JPH0243996A - Scum crushing type anaerobic bioreactor - Google Patents

Scum crushing type anaerobic bioreactor

Info

Publication number
JPH0243996A
JPH0243996A JP63192836A JP19283688A JPH0243996A JP H0243996 A JPH0243996 A JP H0243996A JP 63192836 A JP63192836 A JP 63192836A JP 19283688 A JP19283688 A JP 19283688A JP H0243996 A JPH0243996 A JP H0243996A
Authority
JP
Japan
Prior art keywords
sludge
scum
anaerobic
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63192836A
Other languages
Japanese (ja)
Inventor
Minoru Kodama
小玉 実
Seiji Otsuka
誠治 大塚
Kosaku Osato
大郷 幸作
Riichi Kinooka
紀岡 利一
Eriko Takehiro
絵里子 武廣
Toshiko Furuya
古屋 壽子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP63192836A priority Critical patent/JPH0243996A/en
Publication of JPH0243996A publication Critical patent/JPH0243996A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To make treatment of scum easy by providing a sludge return path which communicates with both the bottom part of a scum stripper and an anaerobic reaction cylinder and crushing scum by shock at a time when scum falls to the aperture of the scum stripper. CONSTITUTION:Inflow water 2 fed near to the lower end of an anaerobic reaction cylinder 1 is made to an upward flow and raised in a sludge bed 20. When slow agitation is performed by an agitator 4, raw water is brought into contact with anaerobic sludge and decomposing reaction is promoted. The gas being a reaction product is stuck on one part of anaerobic sludge as gas foams according to progress of decomposing reaction and gas sticking sludge 21a is formed and raised to form a sludge ppt. part. Large parts of gas sticking sludge 21a are separated from gas foams and settled as anaerobic sludge to maintain sludge and blanket of the sludge bed 20. Scum 30 falls through a falling port 31 and is crushed. Thereby scum can be crushed and energy consumption can be reduced.

Description

【発明の詳細な説明】 り見立ム上皿±1 本発明は廃水処理用嫌気バイオリアクターに関し、とく
に嫌気バイオリアクターにおける浮上スカムを破砕しこ
れを返送汚泥として微生物濃度を高めることにより下水
等の低濃度有機性排水の嫌気性生物処理を可能にしたス
カム破砕形嫌気バイオリアクターに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an anaerobic bioreactor for wastewater treatment, and in particular to a method for treating sewage, etc. by crushing the floating scum in the anaerobic bioreactor and using it as returned sludge to increase the concentration of microorganisms. This paper relates to a scum crushing anaerobic bioreactor that enables anaerobic biological treatment of low-concentration organic wastewater.

えX立且遺 陽気性微生物を利用して排水処理をする嫌気性排水処理
は、曝気をしないのでそのための設備とエネルギーを要
しないだけでなく有機物の消化過程で発生するメタンガ
スからエネルギーを回収することができるので、極めて
経済的である。従来の曝気性排水処理は、嫌気性微生物
の増殖速度を高く維持できる濃厚な有機性排水や固形物
濃度2−7%の下水汚泥等を処理対象としてきた。第3
A図を参照するに、嫌気性排水処理による標準消化法で
は嫌気反応筒1へ流入水2を送込み、嫌気性微生物で分
解された処理水3を取出す、嫌気反応筒1内には撹拌器
4が設けられ、反応によって生じたガスは反応筒1の頂
部から回収される。
Anaerobic wastewater treatment, which uses aerobic microorganisms to treat wastewater, does not require aeration, so not only does it require no equipment or energy, but it also recovers energy from the methane gas generated during the process of digesting organic matter. It is extremely economical. Conventional aerated wastewater treatment has targeted concentrated organic wastewater that can maintain a high growth rate of anaerobic microorganisms, sewage sludge with a solids concentration of 2-7%, and the like. Third
Referring to Figure A, in the standard digestion method using anaerobic wastewater treatment, inflow water 2 is sent to the anaerobic reactor 1, and treated water 3 decomposed by anaerobic microorganisms is taken out.A stirrer is installed in the anaerobic reactor 1. 4 is provided, and the gas produced by the reaction is recovered from the top of the reaction column 1.

