JPH0483597A - Anaerobic reaction tank - Google Patents

Anaerobic reaction tank

Info

Publication number
JPH0483597A
JPH0483597A JP2198210A JP19821090A JPH0483597A JP H0483597 A JPH0483597 A JP H0483597A JP 2198210 A JP2198210 A JP 2198210A JP 19821090 A JP19821090 A JP 19821090A JP H0483597 A JPH0483597 A JP H0483597A
Authority
JP
Japan
Prior art keywords
inner cylinder
anaerobic
gas
space
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2198210A
Other languages
Japanese (ja)
Inventor
Tatsuro Yamamoto
達郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP2198210A priority Critical patent/JPH0483597A/en
Publication of JPH0483597A publication Critical patent/JPH0483597A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To dispense with a power source such as a motor and to lower manufacturing cost and operation cost by simplifying a structure by demarcating the upper part of the liquid level in an anaerobic tank by an inner cylinder to form an inner cylinder space and an upper space. CONSTITUTION:When an org. raw solution H flows in the anaerobic sludge stored under a liquid surface (e) being a sludge interface, the org. matter in the raw solution H is taken in by anaerobic bacteria in anaerobic sludge to be reacted to generate methane gas, carbon dioxide and hydrogen sulfide. The formed gas is guided by a buffle plate 6 and further guided along the under surface of a conical part 5 to be gradually accumulated in the inner cylinder space S2 within an upper inner cylinder 2. The water seal solution in a water seal pipe part 9a is gradually reduced and, when water seal is perfectly broken by the gas, the gas moves to an upper space S1 at high speed from the inner cylinder space S2 and the liquid surface (a) on the side of the upper space S1 suddenly falls. At the same time, the surface (c) on the side of the inner cylinder space S2 suddenly rises and the stirring due to the sudden movement of the liquid in an anaerobic reaction tank 1 is generated as shown by an arrow and the anaerobic sludge and the org. raw solution H are mixed under stirring.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、有機系排水を内部で嫌気性汚泥により処理
する嫌気性反応槽に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an anaerobic reaction tank for internally treating organic wastewater with anaerobic sludge.

(従来技術及びその課題) 従来、有機系排水を処理するために嫌気性反応槽が用い
られており、この嫌気性反応槽の内部で、嫌気性菌によ
り有機物を消化させて処理が行なわれるが、従来におい
ては、有機系原液と嫌気性汚泥を混合するために、嫌気
性反応槽内には攪拌用のスクリュー装置等が内蔵されて
おり、このスクリュー装置等を連続的に回転させて内部
の攪拌を行なっており、スクリュー装置等を回転きせる
ためのモーター等の電力消費が大であり、処理コストが
高価なものとなってしまうという問題点があった。
(Prior art and its problems) Conventionally, an anaerobic reaction tank has been used to treat organic wastewater, and treatment is performed by digesting organic matter with anaerobic bacteria inside this anaerobic reaction tank. Conventionally, in order to mix the organic stock solution and anaerobic sludge, the anaerobic reaction tank has a built-in stirring screw device, etc., and this screw device etc. is continuously rotated to mix the anaerobic sludge with the organic stock solution. Since stirring is performed, the power consumption of motors and the like for rotating screw devices and the like is large, resulting in high processing costs.

(課題を解決するための手段) 本発明は上記従来の問題点に鑑み案出したものであって
、モーター等の動力源を必要とせず、処理コストを低減
させることのできる嫌気性反応槽を提供せんことを目的
とし、その要旨は、嫌気性汚泥により、供給きれる有機
系原液を嫌気性条件下で処理する嫌気性反応槽であって
、該嫌気性反応槽の内部には、天井面から液面下に向か
い中空状の内筒が垂設され、該内筒により、嫌気性反応
槽内の液面上部に区画された内筒空間と上部空間が形成
されているとともに、該内筒の液面下における外周には
、生成されたガスを前記内筒空間へ導くための下方へ拡
開した円錐部が設けられ、さらに、前記内筒空間と前記
上部空間を連通させろ水封管部を有する圧力調節配管が
設けられていることである。
(Means for Solving the Problems) The present invention has been devised in view of the above conventional problems, and provides an anaerobic reaction tank that does not require a power source such as a motor and can reduce processing costs. The gist of this is that it is an anaerobic reaction tank that uses anaerobic sludge to treat organic stock solutions that can be completely supplied under anaerobic conditions. A hollow inner cylinder is vertically installed facing below the liquid level, and the inner cylinder forms an inner cylinder space and an upper space that are partitioned above the liquid level in the anaerobic reaction tank. A conical part that expands downward is provided on the outer periphery below the liquid level to guide the generated gas into the inner cylinder space, and a filtration seal pipe part is provided to communicate the inner cylinder space and the upper space. The pressure adjustment piping is provided with

