimentation section This is preferable because it does not disturb the granules.

【0022】そして、沈殿部24の底に沈積したグラニ
ュールは、ポンプPの運転により連続的、又は間欠的に
返送管31で反応部21に戻される。返送管31で反応
部に返送されるグラニュールの量は、排水管26で取出
される上澄み処理水の水量の約1〜5%程度が良い。
The granules deposited on the bottom of the sedimentation section 24 are continuously or intermittently returned to the reaction section 21 by the operation of the pump P via the return pipe 31. The amount of the granules returned to the reaction section by the return pipe 31 is preferably about 1 to 5% of the amount of the supernatant treated water taken out by the drain pipe 26.

【0023】[0023]

【発明の効果】以上で明らかなように、本発明では、沈
殿部は下端が閉じ、沈殿部の内部は仕切壁の外を上昇す
る処理水や、浮上する嫌気性ガスの水流により影響を全
く受けないため処理水中に含まれるグラニュールや、そ
の前駆体を自身の沈降性で自然沈降させ、処理水を沈殿
部の溢流トラフから槽外に取出すことができ、処理水中
に汚泥が流出するのを防止できる。従って有機性排水の
CODcr負荷量が高く、嫌気性ガスの発生量が多くて
も、それ等に関係なく、汚泥が混ざらない上澄み処理水
を採水することができる。そして、沈殿部上に沈降した
汚泥は返送管で強制的に反応部に返送するため、反応部
での嫌気性汚泥の量の不足を防止し、原水中の有機物を
完全に生物処理することができる。
As is clear from the above, according to the present invention, the lower end of the sedimentation section is closed, and the interior of the sedimentation section is completely affected by the treated water rising outside the partition wall and the flow of the anaerobic gas flowing up. Because it does not receive, the granules and its precursors contained in the treated water are allowed to settle by their own sedimentation, and the treated water can be taken out of the tank from the overflow trough in the sedimentation section, and the sludge flows out into the treated water Can be prevented. Therefore, even if the CODcr load of the organic wastewater is high and the amount of generated anaerobic gas is large, it is possible to collect the supernatant treated water which is not mixed with the sludge regardless of the amount. The sludge settled on the sedimentation section is forcibly returned to the reaction section by a return pipe, so that the amount of anaerobic sludge in the reaction section can be prevented and the organic matter in the raw water can be completely biologically treated. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の嫌気性処理装置の第1実施例の概略縦
断面図である。
FIG. 1 is a schematic longitudinal sectional view of a first embodiment of an anaerobic treatment device of the present invention.

【図2】本発明の嫌気性処理装置の第2実施例の概略縦
断面図である。
FIG. 2 is a schematic longitudinal sectional view of a second embodiment of the anaerobic treatment device of the present invention.

【図3】(A)は図1,図2のA−B線での一例の横断
平面図であり、(B)は本発明の嫌気性処理装置の他の
一例の概略縦断面図である。
FIG. 3A is a cross-sectional plan view of an example taken along line AB in FIGS. 1 and 2, and FIG. 3B is a schematic longitudinal sectional view of another example of the anaerobic treatment device of the present invention. .

【図4】従来の嫌気性処理装置の概略縦断面図である。FIG. 4 is a schematic longitudinal sectional view of a conventional anaerobic treatment device.

【符号の説明】[Explanation of symbols]

20 処理槽 21 反応部 22 反応部の嫌気性汚泥層 23 反応部の給水管 24 沈殿部 24´ 沈殿部の底 25 反応部の溢流トラフ 26 溢流トラフからの排水管 27 フィードウェル 28 仕切壁 29 上昇水路 30 連絡水路 31 返送管 32 じゃま板 33 バッフル Reference Signs List 20 treatment tank 21 reaction part 22 anaerobic sludge layer of reaction part 23 water supply pipe of reaction part 24 sedimentation part 24 ′ bottom of sedimentation part 25 overflow trough of reaction part 26 drainage pipe from overflow trough 27 feed well 28 partition wall 29 Ascending channel 30 Connecting channel 31 Return pipe 32 Baffle plate 33 Baffle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 底部に嫌気性汚泥層と、該汚泥層中に有
機性排水を上向流で供給する給水管とを有する反応部を
備えた処理槽の内部の、上記反応部の上方に、上端部が
槽内の水面上に突出した有底の沈殿部を配置し、この沈
殿部内の上部に処理水を処理槽外に取出すための溢流ト
ラフを設け、該沈殿部の外には、上端部が槽内の水面上
に突出した仕切壁を沈殿部沿いに間隔を保って配置し、
沈殿部と仕切壁との間の上記間隔を反応部から上昇する
処理水の一部が流入する上昇水路にし、この上昇水路と
沈殿部の内部を連通すると共に、前記上昇水路の下端の
下方に、該上昇水路中に嫌気性ガスが進入するのを防ぐ
じゃま板を設け、且つ沈殿部の底と反応部との間には沈
殿部の底上に沈降した汚泥を反応部に返送する返送管を
設けたことを特徴とする有機性排水の嫌気性処理装置。
1. Inside a treatment tank having a reaction section having an anaerobic sludge layer at the bottom and a water supply pipe for supplying organic wastewater in an upward flow in the sludge layer, above the reaction section. , A bottomed sedimentation part whose upper end protrudes above the water surface in the tank is provided, and an overflow trough for taking out the treated water out of the treatment tank is provided above the sedimentation part. , A partition wall whose upper end protrudes above the water surface in the tank is arranged at intervals along the sedimentation section,
The above-mentioned interval between the sedimentation part and the partition wall is a rising waterway into which a part of the treated water rising from the reaction part flows, and communicates with the inside of the rising waterway and the sedimentation part, and below the lower end of the rising waterway A baffle for preventing anaerobic gas from entering the rising channel, and a return pipe between the bottom of the settling section and the reaction section for returning sludge settled on the bottom of the settling section to the reaction section. An anaerobic treatment device for organic wastewater, characterized by comprising:
【請求項2】 請求項1に記載の有機性排水の嫌気性処
理装置において、前記沈殿部の内部に、上端部が槽内の
水面上に突出し、下端が沈殿部中に位置するフィードウ
ェルを立設し、前記上昇水路と、フィードウェルとの間
には上昇水路の水面から溢入する処理水をフィードウェ
ルを介して沈殿部に供給する連絡水路を設け、沈殿部内
のフィードウェルの下端の下方にバッフルを設けたこと
を特徴とする有機性排水の嫌気性処理装置。
2. The anaerobic treatment apparatus for organic waste water according to claim 1, wherein a feed well having an upper end projecting above the water surface in the tank and a lower end located in the sediment is provided inside the sediment. An erecting channel is provided between the rising channel and the feed well, and a communication channel for supplying treated water overflowing from the surface of the rising channel to the settling portion through the feed well is provided between the rising channel and the feed well. An anaerobic treatment device for organic wastewater, comprising a baffle provided below.
JP24992096A 1996-09-20 1996-09-20 Organic waste water anaerobic treatment device Pending JPH1094794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24992096A JPH1094794A (en) 1996-09-20 1996-09-20 Organic waste water anaerobic treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24992096A JPH1094794A (en) 1996-09-20 1996-09-20 Organic waste water anaerobic treatment device