生物化学的酸素要求量BOD 1,000 rag/Q
以下の有機性排水(以下、低濃度有機性排水という、)
を上記標準消化法の嫌気反応筒1によって処理する際に
、木理学的滞留時間HRT(Hydraulic re
ten−tion time)を比較的短い実用的な範
囲に選ぶと、増殖速度のきわめて小さい嫌気性微生物が
洗出され浄化に必要な微生物濃度が確保できない。この
問題を解決し反応筒内の微生物濃度を高めるため、次に
示す各種改良方式が研究されているが、最適運転条件を
設定する技術等の関連技術が未だ十分に確立されていな
い段階である。
Biochemical oxygen demand BOD 1,000 rag/Q
The following organic wastewater (hereinafter referred to as low-concentration organic wastewater)
When treating with the anaerobic reactor 1 of the standard digestion method described above, the woody retention time HRT (Hydraulic reaction time
If the ten-tion time is selected within a relatively short practical range, anaerobic microorganisms with extremely low growth rates will be washed out, making it impossible to ensure the microorganism concentration necessary for purification. In order to solve this problem and increase the concentration of microorganisms inside the reactor, the following various improvement methods are being studied, but related technologies such as those for setting optimal operating conditions have not yet been fully established. .

即ち、第3B図は嫌気性活性汚泥法を示し、嫌気反応筒
1の後に沈澱槽5を設け、そこで沈澱した汚泥を返送汚
泥6として嫌気性反応筒lへ戻すことにより微生物濃度
を高め、余分の汚泥が生じたときはこれを余剰汚泥7と
して系外へ取出す。第3C図は濾床8が用いられる嫌気
性濾床法を、第3D図は嫌気反応筒1からの水の一部が
循環水9として戻される陽気性流動床法をそれぞれ示す
。第3E図は流入水2が嫌気反応筒1の下端から上向き
に送込まれ、嫌気反応筒1に嫌気反応ゾーン11と沈澱
ゾーン12とが形成され、反応生成ガスがガス回収装置
13によって回収される嫌気性汚泥床法を示す。
That is, FIG. 3B shows the anaerobic activated sludge method, in which a settling tank 5 is provided after the anaerobic reactor 1, and the sludge settled there is returned to the anaerobic reactor l as return sludge 6 to increase the microbial concentration and remove excess When sludge is generated, it is taken out of the system as surplus sludge 7. FIG. 3C shows an anaerobic filter bed method in which a filter bed 8 is used, and FIG. 3D shows an aerobic fluidized bed method in which a portion of the water from the anaerobic reactor 1 is returned as circulating water 9. In FIG. 3E, the inflow water 2 is sent upward from the lower end of the anaerobic reactor 1, an anaerobic reaction zone 11 and a precipitation zone 12 are formed in the anaerobic reactor 1, and the reaction product gas is recovered by the gas recovery device 13. This shows the anaerobic sludge bed method.

上記改良方式の一つである嫌気性汚泥床法は。The anaerobic sludge bed method is one of the improved methods mentioned above.

嫌気性活性汚泥法の沈澱槽を省略してプロセスを単純化
した処理法として注目されており、ガス泡の付着したス
カム又はフロックを汚泥、処理水、ガスに分離する装置
の使用に特徴がある。フロックに付着したガス泡が除去
されれば、嫌気性汚泥が本来の良好な沈降性を発揮して
沈澱し、嫌気反応ゾーン11の汚泥床の微生物濃度を高
める現象に着目した方法である。
The anaerobic activated sludge method is attracting attention as a treatment method that simplifies the process by omitting the settling tank, and is characterized by the use of a device that separates scum or flocs with gas bubbles into sludge, treated water, and gas. . This method focuses on the phenomenon that when the gas bubbles attached to the flocs are removed, the anaerobic sludge exhibits its original good settling ability and settles, increasing the microbial concentration in the sludge bed in the anaerobic reaction zone 11.