(作用) 嫌気性反応槽の内部には内筒が垂設されており、この内
筒により嫌気性反応槽の上部の液面上に、区画された内
筒空間と上部空間が形成され、しかも、内筒には円錐部
と圧力調節配管が設けられており、嫌気性反応槽の内部
で嫌気性汚泥と流入きれた有機系原液が反応して、嫌気
性菌により有機物が消化される過程においてメタン、炭
酸ガス等のガスが生成され、この生成されたガスは、円
錐部にガイドされて内筒の内側の内筒空間内に徐々に溜
められることとなり、内筒空間内に充満したガスは内筒
内の液面を押し下げるとともに、逆に上部空間内で液面
が押し上げられ、ガスは圧力調節配管を通り外部に逃げ
ようとし、圧力調節配管の本封管部内の水封によりガス
はゆっくりと上部空間側へ逃がされるが、ガスにより水
封管部内の水封液は押し上げられて次第に減少し、水封
液が無くなると、圧力調節配管内を生成ガスが高速で移
動し、内筒空間内のガスが急速に上部空間側へ流れ、上
部空間内で押し上げられていた液面がこの急激なガスの
移動により急速に押し下げられて、嫌気性反応槽内にこ
のガスの移動圧力による攪拌効果が生じ、反応槽内で嫌
気性汚泥と有機系原液とが良好に攪拌きれて、さらに反
応を促進する。
(Function) An inner cylinder is installed vertically inside the anaerobic reaction tank, and this inner cylinder forms a partitioned inner cylinder space and an upper space above the liquid level at the upper part of the anaerobic reaction tank. The inner cylinder is equipped with a conical part and pressure adjustment piping, and the anaerobic sludge reacts with the organic stock solution that has flowed in inside the anaerobic reaction tank, and the organic matter is digested by anaerobic bacteria. Gases such as methane and carbon dioxide are generated, and the generated gases are guided by the conical part and gradually accumulated in the inner cylinder space inside the inner cylinder, and the gas that fills the inner cylinder space is As the liquid level in the inner cylinder is pushed down, the liquid level in the upper space is pushed up, and the gas tries to escape to the outside through the pressure adjustment piping.The water seal inside the main seal of the pressure adjustment piping causes the gas to slowly flow. However, the water seal liquid in the water seal pipe section is pushed up by the gas and gradually decreases. When the water seal liquid disappears, the generated gas moves at high speed inside the pressure regulating pipe, and the inner cylinder space The gas in the reactor rapidly flows to the upper space side, and the liquid level that had been pushed up in the upper space is rapidly pushed down by this rapid movement of gas, creating a stirring effect in the anaerobic reactor due to the pressure of this gas movement. occurs, and the anaerobic sludge and organic stock solution are well stirred in the reaction tank, further promoting the reaction.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は嫌気性反応槽の概略断面構成図である。FIG. 1 is a schematic cross-sectional configuration diagram of an anaerobic reaction tank.

