JP2006051490A - Anaerobic treatment apparatus and method - Google Patents

Anaerobic treatment apparatus and method Download PDF

Info

Publication number
JP2006051490A
JP2006051490A JP2005004180A JP2005004180A JP2006051490A JP 2006051490 A JP2006051490 A JP 2006051490A JP 2005004180 A JP2005004180 A JP 2005004180A JP 2005004180 A JP2005004180 A JP 2005004180A JP 2006051490 A JP2006051490 A JP 2006051490A
Authority
JP
Japan
Prior art keywords
upward flow
anaerobic
solid
sludge
anaerobic treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005004180A
Other languages
Japanese (ja)
Inventor
Fumio Kohama
文夫 小濱
Akinori Kato
明徳 加藤
Shigeru Noritake
繁 則武
Seiji Imabayashi
誠二 今林
Kazuo Uechi
和男 上地
Tetsushi Suzuki
哲史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Breweries Ltd
Sumitomo Heavy Industries Ltd
Asahi Beer Engineering Ltd
Original Assignee
Asahi Breweries Ltd
Sumitomo Heavy Industries Ltd
Asahi Beer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Breweries Ltd, Sumitomo Heavy Industries Ltd, Asahi Beer Engineering Ltd filed Critical Asahi Breweries Ltd
Priority to JP2005004180A priority Critical patent/JP2006051490A/en
Priority to PCT/JP2005/012771 priority patent/WO2006075414A1/en
Priority to CN200580046433XA priority patent/CN101098831B/en
Priority to KR20077018331A priority patent/KR20070119006A/en
Publication of JP2006051490A publication Critical patent/JP2006051490A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anaerobic treatment apparatus which easily reduces the profile of /miniaturizes the apparatus, and an anaerobic treatment method. <P>SOLUTION: The anaerobic treatment apparatus 1 has a side wall 11 partitioning a space containing anaerobic sludge S, and includes an upward flow part R1 for passing waste wate W through the anaerobic sludge S to flow upward, a waste water introduction part 5 for introducing the waste wate W into the upward flow part R1, a solid-liquid separation part 23 for separating solid matters S and SS from the treated water treated in the upward flow part R1 to overflow the upper end of the upward flow part R1, and a fluid circulation path R2 for connecting the solid-liquid separation part 23 with the upward flow part R1 to conduct the solid matters S and SS separated in the solid-liquid separation part 23 downward. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は嫌気性処理装置及び嫌気性処理方法に関する。   The present invention relates to an anaerobic processing apparatus and an anaerobic processing method.

有機物を含んだ廃水を処理する嫌気性処理装置としては、グラニュール状の嫌気性汚泥を用いて廃水中の有機物を分解するUASB(Upflow Anaerobic Sludge Blanket:上向流式スラッジブランケット式)処理装置やEGSB(Expanded Granular Sludge Bed:膨張粒状スラッジベッド式)処理装置が知られている(例えば特許文献1参照)。これらの装置の例として図7に特許文献1の図3に記載の嫌気性処理装置を示す。この嫌気性処理装置701は、槽内下部の汚泥充填部703にグラニュール汚泥が充填され、廃水導入部705から導入された廃水をグラニュール汚泥で処理し、処理水排出部707から排出する装置である。嫌気性処理装置701はグラニュール汚泥を通して廃水を上向きに流動させる上向流部702を備えており、上向流部702の上部には処理水とグラニュール汚泥と発生したガスとを分離する三相分離部715が設けられている。上向流部702の下部でガスが付着したグラニュール汚泥は、上向流とガスリフト作用とによって上昇する。上昇したグラニュール汚泥はガス衝突部709に衝突し衝撃でガスと分離され再び沈降する。分離されたガスはガス捕集部711に捕集され、ガス排出管713から排出される。一方、処理水はガス衝突部709とガス捕集部711との間を通り処理水排出部707から排出される。このようにして嫌気性処理装置701では、ガス、グラニュール汚泥、及び処理水を分離する三相分離がなされる。
特開平11−128979号公報
As anaerobic treatment equipment that treats wastewater containing organic matter, UASB (Upflow Anaerobic Sludge Blanket) treatment equipment that decomposes organic matter in wastewater using granular anaerobic sludge, An EGSB (Expanded Granular Sludge Bed) processing apparatus is known (see, for example, Patent Document 1). As an example of these apparatuses, FIG. 7 shows an anaerobic treatment apparatus described in FIG. This anaerobic treatment device 701 is a device in which the sludge filling section 703 in the lower part of the tank is filled with granule sludge, the wastewater introduced from the wastewater introduction section 705 is treated with the granular sludge, and discharged from the treated water discharge section 707. It is. The anaerobic treatment device 701 includes an upward flow portion 702 for flowing waste water upward through the granule sludge, and the upper portion of the upward flow portion 702 separates treated water, granule sludge and generated gas. A phase separator 715 is provided. The granular sludge to which gas has adhered at the lower part of the upward flow portion 702 rises due to the upward flow and the gas lift action. The raised granular sludge collides with the gas collision part 709, is separated from the gas by impact, and settles again. The separated gas is collected in the gas collection unit 711 and discharged from the gas discharge pipe 713. On the other hand, the treated water passes between the gas collision unit 709 and the gas collecting unit 711 and is discharged from the treated water discharge unit 707. In this manner, the anaerobic treatment device 701 performs three-phase separation that separates gas, granular sludge, and treated water.
JP-A-11-128979

嫌気性処理装置701では、廃水が上向流部702の最上部702aへ向かう途中に三相分離部715を設け、上昇するグラニュール汚泥をガス衝突部709へ衝突させて、分離を行っている。ガス衝突部709で分離されなかったグラニュール汚泥の一部は最上部702aへ達してしまい、処理水排出部707から処理水に混入して排出される。このため、嫌気性処理装置701においては、必要な分離性能を確保しようとすれば、上向流部702の鉛直方向の長さを十分に取り、最上部702aに達するグラニュール汚泥を少なくする必要がある。従って、嫌気性処理装置701によれば、装置の低背化が困難であった。また、槽の低背化のために、三相分離装置を別途設けた分離槽において行うことも考えられるが(例えば、特許文献1の図1、図2参照。)、この分離槽を設置するためのスペースが必要となり、装置の小型化が困難であった。   In the anaerobic treatment device 701, a three-phase separation unit 715 is provided in the middle of the wastewater going to the uppermost part 702a of the upward flow unit 702, and the rising granular sludge is collided with the gas collision unit 709 for separation. . Part of the granular sludge that has not been separated by the gas collision unit 709 reaches the uppermost part 702a, and is discharged from the treated water discharge unit 707 into the treated water. For this reason, in the anaerobic treatment device 701, if it is intended to ensure the necessary separation performance, it is necessary to sufficiently take the length of the upward flow portion 702 in the vertical direction and reduce the granular sludge reaching the uppermost portion 702a. There is. Therefore, according to the anaerobic treatment apparatus 701, it is difficult to reduce the height of the apparatus. In order to reduce the height of the tank, it is conceivable that the separation tank is provided with a separate three-phase separation device (see, for example, FIGS. 1 and 2 of Patent Document 1), but this separation tank is installed. For this reason, it is difficult to reduce the size of the apparatus.

そこで、本発明は上記問題点を解決し、装置の低背化・小型化が容易な嫌気性処理装置及び嫌気性処理方法を提供することを課題とする。   Accordingly, an object of the present invention is to provide an anaerobic treatment apparatus and an anaerobic treatment method that solve the above-described problems and facilitate the reduction in the height and size of the apparatus.

上記課題を解決するため、本発明の嫌気性処理装置は、嫌気性汚泥を用いて廃水を処理する嫌気性処理装置であって、嫌気性汚泥を収容する空間を画成する側壁を有し、廃水を嫌気性汚泥を通して上向きに流動させ嫌気性処理を行う上向流部と、上向流部に廃水を導入する廃水導入部と、上向流部で処理され上向流部の上端を越流した処理水から固形物を分離する固液分離部と、固液分離部と上向流部とを繋ぎ、固液分離部で分離された固形物を下方へ案内する流動体循環経路と、を備えている。   In order to solve the above problems, the anaerobic treatment apparatus of the present invention is an anaerobic treatment apparatus that treats wastewater using anaerobic sludge, and has a side wall that defines a space for containing anaerobic sludge, An upward flow section that performs anaerobic treatment by flowing wastewater upward through anaerobic sludge, a wastewater introduction section that introduces wastewater into the upward flow section, and an upper flow section that is treated by the upward flow section and passes the upper end of the upward flow section A solid-liquid separation unit that separates solids from the treated water that has flowed, a fluid circulation path that connects the solid-liquid separation unit and the upward flow unit, and guides the solids separated by the solid-liquid separation unit downward; It has.

上記嫌気性処理装置は、一体として固液分離部を備えているので別途固液分離槽を設ける必要がなく、設置スペースを小さくすることができる。また、上記嫌気性処理装置の固液分離部は、上向流部の上端を越流した処理水から固形物を分離する。このため、固形物が上向流部の上端まで達したとしても、その後に処理水から分離されるので、上向流部の鉛直方向の高さに関わりなく分離性能を確保することができる。従って、上記嫌気性処理装置によれば、上向流部の鉛直方向の高さを抑えることができ、装置全体を低背化することができる。なお、本発明において、上向流部の上端とは、上向流部の空間を仕切る部材の鉛直方向の端部であって、最も高い位置にある端部をいう。また、ここで固形物とは、上向流部に導入される廃水に含まれる懸濁物質(Suspended Solids:2mm以下の微粒子)、廃水を嫌気性処理する嫌気性汚泥、又は上記懸濁物質と上記嫌気性汚泥との混合物の何れかを言う。   Since the said anaerobic processing apparatus is integrally provided with the solid-liquid separation part, it is not necessary to provide a separate solid-liquid separation tank, and an installation space can be made small. Moreover, the solid-liquid separation part of the said anaerobic processing apparatus isolate | separates a solid substance from the treated water which overflowed the upper end of the upward flow part. For this reason, even if the solid material reaches the upper end of the upward flow portion, it is separated from the treated water thereafter, so that the separation performance can be ensured regardless of the vertical height of the upward flow portion. Therefore, according to the said anaerobic processing apparatus, the height of the vertical direction of an upward flow part can be suppressed, and the whole apparatus can be made low-profile. In the present invention, the upper end of the upward flow portion refers to the end portion in the vertical direction of the member that partitions the space of the upward flow portion and is the highest position. In addition, the solid matter here refers to suspended solids (Suspended Solids: fine particles of 2 mm or less) contained in the wastewater introduced into the upstream portion, anaerobic sludge for treating the wastewater anaerobically, or the above suspended matter. It refers to any of the mixtures with the anaerobic sludge.