第4図は上記汚泥、処理水、ガスに分離する装置の一例
を示す。矢印aで示される様に第1汚泥分離装置15へ
進入する嫌気性発酵後の汚泥混合液の流れは、まづ逆円
錐形部分でおおまかに分離され、分離された汚泥が沈下
する。未分離の付着ガスを有する汚泥はさらに浮上を続
け、第2汚泥分離装置をなす細管1Bにおいて効率よく
付着ガスから分離され、分離後の汚泥は矢印すの様に沈
下する。処理水は矢印Cの様に細管16の外側上方から
取出され、分離されたガスは矢印dの様に細管1日の上
端で回収される。
FIG. 4 shows an example of an apparatus for separating the sludge, treated water, and gas. The flow of the sludge mixture after anaerobic fermentation that enters the first sludge separation device 15 as shown by arrow a is first roughly separated at the inverted conical portion, and the separated sludge sinks. The sludge with unseparated adhered gas continues to float and is efficiently separated from the adhered gas in the thin tube 1B forming the second sludge separator, and the separated sludge sinks as shown by the arrow. The treated water is taken out from above the outside of the capillary tube 16 as shown by arrow C, and the separated gas is collected at the upper end of the capillary tube 16 as shown by arrow d.

第5図は上記嫌気性汚泥床法の実現規模装置の構成例を
示す、装置底部に汚泥床20が形成され、分解反応後の
ガス付着汚泥混合液21がその汚泥床20の上に形成さ
れる。ガス回収槽22が上記混合液21を覆い、ガス回
収槽22から小間隙をおいて汚泥分離槽23が形成され
、装置の頂部に沈′!B槽24が設けられる。
FIG. 5 shows an example of the configuration of a scale equipment for realizing the anaerobic sludge bed method. A sludge bed 20 is formed at the bottom of the equipment, and a gas-adhering sludge mixture 21 after the decomposition reaction is formed on the sludge bed 20. Ru. A gas recovery tank 22 covers the mixed liquid 21, and a sludge separation tank 23 is formed with a small gap from the gas recovery tank 22, and is settled at the top of the device! A B tank 24 is provided.

が  しよう  る しかし、第4図及び第5図の汚泥、処理水、ガスに分離
する装置をもってしても低濃度有機性排水に対して高濃
度の汚泥床を形成することが困難であり、嫌気性汚泥床
法の適用は儂厚な排水に限られているのが実状である0
分解処理されるべき原水、即ち流入水が低濃度有機性排
水である場合に汚泥床の濃度が低くなるのは次の理由に
よると考えられる。
However, even with the equipment shown in Figures 4 and 5 that separates sludge, treated water, and gas, it is difficult to form a high-concentration sludge bed for low-concentration organic wastewater, and anaerobic The reality is that the application of the sludge bed method is limited to thick wastewater.
The reason why the concentration of sludge bed becomes low when the raw water to be decomposed, that is, the inflow water is low-concentration organic wastewater, is thought to be due to the following reason.

(a)高濃度有機性排水が原水である場合は。(a) If high concentration organic wastewater is raw water.

嫌気汚泥がグラニユール状に成長し、沈降性がきわめて
良好であり、反応筒からの菌体流出(Wash out
)が非常に少ない。しかし、原水が通常の下水の様な低
濃度有機性排水である場合は、嫌気汚泥のグラニユール
化が不十分であり、特別の工夫をしない限り菌体流出が
生じ、反応筒に高濃度汚泥が形成されない。
The anaerobic sludge grows in the form of granules, has very good sedimentation properties, and has very low bacterial cell wash out from the reaction tube.
) are very few. However, if the raw water is low-concentration organic wastewater such as ordinary sewage, the granulation of anaerobic sludge is insufficient, and unless special measures are taken, bacterial cells will flow out and high-concentration sludge will enter the reaction tube. Not formed.

(b)嫌気汚泥の沈降性は木来小さくないが、反応中に
ガス泡が付着すると、その沈降性が極端に悪化し容易に
菌体流出が生ずる。
(b) Although the sedimentation property of anaerobic sludge is not small, if gas bubbles adhere to it during the reaction, the sedimentation property becomes extremely poor and bacterial cells easily flow out.

(C)嫌気性汚泥床法では明確な汚泥床(スラッジ・ブ
ランケット)の形成が不可欠であるが、低濃度有機性排
水に対しては、高濃度有機性排水における様なポンプに
よる循環や発生ガスによる反応筒撹拌では所要の明確な
汚泥床が形成されない。
(C) In the anaerobic sludge bed method, it is essential to form a clear sludge bed (sludge blanket), but for low-concentration organic wastewater, it is necessary to circulate the generated gas by pumping as in the case of high-concentration organic wastewater. Reactor agitation by 200°C does not form the required well-defined sludge bed.