図において、嫌気性反応槽1は密閉状に形成されており
、その内部の下部部位には予め嫌気性汚泥を封入してお
くことができ、又、外部から有機系原液Hを流入させる
ことができるものとなっており、さらに上端部には内部
で生成したガスを排出するためのガス管Gが設けられて
おり、このガス管Gは図示しない脱流槽を介し図示しな
いガスホルダーに接続されており、生成ガスはガス管G
を通りガスホルダーに貯留されるものとなっている。さ
らに上部の側面には排水管10が設けられており、この
排水管10は処理液を外部に排出することができるもの
である。又、この排水管10の下流側には公知の活性汚
泥処理槽が接続きれ、好気性処理が処理液に対して成さ
れるものとなっている。又、反応槽1の底部には余剰汚
泥引抜管11が設けられ、余分な汚泥を引抜可能となっ
ている。
In the figure, an anaerobic reaction tank 1 is formed in a sealed manner, and anaerobic sludge can be sealed in the lower part of the tank in advance, and an organic stock solution H cannot be introduced from the outside. Furthermore, a gas pipe G is provided at the upper end for discharging the gas generated inside, and this gas pipe G is connected to a gas holder (not shown) via a drainage tank (not shown). The generated gas is passed through gas pipe G.
The gas is stored in the gas holder. Furthermore, a drain pipe 10 is provided on the side surface of the upper part, and this drain pipe 10 can discharge the processing liquid to the outside. Further, a known activated sludge treatment tank is connected to the downstream side of this drain pipe 10, and aerobic treatment is performed on the treated liquid. Further, an excess sludge drawing pipe 11 is provided at the bottom of the reaction tank 1, so that excess sludge can be drawn out.

この嫌気性反応槽1の天井面1aのほぼ中央部には、中
空筒状の上部内筒2が垂下状に設けられており、この上
部内筒2と同軸状に連続して下方側へ下部内筒3が延設
されており、下部内筒3の下端部は外側へ拡開したベル
マウス3aを形成しており、このベルマウス3aと反応
槽1の底部間には下部開口8が形成されている。
A hollow cylindrical upper inner cylinder 2 is provided in a hanging manner approximately in the center of the ceiling surface 1a of this anaerobic reaction tank 1, and continues coaxially with this upper inner cylinder 2 and lowers downward. The inner cylinder 3 is extended, and the lower end of the lower inner cylinder 3 forms a bell mouth 3a that expands outward, and a lower opening 8 is formed between the bell mouth 3a and the bottom of the reaction tank 1. has been done.

又、上部内筒2と下部内筒3間の外周には円錐部5が周
設きれており、この円錐部5は下方側へ拡開した円錐形
状に形成されている。この円錐部5の下端部と反応槽1
の側壁間には円錐部間ロアが形成されている。又、この
円錐部間ロアから下方内側に向かって傾斜状にバッフル
板6が設けられている。又、前記上部内筒2と円錐部5
の連結部の内側には複数の連通孔4が形成されており、
この上部内筒2と円錐部5と連通孔4の構成は、第2図
に一部断面斜視図で示す。
Further, a conical portion 5 is provided around the outer periphery between the upper inner cylinder 2 and the lower inner cylinder 3, and this conical portion 5 is formed in a conical shape that expands downward. The lower end of this conical part 5 and the reaction tank 1
A lower inter-conical portion is formed between the side walls of the conical portion. Further, a baffle plate 6 is provided in an inclined manner downwardly and inwardly from the lower portion between the conical portions. Moreover, the upper inner cylinder 2 and the conical part 5
A plurality of communication holes 4 are formed inside the connecting portion of
The structure of the upper inner cylinder 2, conical portion 5, and communication hole 4 is shown in a partially sectional perspective view in FIG.

又、上部内筒2の外周であって前記円錐部5の上部部位
には圧力調節配管9が設けられており、この圧力調節配
管9はU字状に形成された水封管部9aを備えており、
この水封管部9aには2木の水平で上下方向に配設され
た上方管9b及び下方管9Cが連通されており、上方管
9b及び下方管9cは上部内筒2に連通して設けられて
いる。
Further, a pressure regulating pipe 9 is provided on the outer periphery of the upper inner cylinder 2 and above the conical portion 5, and this pressure regulating pipe 9 includes a water seal pipe portion 9a formed in a U-shape. and
An upper pipe 9b and a lower pipe 9C, which are arranged horizontally in the vertical direction, are connected to the water seal pipe part 9a, and the upper pipe 9b and the lower pipe 9c are connected to the upper inner cylinder 2. It is being