Publications (1)

Publication Number Publication Date
JPH1094794A true JPH1094794A (en) 1998-04-14

Family

ID=17200160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24992096A Pending JPH1094794A (en) 1996-09-20 1996-09-20 Organic waste water anaerobic treatment device

Country Status (1)

Country Link
JP (1) JPH1094794A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144401A (en) * 2005-11-07 2007-06-14 Kurita Water Ind Ltd Biological reactor
JP2012035194A (en) * 2010-08-06 2012-02-23 Kobelco Eco-Solutions Co Ltd Anaerobic treatment device and anaerobic treatment method
WO2012049909A1 (en) * 2010-10-15 2012-04-19 株式会社明電舎 Waste water treatment equipment
CN111072141A (en) * 2019-12-31 2020-04-28 河南省力华全环保科技有限公司 Annular piston water distribution heat exchange device
WO2021059554A1 (en) * 2019-09-27 2021-04-01 株式会社フジタ Biogas generation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144401A (en) * 2005-11-07 2007-06-14 Kurita Water Ind Ltd Biological reactor
JP4720709B2 (en) * 2005-11-07 2011-07-13 栗田工業株式会社 Bioreactor
JP2012035194A (en) * 2010-08-06 2012-02-23 Kobelco Eco-Solutions Co Ltd Anaerobic treatment device and anaerobic treatment method
WO2012049909A1 (en) * 2010-10-15 2012-04-19 株式会社明電舎 Waste water treatment equipment
JP2012086109A (en) * 2010-10-15 2012-05-10 Meidensha Corp Wastewater treatment apparatus
WO2021059554A1 (en) * 2019-09-27 2021-04-01 株式会社フジタ Biogas generation device
CN111072141A (en) * 2019-12-31 2020-04-28 河南省力华全环保科技有限公司 Annular piston water distribution heat exchange device
CN111072141B (en) * 2019-12-31 2024-04-12 河南省力华全环保科技有限公司 Annular piston water distribution heat exchange device

Similar Documents

Publication Publication Date Title
US5441634A (en) Apparatus and method of circulating a body of fluid containing a mixture of solid waste and water and separating them
US4650577A (en) Apparatus for treating and purifying waste water
US6200472B1 (en) Three stage sewage treatment system
US20150183657A1 (en) Method and apparatus for using air scouring of a screen in a water treatment facility
NL8402387A (en) METHOD FOR BIOLOGICALLY ACTIVE PURIFICATION OF WASTE WATER WITH A CONTENT OF NITROGENIC SUBSTANCES AND APPARATUS FOR CARRYING OUT THIS METHOD
US6409914B1 (en) Waste treatment unit
EP0427804A1 (en) Water purifying means
JP3374766B2 (en) Anaerobic treatment equipment for organic wastewater
JPH1094794A (en) Organic waste water anaerobic treatment device
EP1251103A2 (en) Method and apparatus for treating wastewater
CN106673305A (en) Strongly-acidic high-arsenic wastewater treatment integrated plant
JP2000185279A (en) Sewage treatment method and apparatus
JP3911742B2 (en) Organic wastewater anaerobic treatment equipment
US20040211722A1 (en) Wastewater treatment unit
JP3307289B2 (en) Anaerobic treatment equipment for organic wastewater
JP2000354858A (en) Sewage treatment method and device therefor
JP3374642B2 (en) Anaerobic treatment equipment for organic wastewater
JPH11290887A (en) Anaerobic treatment apparatus for organic waste water
JPS6320197B2 (en)
JPH039837Y2 (en)
KR100481821B1 (en) Process and plant for wastewater treatment
JP4013123B2 (en) Operating method of aerobic treatment tank, aerobic treatment tank and sewage septic tank
SU1161138A2 (en) Apparatus for purifying water
JP2001321609A (en) Settling tank
RU1853U1 (en) Dairy Biological Wastewater Treatment Station