また、上記嫌気性処理装置では、流動体循環経路が設けられているので、固液分離部で分離された固形物が、上昇してくる固形物とは別の経路で下方に戻される。よって分離された固形物中に嫌気性汚泥が含まれていたとしても、下方へ向かう固形物中の嫌気性汚泥と上昇中の固形物中の嫌気性汚泥とが混在することがない。また、上記嫌気性処理装置によれば、例えば懸濁物質等の再利用の必要がない固形物も流動体循環経路によって下方へ案内することができる。   Moreover, in the said anaerobic processing apparatus, since the fluid circulation path | route is provided, the solid substance isolate | separated by the solid-liquid separation part is returned below by the path | route different from the rising solid substance. Therefore, even if anaerobic sludge is contained in the separated solid matter, anaerobic sludge in the solid matter heading downward and anaerobic sludge in the rising solid matter are not mixed. Moreover, according to the said anaerobic processing apparatus, the solid substance which does not need reuse, such as a suspended solid, can be guided below by a fluid circulation path.

また、本発明の嫌気性処理装置は、流動体循環経路が、固液分離部と上向流部の廃水導入部よりも下方とを繋いでもよい。   In the anaerobic treatment apparatus of the present invention, the fluid circulation path may connect the solid-liquid separation part and the lower part of the upward flow part than the waste water introduction part.

この嫌気性処理装置では、固液分離部で分離された固形物が廃水導入部よりも下方に戻される。そして、上向流部に収容された嫌気性汚泥が上下で入れ替わることにより、嫌気性汚泥の活性が均一化される。また、流動体循環経路は、上向流部とは別の経路であり、固液分離部と廃水導入部の下方とを繋いでいるので、上向流部での上向流の影響を受けて流動体循環経路では下降流が発生することとなる。よって、流動体循環経路を沈降する固形物は重力及び下降流によって円滑に下方へ案内される。また、この嫌気性処理装置によれば、例えば懸濁物質等の再利用の必要がない固形物も流動体循環経路によって下方へ案内することができる。   In this anaerobic treatment apparatus, the solid matter separated by the solid-liquid separation unit is returned below the wastewater introduction unit. And the activity of anaerobic sludge is equalize | homogenized by exchanging the anaerobic sludge accommodated in the upward flow part up and down. In addition, the fluid circulation path is a path different from the upward flow section, and connects the solid-liquid separation section and the lower part of the waste water introduction section, so that it is affected by the upward flow in the upward flow section. Thus, a downward flow is generated in the fluid circulation path. Therefore, the solid that settles in the fluid circulation path is smoothly guided downward by gravity and downward flow. Moreover, according to this anaerobic processing apparatus, the solid substance which does not need reuse, such as a suspended substance, can also be guided below by a fluid circulation path.

また、本発明の嫌気性処理装置は、流動体循環経路が、固液分離部と上向流部の下部に嫌気性汚泥が沈殿してなる嫌気性汚泥床よりも上方とを繋いでもよい。     Moreover, as for the anaerobic processing apparatus of this invention, a fluid circulation path may connect the upper part rather than the anaerobic sludge bed in which anaerobic sludge settles in the lower part of a solid-liquid separation part and an upward flow part.

この嫌気性処理装置では、流動体循環経路で下方に戻された固形物は、嫌気性汚泥床よりも上方において、嫌気性汚泥床の大きな抵抗を受けずに円滑に上向流部に戻ることができるので、流動体循環経路に固形物が停滞してしまうことを抑えることができる。また、この嫌気性処理装置によれば、例えば懸濁物質等の再利用の必要がない固形物も流動体循環経路によって下方へ案内することができる。   In this anaerobic treatment apparatus, the solid matter returned downward in the fluid circulation path is smoothly returned to the upward flow section above the anaerobic sludge bed without receiving the great resistance of the anaerobic sludge bed. Therefore, it is possible to suppress the solid matter from stagnation in the fluid circulation path. Moreover, according to this anaerobic processing apparatus, the solid substance which does not need reuse, such as a suspended substance, can also be guided below by a fluid circulation path.

また、本発明の嫌気性処理装置は、上向流部の上端は、側壁の上端を含み、固液分離部は、上向流部の上端を囲むように上向流部の外周部に設けられたことを特徴としてもよい。   In the anaerobic treatment apparatus of the present invention, the upper end of the upward flow portion includes the upper end of the side wall, and the solid-liquid separation portion is provided on the outer peripheral portion of the upward flow portion so as to surround the upper end of the upward flow portion. It may be characterized by that.

このようにすれば、気泡となって汚泥に付着したガスは上向流部の最上部中央部の液面において固形物から離される。このことによって固形物は浮力を失い再び沈降し、上向流部の下方へ戻される。また、ここで沈降せず上向流部の端部を越流した固形物も、ガスの浮力の影響が少なく沈降しやすくなっているので、流動体循環経路を円滑に沈降し、固形物と処理水とが効率よく分離される。   If it does in this way, the gas adhering to sludge as a bubble will be released | separated from a solid substance in the liquid level of the uppermost center part of an upward flow part. As a result, the solid matter loses buoyancy and settles again, and is returned to the lower part of the upward flow portion. In addition, since the solids that have not settled here and have overflowed the end of the upward flow part are less affected by the buoyancy of the gas and easily settle, the fluid circulation path smoothly settles, Efficient separation from treated water.

また、本発明の嫌気性処理装置は、固液分離部が、上向流部から離間され当該上向流部の上端の周りを囲むように設けられた案内板を有し、案内板は、上向流部の上端を越流した固形物を流動体循環経路へ導くことを特徴としてもよい。このように案内板を設けることにより、固形物が効率よく流動体循環経路へ導入され、効率よく下方へ案内される。   In addition, the anaerobic treatment apparatus of the present invention has a guide plate provided so that the solid-liquid separation unit is separated from the upward flow part and surrounds the upper end of the upward flow part, The solid material that has flowed over the upper end of the upward flow portion may be guided to the fluid circulation path. By providing the guide plate in this way, the solid is efficiently introduced into the fluid circulation path and efficiently guided downward.

また、本発明の嫌気性処理装置は、流動体循環経路は、上向流部の側壁と側壁の周りを囲むように離間して設けられた別の側壁とによって挟まれた間隙部を含むことを特徴としてもよい。   Further, in the anaerobic treatment apparatus of the present invention, the fluid circulation path includes a gap portion sandwiched between the side wall of the upward flow portion and another side wall provided so as to surround the side wall. May be a feature.

また、本発明の嫌気性処理装置は、流動体循環経路が、固液分離部から廃水導入部の下方まで伸びた管状部材の中空部分を含むことを特徴としてもよい。   Further, the anaerobic treatment device of the present invention may be characterized in that the fluid circulation path includes a hollow portion of a tubular member extending from the solid-liquid separation part to a position below the waste water introduction part.

上向流部の内部で廃水導入部の上方に設けられ、上向流部における廃水の流動を上下方向に整流する整流板をさらに有することを特徴としてもよい。このように整流板を設ければ、上向流部において廃水等が円滑に流動する。   A rectifying plate may be further provided inside the upward flow portion and above the waste water introduction portion to rectify the flow of the waste water in the upward flow portion in the vertical direction. If the current plate is provided in this way, waste water and the like smoothly flow in the upward flow portion.

また、本発明の嫌気性処理装置は、流動体循環経路を沈降する固形物を上向流部の外部へ排出させる引抜き経路を更に備えたことを特徴としてもよい。このように、引抜き経路を備えれば、再利用の必要がない固形物を上向流部の外部に排出することができ、これらの固形物が上向流部に蓄積することを防止することができる。   In addition, the anaerobic treatment apparatus of the present invention may further include a drawing path for discharging solid matter that settles in the fluid circulation path to the outside of the upward flow portion. Thus, if a drawing path is provided, solids that do not need to be reused can be discharged to the outside of the upward flow part, and these solids are prevented from accumulating in the upward flow part. Can do.

また、本発明の嫌気性処理方法は、嫌気性汚泥を用いて廃水を処理する嫌気性処理方法であって、嫌気性汚泥が収容された上向流部の下部に廃水導入部から廃水を導入し、導入した廃水を上向流部において上向きに流動させながら嫌気性処理し、上向流部の上部に設けられた固液分離部において、嫌気性処理され上向流部の上端を越流した処理水と、当該処理水に混入した嫌気性汚泥と、を分離し、固液分離部で分離した嫌気性汚泥を、上向流部とは別に設けられた経路を沈降させ上向流部へ戻すことを特徴とする。   Further, the anaerobic treatment method of the present invention is an anaerobic treatment method for treating wastewater using anaerobic sludge, and the wastewater is introduced from the wastewater introduction part to the lower part of the upward flow part containing the anaerobic sludge. Then, the introduced wastewater is anaerobically treated while flowing upward in the upward flow part, and the solid-liquid separation part provided at the upper part of the upward flow part is anaerobically treated and overflows the upper end of the upward flow part. The treated water and the anaerobic sludge mixed in the treated water are separated, and the anaerobic sludge separated by the solid-liquid separation part is allowed to settle in a path provided separately from the upward flow part. It is characterized by returning to.