又、前記水封管部9aの上端は前記排水管10の位置よ
りも5〜10:程度高い位置に開口されたものとなって
いる。さらに円錐部5には連通状に過剰ガスリリース管
12が立設されており、この過剰ガスIJ IJ−ス管
12の上端部も前記排水管10よりも高い位置に開口さ
れている。
Further, the upper end of the water seal tube portion 9a is opened at a position approximately 5 to 10 times higher than the position of the drain pipe 10. Furthermore, an excess gas release pipe 12 is provided upright in communication with the conical portion 5, and the upper end of this excess gas release pipe 12 is also opened at a higher position than the drain pipe 10.

尚、前記排水管10の設けられた位置は処理液の上面レ
ベルとなる位置であり、この液面を液面イとすると、こ
の液面イの下部に静止界面となる液面口が形成される。
The position where the drain pipe 10 is provided is at the upper surface level of the processing liquid, and if this liquid level is defined as liquid level A, a liquid level opening serving as a static interface is formed below this liquid level A. Ru.

この液面口は内部で嫌気性汚泥と有機系原液が攪拌され
た後に静止する液面である。
This liquid level port is the liquid level where the anaerobic sludge and organic stock solution are stirred and then remain still.

尚、前記液面イの上部には天井面1aとの間に空間が形
成きれることとなり、上部内筒2の内側の空間は内筒空
間S、であり、その外側は上部空間SIとなり、この上
部空間S1と内筒空間S、は上部内筒2により完全に区
画されたものとなっている。尚、前記圧力調節配管9の
上方管9bは前記液面口の位置に設けられたものである
A space is formed between the upper part of the liquid level A and the ceiling surface 1a, and the space inside the upper inner cylinder 2 is the inner cylinder space S, and the outside thereof is the upper space SI. The upper space S1 and the inner cylinder space S are completely partitioned by the upper inner cylinder 2. Incidentally, the upper pipe 9b of the pressure regulating pipe 9 is provided at the position of the liquid level port.

尚、第3図には第1図のA−A線断面図を示す。Incidentally, FIG. 3 shows a sectional view taken along line A--A in FIG. 1.

前記バッフル板6は第3図に示すように、所定間隔で4
枚設けられており、各バッフル板6は第3図中aで示す
位置からbで示す位置に亘り上傾されたものとなってお
り、ガスを上方へ導いて、Cの位置から前記円錐部5に
沿って前記上部内筒2内へガスを逃がすことができるも
のとなっている。
As shown in FIG. 3, the baffle plates 6 are arranged at four
Each baffle plate 6 is tilted upward from the position a to the position b in FIG. 3, and guides the gas upward from the position C to the conical portion. Gas can escape into the upper inner cylinder 2 along the line 5.

前記各部の寸法割合は、嫌気性反応槽1の横断面積をA
とすると、前記上部内筒2及び下部内筒3の断面積はA
の1〜2割程度の断面積となっており、前記円錐部間ロ
アは断面積AX0.015以上となっており、前記下部
開口8は断面積A×0.05以上となっており、前記連
通孔4は断面積AX0.005程度となっている。又、
前記圧力調節配管9の管径は、嫌気性反応槽1の容積が
Loom”の場合では5011ml 〜1501111
1程度のものとなっており、又、嫌気性反応槽1の容積
が500m3の場合では150I]mI〜450rrn
程度のものとなっている。尚、前記円錐部5の傾斜角度
は水平面に対し55〜60°程度としておくことが望ま
しい。
The dimensional ratio of each of the above parts is such that the cross-sectional area of the anaerobic reaction tank 1 is A.
Then, the cross-sectional area of the upper inner cylinder 2 and lower inner cylinder 3 is A
The cross-sectional area of the lower part between the conical parts is AX0.015 or more, and the lower opening 8 has a cross-sectional area of AX0.05 or more, The communication hole 4 has a cross-sectional area of about AX0.005. or,
The pipe diameter of the pressure adjustment pipe 9 is 5011 ml to 1501111 ml when the volume of the anaerobic reaction tank 1 is "Loom".
1, and when the volume of the anaerobic reaction tank 1 is 500 m3, it is 150 I] mI ~ 450 rrn
It is of a certain extent. Incidentally, it is desirable that the inclination angle of the conical portion 5 is approximately 55 to 60 degrees with respect to the horizontal plane.

