JPS621497A - Methane fermentation method - Google Patents

Methane fermentation method

Info

Publication number
JPS621497A
JPS621497A JP60138125A JP13812585A JPS621497A JP S621497 A JPS621497 A JP S621497A JP 60138125 A JP60138125 A JP 60138125A JP 13812585 A JP13812585 A JP 13812585A JP S621497 A JPS621497 A JP S621497A
Authority
JP
Japan
Prior art keywords
sludge
fermenter
carrier
ferrite
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60138125A
Other languages
Japanese (ja)
Inventor
Akinori Kato
明徳 加藤
Tomoji Ooyama
大山 智司
Masaki Kondo
正樹 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Envirotech Inc
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Envirotech Inc
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Envirotech Inc, Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Envirotech Inc
Priority to JP60138125A priority Critical patent/JPS621497A/en
Publication of JPS621497A publication Critical patent/JPS621497A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To reduce the building cost of a fermentation tank while increasing the load amount of an org. substance to a large extent, by adding a ferrite carrier to the fermentation tank to form a ferrite carrier sludge bed. CONSTITUTION:Raw water in a fermentation tank 25 is stirred by a stirring impeller 31 and, while the fermentation tank 25 is heated by warm water flowing through a warm water jacket 34 from below to above, a ferrite carrier such as magnetite or heavy metal ferrite and a carrier such as diatomaceous earth with a particle size of 10-500mum or activated carbon with a particle size of 100-500mum are added to said tank 25 and sludge is adsorbed by the carriers to form a carrier/sludge bed. The carriers are mixed by a methane fermentation treated liquid at every 3-4 days in an amount corresponding to about 5% of the charged COD amount loaded during this time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、有機性廃水の微生物処理に使用するメタン発
酵法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a methane fermentation method used for microbial treatment of organic wastewater.

(従来の技術) 従来、有機性廃水の微生物処理に関して、活性汚泥法を
用いた好気的処理法と、メタン発酵法を用いた嫌気的処
理法とがあり、メタン発酵法として固定床法と汚泥末法
の2通りの基本的な方法が知られている。
(Prior art) Conventionally, regarding microbial treatment of organic wastewater, there are an aerobic treatment method using an activated sludge method and an anaerobic treatment method using a methane fermentation method. Two basic methods of sludge powdering are known.

メタン発酵法の前記各方法は、高負荷(高速化)を図る
ために、いずれも発酵槽内のメタン菌等のメタン発酵反
応に関与する微生物群からなる汚泥の濃度を濃く維持す
るが、その仕方においてそれぞれ相違している。つまり
、固定床法では、槽内に砂利やプラスチック等のr材を
固定し、この沢材上に反応に関与する微生物を増殖させ
、この微生物の槽外流出を極力少なくすることによって
汚泥濃度を濃くする。汚泥末法では、発生するガスを槽
内で分離して発生ガスによる槽内攪拌力を極力少なくし
、汚泥を槽内で自然濃縮させている・。
Each of the above methane fermentation methods maintains a high concentration of sludge consisting of microorganisms involved in the methane fermentation reaction such as methane bacteria in the fermenter in order to achieve a high load (high speed). They are different in their methods. In other words, in the fixed bed method, R materials such as gravel or plastic are fixed in the tank, and microorganisms involved in the reaction are grown on this material, and the sludge concentration is reduced by minimizing the flow of these microorganisms out of the tank. Make it darker. In the sludge powder method, the generated gas is separated in the tank, the stirring force of the generated gas in the tank is minimized, and the sludge is naturally concentrated in the tank.

(発明が解決しようとする問題点) しかし、前述の活性汚泥法を用いた好気的処理法では、
酸素を供給しなければならず、処理コストが高くなると
いう不都合がある。
(Problems to be solved by the invention) However, in the aerobic treatment method using the above-mentioned activated sludge method,
There is a disadvantage that oxygen must be supplied, which increases the processing cost.

固定床法や汚泥床法を用いた嫌気的処理法では、処理産
物であるメタンガスの30〜50チを発酵槽加温用lこ
、残りを別途エネルギー源として利用できるため、省エ
ネルギー型の廃水処理法であるといえるが、発酵槽が大
型で、高価であるという不都合がある。
In anaerobic treatment methods using the fixed bed method or sludge bed method, 30 to 50 g of the methane gas produced by the treatment can be used to heat the fermenter, and the rest can be used as a separate energy source, making it an energy-saving wastewater treatment method. However, it has the disadvantage that the fermenter is large and expensive.

(問題点を解決するための手段) 本発明は、発酵槽内にフェライト担体を添加してフェラ
イト担体汚泥床を形成することを特徴とするメタン発酵
法(以下、単にフェライト担体汚泥床法と定義する。)
であり、フェライト担体を使用することによりメタン発
酵能を損うことなく発酵槽に対する有機物負荷量を大幅
に増加させ、発酵槽の建設費を実質的に低減するもので
ある。
(Means for Solving the Problems) The present invention provides a methane fermentation method (hereinafter simply defined as the ferrite carrier sludge bed method) characterized by adding a ferrite carrier into a fermenter to form a ferrite carrier sludge bed. do.)
By using a ferrite carrier, the amount of organic matter loaded onto the fermenter can be significantly increased without impairing the methane fermentation ability, and the construction cost of the fermenter can be substantially reduced.

(実施例) 以下、本発明の一実施例を第1図〜第4図により説明す
る。
(Example) An example of the present invention will be described below with reference to FIGS. 1 to 4.