また、本発明の嫌気性処理方法では、固液分離部で分離した嫌気性汚泥を、上向流部とは別に設けられた経路を沈降させ上向流部の廃水導入部よりも下方へ戻してもよい。   Further, in the anaerobic treatment method of the present invention, the anaerobic sludge separated by the solid-liquid separation unit is allowed to settle down along a path provided separately from the upward flow part and returned downward from the waste water introduction part of the upward flow part. May be.

また、本発明の嫌気性処理方法では、固液分離部で分離した嫌気性汚泥を、上向流部とは別に設けられた経路を沈降させ上向流部の下部に嫌気性汚泥が沈殿してなる嫌気性汚泥床よりも上方へ戻してもよい。   Further, in the anaerobic treatment method of the present invention, the anaerobic sludge separated in the solid-liquid separation part is allowed to settle in a path provided separately from the upward flow part, and the anaerobic sludge is precipitated at the lower part of the upward flow part. It may be returned upward from the anaerobic sludge bed.

また、本発明の嫌気性処理方法は、嫌気性汚泥を用いて廃水を処理する嫌気性処理方法であって、嫌気性汚泥が収容された上向流部の下部に廃水導入部から廃水を導入し、導入した廃水を上向流部において上向きに流動させながら嫌気性処理し、上向流部の上部に設けられた固液分離部において、嫌気性処理され上向流部の上端を越流した処理水と、当該処理水に混入した懸濁物質と、を分離し、固液分離部で分離した懸濁物質を、上向流部とは別に設けられた経路を沈降させ上向流部の外部へ排出することを特徴とする。   Further, the anaerobic treatment method of the present invention is an anaerobic treatment method for treating wastewater using anaerobic sludge, and the wastewater is introduced from the wastewater introduction part to the lower part of the upward flow part containing the anaerobic sludge. Then, the introduced wastewater is anaerobically treated while flowing upward in the upward flow part, and the solid-liquid separation part provided at the upper part of the upward flow part is anaerobically treated and overflows the upper end of the upward flow part. The treated water and the suspended matter mixed in the treated water are separated, and the suspended material separated by the solid-liquid separation unit is allowed to settle in a path provided separately from the upward flow part. It is characterized by discharging to the outside.

本発明によれば、装置の低背化・小型化が容易な嫌気性処理装置及び嫌気性処理方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the anaerobic processing apparatus and the anaerobic processing method which are easy to make the apparatus low-profile and size reduction can be provided.

以下、本発明の実施の形態について説明する。なお、同一要素には同一符号を用い、重複する説明は省略する。   Embodiments of the present invention will be described below. In addition, the same code | symbol is used for the same element and the overlapping description is abbreviate | omitted.

図1は、嫌気性処理装置1を示す断面図である。この嫌気性処理装置1は、いわゆるUASB式や、EGSB式といった処理方式を用いる嫌気性処理装置である。嫌気性処理装置1は、処理槽3、及び処理槽3内部に処理対象となる廃水Wを導入する廃水導入部5を備えている。   FIG. 1 is a cross-sectional view showing an anaerobic treatment apparatus 1. This anaerobic processing apparatus 1 is an anaerobic processing apparatus using a processing method such as a so-called UASB type or EGSB type. The anaerobic treatment apparatus 1 includes a treatment tank 3 and a waste water introduction unit 5 that introduces waste water W to be treated into the treatment tank 3.

以下処理槽3について図2を参照しつつ説明する。図2は垂直方向に切断した切断面を有する処理槽3の斜視図である。但し、図2では廃水導入部5を挿通させるための挿通口及びガス排出管21(後述)を挿通させるための挿通口を省略して図示する。処理槽3は四角柱状の形状をなしており、上壁4、底壁7、外側壁9、及び外側壁9の内側に離間して設けられた内側壁11を有している。外側壁9は内側壁11から離間され、内側壁11の周囲を囲むように設けられており、外側壁9と内側壁11との間に間隙が設けられている。内側壁11の上端11aは上壁4と接触せず開口されており、内側壁11の下端は底壁7とは接触せず開口されている。外側壁9は、底壁7の縁部から上に伸びて設けられている。外側壁9の上端は上壁4とは接触せず開口されている。また、外側壁9の上端は内側壁11の上端11aよりもやや高い位置にある。以下、内側壁11で囲まれた内側の空間R1とし、外側壁9及び内側壁11で挟まれた間隙部を空間R2とする。   Hereinafter, the processing tank 3 will be described with reference to FIG. FIG. 2 is a perspective view of the treatment tank 3 having a cut surface cut in the vertical direction. However, in FIG. 2, an insertion port for inserting the waste water introduction part 5 and an insertion port for inserting the gas discharge pipe 21 (described later) are omitted. The treatment tank 3 has a quadrangular prism shape, and has an upper wall 4, a bottom wall 7, an outer wall 9, and an inner wall 11 that is provided inside the outer wall 9 so as to be separated from each other. The outer wall 9 is separated from the inner wall 11 and is provided so as to surround the inner wall 11, and a gap is provided between the outer wall 9 and the inner wall 11. The upper end 11 a of the inner wall 11 is opened without contacting the upper wall 4, and the lower end of the inner wall 11 is opened without contacting the bottom wall 7. The outer side wall 9 is provided so as to extend upward from the edge of the bottom wall 7. The upper end of the outer wall 9 is opened without contacting the upper wall 4. Further, the upper end of the outer wall 9 is slightly higher than the upper end 11 a of the inner wall 11. Hereinafter, the inner space R1 surrounded by the inner wall 11 is referred to as an inner space R1, and the space between the outer wall 9 and the inner wall 11 is referred to as a space R2.

中間壁13は、内側壁11と外側壁9との間に挟まれるように、上壁4から空間R2へ向かって下方に伸びている。中間壁13の下端は、内側壁11の上端11a及び外側壁9の上端よりも低い位置にある。外側壁9の外壁にはトラフ部15が設けられている。トラフ部15の上端は上壁4の縁部に連なっている。トラフ部15の側面には排水口17が貫通して形成されている。空間R1には、整流板19が設けられている。整流板19は、四角形の開口を有する筒状の複数の部材からなる。上記複数の部材は、それぞれの側面が内側壁11のそれぞれの壁面に略平行になるように配列されている。また各部材は、一つの垂直方向の軸を中心軸として、相似形になるように配列されている。すなわち、上記各部材は、平面視において、同軸四角形状となっている。   The intermediate wall 13 extends downward from the upper wall 4 toward the space R <b> 2 so as to be sandwiched between the inner wall 11 and the outer wall 9. The lower end of the intermediate wall 13 is at a position lower than the upper end 11 a of the inner wall 11 and the upper end of the outer wall 9. A trough portion 15 is provided on the outer wall of the outer side wall 9. The upper end of the trough portion 15 continues to the edge of the upper wall 4. A drain port 17 is formed through the side surface of the trough portion 15. A rectifying plate 19 is provided in the space R1. The rectifying plate 19 is composed of a plurality of cylindrical members having rectangular openings. The plurality of members are arranged so that their side surfaces are substantially parallel to the respective wall surfaces of the inner wall 11. Each member is arranged in a similar shape with one vertical axis as a central axis. That is, each of the above members has a coaxial rectangular shape in plan view.

再び図1を参照する。廃水導入部5は、処理槽3の下部において処理槽3の外部から外側壁9及び内側壁11を挿通するように設けられている。廃水導入部5は、外部から供給される廃水Wを空間R1へ導入する。廃水導入部5には多数の出水口5aが設けられており、出水口5aからは上方へ向かって廃水Wが噴出されるようになっている。   Refer to FIG. 1 again. The waste water introduction part 5 is provided in the lower part of the treatment tank 3 so as to pass through the outer wall 9 and the inner wall 11 from the outside of the treatment tank 3. The waste water introduction unit 5 introduces waste water W supplied from the outside into the space R1. The waste water introduction part 5 is provided with a number of water outlets 5a, and the waste water W is jetted upward from the water outlets 5a.

空間R1の下部には、グラニュール汚泥S(以下単に「汚泥S」と称する)が充填されており、その中にメタン生成菌が存在する。汚泥S中のメタン生成菌は、廃水導入部5から導入された廃水Wを嫌気性処理し、廃水W中の有機物を分解し、メタンガス、炭酸ガス等のガスを発生する。なお、処理後の廃水(以下「処理水」と称する)W1は排水口17を通じて処理槽3外部へ排出される。   The lower part of the space R1 is filled with granular sludge S (hereinafter simply referred to as “sludge S”), and methanogenic bacteria are present therein. The methanogen in the sludge S anaerobically treats the wastewater W introduced from the wastewater introduction unit 5, decomposes organic substances in the wastewater W, and generates gases such as methane gas and carbon dioxide gas. The treated waste water (hereinafter referred to as “treated water”) W1 is discharged to the outside of the treatment tank 3 through the drain port 17.

空間R2の側面下部には、引抜口(引抜き経路)24が設けられている。引抜口24はコック26に接続されており、コック26を開くことによって空間R2を沈降してきた汚泥S、懸濁物質SSが引抜口24を通過して処理槽3の外部へ排出される。   An extraction port (extraction path) 24 is provided at the lower part of the side surface of the space R2. The extraction port 24 is connected to the cock 26, and when the cock 26 is opened, the sludge S and the suspended matter SS that have settled in the space R <b> 2 pass through the extraction port 24 and are discharged to the outside of the treatment tank 3.

以下、嫌気性処理装置1の運転時の動作について説明する。嫌気性処理装置1の運転時においては、廃水導入部5から空間R1へ常に廃水Wが導入されている。廃水Wが継続的に導入されているので、処理槽3中は外側壁9の上端の高さまで廃水W(及び処理水W1)が満たされ、液面Hが形成されている。   Hereinafter, the operation | movement at the time of the driving | operation of the anaerobic processing apparatus 1 is demonstrated. During operation of the anaerobic treatment apparatus 1, waste water W is always introduced from the waste water introduction unit 5 into the space R1. Since the waste water W is continuously introduced, the treatment tank 3 is filled with the waste water W (and the treated water W1) up to the height of the upper end of the outer wall 9, and the liquid level H is formed.

