JPS6320197B2 - - Google Patents
Info
- Publication number
- JPS6320197B2 JPS6320197B2 JP56092820A JP9282081A JPS6320197B2 JP S6320197 B2 JPS6320197 B2 JP S6320197B2 JP 56092820 A JP56092820 A JP 56092820A JP 9282081 A JP9282081 A JP 9282081A JP S6320197 B2 JPS6320197 B2 JP S6320197B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- inclined wall
- inner cylinder
- wastewater
- wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010802 sludge Substances 0.000 claims description 59
- 239000002351 wastewater Substances 0.000 claims description 27
- 238000005192 partition Methods 0.000 claims description 15
- 238000004065 wastewater treatment Methods 0.000 claims description 5
- 239000002245 particle Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000007788 liquid Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 230000005484 gravity Effects 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 238000005273 aeration Methods 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000004576 sand Substances 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
Description
【発明の詳細な説明】
本発明は曝気槽内に生物膜を付着させた担体粒
子を流動させて有機廃水を生物学的に処理する生
物処理部と、担体粒子から剥離した汚泥等の固形
物と処理水とを分離する固液分離部を一体構造と
した流動床式廃水処理装置に関するものである。Detailed Description of the Invention The present invention provides a biological treatment section that biologically treats organic wastewater by fluidizing carrier particles to which biofilms are attached in an aeration tank, and a biological treatment section that biologically treats organic wastewater by fluidizing carrier particles to which biofilms are attached in an aeration tank, and a biological treatment section that biologically treats organic wastewater by fluidizing carrier particles to which biofilms are attached in an aeration tank. The present invention relates to a fluidized bed wastewater treatment device that has an integral structure with a solid-liquid separation section that separates water and treated water.
連続的に流入する廃水と砂、活性炭、粒状プラ
スチツク等の担体粒子を流動状態で接触させて廃
水中の有機物やアンモニア性窒素等の不純物を生
物学的に処理し、担体粒子から剥離した汚泥等の
固形物を固液分離することによつて廃水を浄化す
る流動床式汚水処理装置は特開昭53−46156号公
報等によつてすでに知られているが、前記公報の
第1図に示されるものは、生物処理装置とは別体
に設けた重力式沈澱池において重力により汚泥等
の固形物と処理水とに固液分離するものであるた
め、処理水の水質を向上させるためには長い滞留
時間を要し、その結果大きな設置面積と多額の設
備費用を要する問題があり、また、前記公報の第
2図に示されたものは、生物処理後の廃水を流動
床外周部に設けた上向流式沈澱池において汚泥層
を形成させて汚泥を捕捉することにより固液分離
するものであるため、前記した重力により固液分
離する装置に比較して優れた固液分離性能を発揮
するが、形成される汚泥層の高さや位置は、流入
する廃水水質の変動や負荷量の変動により変動す
るため、所定位置から汚泥引抜きを行なうとき、
所定濃度の汚泥を引抜くことは困難であるうえに
引抜汚泥に同伴する処理水により稀釈されるた
め、引抜汚泥の濃度が低下し、また、上向流式沈
澱池の底部に生物膜が付着した担体粒子が沈積し
て上向流路と下向流路との通路が閉塞するため、
安定した処理ができなくなり、さらに、汚泥引抜
きが適切に行なわれないと汚泥層が上昇して処理
水中に汚泥が同伴されて処理水質が悪化する等の
問題点があつた。 Continuously flowing wastewater is brought into contact with carrier particles such as sand, activated carbon, granular plastic, etc. in a fluid state, and impurities such as organic matter and ammonia nitrogen in the wastewater are biologically treated, and sludge etc. are separated from the carrier particles. A fluidized bed sewage treatment device that purifies wastewater by separating solid matter from solid to liquid is already known from Japanese Patent Application Laid-open No. 53-46156, etc. The system uses gravity to separate solids such as sludge and treated water in a gravity-type sedimentation tank installed separately from the biological treatment equipment, so in order to improve the quality of the treated water, There is a problem that a long residence time is required, resulting in a large installation area and a large amount of equipment cost.In addition, the method shown in Figure 2 of the above publication is a system in which the wastewater after biological treatment is placed around the outer periphery of the fluidized bed. Since solid-liquid separation is performed by forming a sludge layer and trapping sludge in an upflow sedimentation tank, it exhibits superior solid-liquid separation performance compared to the above-mentioned device that separates solid-liquid using gravity. However, since the height and position of the sludge layer that is formed fluctuates due to changes in the quality of inflowing wastewater and changes in the amount of load, when extracting sludge from a predetermined position,
It is difficult to extract sludge at a specified concentration, and it is diluted by the treated water that accompanies the extracted sludge, which reduces the concentration of the extracted sludge and also causes biofilm to adhere to the bottom of the upflow settling tank. The carrier particles deposited and block the passage between the upward flow path and the downward flow path,
Stable treatment was no longer possible, and if sludge was not drawn out properly, the sludge layer would rise and the sludge would be entrained in the treated water, deteriorating the quality of the treated water.