図中1は調整槽で、該槽1内に廃水が一旦貯溜され、こ
の廃水にフェライト担体が添加される。
In the figure, reference numeral 1 denotes an adjustment tank, in which wastewater is temporarily stored, and a ferrite carrier is added to this wastewater.

2は発酵槽で、該槽2には、図示しないポンプにより前
記フェライト担体入り廃水を投入、添加できるよう配管
6を介して調整槽1が接続されている。配管5には、図
示しないポンプ?こよりフェライト担体入り廃水に槽内
液を混合できるよう配管4を介して発酵槽2の底部が接
続されている。このため、フェライト担体入り廃水は、
調整槽1から発酵槽2に投入されるが、その際、発酵槽
2底部から引抜かれた槽内液と混合され、槽底部に均一
に分散するように投入さ  ・れる。投入された廃水は
、汚泥と接触することζこより反応が進行し、主として
メタンガス、炭酸ガス、処理液に分離されると同時に、
フェライト担体汚泥が発生する。発生したガスは、発酵
槽2上部のガスドーム5を経て図示しないガスホルダー
に回収された後、ボイラーやガスエンジン等のエネルギ
ー源として利用されるが、その一部は発酵槽加熱用とし
て消費される。
Reference numeral 2 denotes a fermentation tank, and an adjustment tank 1 is connected to the tank 2 via a pipe 6 so that the waste water containing the ferrite carrier can be introduced and added by a pump (not shown). Is there a pump (not shown) in piping 5? The bottom of the fermentation tank 2 is connected via a pipe 4 so that the liquid in the tank can be mixed with the waste water containing the ferrite carrier. For this reason, wastewater containing ferrite carriers is
The liquid is poured from the adjustment tank 1 into the fermentation tank 2, and at that time, it is mixed with the internal liquid drawn from the bottom of the fermentation tank 2, and is added so as to be uniformly dispersed at the bottom of the tank. When the input wastewater comes into contact with the sludge, a reaction progresses, and at the same time it is separated into mainly methane gas, carbon dioxide gas, and treated liquid.
Ferrite carrier sludge is generated. The generated gas passes through the gas dome 5 at the top of the fermenter 2 and is collected in a gas holder (not shown), and then is used as an energy source for boilers, gas engines, etc., but a portion of it is consumed for heating the fermenter. Ru.

6は沈澱槽で、発酵槽2の上部から配管7を介して発酵
槽流出液として導かれる処理液及び余剰の担体汚泥が貯
溜され、分離される。処理液は、配管8を介して排出さ
れ、必要に応じてさらに活性汚泥法等で最終処理される
。担体汚泥は、沈澱槽6で濃縮されて排出され、通常l
ま脱水設備9で脱水ケーキと脱水r液に分離される。脱
水P液は通常沈殿槽処理液とともに処理される。脱水ケ
ーキは投棄又は埋立等で処分されるか、焼却設備10で
焼却され、その焼却灰は埋立処分される。沈澱槽6で濃
縮された担体汚泥は、脱水処理せずに負荷管理の必要に
応じて一部又は全量が発酵槽2に返送されることがある
。余剰の担体汚泥は、そのまま埋立等で処分されること
もある。
Reference numeral 6 denotes a sedimentation tank in which the treatment liquid and excess carrier sludge, which are led as fermenter effluent from the upper part of the fermenter 2 via piping 7, are stored and separated. The treated liquid is discharged via piping 8, and is further subjected to final treatment using an activated sludge method or the like, if necessary. The carrier sludge is concentrated in the settling tank 6 and discharged, and is usually
The dehydration equipment 9 separates the dehydrated cake into a dehydrated r-liquid. The dehydrated P solution is usually treated together with the settling tank treatment solution. The dehydrated cake is disposed of by dumping or landfilling, or is incinerated in the incineration facility 10, and the incinerated ash is disposed of in a landfill. The carrier sludge concentrated in the settling tank 6 may be partially or completely returned to the fermenter 2 without being subjected to dehydration treatment, depending on the need for load management. Surplus carrier sludge may be disposed of as is, such as in a landfill.

11は磁場発生装置で、発酵槽2内に必要ζこ応じて設
置される。この装置11は、後述する磁石組込みパイプ
を多数本、発酵槽2内上部に設けた格子状の架台12上
に密に立てて構成されている。前記磁石組込みパイプは
、例えば内径194rtrm、外径20 Q in 、
長さ500wnの塩化ビニール製パイプ16に、上端か
ら長さ方向に50聴毎で、かつ、円周方向に60°ずつ
ずらして25閣径の装着孔14を設け、該孔14に25
問径、厚さ10mで両端が互に異極である円柱状の永久
磁石15を装着したものである。永久磁石15の装着は
、ハンダゴテのような円錐状の熱媒体で装着孔14の内
周部を軟化させて該孔14内に永久磁石15を嵌合する
ことにより行なわれ、該磁石15とこれを保持する装着
孔14には、磁石の固定と腐食の防止のために塩化ビニ
ール系接着剤が塗布されている。
Reference numeral 11 denotes a magnetic field generator, which is installed in the fermenter 2 as required. This device 11 is constructed by mounting a large number of magnet-incorporated pipes, which will be described later, closely on a lattice-shaped pedestal 12 provided in the upper part of the fermenter 2. The magnet-embedded pipe has, for example, an inner diameter of 194 rtrm, an outer diameter of 20 Q in,
A vinyl chloride pipe 16 having a length of 500 wn is provided with mounting holes 14 having a diameter of 25 mm at intervals of 50 mm in the length direction from the upper end and shifted by 60 degrees in the circumferential direction.
A cylindrical permanent magnet 15 with a diameter of 10 m and a thickness of 10 m and opposite polarities at both ends is attached. The permanent magnet 15 is attached by softening the inner periphery of the attachment hole 14 with a conical heating medium such as a soldering iron and fitting the permanent magnet 15 into the hole 14. A vinyl chloride adhesive is applied to the mounting hole 14 that holds the magnet in order to fix the magnet and prevent corrosion.