尚、嫌気性反応槽1の天井面1aの上部にブロア13を
設け、このブロア13を前記上部空間S1と内筒空間S
、に連通させておくことができる。
A blower 13 is provided above the ceiling surface 1a of the anaerobic reaction tank 1, and this blower 13 is connected to the upper space S1 and the inner cylinder space S.
, can be communicated with.

尚、本例における前記圧力調節配管9は第4図に要部を
示すように、静止界面は通常、液面口の位置であり、こ
の液面口から前記上方管9bを通り水封管部9a内に液
が水封液として溜められることとなるが、液面口が低い
場合もあるため、液面二の位置まで下がった場合にも下
方管9cから水封管部9a内に水封液を溜めることがで
きるものとなっており、図中mで示す範囲に水封液が入
ることとなり、このmはU字状であるため実質2倍とな
り、図中1で示す分の水封長きを確保することができる
ものである。
As shown in FIG. 4, the main part of the pressure regulating pipe 9 in this example is that the stationary interface is usually at the liquid level port, and the water seal pipe section passes from the liquid level port through the upper pipe 9b. The liquid will be stored in the water seal part 9a as a water seal liquid, but since the liquid level may be low, even if the liquid level drops to position 2, a water seal will be formed from the lower pipe 9c into the water seal pipe part 9a. It is designed to be able to store liquid, and the water seal liquid will enter the area indicated by m in the figure, and since this m is U-shaped, it is actually doubled, and the water seal liquid will be in the area indicated by 1 in the figure. It is something that can ensure a long life.

このような構造において、汚泥界面である液面ホの下部
に貯留された嫌気性汚泥内に有機系原液Hが流入される
と、嫌気性汚泥内の嫌気性菌が原液H内の有機物を取り
込み反応し、この時に反応によりメタンガスと炭酸ガス
及び硫化水素を発生させる。この生成されたガスは前記
バッフル板6によりガイドされ、きらに円錐部5の下面
に沿って導かれて上部内筒2内の内筒空間S、内に徐々
に溜められることとなる。尚、7<ッフル板6が存在す
るため円錐部間ロアからガスが逃げることがなく、生成
したガスの大部分は内筒空間S、内に上昇することとな
る。この上昇したガスにより内筒空間S、が広がり、液
面口はこのガスにより徐々に押し下げられて液面ハの位
置まで下降する。この時に、逆に上部空間S1は狭めら
れ、上部空間81側では液面イの位置まで液面が上昇す
ることとなる。この時に上部空間S1の下部の円錐部5
の上面側は沈殿ゾーンBとなっており、固体と液体が良
好にこの沈殿ゾーンB内で分離され、排水管10より処
理液が外部に流出される。
In such a structure, when the organic stock solution H flows into the anaerobic sludge stored below the liquid level E, which is the sludge interface, the anaerobic bacteria in the anaerobic sludge take in the organic matter in the stock solution H. At this time, the reaction generates methane gas, carbon dioxide gas, and hydrogen sulfide. The generated gas is guided by the baffle plate 6, guided along the lower surface of the conical portion 5, and gradually accumulated in the inner cylinder space S in the upper inner cylinder 2. In addition, since the 7<ffle plate 6 exists, gas does not escape from the lower part between the conical parts, and most of the generated gas rises into the inner cylinder space S. This rising gas expands the inner cylinder space S, and the liquid level port is gradually pushed down by this gas to the position of the liquid level C. At this time, the upper space S1 is conversely narrowed, and the liquid level rises to the position of the liquid level A on the upper space 81 side. At this time, the lower conical part 5 of the upper space S1
The upper surface side is a precipitation zone B, solid and liquid are separated well in this precipitation zone B, and the treated liquid is discharged to the outside through a drain pipe 10.