従って本発明が解決しようとする課題は、低濃度有機性
排水に対しても明確な陽気汚泥床を形成することができ
る嫌気バイオリアクターの提供にある。
Therefore, the problem to be solved by the present invention is to provide an anaerobic bioreactor that can form a well-defined aerobic sludge bed even for low-concentration organic wastewater.

るための 第1図における本発明の一実施例の縦断面図と第2図に
おけるその平面図を参照するに、本発明による嫌気バイ
オリアクターは、スカム落下口31を有する嫌気反応筒
l、上記落下口31からのスカム30が落込む開口33
を有するスカム除去装置32、及び上記スカム除去装置
32の底部と上記嫌気反応筒lとを連通ずる汚泥返送路
34を備え、上記スカム除去装置32の開口33にスカ
ム3oが落下する時の衝撃によりスカムを破砕してなる
構成を有する。
Referring to a longitudinal cross-sectional view of an embodiment of the present invention in FIG. 1 and a plan view thereof in FIG. Opening 33 into which the scum 30 from the drop opening 31 falls
A scum removing device 32 having a It has a structure made by crushing scum.

好ましくは、上記嫌気反応筒lを縦長とし、攪拌器4を
上記嫌気反応筒l内に設ける。
Preferably, the anaerobic reaction tube l is vertically elongated, and the stirrer 4 is provided inside the anaerobic reaction tube l.

1月 第1図を参照するに、嫌気反応筒1の汚泥床2゜で分解
反応を終えた汚泥は、ガス付着汚泥21aとしてガス付
着汚泥混合液21の中を上昇し頂部水面に浮上してスカ
ム30となる。このスカム30は、嫌気反応筒1の落下
口31を通ってスカム除去装置32の開口30の中へ落
下する。スカム除去装置32の中へ落下したスカム30
は付着ガス泡の浮力のため開口33の水面上に先行スカ
ム30として浮ぶ、先行スカム30の付着ガス泡は水よ
り軽いので、上向きに浮ぶ可能性が高い。
Referring to FIG. 1, the sludge that has completed the decomposition reaction on the sludge bed 2° of the anaerobic reactor 1 rises in the gas-adhered sludge mixture 21 as gas-adhered sludge 21a and floats to the water surface at the top. It becomes scum 30. This scum 30 passes through the drop port 31 of the anaerobic reactor 1 and falls into the opening 30 of the scum removal device 32. Scum 30 that has fallen into the scum removal device 32
The leading scum 30 floats on the water surface of the opening 33 due to the buoyancy of the attached gas bubbles.Since the attached gas bubbles of the leading scum 30 are lighter than water, there is a high possibility that they will float upward.

その後この開口33の中へ落下してくる後続スカム30
が開口33の水面に衝突すると、その衝撃によりスカム
30とくにその付着ガス泡が破砕され、嫌気汚泥が付着
ガス泡から開放される。この衝突時の衝撃は、直接に衝
突したスカム30に作用するだけでなく水面上の近傍の
先行スカム3oにも間接的に作用する。また上記衝突は
直接に付着ガス泡を破砕するだけでなく、衝突によって
スカム3oを破砕しその時に間接的に嫌気汚泥から付着
ガス泡を分離する場合も考えられる。こうして付着ガス
泡から開放・分離された嫌気汚泥は、本来の良好な沈降
性によりガス除去装置32の底部に沈澱する。
Subsequent scum 30 then falls into this opening 33.
When the scum 30 collides with the water surface of the opening 33, the impact crushes the scum 30, especially the attached gas bubbles, and the anaerobic sludge is released from the attached gas bubbles. The impact upon this collision not only acts directly on the scum 30 that collided with it, but also indirectly acts on the preceding scum 3o near the water surface. Further, the above-mentioned collision not only directly crushes the adhered gas bubbles, but also a case in which the scum 3o is crushed by the collision, and at that time, the adhered gas bubbles are indirectly separated from the anaerobic sludge. The anaerobic sludge released and separated from the attached gas bubbles settles at the bottom of the gas removal device 32 due to its inherent good sedimentation properties.

汚泥返送路34は、ガス除去装置32の底部に沈澱した
嫌気汚泥を嫌気反応筒1内の汚泥床1へ返送する径路と
なる。返送された嫌気汚泥は、汚泥床20におけるスラ
ッジ・プランケラ)M持を可能にする。
The sludge return path 34 serves as a path for returning the anaerobic sludge deposited at the bottom of the gas removal device 32 to the sludge bed 1 in the anaerobic reaction column 1. The returned anaerobic sludge makes it possible to maintain the sludge plancher in the sludge bed 20.