磁場発生装置11が発酵槽2内に設置されていると、フ
ェライト担体汚泥は、多数個の永久磁石15に吸着され
て固定床としての機能を発揮する一方、フェライト担体
汚泥の吸着量が増してフェライト担体汚泥が自重により
永久磁石15から離れて落下することを繰返すことで担
体汚泥床としての機能を発揮するから、汚泥床の汚泥濃
度は、磁場発生装置を設置しない場合よりもさらに濃く
なり、より高負荷運転が可能となる。
When the magnetic field generator 11 is installed in the fermenter 2, the ferrite carrier sludge is adsorbed by a large number of permanent magnets 15 and functions as a fixed bed, while the amount of ferrite carrier sludge adsorbed increases. Since the ferrite carrier sludge repeatedly falls away from the permanent magnet 15 due to its own weight and functions as a carrier sludge bed, the sludge concentration in the sludge bed becomes even higher than in the case where no magnetic field generator is installed. Higher load operation is possible.

16は離解処理装置(実施例では超音波処理装置)で、
沈澱槽6からの濃縮担体汚泥を貯溜する処理槽17と、
汚泥攪拌用の超音波発振子18とから構成されている。
16 is a disintegration processing device (in the example, an ultrasonic processing device);
a treatment tank 17 for storing concentrated carrier sludge from the settling tank 6;
It is composed of an ultrasonic oscillator 18 for stirring sludge.

この装置16により担体汚泥を超音波で攪拌すると、フ
ェライト担体と汚泥の分散が行なわれ、後述の磁気分離
装置19によるフェライト担体の回収率−を向上させう
る。尚、超音波処理装置ではなく、ミキサーを使用して
も同効である。
When the carrier sludge is ultrasonically stirred by this device 16, the ferrite carrier and sludge are dispersed, and the recovery rate of the ferrite carrier by the magnetic separation device 19, which will be described later, can be improved. Note that the same effect can be achieved even if a mixer is used instead of the ultrasonic treatment device.

19はフェライト製造時のフェライト分離等に実用化さ
れている磁気分離装置で、離解処理装置16の処理槽流
出液を貯溜する処理槽2゜と、該槽20内の液に下部が
浸漬された後述する磁石組込み円板と、担体回収用のス
クレーパ21とから構成されている。前記磁石組込み円
板は、図示しないモータにより回転可能に同一軸上にス
ペーサを介して装着された複数枚の回転円板22に図示
しない多数個の永久磁石を装着したものである。この装
置19には、離間処理済みの汚泥が回転円板22と向流
する上流側から処理槽20内に流入し、該円板22の永
久磁石と接触した後、下流側から流出し、脱水設備9に
送られる。処理槽20において、汚泥中のフェライト担
体は、回転円板22に装着した永久磁石に吸着され、該
円板22を挟み付けるように配置されたスクレーパ21
により掻き集められて回収される。一方、脱水設備9側
においては、焼却設備10から排出される焼却灰は体が
磁気分離で回収される。回収したフェライト担体は、発
酵槽2に戻され、未回収のフェライト担体に相当する分
のみが新たに補充されることになる。
Reference numeral 19 denotes a magnetic separator that is put into practical use for ferrite separation during ferrite production, and includes a processing tank 2° for storing the processing tank effluent from the disintegration processing unit 16, and a lower part immersed in the liquid in the tank 20. It is composed of a disk incorporating a magnet, which will be described later, and a scraper 21 for recovering carriers. The magnet-embedded disks have a large number of permanent magnets (not shown) attached to a plurality of rotary disks 22 that are rotatably mounted on the same axis via spacers by a motor (not shown). In this device 19, sludge that has been separated and treated flows into the treatment tank 20 from the upstream side in countercurrent to the rotating disk 22, contacts the permanent magnet of the disk 22, flows out from the downstream side, and is dehydrated. Sent to equipment 9. In the treatment tank 20, the ferrite carrier in the sludge is attracted to a permanent magnet attached to a rotating disk 22, and a scraper 21 is arranged to sandwich the disk 22.
It is collected and collected by On the other hand, on the dehydration equipment 9 side, the incinerated ash discharged from the incineration equipment 10 is collected by magnetic separation. The recovered ferrite carrier is returned to the fermenter 2, and only the amount corresponding to the unrecovered ferrite carrier is newly replenished.

次に、本発明の効果を確認するための試験例につき第5
図〜第9図及び表−1〜表−5により説明する。
Next, the fifth test example for confirming the effects of the present invention will be described.
This will be explained with reference to FIGS. 9 and 9 and Tables 1 to 5.

第5図〜第7図は試験設備を示すもので、図中25は内
径100囚のアク゛リル樹脂製発酵槽で、実容積を51
とするよう該槽底部より650順の位置には流出口26
が設けられ、かつ、該流出口26より下には、異なる深
さの液採取口27が設けられると共に、槽底部には原水
入口28と、攪拌用モータ29により軸50を介して回
転可能な攪拌インペラ31とが設けられ、槽上部にはガ
ス採取口32と、外気の槽内混入を防止する液ガスシー
ル器33とが設けられている。
Figures 5 to 7 show the test equipment. In the figure, 25 is an acrylic resin fermenter with an inner diameter of 100 mm, and the actual volume is 51 mm.
There is an outlet 26 at a position 650 degrees from the bottom of the tank so that
Further, below the outlet 26, liquid sampling ports 27 of different depths are provided, and at the bottom of the tank there is a raw water inlet 28, and a stirring motor 29 rotatable via a shaft 50. A stirring impeller 31 is provided, and a gas sampling port 32 and a liquid gas sealer 33 for preventing outside air from entering the tank are provided at the top of the tank.