ガスは徐々に内筒空間S、から上方管9bを通り圧力調
節配管9内を通って上部空間S、側に逃げるが、この時
にエアリフト効果により水封管部9a内に封入されてい
る水封液がガスにより持ち上げられて上端部からこぼれ
出すこととなり、次第に水封管部9a内の本封液が減少
し、ガスにより水封が完全に破られた状態では、内筒空
間S。
The gas gradually escapes from the inner cylinder space S through the upper pipe 9b and inside the pressure adjustment piping 9 to the upper space S, but at this time, due to the air lift effect, the water seal sealed in the water seal tube section 9a is removed. The liquid is lifted by the gas and spills out from the upper end, and the main sealing liquid in the water seal tube part 9a gradually decreases, and when the water seal is completely broken by the gas, the inner cylinder space S.

内から高速で上部空間81側へガスが移動することとな
り、この時に上部空間81側の液面イは急激に下降し、
同時に内筒空間S、側の液面ハは急激に上昇し、第1図
における矢印で示すように、嫌気性反応槽1内で急激な
液体の移動による攪拌が起こり、内部の嫌気性汚泥と有
機系原液Hが攪拌により混合される。
Gas moves from inside to the upper space 81 side at high speed, and at this time, the liquid level A on the upper space 81 side drops rapidly.
At the same time, the liquid level C in the inner cylinder space S and side rises rapidly, and as shown by the arrow in FIG. The organic stock solution H is mixed by stirring.

攪拌後には液面は液面口の位置で静止するが、この状態
で再び内筒空間S、内に生成されたガスが徐々に充満さ
れ、同様に内筒空間S、の液面がハの位置に押し下げら
れ、逆に上部空間81側は液面イの位置に押し上げられ
て水位差を生じさせ、前述した如く、圧力調節配管9の
水封を破り再びガスが急激に上部空間S、側へ移動して
攪拌を繰り返すこととなる。
After stirring, the liquid level remains at the position of the liquid level port, but in this state, the gas generated in the inner cylinder space S gradually fills up again, and similarly the liquid level in the inner cylinder space S reaches H. On the contrary, the upper space 81 side is pushed up to the liquid level A, creating a water level difference, and as mentioned above, the water seal of the pressure adjustment piping 9 is broken and the gas suddenly flows again to the upper space S, side. You will have to move it to and repeat the stirring.

尚、前記圧力調節配管9が目詰まり等により機能しなく
なった場合には、ガスは前記過剰ガスリノース管12か
らガス管Gに逃がされることとなり、安全が確保されて
いる。きらにガス圧が高い場合には前記円錐部間ロアを
通してガスを逃がすことができ、より安全性が確保きれ
ている。
In addition, when the pressure adjustment pipe 9 becomes inoperable due to clogging or the like, gas is released from the excess gas linose pipe 12 to the gas pipe G, thereby ensuring safety. When the gas pressure is particularly high, the gas can be released through the lower part between the conical parts, thereby further ensuring safety.

尚、有機系原液Hは連続して供給しても良く、又、間欠
的に供給しても良い。
The organic stock solution H may be supplied continuously or intermittently.

尚、前記ブロア13は、運転初期に生成ガス量が少ない
場合や、原液Hの供給量が少ない場合に作動されるもの
であり、上部空間S、(Elから内筒空間S、側へガス
を送り込むことができ、補助的に作動されるものである
The blower 13 is operated when the amount of generated gas is small at the beginning of operation or when the amount of raw solution H supplied is small, and blows gas from the upper space S (El) to the inner cylinder space S. It can be fed and operated auxiliary.

尚、前記排水管10内には、生成きれたガスが処理液と
もに流出することを防ぐために水封機構が設けられてい
る。
A water seal mechanism is provided in the drain pipe 10 to prevent the generated gas from flowing out together with the processing liquid.

尚、嫌気性反応槽1内の攪拌の強弱を変更する予定があ
る場合には、予め前記圧力調節配管9の一部を外部に引
き出しておき、水封長さを適宜調節して攪拌の強弱を変
更させることができる。
If you plan to change the intensity of stirring inside the anaerobic reaction tank 1, pull out a part of the pressure adjustment piping 9 to the outside in advance and adjust the length of the water seal as appropriate to change the intensity of the agitation. can be changed.