本発明は前記のような問題点を解決した流動床
式廃水処理装置を目的として完成されたもので、
以下、本発明を図示の実施例について詳細に説明
する。 The present invention was completed with the aim of providing a fluidized bed wastewater treatment device that solves the above-mentioned problems.
Hereinafter, the present invention will be explained in detail with reference to the illustrated embodiments.
1は上方を拡径部1aに形成するとともに下方
を漏斗状に形成して担体粒子の流動をよくするよ
うにした槽体で、該槽体1は断面形状を円形ある
いは角形等とする縦長とし、該槽体1内には内筒
2をその下端開口と槽底との間に所要の間隔があ
り、且つ、上端が槽体1の上端より低位置にある
よう設けるとともに該内筒2の上方部を囲んで筒
状の隔壁3をその上端が槽体1の上端より高位置
にあるよう設けてあり、さらに、該隔壁3の外側
を囲み上拡がりの傾斜壁4をその下端が前記拡径
部1aの下端に接続されるように設けてある。そ
して隔壁3はその下端が傾斜壁4の下部付近に位
置する長さとされている。該傾斜壁4と隔壁3と
の間は上方に向うに従い徐々に断面積が大きくな
る上向流沈澱部11に形成してある。また、該傾
斜壁4とその外側の槽体1の拡径部1aとの間は
底部に汚泥排出口6を備えた汚泥貯留部12に形
成されている。槽体1にはその上方部に前記傾斜
壁4の上端より高位置にある越流口5からの流出
物を受ける越流受部13を設けるとともに下方部
に前記内筒2の下方に廃水送入口7と気体送入口
8が位置する配管を施してあり、このようにして
槽体1には、廃水送入口7から廃水を送入すると
ともに気体送入口8から曝気することによつて内
筒2内に形成される上向流路9と前記隔壁3もし
くは槽体1と内筒2との間に形成される下向流路
10よりなる生物処理部Aと、前記上向流沈澱部
11、汚泥貯留部12および越流受部13よりな
る固液分離部Bが形成される。なお、傾斜壁4は
上向流沈澱部11内を上方に向つて流れる廃水の
流速を1〜5m/Hr以下にして汚泥の捕捉効率を
良くするため、隔壁3との間隙が上方に向うに従
つて大きくなつており捕捉された汚泥が重力によ
り汚泥貯留部12に落下するように傾斜壁4の上
端は槽体1の上端より下部に位置している。ま
た、傾斜壁4の上端の位置は固定されていてもよ
いが、流入する廃水水質や負荷量の変動により汚
泥層の高さが変化して処理水質が悪化するのを防
止するため傾斜壁4の上端面の高さを変更できる
ようにスライドゲート14等を全周または一部に
設けて汚泥層の高さを調整することが好ましい。
さらに、傾斜壁4と槽体1との間に形成される汚
泥貯留部12においては汚泥の重力濃縮を行う
が、滞留時間を長くすると汚泥濃度が増加する反
面、汚泥腐敗の危険性が増加するため、汚泥の引
抜き回数または汚泥貯留部12の容積を調節する
ことが必要である。このため、汚泥貯留部12を
必要に応じて隔壁のまわりで仕切15により数区
割に分割しておくことが好ましく、このように分
割されている場合には、この区割に対応して傾斜
壁4にスライドゲート14等を設けて汚泥層の高
さを各室毎に調節することが好ましい。また、通
常槽体1、内筒2の内部に砂、活性炭、粒状プラ
スチツク等の担体粒子を投入し、内筒2の下部よ
り廃水および空気、酸素添加ガス等の気体を送入
して曝気することによつて担体粒子を流動させる
が、上向流沈澱部11における汚泥の捕捉機能と
汚泥貯留部12における汚泥濃縮機能を高めるた
め、無機性、あるいは有機性の凝集剤等を添加す
る薬注装置を別に設けてもよい。 Reference numeral 1 denotes a tank body whose upper part is formed into an enlarged diameter part 1a and whose lower part is formed into a funnel shape to improve the flow of carrier particles. An inner cylinder 2 is provided in the tank body 1 so that there is a required distance between its lower end opening and the tank bottom, and the upper end is located at a lower position than the upper end of the tank body 1. A cylindrical partition wall 3 surrounding the upper part is provided so that its upper end is located at a higher position than the upper end of the tank body 1. Furthermore, a slanted wall 4 surrounding the outside of the partition wall 3 and expanding upward is provided with its lower end extending upwardly. It is provided so as to be connected to the lower end of the diameter portion 1a. The partition wall 3 has a length such that its lower end is located near the bottom of the inclined wall 4. An upward flow settling section 11 is formed between the inclined wall 4 and the partition wall 3, the cross-sectional area of which gradually increases upward. Furthermore, a sludge storage section 12 having a sludge discharge port 6 at the bottom is formed between the inclined wall 4 and the enlarged diameter section 1a of the tank body 1 on the outside thereof. The tank body 1 is provided with an overflow