こうして本発明の解決課題、即ち低儂度有機性排水処理
時においても明確な嫌気汚泥床の形成を可能とする嫌気
バイオリアクターの提供が達成される。
In this way, the problem to be solved by the present invention is achieved, namely, the provision of an anaerobic bioreactor that makes it possible to form a clear anaerobic sludge bed even during the treatment of low-temperature organic wastewater.

さらに、本発明者等は、上記嫌気反応筒lを縦長とし、
攪拌器4を上記嫌気反応筒1内に設けその攪拌器4の回
転速度を適当にした場合に、上記嫌気反応筒1内に緩や
かな均一上昇流のみの汚泥沈澱部、即ちガス付着汚泥混
合液21の部分と緩やかに回転する汚泥床20とが明確
に別れて形成されることを実験的に見出した。
Furthermore, the present inventors made the anaerobic reaction cylinder l vertically long,
When the stirrer 4 is installed in the anaerobic reactor 1 and the rotational speed of the stirrer 4 is set appropriately, a sludge settling part with only a gentle uniform upward flow, that is, a gas-adhered sludge mixture, is created in the anaerobic reactor 1. It has been experimentally found that the portion 21 and the gently rotating sludge bed 20 are clearly separated and formed.

見蔦遣 第1図及び第2図は本発明の一実施例である嫌気バイオ
リアクターの概念図を示す。
Figures 1 and 2 show conceptual diagrams of an anaerobic bioreactor that is an embodiment of the present invention.

図示例の嫌気反応筒lは縦長で、その内部にモータ4a
により駆動される攪拌器4が設けられる。
The anaerobic reactor l in the illustrated example is vertically long and has a motor 4a inside.
A stirrer 4 is provided which is driven by.

被処理原水としての流入水2を、原水用のポンプ39に
より嫌気反応筒1の下端付近へ供給する0反応筒1内に
、原水の通水前に所定濃度の種汚泥として例えば下水消
化汚泥を投入し攪拌器4により緩やかに攪拌する。数時
間後に第1図の様にスラッジ・ブランケットが形成され
、反応筒1の内容は汚泥床20とガス付着汚泥混合液2
1からなる汚泥沈澱部とに分かれる。
Inflow water 2 as raw water to be treated is supplied to the vicinity of the lower end of the anaerobic reaction tube 1 by a pump 39 for raw water into the reaction tube 1. Before the raw water flows, for example, sewage digested sludge is added as seed sludge at a predetermined concentration. Add the mixture and stir gently using the stirrer 4. After several hours, a sludge blanket is formed as shown in Figure 1, and the contents of the reaction tube 1 are a sludge bed 20 and a gas-adhered sludge mixture 2.
It is divided into a sludge settling part consisting of 1.

汚泥床20の頂面の高さを、嫌気反応筒lの上部開口か
ら挿入される汚泥界面計(図示せず)で検出する。汚泥
床20の高さが所定値以上であるときは、余剰汚泥引抜
き用のポンプ4oにより余剰汚泥7を外部へ取出してそ
の高さを調整する。
The height of the top surface of the sludge bed 20 is detected by a sludge interface meter (not shown) inserted from the upper opening of the anaerobic reaction cylinder l. When the height of the sludge bed 20 is above a predetermined value, the excess sludge 7 is taken out to the outside by the pump 4o for removing excess sludge, and its height is adjusted.

嫌気反応筒工の下端付近へ供給された原水、即ち流入水
2は上向流となって汚泥床2oの中を静かに上昇する。
Raw water, ie, inflow water 2, supplied to the vicinity of the lower end of the anaerobic reaction tube becomes an upward flow and quietly rises in the sludge bed 2o.