この発酵槽25の周りには、該発酵槽25を温水加熱す
るアクリル樹脂製温水ジャケット64が設けられ、該ジ
ャケット34の上下端部には温水の入口35と出口36
が設けられている。
An acrylic resin hot water jacket 64 for heating the fermenter 25 with hot water is provided around the fermenter 25, and a hot water inlet 35 and an outlet 36 are provided at the upper and lower ends of the jacket 34.
is provided.

37は原水貯槽で、原水用供給ポンプ38により配管3
9を介して原水を発酵槽25にこれからの流出量と同量
だけ供給可能に原水入口28が接続されている。
37 is a raw water storage tank, which is connected to piping 3 by a raw water supply pump 38.
A raw water inlet 28 is connected to the fermenter 25 via a raw water inlet 28 so as to be able to supply raw water to the fermenter 25 in an amount equal to the amount that will flow out from the fermenter 25 .

40は恒温水槽で、温度センサ41により水温を検出し
ながら温度調節器42によるヒータ43の制御によって
水温が35±0.5℃に調節可能に構成されている。こ
の恒温水槽4oには、核種40から温水ジャケット64
に温水を温水用供給ポンプ44により配管45を介して
供給可能に温水入口35が接続されると共に、温水ジャ
ケットから温水を配管46を介して返送可能に温水出口
36が連通している。
Reference numeral 40 denotes a constant temperature water tank, which is configured such that the water temperature can be adjusted to 35±0.5° C. by controlling a heater 43 by a temperature regulator 42 while detecting the water temperature by a temperature sensor 41. This constant temperature water tank 4o contains a hot water jacket 64 from the nuclide 40.
A hot water inlet 35 is connected to the hot water supply pump 44 so that hot water can be supplied through piping 45, and a hot water outlet 36 is connected to the hot water jacket so that hot water can be returned through piping 46.

47は発酵槽流出液貯槽で、核種47には配管48を介
して発酵槽25の流出口26が連通ずると共に、発酵槽
流出液の流入量を検出するための図示しない液量センサ
が原水供給量制御用として設けられている。
47 is a fermenter effluent storage tank, and the nuclide 47 is communicated with the outlet 26 of the fermenter 25 through a pipe 48, and a liquid level sensor (not shown) for detecting the inflow amount of the fermenter effluent is supplied with raw water. It is provided for quantity control.

49はガス排出用配管で、発酵槽25内に発生したガス
を大気中に放散可能にガス採取口62に接続されると共
に、発生ガスの放散量を計測可能にガスメータ50が設
けられている。
Reference numeral 49 denotes a gas discharge pipe, which is connected to the gas sampling port 62 so as to be able to dissipate the gas generated in the fermenter 25 into the atmosphere, and is provided with a gas meter 50 so as to be able to measure the amount of dissipated gas.

51は長さ6 Q trtM、幅40 m1ff 、厚
さIQrrunの永久磁石で、発酵槽25の内壁、液面
下100間の所に平面視向心状に複数枚(実施例では4
枚)等間隔で取付板52を介して取付けられ、かくして
磁気発生装置が構成されている。
Reference numeral 51 indicates a permanent magnet having a length of 6 Q trtM, a width of 40 m1ff, and a thickness of IQrrun, and a plurality of permanent magnets (in the example, 4 permanent magnets are placed on the inner wall of the fermentation tank 25, at a location between 100 and below the liquid level in a centripetal manner in plan view).
5) are mounted via mounting plates 52 at equal intervals, thus constructing a magnetism generating device.

このような試験設備において、発酵槽25内の原水を攪
拌インペラ61で攪拌し、かつ、35゜±0.5℃に調
温されて温水ジャケット34内を下から上へ通流する温
水により発酵槽25を加熱しながらこれに後述する各種
担体中の一種類の担体を添加し、この担体に汚泥を吸着
させて担体汚泥床を形成するか、或は担体を添加せず汚
泥を自然濃縮させるようにした。
In such test equipment, the raw water in the fermenter 25 is stirred by the stirring impeller 61, and fermentation is carried out by hot water whose temperature is controlled to 35° ± 0.5°C and flows from the bottom to the top inside the hot water jacket 34. While heating the tank 25, one of the various types of carriers described below is added thereto, and the sludge is adsorbed onto this carrier to form a carrier sludge bed, or the sludge is naturally concentrated without adding any carrier. I did it like that.