このように本例の嫌気性反応槽1においては、内部で生
成されたガスを一旦内筒空間S、内に溜め、このガスの
圧力により水位差を形成させ、ガスを圧力調節配管9を
通し急激に上部空間81側へ移動させて、落差による内
部液の攪拌を起こさせ、内部で槽内攪拌を連続的に行な
わせることができ、何らの電力等の動力を必要とせず処
理効果を高めることができる。
In this way, in the anaerobic reaction tank 1 of this example, the gas generated inside is temporarily stored in the inner cylinder space S, the pressure of this gas is used to form a water level difference, and the gas is passed through the pressure adjustment piping 9. By rapidly moving to the upper space 81 side, the internal liquid is stirred by the head, and the tank can be continuously stirred internally, increasing the treatment effect without requiring any power or other power. be able to.

(発明の効果) 本発明は、嫌気性汚泥により、供給される有機系原液を
嫌気性条件下で処理する嫌気性反応槽であって、該嫌気
性反応槽の内部には、天井面から液面下に向かい中空状
の内筒が垂設され、該内筒により、嫌気性反応槽内の液
面上部に区画された内筒空間と上部空間が形成されてい
るとともに、該内筒の液面下における外周には、生成き
れたガスを前記内筒空間へ導くための下方へ拡開した円
錐部が設けられ、さらに、前記内筒空間と前記上部空間
を連通させる本封管部を有する圧力調節配管が設けられ
ていることにより、生成されたガスを内筒空間内に導い
て内筒空間内の水位と上部空間側の水位に水位差を生じ
させ、圧力調節配管を通しガスを急激に内筒空間側から
上部空間側へ移動させて液面の落差により槽内を良好に
攪拌することができ、従来のようにスクリュー等の攪拌
装置を何ら必要とせず、従ってモーター等の動力源が不
要となり、構造が簡・単となって製造コスト及び運転コ
ストを極めて低減させ得る効果を有する。
(Effects of the Invention) The present invention provides an anaerobic reaction tank for treating a supplied organic stock solution under anaerobic conditions using anaerobic sludge, and the inside of the anaerobic reaction tank is provided with liquid flowing from the ceiling. A hollow inner cylinder is installed vertically toward the bottom of the surface, and the inner cylinder forms an inner cylinder space and an upper space partitioned above the liquid level in the anaerobic reaction tank, and the liquid in the inner cylinder The outer periphery below the surface is provided with a conical part that expands downward for guiding the generated gas to the inner cylinder space, and further has a main sealed pipe part that communicates the inner cylinder space and the upper space. By introducing the pressure adjustment piping, the generated gas is guided into the inner cylinder space to create a water level difference between the water level in the inner cylinder space and the water level on the upper space side, and the gas is suddenly forced through the pressure adjustment piping. By moving the liquid from the inner cylinder space side to the upper space side, the inside of the tank can be stirred well due to the drop in the liquid level, and there is no need for a stirring device such as a screw as in the conventional case. This eliminates the need for the structure, which simplifies the structure and has the effect of significantly reducing manufacturing costs and operating costs.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示し、第1図は本例嫌気性反応
槽の内部構造を示す概略断面構成図、第2図は第1図に
おける上部内筒及び円錐部の一部断面概略斜視図、第3
図は第1図のA−A線断面構成図、第4図は圧力調節配
管の作用説明図である。 1・・・嫌気性反応槽 2・・・上部内筒 4・・連通孔 6・・・バッフル板 9a・・・水制管部 9c・・・下方管
The drawings show one embodiment of the present invention. Fig. 1 is a schematic cross-sectional configuration diagram showing the internal structure of the anaerobic reaction tank of this example, and Fig. 2 is a partial cross-sectional schematic diagram of the upper inner cylinder and conical part in Fig. 1. Perspective view, 3rd
The figure is a cross-sectional configuration diagram taken along the line A-A in FIG. 1, and FIG. 4 is an explanatory diagram of the operation of the pressure regulating piping. 1... Anaerobic reaction tank 2... Upper inner cylinder 4... Communication hole 6... Baffle plate 9a... Water control pipe section 9c... Lower pipe