廃水導入部5から導入された廃水Wは、出水口5aから上向きに噴出され、汚泥Sと混合され、汚泥Sによって嫌気性処理がされる。嫌気性処理によって発生したガスは気泡となって空間R1を上昇する。出水口5aからの噴出および、上記気泡の上昇によって空間R1内には上向流が生じ、廃水Wは上向きに流動する。また、整流板19によって、廃水Wの流れが垂直方向に整流される。このように、空間R1は上向流部を構成し、内側壁11は上向流部R1の側壁を構成する。また、側壁11の上端11aは上向流部R1の上端を構成する。廃水Wは空間R1を上向きに流動しながら、汚泥Sによって有機物が分解され、液面Hに近づくに従って有機物濃度が小さくなってゆく。よって、液面H付近の液体はほとんどが有機物含有量が少ない処理水W1となっている。   The waste water W introduced from the waste water introduction part 5 is ejected upward from the outlet 5a, mixed with the sludge S, and subjected to anaerobic treatment with the sludge S. The gas generated by the anaerobic treatment becomes bubbles and rises in the space R1. Due to the ejection from the water outlet 5a and the rising of the bubbles, an upward flow is generated in the space R1, and the waste water W flows upward. Further, the flow of the waste water W is rectified in the vertical direction by the rectifying plate 19. Thus, the space R1 constitutes the upward flow portion, and the inner wall 11 constitutes the sidewall of the upward flow portion R1. Further, the upper end 11a of the side wall 11 constitutes the upper end of the upward flow portion R1. As the wastewater W flows upward in the space R <b> 1, the organic matter is decomposed by the sludge S, and the organic matter concentration decreases as it approaches the liquid level H. Therefore, most of the liquid in the vicinity of the liquid level H is treated water W1 having a low organic content.

汚泥(固形物)Sの一部は、上記ガスの気泡が付着することによって持ち上げられ、液面Hに達する。汚泥Sが液面Hに浮いている間に、汚泥Sからガスの気泡が分離される。また、汚泥Sは液面Hに浮いている間に互いに集結し、粒子が大きくなりグラニュール状となる。汚泥Sから離れたガスは液面Hと上壁4との間の空間に溜まり、ガス排出管21を通じて外部へ排出される。液面Hを浮遊し内側壁11を乗り越えた汚泥Sは、処理水W1と共に中間壁13に案内され、処理水W1と共に中間壁13と内側壁11とに挟まれた間隙(以下「流路R3」と称する)を空間R2へ向けて沈降する。このように、中間壁13は、案内板として機能する。   Part of the sludge (solid matter) S is lifted by the gas bubbles adhering thereto and reaches the liquid level H. While the sludge S is floating on the liquid surface H, gas bubbles are separated from the sludge S. Further, the sludge S gathers together while floating on the liquid surface H, and the particles become large and become granular. The gas away from the sludge S accumulates in the space between the liquid level H and the upper wall 4 and is discharged to the outside through the gas discharge pipe 21. The sludge S that floats over the liquid surface H and passes over the inner wall 11 is guided to the intermediate wall 13 together with the treated water W1, and is sandwiched between the intermediate wall 13 and the inner wall 11 together with the treated water W1 (hereinafter referred to as “channel R3”). Is settling toward the space R2. Thus, the intermediate wall 13 functions as a guide plate.

流路3を下降する汚泥Sはガスの気泡が離れた状態であるので、そのまま空間R2へ向けて重力によって容易に沈降していく。また、内側壁11を乗り越えた処理水W1の一部が空間R2へ流れていくので、空間R2を沈降する汚泥Sは、処理水W1に押し流され、円滑に空間R2を沈降する。残りの処理水W1は中間壁13と外側壁9とに挟まれた間隙(以下「流路R4」と称する)を通じて、外側壁9の上端を乗り越え、トラフ部15に囲まれた空間R5へと溢れ出す。空間R5へ溢れた処理水W1は排水口17を通じて処理槽3の外部へと排出される。排出された処理水W1は、必要に応じて更に、生物処理、物理化学的処理等によって有機物や窒素成分、リン成分を取り除いた後放流される。   Since the sludge S descending the flow path 3 is in a state where the gas bubbles are separated from each other, the sludge S easily settles down by gravity toward the space R2. Further, since part of the treated water W1 that has passed over the inner wall 11 flows into the space R2, the sludge S that settles in the space R2 is pushed away by the treated water W1 and smoothly settles in the space R2. The remaining treated water W1 passes over the upper end of the outer wall 9 through a gap between the intermediate wall 13 and the outer wall 9 (hereinafter referred to as “flow path R4”) and enters a space R5 surrounded by the trough portion 15. Overflowing. The treated water W1 overflowing into the space R5 is discharged to the outside of the treatment tank 3 through the drain port 17. The discharged treated water W1 is discharged after removing organic substances, nitrogen components, and phosphorus components by biological treatment, physicochemical treatment, etc. as necessary.

このように、上端11aの外周部に設けられた流路R3、流路R4、及び中間壁13は、汚泥Sと処理水W1とを分離する固液分離部23を構成する。   Thus, the flow path R3, the flow path R4, and the intermediate wall 13 provided on the outer peripheral portion of the upper end 11a constitute a solid-liquid separation section 23 that separates the sludge S and the treated water W1.

空間R2を沈降した汚泥Sは、底壁7へ達し、底壁7と内側壁11との間隙25を通じて空間R1の廃水導入部5よりも下方へ戻される。空間R1へ戻された汚泥Sは再び上向流により上昇しながら廃水導入部5から導入された廃水Wの嫌気性処理に寄与する。このように、空間R1の外周部に設けられた空間R2は、汚泥Sを下方へ案内する流動体循環経路を構成する。   The sludge S that has settled in the space R2 reaches the bottom wall 7 and is returned below the wastewater introduction part 5 in the space R1 through the gap 25 between the bottom wall 7 and the inner wall 11. The sludge S returned to the space R1 contributes to the anaerobic treatment of the wastewater W introduced from the wastewater introduction unit 5 while rising again by the upward flow. Thus, the space R2 provided in the outer peripheral portion of the space R1 constitutes a fluid circulation path that guides the sludge S downward.

空間R1における廃水W等の上昇速度は、固液分離部23における分離が良好に行われる観点から、1〜10m/hに設定することが好ましく、2〜6m/hに設定することが更に好ましい。   The rising speed of the waste water W or the like in the space R1 is preferably set to 1 to 10 m / h, more preferably 2 to 6 m / h, from the viewpoint of good separation in the solid-liquid separation unit 23. .

この嫌気性処理装置1では、処理槽3の一部に一体として固液分離部23を備えているので別途固液分離槽を設ける必要がなく、設置スペースを小さくすることができる。また、嫌気性処理装置1の固液分離部23は、空間R1の上端11aを越流した処理水から汚泥Sを分離する。このため、汚泥Sが空間(上向流部)R1の最上部まで達したとしても、その後に処理水から分離されるので、上向流部R1の鉛直方向の高さに関わりなく分離性能を確保することができる。従って、上記嫌気性処理装置によれば、上向流部R1の鉛直方向の高さを抑えることができ、装置全体を低背化することができる。また、上記嫌気性処理装置1は、流動体循環経路としての空間R2を設けているので、下方へ戻される汚泥Sが、上昇してくる汚泥Sとは別の経路で、廃水導入部5よりも下方に戻される。よって分離された汚泥Sと上昇中の汚泥Sとが混在することがなく、空間R1に収容された汚泥Sが上下で常に入れ替わり、汚泥Sの活性が均一化される。   In this anaerobic processing apparatus 1, since the solid-liquid separation part 23 is integrally provided in a part of the processing tank 3, it is not necessary to provide a separate solid-liquid separation tank, and the installation space can be reduced. Moreover, the solid-liquid separation part 23 of the anaerobic processing apparatus 1 isolate | separates the sludge S from the treated water which overflowed the upper end 11a of space R1. For this reason, even if the sludge S reaches the uppermost portion of the space (upward flow portion) R1, it is separated from the treated water after that, so that the separation performance can be achieved regardless of the vertical height of the upward flow portion R1. Can be secured. Therefore, according to the said anaerobic processing apparatus, the height of the vertical direction of the upward flow part R1 can be suppressed, and the whole apparatus can be shortened. Moreover, since the said anaerobic processing apparatus 1 is providing the space R2 as a fluid circulation path | route, the sludge S returned downward is a path | route different from the rising sludge S, from the wastewater introduction part 5. Is also returned downward. Therefore, the separated sludge S and the rising sludge S do not coexist, and the sludge S accommodated in the space R1 is always switched up and down, and the activity of the sludge S is made uniform.

また、流動体循環経路としての空間R2では、空間R1で発生するガスのガスリフト作用による上向流の影響を受けて空間R2では下降流が発生することとなる。よって、空間R2を沈降する汚泥Sは重力及び下降流によってスムースに下方に案内されるので、例えば汚泥Sを返送するためのポンプ等も不要となり、液面Hでグラニュール状となった汚泥Sがポンプ等によって粉砕されるという問題も起こらない。   Further, in the space R2 as the fluid circulation path, a downward flow is generated in the space R2 due to the influence of the upward flow due to the gas lift action of the gas generated in the space R1. Therefore, since the sludge S that settles in the space R2 is smoothly guided downward by gravity and a downward flow, for example, a pump for returning the sludge S is not necessary, and the sludge S that is in a granular shape at the liquid surface H is used. Does not cause the problem of being crushed by a pump or the like.