使用担体は、フェライト担体としてマグネタイト(四三
酸化鉄Fes Oa )、重金属フェライト、及び、こ
れらのフェライト担体と比較する担体として粒径10〜
500μmの硅藻土、粒径100〜500μmの活性炭
、粒径100〜500μmの微砂、スチレンを母材とす
る強アニオン系の粒径SaO〜550μmのイオン交換
樹脂である。前記重金属フェライトは、ゴミ焼却場の洗
煙廃水中の重金属類をフェライト化法で処理した時に得
られるフェライトである。尚、一般にフェライトとは、
MO@Fe2O3なる組成をもつ一群の鉄酸化物をいい
、Mは2価の金属イオン(例えばMn、 、Fe 、C
o 。
The carriers used are magnetite (triiron tetroxide Fes Oa) as a ferrite carrier, heavy metal ferrite, and a carrier with a particle size of 10 to 10 as a carrier to be compared with these ferrite carriers.
These are diatomaceous earth with a particle size of 500 μm, activated carbon with a particle size of 100 to 500 μm, fine sand with a particle size of 100 to 500 μm, and a strong anionic ion exchange resin with a particle size of SaO to 550 μm using styrene as a base material. The heavy metal ferrite is a ferrite obtained when heavy metals in smoke washing wastewater of a garbage incinerator are treated by a ferritization method. In general, ferrite is
Refers to a group of iron oxides with the composition MO@Fe2O3, where M is a divalent metal ion (e.g. Mn, , Fe, C
o.

zn2+等)であり、フェリ磁性を示す。zn2+ etc.) and exhibits ferrimagnetism.

前記担体は、3〜4日毎に、その間に負荷した投入C0
Dor量の5チに相当する担体量をメタン°発酵処理液
で混合し、図示しない注射筒により発酵槽25内に最下
段液採取口27を経て添加した。
The carrier was loaded every 3 to 4 days during which time the input C0
An amount of carrier corresponding to 5 degrees of Dor amount was mixed with the methane fermentation treatment liquid and added into the fermenter 25 through the lowermost liquid sampling port 27 using a syringe (not shown).

使用原水は、次の表−1に示す組成の廃水に、微生物の
栄養素として廃水101に対して尿素152、リン酸2
.5dを補足し、7.5NカセイソーダでpHを5.0
に調整したものである。
The raw water used is wastewater with the composition shown in Table 1 below, with 152 parts of urea and 2 parts of phosphoric acid per 10 parts of the waste water as nutrients for microorganisms.
.. Supplement 5d and adjust the pH to 5.0 with 7.5N caustic soda.
It has been adjusted to

表−1 JISK0102(1981)による分析で、表中の数
値は平均値である。
Table 1 Analysis according to JIS K0102 (1981), the numerical values in the table are average values.

使用したメタン発酵種汚泥は、同−設備、同一廃水で担
体を入れずlこ約6ケ月間馴養したものである。
The methane fermentation seed sludge used was acclimated for about 6 months using the same equipment and the same wastewater without adding a carrier.

発酵槽25に対する負荷は、化学的酸素要求量C0Do
rを基準とし、表−1に示す廃水の発酵槽25への投入
量から、1mSの発酵槽で1日に受入れたC0Dcrの
に9で表示される。この負荷を5〜10日間毎に段階的
に増加して、その処理状況を、発酵槽流出液の1)H(
!:有機酸濃度を測定して判断した。
The load on the fermenter 25 is the chemical oxygen demand C0Do
Based on the amount of waste water input to the fermenter 25 shown in Table 1, the CODcr received in a 1 mS fermenter per day is expressed as 9, based on r. This load was increased stepwise every 5 to 10 days, and the treatment status was monitored as follows: 1) H(
! : Determined by measuring organic acid concentration.

その1例を説明する。One example will be explained.

第8図は重金属フェライトを前記の通り発酵槽25に添
加し、かつ発酵槽25内に前記の磁場発生装置を設置し
て行った実験結果を示したものである。
FIG. 8 shows the results of an experiment in which heavy metal ferrite was added to the fermenter 25 as described above, and the magnetic field generator described above was installed inside the fermenter 25.

実験は、5にダ・0ODcr/m eDの負荷から開始
し、5日間毎に2.5に7++C0Dcr/m eDの
負荷増加を行った。負荷が22 K9 * 00Dcr
/m eDまでは発酵槽流出液のpHは7.3±0.1
前後に安定し、有機酸も200暢々前後の低レベルで安
定した。負荷が25に9・C0Dor/m eDを越え
る頃から負荷を増加した直後に有機酸レベルの一時的な
上昇とpHの一時的な低下が認められるようになった。
The experiment started with a load of 5 to 0 ODcr/m eD and was increased every 5 days to 2.5 to 7++ C 0 Dcr/m eD. Load is 22K9 * 00Dcr
/m eD, the pH of the fermenter effluent was 7.3 ± 0.1.
The organic acids were stable at a low level of around 200. Immediately after increasing the load from the time when the load exceeded 9·C0 Dor/m eD at 25, a temporary increase in the organic acid level and a temporary decrease in the pH were observed.

そこで、負荷を増加するまでの期間を10日間に長くし
発酵系の安定化を充分に行った後負荷の増加を行なって
いった。負荷が55Kg・C0Dcr/m−Dに達した
頃から有機酸レベルが1o o aml/lを越え、そ
の低下速度が遅くなったため、若干負荷を下げ、負荷の
増加量をI Kg−CODcr/m eD前後の小幅に
おさえて負荷の増加を行った。このような方法で37 
Kg−00Dcr/m5・Dまでの負荷まで安定した処
理結果を得ることができたが、38Kp・C!0Dcr
/m5・Dの負荷を越えた時に急激な有機酸の上昇が生
じ、そのレベルは10,000■/lを越えpHも6.
5以下となった。その後、負荷を35 、20 、0K
g5CODcr/m%Dと急激に低下させたが、メタン
発酵の機能は回復しない状態となり、ガスの発生量もほ
とんど認められなくなった。
Therefore, the period until the load was increased was increased to 10 days, and the fermentation system was sufficiently stabilized before the load was increased. When the load reached 55 Kg-CODcr/m-D, the organic acid level exceeded 10 o aml/l and the rate of decline became slow, so the load was lowered slightly and the increase in load was reduced to I Kg-CODcr/m. The load was increased to a small extent around eD. 37 in this way
We were able to obtain stable processing results up to loads up to Kg-00Dcr/m5・D, but 38Kp・C! 0Dcr
/m5・D, a rapid rise in organic acids occurs, the level exceeds 10,000 μ/l, and the pH also increases to 6.
It became 5 or less. After that, load 35, 20, 0K
Although the g5COD was rapidly lowered to cr/m%D, the methane fermentation function did not recover, and the amount of gas generated was almost no longer observed.