Claims (1)

【特許請求の範囲】[Claims] 嫌気性汚泥により、供給される有機系原液を嫌気性条件
下で処理する嫌気性反応槽であって、該嫌気性反応槽の
内部には、天井面から液面下に向かい中空状の内筒が垂
設され、該内筒により、嫌気性反応槽内の液面上部に区
画された内筒空間と上部空間が形成されているとともに
、該内筒の液面下における外周には、生成されたガスを
前記内筒空間へ導くための下方へ拡開した円錐部が設け
られ、さらに、前記内筒空間と前記上部空間を連通させ
る水射管部を有する圧力調節配管が設けられていること
を特徴とする嫌気性反応槽。
This is an anaerobic reaction tank that processes an organic stock solution supplied with anaerobic sludge under anaerobic conditions, and inside the anaerobic reaction tank there is a hollow inner cylinder extending from the ceiling surface to below the liquid surface. is installed vertically, and the inner cylinder forms an inner cylinder space and an upper space partitioned above the liquid level in the anaerobic reaction tank, and at the outer periphery of the inner cylinder below the liquid level, there is a A conical portion expanding downward for guiding the gas into the inner cylinder space is provided, and a pressure regulating pipe having a water injection pipe portion communicating the inner cylinder space and the upper space is further provided. An anaerobic reaction tank featuring:
JP2198210A 1990-07-26 1990-07-26 Anaerobic reaction tank Pending JPH0483597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2198210A JPH0483597A (en) 1990-07-26 1990-07-26 Anaerobic reaction tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2198210A JPH0483597A (en) 1990-07-26 1990-07-26 Anaerobic reaction tank

Publications (1)

Publication Number Publication Date
JPH0483597A true JPH0483597A (en) 1992-03-17

Family

ID=16387321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2198210A Pending JPH0483597A (en) 1990-07-26 1990-07-26 Anaerobic reaction tank

Country Status (1)

Country Link
JP (1) JPH0483597A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051490A (en) * 2004-01-15 2006-02-23 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus and method
JP2016182534A (en) * 2015-03-25 2016-10-20 東京瓦斯株式会社 Wastewater treatment apparatus and wastewater treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051490A (en) * 2004-01-15 2006-02-23 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus and method
JP2016182534A (en) * 2015-03-25 2016-10-20 東京瓦斯株式会社 Wastewater treatment apparatus and wastewater treatment method

Similar Documents

Publication Publication Date Title
US4351730A (en) Treatment of biologically-degradable waste
US9010735B2 (en) Contact reaction tower
KR970061346A (en) Reactor
US3933640A (en) Methods and apparatus for treating wastewater
JPS5938031B2 (en) Sewage waste treatment method and equipment
US3953326A (en) Oxygen aeration system for contaminated liquids
CN213739016U (en) Sewage catalysis stirring processing apparatus
JPH0483597A (en) Anaerobic reaction tank
JP2000317482A (en) Fluidization separator for carrier
US4317723A (en) Sewage treatment
US10961140B2 (en) Bioreactor with moving carriers
US4545907A (en) Aeration tank
CN205953586U (en) Photo -catalytic reactor
AU2014279670A1 (en) Method and installation for removing sulphur from the digestate and the biogas of a digester
JPS60220194A (en) Anaerobic treatment apparatus
CN113336324A (en) Aerobic gas stripping type fluidized bed
JP2009039673A (en) Apparatus and method for treating waste water
JP2002239589A (en) Anaerobic treatment apparatus by ascending flow
JP4503248B2 (en) Wastewater treatment method
KR20160084218A (en) Biological apparatus for treating waste water
CN211620042U (en) Circulation oxidation sewage treatment plant
KR100227819B1 (en) Equipment and treatment method for wastewater treatment
CN213977588U (en) Biological desulfurization oxidation reactor structure
CN106673156A (en) Aeration stirring device for wastewater treatment
JPH0681699U (en) Oxygen supply device for deep aeration tank