また、上記嫌気性処理装置1は、固液分離部23が空間R1の上端の外周部に設けられている。このため、気泡となって汚泥Sに付着したガスは空間R1の上部中央部の液面Hにおいて汚泥Sから離される。このことによって汚泥Sは浮力を失い再び沈降し、下方へ戻される。また、ここで沈降せず端部11aを越流した汚泥Sも、ガスの浮力の影響が少なく沈降しやすくなっているので、空間R2を円滑に沈降し、汚泥Sと処理水W1とが効率よく分離される。   Moreover, the said anaerobic processing apparatus 1 is provided with the solid-liquid separation part 23 in the outer peripheral part of the upper end of space R1. For this reason, the gas adhering to the sludge S in the form of bubbles is separated from the sludge S at the liquid level H in the upper central portion of the space R1. As a result, the sludge S loses buoyancy, sinks again, and is returned downward. In addition, the sludge S that does not settle here and overflows the end portion 11a is less affected by the buoyancy of the gas and easily settles. Therefore, the sludge S and the treated water W1 efficiently settle in the space R2. Well separated.

また、嫌気性処理装置1は、中間壁13を設けることにより、汚泥Sが効率よく空間R2へ導入され、効率よく下方へ案内される。また、嫌気性処理装置1は、整流板19を有しているので、空間R1において廃水W等が円滑に流動する。   In addition, the anaerobic treatment apparatus 1 is provided with the intermediate wall 13 so that the sludge S is efficiently introduced into the space R2 and efficiently guided downward. Moreover, since the anaerobic processing apparatus 1 has the baffle plate 19, the waste water W etc. flow smoothly in space R1.

続いて、特に、廃水Wが低濃度(例えばCODCr≦1500ppm)の場合の運転時について説明する。なお、上述した説明と重複する点については説明を省略する。   Subsequently, the operation at the time when the waste water W has a low concentration (for example, CODCr ≦ 1500 ppm) will be described. Note that description of points that overlap with the above description is omitted.

嫌気性処理装置1に低濃度の廃水Wを導入した場合には、空間R1における嫌気性処理にて発生するガスが少ないので、ガスの気泡が付着し持ち上げられる汚泥Sは少ない。このため、汚泥Sは運転時にも空間R1の中心よりも下方に分布し、液面Hに達する汚泥Sは少ない。上記のような状態で運転されるので、液面Hに達する汚泥Sは少なく、固液分離部23で分離される固形物は廃水W中に含まれる懸濁物質SSがほとんどを占めることとなる。   When the low-concentration waste water W is introduced into the anaerobic treatment apparatus 1, since there is little gas generated in the anaerobic treatment in the space R1, there is little sludge S to which gas bubbles adhere and are lifted. For this reason, the sludge S is distributed below the center of the space R1 during operation, and there is little sludge S reaching the liquid level H. Since the operation is performed as described above, there is little sludge S reaching the liquid level H, and the solid matter separated in the solid-liquid separation unit 23 is mostly occupied by the suspended matter SS contained in the waste water W. .

固液分離部23で分離された懸濁物質SSは空間R2へ導入され、空間R2の下方付近に停留する。懸濁物質SSは廃水Wに含まれて処理槽3内に供給されているので、空間R2下方付近の懸濁物質SSは徐々に増加し、密度が高くなる。そこで、所定の時間ごとにコック26を開き、空間R2下方付近に停留している懸濁物質SSを引抜口24から処理槽3の外部へ排出する。   The suspended matter SS separated by the solid-liquid separation unit 23 is introduced into the space R2 and stays near the lower portion of the space R2. Since the suspended solid SS is contained in the waste water W and supplied into the treatment tank 3, the suspended solid SS near the lower portion of the space R2 gradually increases and the density increases. Therefore, the cock 26 is opened at every predetermined time, and the suspended solid SS retained in the vicinity of the space R2 is discharged from the extraction port 24 to the outside of the processing tank 3.

廃水Wに含まれる懸濁物質SSは、嫌気性処理に適しておらず、かつ、連続的に供給されるので、処理槽3内に蓄積していく。嫌気性処理装置1によれば、引抜口24を備えているので、蓄積していく固形物を外部に排出することができ、処理槽3内に過剰に懸濁物質SSが蓄積されることを防止することができる。   The suspended matter SS contained in the waste water W is not suitable for anaerobic treatment and is continuously supplied, so that it accumulates in the treatment tank 3. According to the anaerobic treatment apparatus 1, since the extraction port 24 is provided, the accumulated solid matter can be discharged to the outside, and the suspended solid SS is accumulated excessively in the treatment tank 3. Can be prevented.

また、上述のとおり、処理対象の廃水Wの有機物濃度が低い場合には発生するガスが少なくなるが、嫌気性処理装置1では、発生したガスを、上壁4に設けられたガス排出管21から排出することとしており、液面H以外ではガスを除去していない。よって、嫌気性処理装置1によれば、空間R1の途中でガスが除去されることがないので、発生するガスが少ない場合であってもガスリフト効果による上向流が形成される。従って、嫌気性処理装置1は例えばCODCr≦1500ppmの、有機物濃度が低い廃水の処理についても好適に適用が可能である。   Further, as described above, when the organic matter concentration of the waste water W to be treated is low, the generated gas is reduced. However, in the anaerobic treatment apparatus 1, the generated gas is supplied to the gas discharge pipe 21 provided on the upper wall 4. The gas is not removed except at the liquid level H. Therefore, according to the anaerobic processing apparatus 1, gas is not removed in the middle of the space R1, and an upward flow is formed by the gas lift effect even when the amount of generated gas is small. Therefore, the anaerobic treatment apparatus 1 can be suitably applied to the treatment of wastewater having a low organic matter concentration, for example, CODCr ≦ 1500 ppm.

以下、上記した実施形態に係る嫌気性処理装置1の実施例について説明する。本実施例では嫌気性処理装置1を用いて低濃度(CODCr=1000ppm)の廃水Wを処理した。直径0.5m、槽有効高さ7m、有効容積1m3の処理槽3を有する嫌気性処理装置1において、CODCrが1000ppmの有機廃水を廃水導入部5から1時間当たり800kgの速度で供給し、上向流の流速を4.0m/hとして嫌気性処理を行った。処理槽3のCOD容積負荷は18〜20kg/m3/dに設定し、グラニュール汚泥は空間R1の中央よりも下方に分布した。上記条件において1ヶ月間の連続運転を行ったところ排水口17から排出されるグラニュール汚泥はほとんどなく、槽内のグラニュール汚泥濃度はほぼ一定に維持され、良好な運転が可能であった。   Hereinafter, the Example of the anaerobic processing apparatus 1 which concerns on above-described embodiment is demonstrated. In this example, the anaerobic treatment apparatus 1 was used to treat the wastewater W having a low concentration (CODCr = 1000 ppm). In an anaerobic treatment apparatus 1 having a treatment tank 3 having a diameter of 0.5 m, a tank effective height of 7 m, and an effective volume of 1 m 3, an organic wastewater having a CODCr of 1000 ppm is supplied from the wastewater introduction section 5 at a rate of 800 kg per hour, The anaerobic treatment was performed at a counterflow velocity of 4.0 m / h. The COD volumetric load of the treatment tank 3 was set to 18 to 20 kg / m3 / d, and the granular sludge was distributed below the center of the space R1. When continuous operation was performed for one month under the above conditions, there was almost no granule sludge discharged from the drain port 17, and the concentration of granule sludge in the tank was maintained almost constant, and good operation was possible.

続いて、本発明の別の実施形態にかかる嫌気性処理装置1Bついて説明する。図3は、嫌気性処理装置1Bを示す断面図である。但し図3は、汚泥S及び廃水Wが装置内に導入されていない状態の断面図を示している。また、図4は、嫌気性処理装置1Bの外観の斜視図を示している。   Next, an anaerobic treatment apparatus 1B according to another embodiment of the present invention will be described. FIG. 3 is a cross-sectional view showing the anaerobic treatment apparatus 1B. However, FIG. 3 shows a cross-sectional view in a state where the sludge S and the waste water W are not introduced into the apparatus. FIG. 4 shows a perspective view of the appearance of the anaerobic treatment apparatus 1B.

嫌気性処理装置1Bが備えた処理槽3Bの、処理槽3との相違点は、流動体循環経路として用いられる空間R2の構成にある。処理槽3Bにおける空間R2は、管状部材31の内側の中空部分によって構成されている。管状部材31は、固液分離部23の下端から内側壁11の下部まで伸び、内側壁11の外側に露出して設けられている。空間R2の一端は、固液分離部23の下端に設けられた管入口33を介して流路R3及び流路R4と繋がっている。空間R2の他端は、内側壁11の下部に設けられた管出口35を介して空間R1の下部と繋がっている。管出口35は、廃水導入部5よりも下方に設けられている。   The difference between the treatment tank 3B provided in the anaerobic treatment apparatus 1B and the treatment tank 3 is in the configuration of the space R2 used as the fluid circulation path. The space R <b> 2 in the processing tank 3 </ b> B is configured by a hollow portion inside the tubular member 31. The tubular member 31 extends from the lower end of the solid-liquid separation part 23 to the lower part of the inner wall 11 and is exposed to the outside of the inner wall 11. One end of the space R <b> 2 is connected to the flow path R <b> 3 and the flow path R <b> 4 via a pipe inlet 33 provided at the lower end of the solid-liquid separation unit 23. The other end of the space R2 is connected to the lower portion of the space R1 through a pipe outlet 35 provided at the lower portion of the inner wall 11. The pipe outlet 35 is provided below the waste water introduction part 5.

嫌気性処理装置1Bの運転時において、内側壁11の上端11aを乗り越えた汚泥Sは、中間壁13に案内されて沈降した後、管入口33に入り、管状部材31の中空部分(空間R2)を沈降する。空間R2を沈降した汚泥Sは管出口35から再び空間R1の下部に戻される。   During operation of the anaerobic treatment apparatus 1B, the sludge S that has passed over the upper end 11a of the inner wall 11 is guided by the intermediate wall 13 and settles, then enters the pipe inlet 33, and is a hollow portion (space R2) of the tubular member 31. To settle. The sludge S that has settled in the space R2 is returned to the lower part of the space R1 from the pipe outlet 35 again.