以上の結果から、本試験での最大負荷は試験日数140
日目から154日目の間に達せられたものと判断し、こ
の間の負荷の平均である3 7.2Kga C0Dar
/m3−Dを最大負荷と決定した(表−2中のRunN
[14参照)。
From the above results, the maximum load in this test is 140 test days.
It is determined that the load was achieved between day 154 and day 154, and the average load during this period is 3 7.2Kga C0Dar
/m3-D was determined as the maximum load (RunN in Table 2
[See 14).

次の表−2は、前述した方法により、各担体添加、或は
担体無添加の系について実験を行なって得られた最大負
荷と最大負荷時の処理状況の平均値をまとめたものであ
る。
The following Table 2 summarizes the maximum load and the average value of the treatment status at the maximum load obtained by conducting experiments on systems with and without the addition of a carrier using the method described above.

表中、発酵槽出口有機酸の数値は、水蒸気蒸留法による
酢酸換算値である。発酵槽内VSSの数値は、槽内溶液
のVTSから、開成を12,000回転で10分間遠心
分離して得た上澄液のVTSを減じて求めた値である。
In the table, the numerical value of the organic acid at the fermenter outlet is the acetic acid equivalent value determined by the steam distillation method. The numerical value of VSS in the fermenter is the value obtained by subtracting the VTS of the supernatant obtained by centrifuging the fermenter at 12,000 rpm for 10 minutes from the VTS of the solution in the fermenter.

ガス発生量の数値は槽内ガス発生量の標準状態(0℃1
気圧)での換算値である。ガス化率の数値はガス発生量
を発酵槽投入C0Dcr量で除した値であり、実験に供
する廃水により異なる値となるが、本実験用廃水では4
30 N17りCoDcr前後であり、処理状況が悪化
すればこれが60ONt/に4・CoDor台に低下し
た。メタン濃度は約65チ前後で、残りの大半は炭酸ガ
スである。発酵槽出口でのpH及び有機酸は処理性能を
示すものである。VSS(揮発性固形物)は、発酵槽内
の有機性懸濁粒子の意味で、発酵槽内の微生物量を示す
指標となるものである。尚、この槽内VSSは、最大負
荷が得られた後、次の負荷増加を行なう前に発酵槽を均
一に一時的に攪拌した液について測定したものである。
The numerical value of gas generation amount is based on the standard state of gas generation amount in the tank (0℃1
This is the converted value in atmospheric pressure). The value of the gasification rate is the value obtained by dividing the amount of gas generated by the amount of C0Dcr input into the fermenter, and the value differs depending on the wastewater used for the experiment, but for the wastewater used in this experiment, 4
It was around 30 N17 CoDcr, and as the processing situation worsened, this decreased to 60 ONt/4.CoDor. The methane concentration is around 65 degrees, and most of the rest is carbon dioxide gas. The pH and organic acid at the fermenter outlet are indicative of treatment performance. VSS (volatile solids) refers to organic suspended particles in the fermenter and is an indicator of the amount of microorganisms in the fermenter. Note that this in-tank VSS was measured for a liquid that was uniformly and temporarily stirred in the fermenter after the maximum load was obtained and before the next load increase.

表−2に示された試験結果につき考察する。Let's discuss the test results shown in Table-2.

同表中、槽内VSSと発酵槽最大負荷及び各実験条件の
関係についてまとめたものを第9図に示す。第9図から
明らかなように最大負荷と槽内yssとはほぼ完全な相
関関係にあり、槽内VSSを高めることにより当然なが
ら最大負荷を大きく向上できるが、槽内VSS濃度を高
める担体として従来知られていなかったマグネタイト、
重金属フェライトと云ったフェライト担体が他の担体よ
り非常に優れていることが分る。さらに、発酵槽内に磁
場発生装置を設置して、重金属フェライトを添加する方
法においては、最大負荷を、磁場発生装置を設置しない
時の約1.3倍の57Kq・C0Dor/m’・Dまで
飛躍的に高めることができることが分る。
In the same table, the relationship between the VSS in the tank, the maximum load of the fermenter, and each experimental condition is summarized in FIG. 9. As is clear from Figure 9, there is an almost perfect correlation between the maximum load and the YSS in the tank, and by increasing the VSS in the tank, the maximum load can naturally be greatly increased. The unknown magnetite
It is found that ferrite carriers such as heavy metal ferrites are significantly superior to other carriers. Furthermore, in the method of installing a magnetic field generator in the fermenter and adding heavy metal ferrite, the maximum load can be increased to 57 Kq・C0Dor/m'・D, which is about 1.3 times that of not installing a magnetic field generator. It turns out that it can be improved dramatically.

以上のようにフェライト担体を発酵槽に添加すること、
また発酵槽に磁場発生装置を設置す  ゛ることにより
発酵槽の負荷を大幅に高めることができた理由は、次の
ように考えられる。
Adding the ferrite carrier to the fermenter as described above,
Furthermore, the reason why we were able to significantly increase the load on the fermenter by installing a magnetic field generator in the fermenter is thought to be as follows.