receiving part 13 in its upper part to receive the effluent from the overflow port 5 located at a higher position than the upper end of the inclined wall 4, and a part in its lower part to send waste water to the lower part of the inner cylinder 2. Piping is provided in which an inlet 7 and a gas inlet 8 are located, and in this way, wastewater is introduced into the tank body 1 through the wastewater inlet 7, and aeration is carried out through the gas inlet 8, so that the inner cylinder is heated. 2, and a downward flow path 10 formed between the partition wall 3 or the tank body 1 and the inner cylinder 2, and the upward flow settling section 11. , a solid-liquid separation section B consisting of a sludge storage section 12 and an overflow receiving section 13 is formed. Incidentally, the inclined wall 4 has a gap with the partition wall 3 facing upward in order to improve the sludge trapping efficiency by reducing the flow velocity of wastewater flowing upward in the upflow settling section 11 to 1 to 5 m/Hr or less. Therefore, the upper end of the inclined wall 4 is located below the upper end of the tank body 1 so that the trapped sludge, which has grown in size, falls into the sludge storage section 12 by gravity. Although the position of the upper end of the inclined wall 4 may be fixed, the inclined wall 4 is designed to prevent the height of the sludge layer from changing due to changes in the quality of inflowing wastewater or the amount of load, thereby preventing the quality of treated water from deteriorating. It is preferable to adjust the height of the sludge layer by providing a slide gate 14 or the like on the entire circumference or a part thereof so that the height of the upper end surface of the sludge layer can be changed.
Furthermore, sludge is concentrated by gravity in the sludge storage section 12 formed between the inclined wall 4 and the tank body 1, but if the retention time is increased, the sludge concentration increases, but at the same time the risk of sludge rot increases. Therefore, it is necessary to adjust the number of sludge withdrawals or the volume of the sludge storage section 12. For this reason, it is preferable to divide the sludge storage section 12 into several sections by partitions 15 around the partition wall as necessary, and if it is divided in this way, the slope should be It is preferable to provide a slide gate 14 or the like on the wall 4 to adjust the height of the sludge layer in each chamber. In addition, carrier particles such as sand, activated carbon, or granular plastic are usually placed inside the tank body 1 and the inner cylinder 2, and waste water and gas such as air or oxygenated gas are introduced from the lower part of the inner cylinder 2 for aeration. In order to enhance the sludge capture function in the upflow settling section 11 and the sludge concentration function in the sludge storage section 12, chemical injection is performed to add an inorganic or organic flocculant, etc. A separate device may be provided.