上記嫌気性処理装置1Bのように、管状部材の中空部分によって流動体循環経路を構成しても嫌気性処理装置1と同様の作用・効果が得られる。   As in the anaerobic treatment apparatus 1B, even if the fluid circulation path is constituted by the hollow portion of the tubular member, the same operation and effect as the anaerobic treatment apparatus 1 can be obtained.

続いて、本発明の更に別の実施形態にかかる嫌気性処理装置1Dについて説明する。図5は、嫌気性処理装置1Dを示す断面図である。この嫌気性処理装置1Dは、空間(上向流部)R1と空間(流動体循環経路)R2とを繋ぐ管出口65が設けられた位置が、上述した嫌気性処理装置1Bと相違しており、管出口65は廃水導入部5よりも上方に設けられている。この相違以外の点においては、嫌気性処理装置1Dは、嫌気性処理装置1Bと同様の構成を有しており、同一又は同等の要素には同一符号を付している。   Subsequently, an anaerobic treatment apparatus 1D according to still another embodiment of the present invention will be described. FIG. 5 is a cross-sectional view showing an anaerobic treatment apparatus 1D. This anaerobic processing apparatus 1D is different from the above-described anaerobic processing apparatus 1B in that the position of the pipe outlet 65 that connects the space (upward flow portion) R1 and the space (fluid circulation path) R2 is provided. The pipe outlet 65 is provided above the waste water introduction part 5. Except for this difference, the anaerobic processing apparatus 1D has the same configuration as the anaerobic processing apparatus 1B, and the same or equivalent elements are denoted by the same reference numerals.

嫌気性処理装置1Dの空間R1の下部には、充填された汚泥Sが自重によって沈殿しており、沈殿したこの汚泥Sによって汚泥床(嫌気性汚泥床)Rsが形成され、汚泥床Rsの上方には固形物が少ない上澄み部Rtが形成されている。上記の管出口65は、空間R1において、この汚泥床Rsよりも上方である上澄み部Rtの位置に設けられており、空間R2を沈降した固形物は上澄み部Rtにおいて空間Rに戻されることになる。よって、空間R2を沈降する固形物は、汚泥床Rs中の汚泥Sの抵抗を受けずに上澄み部分Rtに円滑に戻され、空間R2に固形物が停滞してしまうことが抑えられる。そして、上澄み部分Rtに戻された固形物のうち、沈み易くなっている汚泥Sは自重により下降して汚泥床Rsへ戻される。また、汚泥S以外の固形物(例えば懸濁物質)は上澄み部Rtの上向流によって再び上昇し、空間R1と空間R2との間を循環しながら、最終的に引抜口24を通じて外部へ排出される。例えば、嫌気性処理装置1Dの高さを約8mとした場合には、汚泥床Rsが下から3〜4m程度の厚さで形成されるように汚泥Sが充填され、下から約5mの位置に管出口65が設けられる。このような嫌気性処理装置1Dによっても、上向流部R1の鉛直方向の高さに関わりなく分離性能を確保することができるので、上向流部R1の鉛直方向の高さを抑えることができ、装置全体の低背化を図ることができる。   In the lower part of the space R1 of the anaerobic treatment apparatus 1D, the filled sludge S is precipitated by its own weight, and the sludge S (anaerobic sludge bed) Rs is formed by the precipitated sludge S, and above the sludge bed Rs. Is formed with a supernatant portion Rt with a small amount of solid matter. The pipe outlet 65 is provided at the position of the supernatant portion Rt above the sludge bed Rs in the space R1, and the solid matter settled in the space R2 is returned to the space R in the supernatant portion Rt. Become. Therefore, the solid matter that settles in the space R2 is smoothly returned to the supernatant portion Rt without receiving the resistance of the sludge S in the sludge bed Rs, and the solid matter is prevented from stagnating in the space R2. Of the solid matter returned to the supernatant portion Rt, the sludge S that is easy to sink is lowered by its own weight and returned to the sludge bed Rs. Further, solids (for example, suspended substances) other than the sludge S rise again due to the upward flow of the supernatant Rt, and finally circulate between the space R1 and the space R2, and finally discharged to the outside through the extraction port 24. Is done. For example, when the height of the anaerobic treatment apparatus 1D is about 8 m, the sludge S is filled so that the sludge bed Rs is formed with a thickness of about 3 to 4 m from the bottom, and the position about 5 m from the bottom. Is provided with a tube outlet 65. Even with such an anaerobic treatment apparatus 1D, the separation performance can be ensured regardless of the vertical height of the upward flow portion R1, so that the vertical height of the upward flow portion R1 can be suppressed. The overall height of the apparatus can be reduced.

なお、嫌気性処理装置1Bでは、上記管状部材31が外部に露出して設けられているが、例えば、上向流部としての空間R1内に管状部材を設けてもよい。このような実施形態として嫌気性処理装置1Cを示す。図6は嫌気性処理装置1Cの断面図である。管状部材51は、固液分離部23の下端から伸び、筐体61に囲まれた空間R1の内部を通じて空間R1の下部まで伸びている。管状部材51の中空部分が、流動体循環経路としての空間R2を構成する。空間R2の一端は、固液分離部23の下端に設けられた管入口53を介して流路R3及び流路R4と繋がっている。空間R2の他端は、空間R1に対して開口された管出口55を介して空間R1の下部と繋がっている。管出口55は、廃水導入部5よりも下方に設けられている。   In the anaerobic treatment apparatus 1B, the tubular member 31 is provided so as to be exposed to the outside. For example, a tubular member may be provided in the space R1 serving as the upward flow portion. An anaerobic treatment apparatus 1C is shown as such an embodiment. FIG. 6 is a cross-sectional view of the anaerobic treatment apparatus 1C. The tubular member 51 extends from the lower end of the solid-liquid separator 23 and extends to the lower part of the space R1 through the inside of the space R1 surrounded by the housing 61. A hollow portion of the tubular member 51 constitutes a space R2 as a fluid circulation path. One end of the space R2 is connected to the flow path R3 and the flow path R4 via a pipe inlet 53 provided at the lower end of the solid-liquid separation unit 23. The other end of the space R2 is connected to the lower portion of the space R1 through a tube outlet 55 opened to the space R1. The pipe outlet 55 is provided below the waste water introduction part 5.

嫌気性処理装置1Cは、管状部材51を空間R1内に設けるため、空間R1を囲む筐体61がトラフ部15の外壁と同一面にまで拡がって設けられている。このため、空間R1のうち、固液分離部23直下の空間及びトラフ部15直下の空間には円滑な上向流が形成されなくなる。このため、嫌気性処理装置1Cにおいては、内側壁11の下部が下に広がった切頭四角錐の側面の形状を有しており、上向流が円滑に内側壁11の最上部へ向けて流れるようになっている。この場合、固液分離部23直下の空間及びトラフ部15直下の空間はデッドスペースとなるので、この空間に処理槽3Cの強度を向上するための支持梁59を設けてもよい。この嫌気性処理装置1Cのように、管状部材を上向流部R1内に設けても嫌気性処理装置1Bと同様の作用・効果が得られる。   In the anaerobic treatment apparatus 1 </ b> C, the tubular member 51 is provided in the space R <b> 1, and thus the casing 61 that surrounds the space R <b> 1 extends to the same surface as the outer wall of the trough portion 15. For this reason, a smooth upward flow is not formed in the space immediately below the solid-liquid separation part 23 and the space directly below the trough part 15 in the space R1. For this reason, in the anaerobic treatment apparatus 1 </ b> C, the lower part of the inner wall 11 has a shape of a truncated quadrangular pyramid in which the lower part spreads downward, and the upward flow is smoothly directed toward the uppermost part of the inner wall 11. It comes to flow. In this case, since the space immediately below the solid-liquid separation part 23 and the space immediately below the trough part 15 are dead spaces, a support beam 59 for improving the strength of the treatment tank 3C may be provided in this space. Like this anaerobic treatment apparatus 1C, even if a tubular member is provided in the upward flow portion R1, the same operation and effect as the anaerobic treatment apparatus 1B can be obtained.

また、同様に、嫌気性処理装置1Cにおいて、管状部材51を短くすることで管出口55を汚泥床よりも上方の位置に設けてもよい。このようにすれば、嫌気性処理装置1Dと同様の作用・効果が得られる。   Similarly, in the anaerobic treatment apparatus 1 </ b> C, the tube outlet 55 may be provided at a position above the sludge bed by shortening the tubular member 51. If it does in this way, the effect | action and effect similar to anaerobic processing apparatus 1D will be acquired.

また、以上に述べた各構成は、本発明の趣旨を逸脱しない限り、互いに組合せることが可能である。   Further, the above-described configurations can be combined with each other without departing from the spirit of the present invention.

嫌気性処理装置を示す断面図である。It is sectional drawing which shows an anaerobic processing apparatus. 垂直方向に切断した状態の処理槽の斜視図である。It is a perspective view of the processing tank of the state cut | disconnected in the perpendicular direction. 別の嫌気性処理装置を示す断面図である。It is sectional drawing which shows another anaerobic processing apparatus. 別の嫌気性処理装置を示す斜視図である。It is a perspective view which shows another anaerobic processing apparatus. 更に別の嫌気性処理装置を示す断面図である。It is sectional drawing which shows another anaerobic processing apparatus. 更に別の嫌気性処理装置を示す断面図である。It is sectional drawing which shows another anaerobic processing apparatus. 従来の嫌気性処理装置を示す図である。It is a figure which shows the conventional anaerobic processing apparatus.