まず、フェライト担体を添加して発生した担体汚泥は、
いづれも凝集性の良好な汚泥となることが観察された。
First, the carrier sludge generated by adding a ferrite carrier is
It was observed that in both cases, sludge with good cohesiveness was formed.

そこで、フェライト担体を添加して発生した担体汚泥と
、担体を添加しないで発生した汚泥についてそれぞれの
沈降速度を次のよう(こして測定した。それぞれの発酵
槽流出液を均一に攪拌した液を1gずつメスシリンダー
に採取した後、直ちに静置し、各汚泥の凝集体が沈降す
る速度を測定した。
Therefore, the sedimentation rates of carrier sludge generated by adding a ferrite carrier and sludge generated without adding a carrier were measured as follows. After collecting 1 g each into a graduated cylinder, the samples were immediately left to stand, and the rate at which each sludge aggregate settled was measured.

その結果を次の表−6に示す。The results are shown in Table 6 below.

表−3 この表−3から明らかなように、フェライト担体を添加
して発生した担体汚泥の沈降速度は、無添加汚泥の10
倍以上の速度であり、また他の担体を添加して発生した
担体汚泥の沈降速度よりも明らかに速い速度であった。
Table 3 As is clear from Table 3, the sedimentation rate of carrier sludge generated by adding ferrite carrier is 10% higher than that of sludge without additives.
The sedimentation rate was more than twice as high, and clearly faster than the sedimentation rate of carrier sludge generated by adding other carriers.

以上のことから、フェライト担体を添加することにより
汚泥の凝集性が良くなり、かつ汚泥の比重が重くなり、
表−2に示すように発酵槽内の汚泥の濃度が濃くなり、
負荷を大幅に向上することができたと判断される。
From the above, adding a ferrite carrier improves the cohesiveness of sludge and increases the specific gravity of sludge.
As shown in Table 2, the concentration of sludge in the fermenter increases,
It is judged that the load could be significantly improved.

さらに、発酵槽内に磁場発生装置を設置するこ吉により
、担体汚泥は磁石に吸着されて発酵槽から流出すること
が防止されて発酵槽内の汚泥濃度を一層濃く維持するこ
とができて、67〜・C0Dcr/m3・Dと云う極め
て高い負荷が達成されたものと判断される。
Furthermore, by installing a magnetic field generator in the fermenter, the carrier sludge is absorbed by the magnet and prevented from flowing out of the fermenter, making it possible to maintain a higher sludge concentration in the fermenter. It is judged that an extremely high load of 67~.C0Dcr/m3.D was achieved.

以上説明したようにフェライト担体を発酵槽内分手押に
添加し、フェライト担体汚泥床を形成することにより優
れた高速メタン発酵を実現できるに至った。しかし、発
酵槽から流出する余剰汚泥を顕微鏡で観察すると、1〜
3μmの粒子となったフェライト担体が汚泥粒子(20
〜300μm)中に埋没した形で多数存在することが明
らかとなった。このことはフェライト担体が常に発酵槽
から流出液とともlこ流出して失なわれることを意味す
るから、常にフェライト担体を流出量に相当する量補充
しなければならない。一方、フェライトは、化成品、と
しては四三酸化鉄(Fe30a :マグネタイト)とし
て生産され、天然物としては砂鉄、磁鉄鉱として存在す
るが、廃水処理用として用いるには高価な商品である。
As explained above, excellent high-speed methane fermentation can be achieved by manually adding a ferrite carrier to the fermenter and forming a ferrite carrier sludge bed. However, when observing the excess sludge flowing out of the fermenter under a microscope, it was found that
The ferrite carrier, which has become particles of 3 μm, becomes sludge particles (20
It became clear that a large number of them existed in a buried form within the surface (~300 μm). This means that the ferrite carrier is constantly being lost by flowing out of the fermenter along with the effluent, so that the ferrite carrier must always be replenished in an amount corresponding to the amount flowing out. On the other hand, ferrite is produced as triiron tetroxide (Fe30a: magnetite) as a chemical product, and exists as iron sand and magnetite as natural products, but it is an expensive product for use in wastewater treatment.

従って、発酵槽から流出するフェライトについては、そ
の磁性を利用して回収すること、それも、フェライト担
体汚泥をできるだけ濃縮した後にフェライトだけを回収
することが最適メタン発酵プロセスを構成する上で重要
である。
Therefore, it is important to recover the ferrite flowing out of the fermenter using its magnetism, and to collect only the ferrite after concentrating the ferrite carrier sludge as much as possible in order to configure an optimal methane fermentation process. be.

次に、フェライト担体の回収方法の一例につき説明する
Next, an example of a method for recovering the ferrite carrier will be explained.

発酵槽流出液中に含まれる各フェライト担体汚泥を濃縮
分離し、その濃縮担体汚泥を次の4区分に分け、それぞ
れについて次のような回収処理を行なった。
Each ferrite carrier sludge contained in the fermenter effluent was concentrated and separated, and the concentrated carrier sludge was divided into the following four categories, and each of them was subjected to the following recovery treatment.

1区分 無処理 ■区分 200コのビー力に担体汚泥100dを入れ、
そこに前記厚さ10咽、幅40關、長さ60酎の永久磁
石を10分間浸し、この磁石を緩かに1分間ゆすった後
、磁石に付着したフェライト担体と汚泥を拭き取り、さ
らに同様の手順を9回繰返して得た残液を処理液とした
Category 1: No treatment ■ Category: Put 100 d of carrier sludge into 200 beers,
The above-mentioned permanent magnet with a thickness of 10 mm, width of 40 mm, and length of 60 mm was immersed in it for 10 minutes, and after shaking the magnet gently for 1 minute, the ferrite carrier and sludge adhering to the magnet were wiped off. The procedure was repeated nine times, and the resulting residual liquid was used as the treatment liquid.