このとき攪拌器4によって緩やかな攪拌をすれば、原水
は嫌気汚泥と接触し分解反応が促進される0分解反応の
進行に応じ1反応生成物であるガスがガス泡として一部
の嫌気汚泥に付着してガス付着汚泥21aを形成し、こ
れが上昇して汚泥沈澱部、即ち第1図のガス付着汚泥混
合液21を構成する。しかし、汚泥沈澱部へ上昇したガ
ス付着汚泥21aのうちの大部分のものはガス泡から分
離され嫌気汚泥となって沈降し、汚泥床2oのスラッジ
拳ブランケットを維持する。
At this time, if the agitator 4 is used to gently stir the raw water, the raw water will come into contact with the anaerobic sludge and the decomposition reaction will be promoted. 0 As the decomposition reaction progresses, gas, which is a reaction product, will form gas bubbles in some of the anaerobic sludge. This adheres to form gas-adhered sludge 21a, which rises to constitute the sludge settling section, that is, the gas-adhered sludge mixed liquid 21 in FIG. However, most of the gas-adhering sludge 21a that has risen to the sludge settling section is separated from the gas bubbles and settles as anaerobic sludge, maintaining the sludge fist blanket on the sludge bed 2o.

ガス泡から分離されずに浮上を続けるガス付着汚泥21
aはスカム30となって嫌気反応筒1の最上部水面に浮
ぶ、このスカム30は、反応筒lからの流出水の一部と
して落下口31から垂直に自然落下し、スカム除去装置
32の開口33の中へ進入する。
Gas-adhering sludge 21 that continues to float without being separated from the gas bubbles
A becomes scum 30 and floats on the water surface at the top of the anaerobic reactor 1. This scum 30 naturally falls vertically from the drop port 31 as part of the water flowing out from the reactor reactor 1, and passes through the opening of the scum removing device 32. Enter 33.

反応筒流出水は、スカム除去装置32の開口33におけ
る水面に打ちつけられ、その衝撃により、反応筒流出水
中のガス付着汚泥21a及び開口33に浮ぶ先行スカム
30からガス泡が分離される。ガス泡から解放された嫌
気汚泥は、本来の良好な沈降性を発揮してスカム除去装
置32の下端部へ沈澱する。
The reaction tube outflow water hits the water surface at the opening 33 of the scum removal device 32, and the impact separates gas bubbles from the gas-adhered sludge 21a in the reaction tube outflow water and the preceding scum 30 floating in the opening 33. The anaerobic sludge released from the gas bubbles exhibits its original good settling ability and settles at the lower end of the scum removal device 32.

かくして清浄な処理水3が得られ、スカム除去装置32
の処理水出口35から処理水3が流出する。
In this way, clean treated water 3 is obtained, and the scum removal device 32
The treated water 3 flows out from the treated water outlet 35.

図示例ではスカム除去装置32への入口である上記開口
33を小さくし、スカム3oが常時この間口33の水面
に浮んでいる様にしである。これは、上記反応筒流出水
の1回の自然落下だけではスカム3゜からのガス分離が
不十分である場合にも、スカム除去装置32内の残留ス
カム3oを常に上記開口33に浮べL記自然落下の衝撃
を反復してこれに加え十分なガス分離を行なうためであ
る。
In the illustrated example, the opening 33, which is the entrance to the scum removing device 32, is made small so that the scum 3o is always floating on the water surface of this opening 33. This allows the residual scum 3o in the scum removal device 32 to be kept floating in the opening 33 even if the gas separation from the scum 3o is insufficient with just one free fall of the water flowing out of the reaction tube. This is to ensure sufficient gas separation in addition to the repeated impact of free fall.

本発明の重要な特徴として、スカム除去装置32の下端
部へ沈澱した嫌気汚泥は、汚泥返送路34を介し、好ま
しくは汚泥返送用のポンプ41により嫌気反応筒1の汚
泥床20へ戻される。こうして返送された嫌気汚泥が、
低濁度有機性排水の処理時にも安定した汚泥床20を確
保する。
An important feature of the present invention is that the anaerobic sludge settled at the lower end of the scum removal device 32 is returned to the sludge bed 20 of the anaerobic reactor 1 via the sludge return path 34, preferably by a sludge return pump 41. The anaerobic sludge returned in this way is
To ensure a stable sludge bed 20 even when treating low turbidity organic wastewater.