このように構成されたものは、槽体1および内
筒2内に砂、活性炭、粒状プラスチツク等の担体
粒子を投入し、内筒2の下部に位置させた廃水送
入口7から廃水を送入して内筒2内の廃水が所定
の水位に達した後に気体送入口8から気体を送入
し曝気を開始すれば、送入された気体のエアリフ
ト効果により上向流が生ずるから、この速度を担
体粒子の沈降速度以上に保持すると、生物膜を付
着した担体粒子は上向流に同伴されて廃水や気体
と激しく接触しながら内筒2内の上向流路9を上
昇する。そして、内筒2の上端部に達した廃水や
担体粒子はここで折り返され、内筒2と隔壁3ま
たは内筒2と槽体1との間の下向流路10を下降
し、槽体1の底部に達した下向流は折り返して再
び上向流となつて上向流路9を上昇することとな
るが、このように、担体粒子が上向流路9と下向
流路10の間を循環している間に廃水中の有機
物、アンモニア性窒素等の不純物は、担体粒子に
付着した生物膜に取り込まれて一部は酸化分解さ
れ、他の一部は汚泥に転化する。そして、この転
化された汚泥はやがて担体粒子より剥離するが、
担体粒子に比較して比重が軽いため、剥離した汚
泥は廃水に同伴して隔壁3と傾斜壁4の間を低速
で通つて上昇し、隔壁3と傾斜壁4間の上向流沈
澱部11において汚泥が効率よく捕捉され、捕捉
された汚泥の界面が上昇して傾斜壁4の上端以上
に達するとこの汚泥は自動的に汚泥貯留部12に
流出し、汚泥貯留部12に貯留された汚泥が重力
により所要の濃度まで濃縮されたら、底部にある
汚泥排出口6を開いてこの濃縮汚泥を該汚泥排出
口6から排出する。一方、生物処理されたのち上
向流沈澱部11において汚泥を除去された廃水は
処理水として槽体1の上端部に設けられた前記傾
斜壁4の上端より高位置にある越流口5から流出
する。なお、前記実施例のように傾斜壁4の上端
位置を変更できるようにしておけば、廃水の水質
変動を負荷変動により上向流沈澱部11に形成さ
れる汚泥層の位置が変動しても、該傾斜壁4の上
端位置を調節することにより引抜汚泥濃度や量を
調節でき、また、汚泥貯留部12を適宜分割して
おけば、滞留時間を変更して汚泥濃度を調節でき
る。 With this structure, carrier particles such as sand, activated carbon, granular plastic, etc. are introduced into the tank body 1 and the inner cylinder 2, and wastewater is introduced from the wastewater inlet 7 located at the bottom of the inner cylinder 2. After the wastewater in the inner cylinder 2 reaches a predetermined water level, if gas is introduced from the gas inlet 8 and aeration is started, an upward flow will occur due to the air lift effect of the introduced gas, so this speed can be reduced. When the carrier particles are maintained at a sedimentation velocity of the carrier particles or higher, the carrier particles to which the biofilm is attached are entrained in the upward flow and ascend the upward flow path 9 in the inner cylinder 2 while coming into intense contact with waste water and gas. The waste water and carrier particles that have reached the upper end of the inner cylinder 2 are turned back here, descend through the downward flow path 10 between the inner cylinder 2 and the partition wall 3, or between the inner cylinder 2 and the tank body 1, and flow down the tank body. The downward flow that has reached the bottom of the flow path 1 turns back and becomes an upward flow again and ascends through the upward flow path 9. While circulating between the wastewater, impurities such as organic matter and ammonia nitrogen in the wastewater are taken up by the biofilm attached to the carrier particles, and some are oxidized and decomposed, while the other part is converted into sludge. This converted sludge will eventually peel off from the carrier particles, but
Since the specific gravity is lighter than the carrier particles, the exfoliated sludge is accompanied by wastewater and passes through the space between the partition wall 3 and the inclined wall 4 at a low speed and rises, forming an upward flow settling section 11 between the partition wall 3 and the inclined wall 4. When the sludge is efficiently captured and the interface of the captured sludge rises and reaches the upper end of the inclined wall 4, this sludge automatically flows out into the sludge storage section 12, and the sludge stored in the sludge storage section 12 When the sludge is concentrated to a required concentration by gravity, the sludge discharge port 6 at the bottom is opened and the concentrated sludge is discharged from the sludge discharge port 6. On the other hand, wastewater from which sludge has been removed in the upward flow settling section 11 after being subjected to biological treatment is passed through the overflow port 5 located at a higher position than the upper end of the inclined wall 4 provided at the upper end of the tank body 1 as treated water. leak. In addition, if the upper end position of the inclined wall 4 can be changed as in the above embodiment, the change in the quality of wastewater can be prevented even if the position of the sludge layer formed in the upward flow settling section 11 changes due to load changes. By adjusting the upper end position of the inclined wall 4, the concentration and amount of sludge drawn can be adjusted, and if the sludge storage section 12 is divided as appropriate, the sludge concentration can be adjusted by changing the residence time.