符号の説明Explanation of symbols

1,1B,1C,1D…嫌気性処理装置、3,3B,3C…処理槽、R1…空間(上向流部)、R2…空間(流動体循環経路)、R3,R4,R5…流路、5…廃水導入部、9…外側壁、11…内側壁、11a…上端、13…中間壁、15…トラフ部、17…排水口、19…整流板、23…固液分離部、31,51…管状部材、S…汚泥、Rs…汚泥床、SS…懸濁物質、W…廃水、W1…処理水。   1, 1B, 1C, 1D ... anaerobic treatment device, 3, 3B, 3C ... treatment tank, R1 ... space (upward flow part), R2 ... space (fluid circulation path), R3, R4, R5 ... flow path DESCRIPTION OF SYMBOLS 5 ... Waste water introduction part, 9 ... Outer wall, 11 ... Inner side wall, 11a ... Upper end, 13 ... Intermediate wall, 15 ... Trough part, 17 ... Drain port, 19 ... Current plate, 23 ... Solid-liquid separation part, 31, 51 ... Tubular member, S ... Sludge, Rs ... Sludge bed, SS ... Suspended matter, W ... Waste water, W1 ... Treated water.

Claims (13)

嫌気性汚泥を用いて廃水を処理する嫌気性処理装置であって、
前記嫌気性汚泥を収容する空間を画成する側壁を有し、前記廃水を前記嫌気性汚泥を通して上向きに流動させ嫌気性処理を行う上向流部と、
前記上向流部に前記廃水を導入する廃水導入部と、
前記上向流部で処理され前記上向流部の上端を越流した処理水から固形物を分離する固液分離部と、
前記固液分離部と前記上向流部とを繋ぎ、前記固液分離部で分離された前記固形物を下方へ案内する流動体循環経路と、
を備えた嫌気性処理装置。
An anaerobic treatment device that treats wastewater using anaerobic sludge,
An upflow section having a side wall defining a space for containing the anaerobic sludge, and performing anaerobic treatment by flowing the wastewater upward through the anaerobic sludge;
A wastewater introduction part for introducing the wastewater into the upward flow part;
A solid-liquid separation unit that separates solids from treated water that has been treated in the upward flow part and overflowed the upper end of the upward flow part;
A fluid circulation path that connects the solid-liquid separation part and the upward flow part, and guides the solid separated by the solid-liquid separation part downward;
An anaerobic treatment apparatus equipped with.
前記流動体循環経路は、
前記固液分離部と前記上向流部の前記廃水導入部よりも下方とを繋ぐことを特徴とする請求項1に記載の嫌気性処理装置。
The fluid circulation path is:
The anaerobic treatment apparatus according to claim 1, wherein the solid-liquid separation unit is connected to a lower side than the waste water introduction unit of the upward flow unit.
前記流動体循環経路は、
前記固液分離部と前記上向流部の下部に前記嫌気性汚泥が沈殿してなる嫌気性汚泥床よりも上方とを繋ぐことを特徴とする請求項1に記載の嫌気性処理装置。
The fluid circulation path is:
The anaerobic treatment apparatus according to claim 1, wherein an upper part of the solid-liquid separation unit and an upper part of the anaerobic sludge bed formed by precipitation of the anaerobic sludge are connected to a lower part of the upward flow unit.
前記上向流部の前記上端は、前記側壁の上端を含み、
前記固液分離部は、
前記上向流部の上端を囲むように前記上向流部の外周部に設けられたことを特徴とする請求項1〜3の何れか1項に記載の嫌気性処理装置。
The upper end of the upward flow portion includes the upper end of the side wall,
The solid-liquid separator is
The anaerobic treatment apparatus according to claim 1, wherein the anaerobic treatment apparatus is provided on an outer peripheral portion of the upward flow portion so as to surround an upper end of the upward flow portion.
前記固液分離部は、
前記上向流部から離間され当該上向流部の上端の周りを囲むように設けられた案内板を有し、
前記案内板は、
前記上向流部の上端を越流した前記固形物を前記流動体循環経路へ導くことを特徴とする請求項4に記載の有機性汚泥減容化装置。
The solid-liquid separator is
A guide plate that is spaced from the upward flow portion and is provided to surround the upper end of the upward flow portion;
The guide plate is
The organic sludge volume reducing device according to claim 4, wherein the solid material that has flowed over the upper end of the upward flow portion is guided to the fluid circulation path.
前記流動体循環経路は、
前記上向流部の前記側壁と前記側壁の周りを囲むように離間して設けられた別の側壁とによって挟まれた間隙部を含むことを特徴とする請求項1〜5の何れか1項に記載の嫌気性処理装置。
The fluid circulation path is:
The gap portion sandwiched between the side wall of the upward flow portion and another side wall provided so as to surround the side wall is included. The anaerobic processing apparatus described in 1.
前記流動体循環経路は、
前記固液分離部から前記廃水導入部の下方まで伸びた管状部材の中空部分を含むことを特徴とする請求項1〜5の何れか1項に記載の嫌気性処理装置。
The fluid circulation path is:
The anaerobic treatment apparatus according to any one of claims 1 to 5, further comprising a hollow portion of a tubular member extending from the solid-liquid separation unit to a position below the wastewater introduction unit.
前記上向流部の内部で前記廃水導入部の上方に設けられ、前記上向流部における前記廃水の流動を上下方向に整流する整流板をさらに有することを特徴とする請求項1〜7の何れか1項に記載の嫌気性処理装置。   The rectifier plate according to claim 1, further comprising a rectifying plate that is provided above the wastewater introduction portion in the upward flow portion and rectifies the flow of the wastewater in the upward flow portion in the vertical direction. The anaerobic processing apparatus according to any one of the above. 前記流動体循環経路を沈降する固形物を前記上向流部の外部へ排出させる引抜き経路を更に備えたこと
を特徴とする請求項1〜8の何れか1項に記載の嫌気性処理装置。
The anaerobic treatment apparatus according to any one of claims 1 to 8, further comprising a drawing path for discharging solid matter that settles in the fluid circulation path to the outside of the upward flow portion.
嫌気性汚泥を用いて廃水を処理する嫌気性処理方法であって、
前記嫌気性汚泥が収容された上向流部の下部に廃水導入部から廃水を導入し、
導入した前記廃水を前記上向流部において上向きに流動させながら嫌気性処理し、
前記上向流部の上部に設けられた固液分離部において、嫌気性処理され前記上向流部の上端を越流した処理水と、当該処理水に混入した前記嫌気性汚泥と、を分離し、
前記固液分離部で分離した前記嫌気性汚泥を、前記上向流部とは別に設けられた経路を沈降させ前記上向流部へ戻すことを特徴とする嫌気性処理方法。
An anaerobic treatment method for treating wastewater using anaerobic sludge,
Introducing waste water from the waste water introduction part to the lower part of the upward flow part containing the anaerobic sludge,
Anaerobic treatment while flowing the waste water introduced upward in the upward flow part,
In the solid-liquid separation part provided at the upper part of the upward flow part, the treated water that has been anaerobically treated and overflowed the upper end of the upward flow part is separated from the anaerobic sludge mixed in the treated water. And
An anaerobic treatment method, wherein the anaerobic sludge separated by the solid-liquid separation part is returned to the upward flow part by sinking a path provided separately from the upward flow part.
前記固液分離部で分離した前記嫌気性汚泥を、前記上向流部とは別に設けられた経路を沈降させ前記上向流部の前記廃水導入部よりも下方へ戻すことを特徴とする請求項10に記載の嫌気性処理方法。   The anaerobic sludge separated by the solid-liquid separation part is caused to settle down a path provided separately from the upward flow part and return downward from the waste water introduction part of the upward flow part. Item 11. The anaerobic treatment method according to Item 10. 前記固液分離部で分離した前記嫌気性汚泥を、前記上向流部とは別に設けられた経路を沈降させ前記上向流部の下部に前記嫌気性汚泥が沈殿してなる嫌気性汚泥床よりも上方へ戻すことを特徴とする請求項10に記載の嫌気性処理方法。   The anaerobic sludge bed in which the anaerobic sludge separated by the solid-liquid separation part is settled in a path provided separately from the upward flow part and the anaerobic sludge is precipitated at the lower part of the upward flow part. The anaerobic treatment method according to claim 10, wherein the anaerobic treatment method is returned upward. 嫌気性汚泥を用いて廃水を処理する嫌気性処理方法であって、
前記嫌気性汚泥が収容された上向流部の下部に廃水導入部から廃水を導入し、
導入した前記廃水を前記上向流部において上向きに流動させながら嫌気性処理し、
前記上向流部の上部に設けられた固液分離部において、嫌気性処理され前記上向流部の上端を越流した処理水と、当該処理水に混入した懸濁物質と、を分離し、
前記固液分離部で分離した前記懸濁物質を、前記上向流部とは別に設けられた経路を沈降させ前記上向流部の外部へ排出することを特徴とする嫌気性処理方法。
An anaerobic treatment method for treating wastewater using anaerobic sludge,
Introducing waste water from the waste water introduction part to the lower part of the upward flow part containing the anaerobic sludge,
Anaerobic treatment while flowing the waste water introduced upward in the upward flow part,
In the solid-liquid separator provided at the upper part of the upward flow part, the treated water that has been anaerobically treated and overflowed the upper end of the upward flow part is separated from the suspended matter mixed in the treated water. ,
An anaerobic treatment method characterized in that the suspended substance separated by the solid-liquid separation part is discharged to the outside of the upward flow part by settling a path provided separately from the upward flow part.
JP2005004180A 2004-01-15 2005-01-11 Anaerobic treatment apparatus and method Pending JP2006051490A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005004180A JP2006051490A (en) 2004-01-15 2005-01-11 Anaerobic treatment apparatus and method
PCT/JP2005/012771 WO2006075414A1 (en) 2005-01-11 2005-07-11 Anaerobic treatment apparatus and method of anaerobic treatment
CN200580046433XA CN101098831B (en) 2005-01-11 2005-07-11 Anaerobic treatment apparatus and method
KR20077018331A KR20070119006A (en) 2005-01-11 2005-07-11 Anaerobic treatment apparatus and method of anaerobic treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004008371 2004-01-15
JP2005004180A JP2006051490A (en) 2004-01-15 2005-01-11 Anaerobic treatment apparatus and method