免豆立皇」 以上詳細に説明した如く、本発明によるスカム破砕形嫌
気バイオリアクターは、スカム落下口を有する嫌気反応
筒、L聞落下口からのスカムが落込む開口を有するスカ
ム除去装置、及び上記スカム除去装置の底部と上記嫌気
反応筒とを連通ずる汚泥返送路を備え、上記スカム除去
装置の開口に落下する時の衝撃によりスカムを破砕して
なる構成を用いるので次の効果を奏する。
As explained in detail above, the scum crushing type anaerobic bioreactor according to the present invention comprises: an anaerobic reactor having a scum drop port, a scum removal device having an opening into which scum from the L-shaped drop port falls; A sludge return path is provided that communicates the bottom of the scum removal device with the anaerobic reactor, and the scum is crushed by the impact when it falls into the opening of the scum removal device, so the following effects are achieved.

(イ)従来不可能とされていた下水等の低濁度有機性排
水の嫌気性汚泥床法による処理が本発明のバイオリアク
ターを使えば可能になる。
(a) The use of the bioreactor of the present invention makes it possible to treat low-turbidity organic wastewater such as sewage using the anaerobic sludge bed method, which was previously considered impossible.

(ロ)反応筒を縦長に設計できるので敷地を節約するこ
とができる。
(b) Since the reaction tube can be designed vertically, space can be saved.

(ハ)スラッジ・ブランケットの頂面を界面検出計で検
出できるから、余剰汚泥引抜操作の管理及びスラッジ・
ブランケットの高さの管理が容易である。
(c) Since the top surface of the sludge blanket can be detected with an interface detector, it is possible to manage the excess sludge extraction operation and remove the sludge.
It is easy to control the height of the blanket.

(ニ)嫌気性汚泥床法によるバイオリアクターであるか
ら反応筒内に嫌気性細菌を固定化するための担体が不要
であって経済的である。
(d) Since the bioreactor uses an anaerobic sludge bed method, it is economical because no carrier is required for immobilizing anaerobic bacteria in the reaction cylinder.

(ホ)構造が簡単であって保守が容易である。(e) The structure is simple and maintenance is easy.

(へ)vJ気を要しないから省資源的であり且つ省エネ
ルギー的である。
(f) Since VJ does not require care, it is resource-saving and energy-saving.

(ト)菌体収率の小さい嫌気汚泥による処理のため余剰
汚泥の量が非常に少ない。
(g) The amount of surplus sludge is very small because the treatment uses anaerobic sludge with a low bacterial yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるスカム破砕形嫌気バイオリアクタ
ーの縦断面図、第2図はその平面図、第3A図から第3
E図までは従来の嫌気性生物処理法の説明図、第4図及
び第5図は従来の嫌気性汚泥床法の説明図である。 水、  4・・・攪拌器、 5.24・・・沈澱槽、 
 6・・・返送汚泥、   7・・・余剰汚泥、 8・
・・濾床9・・・循環水、 11・・・嫌気反応ゾーン
、 12・・・沈澱ゾーン、 13・・・ガス回収装置
、 15・・・第1汚泥分離装置、 16・・・細管、
 17・・・外管、 2o・・・汚泥床、 21・・・
ガス付着汚泥混合液、 22・・・ガス回収槽、  3
0・・・スカム、 31・・・落下口、32・・・スカ
ム除去装置、 33・・・開口、 34・・・汚泥返送
路、  35・・・処理水取出口、 39.4o、41
・・・ポンプ。 特許出願人   鹿島建設株式会社 特許出願代理人  弁理士  市東禮次部1・・・嫌気
反応筒、 ?・・・流入水、  3・・・処理35メジ
JllL&出口 第2図 第3A図 第3E図
FIG. 1 is a longitudinal sectional view of the scum crushing type anaerobic bioreactor according to the present invention, FIG. 2 is a plan view thereof, and FIGS.
The figures up to E are explanatory diagrams of the conventional anaerobic biological treatment method, and FIGS. 4 and 5 are explanatory diagrams of the conventional anaerobic sludge bed method. Water, 4... Stirrer, 5.24... Sedimentation tank,
6... Returned sludge, 7... Excess sludge, 8.
... Filter bed 9 ... Circulating water, 11 ... Anaerobic reaction zone, 12 ... Sedimentation zone, 13 ... Gas recovery device, 15 ... First sludge separation device, 16 ... Thin tube,
17...Outer pipe, 2o...Sludge bed, 21...
Gas adhering sludge mixed liquid, 22... gas recovery tank, 3
0... Scum, 31... Falling port, 32... Scum removal device, 33... Opening, 34... Sludge return path, 35... Treated water outlet, 39.4o, 41
···pump. Patent applicant: Kajima Corporation Patent application agent: Patent attorney: Tsugube Ichito 1...Anaerobic reactor, ? ... Inflow water, 3... Treatment 35 Meji JllL & Outlet Figure 2 Figure 3A Figure 3E