本発明は前記実施例による説明から明らかなよ
うに、流動床式廃水処理装置において、槽体内に
内筒と隔壁と傾斜壁を設けて生物処理部と固液分
離部を一体構造とし、生物処理部において処理し
た廃水から固液分離部の上方に向うに従い徐々に
断面積が大きくなる上向流沈澱部において汚泥を
捕捉除去した後に移し替え等何らの操作を行うこ
となく汚泥を傾斜壁の上端から汚泥貯留部に落下
させ、ここにおいて重力濃縮したうえ排出できる
ようにしたから、処理施設の設置面積が小さくな
つて設備費用の低減ができるうえに引抜き汚泥は
その濃度が高められて均質化され、また、処理水
質の向上や安定化を図ることができる等種々の利
点があり、従来の流動床式廃水処理装置の問題点
を解決したものとして産業の発展に寄与するとこ
ろ極めて大なものである。 As is clear from the description of the above embodiments, the present invention provides a fluidized bed wastewater treatment apparatus in which an inner cylinder, a partition wall, and an inclined wall are provided in the tank body to form a biological treatment section and a solid-liquid separation section into an integral structure. After the sludge is captured and removed from the wastewater treated in the solid-liquid separation section in the upflow settling section, whose cross-sectional area gradually increases as it goes upwards, the sludge is transferred to the top of the inclined wall without any operations such as transfer. The sludge is allowed to fall into the sludge storage area, where it is concentrated by gravity and then discharged. This reduces the installation area of the treatment facility, reducing equipment costs, and the drawn sludge has a higher concentration and is more homogenized. In addition, it has various advantages such as being able to improve and stabilize the quality of treated water, and as a solution to the problems of conventional fluidized bed wastewater treatment equipment, it will greatly contribute to the development of industry. be.
第1図は本発明の実施例を示す一部切欠正面
図、第2図は同じく平面図である。
1:槽体、2:内筒、3:隔壁、4:傾斜壁、
5:越流口、6:汚泥排出口、7:廃水送入口、
8:気体送入口、12:汚泥貯留部。
FIG. 1 is a partially cutaway front view showing an embodiment of the present invention, and FIG. 2 is a plan view of the same. 1: tank body, 2: inner cylinder, 3: partition wall, 4: inclined wall,
5: Overflow port, 6: Sludge discharge port, 7: Wastewater inlet,
8: Gas inlet, 12: Sludge storage section.
Claims (1)
1内に、内筒2と該内筒2の上方部を囲みその下
端が傾斜壁4の下部付近に位置する隔壁3とを設
けてこの隔壁3と傾斜壁4との間に上方に向うに
従い徐々に断面積が大きくなる上向流沈澱部11
を形成するとともに、内筒2の下方には廃水送入
口7と気体送入口8とを位置させ、さらに上記傾
斜壁4の外側に拡径部1aを設けて該傾斜壁4と
拡径部1aとの間を上向流沈澱部から流出する汚
泥を受ける汚泥貯留部12に形成するとともに、
該拡径部1aの上方部には傾斜壁4の上端より高
位置にある越流口5を設けたことを特徴とする流
動床式廃水処理装置。1. An inner cylinder 2 and a partition wall 3 that surrounds the upper part of the inner cylinder 2 and whose lower end is located near the lower part of the slope wall 4 are provided in a tank body 1 to which an upwardly expanding inclined wall 4 is connected to the upper end. Between the partition wall 3 and the inclined wall 4, there is an upward flow settling section 11 whose cross-sectional area gradually increases as it goes upward.