Publications (1)

Publication Number Publication Date
JP2006051490A true JP2006051490A (en) 2006-02-23

Family

ID=36029283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004180A Pending JP2006051490A (en) 2004-01-15 2005-01-11 Anaerobic treatment apparatus and method

Country Status (1)

Country Link
JP (1) JP2006051490A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988587B1 (en) 2010-05-31 2010-10-18 허관용 Anaerobic disgestion tank
JP2011115689A (en) * 2009-12-01 2011-06-16 Ishigaki Co Ltd Nitrogen removal apparatus and method
JP2012035194A (en) * 2010-08-06 2012-02-23 Kobelco Eco-Solutions Co Ltd Anaerobic treatment device and anaerobic treatment method
JP2012081403A (en) * 2010-10-08 2012-04-26 Swing Corp Organic wastewater treatment apparatus and treating method

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1491502A (en) * 1975-05-22 1977-11-09 Biomech Ltd Anaerobic digestion of water-polluting waste material
JPS5490860A (en) * 1977-12-27 1979-07-18 Toyobo Co Ltd Waste water treating apparatus
EP0139976A1 (en) * 1983-08-25 1985-05-08 Linde Aktiengesellschaft Apparatus for the anaerobic decomposition of organic substances
JPS61111200A (en) * 1984-11-06 1986-05-29 Daido Steel Co Ltd Methane fermentation tank
JPS61204700U (en) * 1985-06-12 1986-12-23
JPS6233596A (en) * 1985-08-06 1987-02-13 Kubota Ltd Methane fermenter
JPS62163797A (en) * 1986-01-13 1987-07-20 Nippon Beet Sugar Mfg Co Ltd Anaerobic treating device
JPS62126300U (en) * 1986-02-04 1987-08-11
JPS62174695U (en) * 1986-04-21 1987-11-06
JPS6312400A (en) * 1986-07-03 1988-01-19 Hitachi Zosen Corp Treatment of waste liquor of 'shochu' (spirits) distillation
JPS6422398A (en) * 1987-07-18 1989-01-25 Kajima Corp Multi-stage granulation type bioreactor
JPS6417400U (en) * 1987-07-17 1989-01-27
JPH01210098A (en) * 1988-02-18 1989-08-23 Toshiba Corp Anaerobic water treatment
JPH01304098A (en) * 1987-10-08 1989-12-07 Gist Brocades Nv Device and method of purifying waste water
JPH0243994A (en) * 1988-08-04 1990-02-14 Kajima Corp Aerobic filter bed for bioreactor
JPH0243993A (en) * 1988-08-04 1990-02-14 Kajima Corp Aerobic and anaerobic combining bioreactor
JPH0445892A (en) * 1990-06-13 1992-02-14 Toshiba Corp Anaerobic water treating device
JPH0483597A (en) * 1990-07-26 1992-03-17 Inax Corp Anaerobic reaction tank
JPH09225491A (en) * 1996-02-20 1997-09-02 Kurita Water Ind Ltd Anaerobic treating device of organic waste water
JPH10165980A (en) * 1996-12-05 1998-06-23 Kurita Water Ind Ltd Anaerobic treatment apparatus for organic waste water
JPH1110190A (en) * 1997-06-25 1999-01-19 Hitachi Plant Eng & Constr Co Ltd Upward flow anaerobic treatment device
JPH11128980A (en) * 1997-11-04 1999-05-18 Ishigaki:Kk Apparatus for anaerobic treatment of waste water
JPH11207385A (en) * 1998-01-26 1999-08-03 Ebara Corp Anaerogic treating device
JP2001047085A (en) * 1999-08-16 2001-02-20 Toshiba Corp Anaerobic waste water treatment apparatus
JP2002219486A (en) * 2001-01-25 2002-08-06 Mitsubishi Kakoki Kaisha Ltd Anaerobic treatment equipment with upward flow
EP1251103A2 (en) * 1995-03-31 2002-10-23 Edwards Laboratories, Inc. Method and apparatus for treating wastewater
JP2003320390A (en) * 2001-06-29 2003-11-11 Asahi Beer Eng:Kk Wastewater treatment apparatus
JP2006068632A (en) * 2004-09-01 2006-03-16 Sumitomo Heavy Ind Ltd Apparatus for treating organic waste water

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1491502A (en) * 1975-05-22 1977-11-09 Biomech Ltd Anaerobic digestion of water-polluting waste material
JPS5490860A (en) * 1977-12-27 1979-07-18 Toyobo Co Ltd Waste water treating apparatus
EP0139976A1 (en) * 1983-08-25 1985-05-08 Linde Aktiengesellschaft Apparatus for the anaerobic decomposition of organic substances
JPS61111200A (en) * 1984-11-06 1986-05-29 Daido Steel Co Ltd Methane fermentation tank
JPS61204700U (en) * 1985-06-12 1986-12-23
JPS6233596A (en) * 1985-08-06 1987-02-13 Kubota Ltd Methane fermenter
JPS62163797A (en) * 1986-01-13 1987-07-20 Nippon Beet Sugar Mfg Co Ltd Anaerobic treating device
JPS62126300U (en) * 1986-02-04 1987-08-11
JPS62174695U (en) * 1986-04-21 1987-11-06
JPS6312400A (en) * 1986-07-03 1988-01-19 Hitachi Zosen Corp Treatment of waste liquor of 'shochu' (spirits) distillation
JPS6417400U (en) * 1987-07-17 1989-01-27
JPS6422398A (en) * 1987-07-18 1989-01-25 Kajima Corp Multi-stage granulation type bioreactor
JPH01304098A (en) * 1987-10-08 1989-12-07 Gist Brocades Nv Device and method of purifying waste water
JPH01210098A (en) * 1988-02-18 1989-08-23 Toshiba Corp Anaerobic water treatment
JPH0243994A (en) * 1988-08-04 1990-02-14 Kajima Corp Aerobic filter bed for bioreactor
JPH0243993A (en) * 1988-08-04 1990-02-14 Kajima Corp Aerobic and anaerobic combining bioreactor
JPH0445892A (en) * 1990-06-13 1992-02-14 Toshiba Corp Anaerobic water treating device
JPH0483597A (en) * 1990-07-26 1992-03-17 Inax Corp Anaerobic reaction tank
EP1251103A2 (en) * 1995-03-31 2002-10-23 Edwards Laboratories, Inc. Method and apparatus for treating wastewater
JPH09225491A (en) * 1996-02-20 1997-09-02 Kurita Water Ind Ltd Anaerobic treating device of organic waste water
JPH10165980A (en) * 1996-12-05 1998-06-23 Kurita Water Ind Ltd Anaerobic treatment apparatus for organic waste water
JPH1110190A (en) * 1997-06-25 1999-01-19 Hitachi Plant Eng & Constr Co Ltd Upward flow anaerobic treatment device
JPH11128980A (en) * 1997-11-04 1999-05-18 Ishigaki:Kk Apparatus for anaerobic treatment of waste water
JPH11207385A (en) * 1998-01-26 1999-08-03 Ebara Corp Anaerogic treating device
JP2001047085A (en) * 1999-08-16 2001-02-20 Toshiba Corp Anaerobic waste water treatment apparatus
JP2002219486A (en) * 2001-01-25 2002-08-06 Mitsubishi Kakoki Kaisha Ltd Anaerobic treatment equipment with upward flow
JP2003320390A (en) * 2001-06-29 2003-11-11 Asahi Beer Eng:Kk Wastewater treatment apparatus
JP2006068632A (en) * 2004-09-01 2006-03-16 Sumitomo Heavy Ind Ltd Apparatus for treating organic waste water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115689A (en) * 2009-12-01 2011-06-16 Ishigaki Co Ltd Nitrogen removal apparatus and method
KR100988587B1 (en) 2010-05-31 2010-10-18 허관용 Anaerobic disgestion tank
JP2012035194A (en) * 2010-08-06 2012-02-23 Kobelco Eco-Solutions Co Ltd Anaerobic treatment device and anaerobic treatment method
JP2012081403A (en) * 2010-10-08 2012-04-26 Swing Corp Organic wastewater treatment apparatus and treating method

Similar Documents

Publication Publication Date Title
US8043506B2 (en) Process and reactor for anaerobic waste water purification
US8021552B2 (en) Process and reactor for anaerobic waste water purification
CN202224253U (en) Swirler and gas flotation device
SA516370346B1 (en) Helical flow type dissolved air floatation device
JP2011110520A (en) Apparatus for treating organic waste water and method of treating organic waste water
CN106904680A (en) A kind of air floatation machine
CN210367143U (en) Double-channel three-phase separator, three-phase separation system and anaerobic reactor
JP2006051490A (en) Anaerobic treatment apparatus and method
GB2423299A (en) Oil/water separator for use in drainage systems
WO2006075414A1 (en) Anaerobic treatment apparatus and method of anaerobic treatment
KR20070049065A (en) Bioreactor
JP7423414B2 (en) Carrier separation device, operating method of carrier separation device, multistage carrier separation device, and anaerobic treatment device
WO2012051662A1 (en) An effluent treatment unit
CN202379771U (en) Multi-point air floatation polymer-containing sewage treatment device for shallow layer
JP5636862B2 (en) Waste water treatment equipment
US6719911B2 (en) Apparatus and method for the treatment of a contaminated fluid
JP4081368B2 (en) Separation device
JP3280293B2 (en) Water treatment device and water treatment method
JP3911742B2 (en) Organic wastewater anaerobic treatment equipment
KR20090130283A (en) A settling tank having an aeration part in its inner space
KR101204395B1 (en) The apparatus to treat municipal and industrial wastewater
JPH11165189A (en) Apparatus and method for treating water
KR100869312B1 (en) Apparatus for purificating polluted water by flotation and sedimentation
CN207391052U (en) A kind of foam separator
KR102318251B1 (en) Sedimentation-filtration apparatus for livestock wastewater treatment facility

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120417