Claims (2)

【特許請求の範囲】[Claims] (1)スカム落下口を有する嫌気反応筒、上記落下口か
らのスカムが落込む開口を有するスカム除去装置、及び
上記スカム除去装置の底部と上記嫌気反応筒とを連通す
る汚泥返送路を備え、上記スカム除去装置の開口への落
下時の衝撃によりスカムを破砕してなるスカム破砕形嫌
気バイオリアクター。
(1) comprising an anaerobic reaction tube having a scum fall port, a scum removal device having an opening into which scum from the fall port falls, and a sludge return path communicating the bottom of the scum removal device and the anaerobic reaction tube; A scum crushing type anaerobic bioreactor in which scum is crushed by the impact when it falls into the opening of the scum removal device.
(2)特許請求の範囲第1項記載の嫌気バイオリアクタ
ーにおいて、上記嫌気反応筒を縦長とし、攪拌器を上記
嫌気反応筒内に設けてなるスカム破砕形嫌気バイオリア
クター。
(2) The anaerobic bioreactor according to claim 1, wherein the anaerobic reaction column is vertically elongated and a stirrer is provided in the anaerobic reaction column.
JP63192836A 1988-08-03 1988-08-03 Scum crushing type anaerobic bioreactor Pending JPH0243996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63192836A JPH0243996A (en) 1988-08-03 1988-08-03 Scum crushing type anaerobic bioreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63192836A JPH0243996A (en) 1988-08-03 1988-08-03 Scum crushing type anaerobic bioreactor

Publications (1)

Publication Number Publication Date
JPH0243996A true JPH0243996A (en) 1990-02-14

Family

ID=16297789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63192836A Pending JPH0243996A (en) 1988-08-03 1988-08-03 Scum crushing type anaerobic bioreactor

Country Status (1)

Country Link
JP (1) JPH0243996A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035194A (en) * 2010-08-06 2012-02-23 Kobelco Eco-Solutions Co Ltd Anaerobic treatment device and anaerobic treatment method
JP2022109016A (en) * 2021-01-14 2022-07-27 株式会社神鋼環境ソリューション Foam drain device and methane fermentation tank

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035194A (en) * 2010-08-06 2012-02-23 Kobelco Eco-Solutions Co Ltd Anaerobic treatment device and anaerobic treatment method
JP2022109016A (en) * 2021-01-14 2022-07-27 株式会社神鋼環境ソリューション Foam drain device and methane fermentation tank

Similar Documents

Publication Publication Date Title
US3773659A (en) System for processing wastes
US5227051A (en) System for processing organic waste liquid
US3264213A (en) Method and apparatus for continuous biological degradation of metabolisable substances
US2360812A (en) Purification of liquids
WO2007058557A2 (en) Novel anaerobic reactor for the removal of long chain fatty acids from fat containing wastewater
JP4571065B2 (en) Granular microbial sludge generation method and granular microbial sludge generation apparatus
CN100377968C (en) Process and assembly for the treatment of waste water on ships
US2713028A (en) Sewage treatment
US2364023A (en) Sewage clarifier
JP3152357B2 (en) Anaerobic treatment method and apparatus for high-concentration organic wastewater containing organic suspended matter
US2089162A (en) Process for concentrating activated sewage sludge
JP2003326295A (en) Method and apparatus for treating organic waste water
US3919086A (en) Sewage treatment apparatus
JP3175480B2 (en) Anaerobic treatment equipment
JP2952304B2 (en) Anaerobic sewage treatment equipment
JPH0243996A (en) Scum crushing type anaerobic bioreactor
US2694043A (en) Sewage treatment
US3275149A (en) Apparatus for sewage pretreatment for outfall disposal
Packham et al. Water Clarification by Flotation-3
JP2709357B2 (en) Aerobic wastewater treatment equipment
JP2000354858A (en) Sewage treatment method and device therefor
JPH10180289A (en) Anaerobic treating device
JP6548937B2 (en) Waste water treatment method and waste water treatment apparatus
CN203960010U (en) The organic brine waste treatment system of a kind of high density
CN207957990U (en) A kind of organic wastewater pretreatment unit