At the same time, a waste water inlet 7 and a gas inlet 8 are located below the inner cylinder 2, and an enlarged diameter part 1a is provided on the outside of the inclined wall 4. A sludge storage section 12 is formed to receive the sludge flowing out from the upflow settling section, and
A fluidized bed type wastewater treatment apparatus characterized in that an overflow port 5 is provided at a higher position than the upper end of the inclined wall 4 in the upper part of the enlarged diameter part 1a.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56092820A JPS57207596A (en) | 1981-06-16 | 1981-06-16 | Fluidized bed type waste water treating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56092820A JPS57207596A (en) | 1981-06-16 | 1981-06-16 | Fluidized bed type waste water treating device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57207596A JPS57207596A (en) | 1982-12-20 |
JPS6320197B2 true JPS6320197B2 (en) | 1988-04-26 |
Family
ID=14065059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56092820A Granted JPS57207596A (en) | 1981-06-16 | 1981-06-16 | Fluidized bed type waste water treating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57207596A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0131354Y2 (en) * | 1984-11-20 | 1989-09-26 | ||
JPH0131353Y2 (en) * | 1984-11-20 | 1989-09-26 | ||
NL9500171A (en) * | 1995-01-31 | 1996-09-02 | Pacques Bv | Aerobic wastewater treatment method. |
KR100330494B1 (en) * | 1999-11-11 | 2002-04-09 | 주대성 | A Fluidized Biofilm Bed Reactor |
CN103288205B (en) * | 2013-06-19 | 2014-10-22 | 河南城建学院 | Integrated composite type bio-membrane reactor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5346156A (en) * | 1976-10-07 | 1978-04-25 | Kurita Water Ind Ltd | Fluidic bed type dirty water treatment device |
JPS5651997Y2 (en) * | 1978-04-19 | 1981-12-04 |
-
1981
- 1981-06-16 JP JP56092820A patent/JPS57207596A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57207596A (en) | 1982-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI422538B (en) | Anaerobic purification device | |
Hansen et al. | Applying shallow depth sedimentation theory | |
KR100855289B1 (en) | Method of separating suspension, in particular for waste water treatment, and an apparatus for performing the same | |
JPS6320197B2 (en) | ||
JP3374766B2 (en) | Anaerobic treatment equipment for organic wastewater | |
JP3911742B2 (en) | Organic wastewater anaerobic treatment equipment | |
KR100470925B1 (en) | Fluids fluxion process and plant for wastewater treatment | |
JP2005254029A (en) | Solid-liquid separation mechanism and organic wastewater treatment apparatus | |
JP3280293B2 (en) | Water treatment device and water treatment method | |
JP3307289B2 (en) | Anaerobic treatment equipment for organic wastewater | |
JPH0523687A (en) | Sewage treating device | |
JPH07166586A (en) | Rain water purifying treatment tank | |
JP3374746B2 (en) | Anaerobic treatment equipment for organic wastewater | |
RU2019121703A (en) | AERATED REACTOR WITH INTERNAL SOLID PHASE | |
JP3374642B2 (en) | Anaerobic treatment equipment for organic wastewater | |
JP3169117B2 (en) | Biological wastewater treatment equipment | |
JPH1094794A (en) | Organic waste water anaerobic treatment device | |
KR100330494B1 (en) | A Fluidized Biofilm Bed Reactor | |
CN2885842Y (en) | High-turbidity sewage clarifier | |
KR100481821B1 (en) | Process and plant for wastewater treatment | |
JPH0555162B2 (en) | ||
JPH07166585A (en) | Rain water purifying treatment tank | |
JP4001514B2 (en) | Biological denitrification method and apparatus | |
JP6048557B1 (en) | Anaerobic treatment apparatus and anaerobic treatment method | |
SU1017363A1 (en) | Water purifying apparatus |