■区分 担体汚泥を家庭用ミキサーで6分間処理した後
、■区分と同様の処理を行なったO ■区分 担体汚泥を実験室用超音波洗浄器で5分間処理
した後、■区分と同様の処理を行った。
■Category Carrier sludge was treated with a household mixer for 6 minutes, and then treated in the same manner as in Category ■O ■Category Carrier sludge was treated with a laboratory ultrasonic cleaner for 5 minutes, and then treated in the same manner as in Category ■ I did it.

各フェライト担体汚泥の4つの区分の処理液についてV
SSと鉄濃度を測定した。鉄の測定は処理液を灰化した
後1N塩酸で完全に溶解し、原  ”子吸光法で測定し
た。
Regarding the treatment liquid for each of the four categories of ferrite carrier sludge V
SS and iron concentrations were measured. Iron was measured by incinerating the treated solution, completely dissolving it with 1N hydrochloric acid, and using atomic absorption spectrometry.

次の表−4,5,6は以上の実験結果を示したものであ
る。
The following Tables 4, 5, and 6 show the above experimental results.

表−4(処理対象:マグネタイト担体汚泥)表−5(処
理対象:重金属フェライト担体汚泥)これらの表−4,
5において、処理液、液量は磁石によりフェライト担体
及び汚泥が吸着除去された後に残った処理液の液量であ
る。VSS濃度及びFe濃度は処理液の分析値である。
Table-4 (Treatment target: Magnetite carrier sludge) Table-5 (Treatment target: Heavy metal ferrite carrier sludge) These Tables-4,
In No. 5, the treatment liquid and the liquid amount are the amounts of the treatment liquid remaining after the ferrite carrier and sludge are adsorbed and removed by the magnet. The VSS concentration and Fe concentration are analytical values of the treatment liquid.

液量と濃度から処理液中lこ残存するVSS量とFe量
を各区分について求め、区分■(無処理区分)との差が
磁石によって回収されたものとし、その回収率を係で示
したものである。
The amount of VSS and Fe remaining in the treated solution were determined for each category from the liquid volume and concentration, and the difference from category ■ (untreated category) was assumed to be recovered by the magnet, and the recovery rate was shown in the section. It is something.

この実験結果から明らかなようにフェライト担体汚泥液
と永久磁石を単に接触するだけではフェライト担体の回
収率は30〜40係であり、同時に汚泥(VSS)もフ
ェライト担体と一緒lこほぼ同率で回収されてしまう。
As is clear from the results of this experiment, the recovery rate of the ferrite carrier is 30 to 40 by simply contacting the ferrite carrier sludge liquid with a permanent magnet, and at the same time, the sludge (VSS) is also recovered at approximately the same rate as the ferrite carrier. It will be done.

しかし、担体汚泥液をミキサー又は超音波を用いて処理
し、担体と汚泥の分散を行った液に永久磁石を接触する
ことにより、フェライト担体の回収率を60〜85%と
することが可能となり、汚泥の回収率はフェライト担体
の回収率の1A前後に抑えることができることが明らか
になった。また担体と汚泥の分散は超音波処理の方がミ
キサー処理より若干優れていることも明らかとなった。
However, by treating the carrier sludge liquid using a mixer or ultrasonic waves and bringing a permanent magnet into contact with the liquid in which the carrier and sludge have been dispersed, it is possible to increase the recovery rate of the ferrite carrier to 60 to 85%. It has become clear that the recovery rate of sludge can be suppressed to around 1A, which is the recovery rate of ferrite carrier. It was also revealed that ultrasonic treatment was slightly better than mixer treatment in dispersing the carrier and sludge.

従って、フェライト担体を発酵槽内a副帽こ添加して発
生したフェライト担体汚泥の濃縮液からフェライト担体
を磁気分離できること、この時ミキサー又は超音波処理
で汚泥と担体の分散を図ることでフェライト担体の回収
をほぼ完全にできることが判明し、フェライトと云う高
価な担体を用いた高速メタン発酵法が充分経済的に成立
する優れた方法であることが明らかとなった。
Therefore, it is possible to magnetically separate the ferrite carrier from the concentrated solution of ferrite carrier sludge generated by adding the ferrite carrier to a subcap in the fermenter. It has become clear that the high-speed methane fermentation method using an expensive carrier called ferrite is an excellent method that is fully economically viable.

(発明の効果) 以上の通り本発明によれば、発酵槽負荷を、フェライト
担体の添加で、担体を添加しない従来法の3倍以上、さ
らに発酵槽内に磁場発生装置を設置することで4倍以上
に高めることが可能であるから、発酵槽の容積を従来法
のものの1/3〜1/4に縮小して発酵槽建設費を大幅
に低減することができる。
(Effects of the Invention) As described above, according to the present invention, by adding a ferrite carrier, the load on the fermenter can be increased by more than three times that of the conventional method without adding a carrier, and by installing a magnetic field generator in the fermenter. Since it is possible to more than double the volume, the volume of the fermenter can be reduced to 1/3 to 1/4 of that of the conventional method, and the construction cost of the fermenter can be significantly reduced.

さらに、フェライト担体を添加して発生したフェライト
担体汚泥の沈降分離速度はフェライトを添加しないで発
生した汚泥の10倍以上の沈降速度であり沈澱槽の大き
さを1/1o以下に縮小することができ、この点でも沈
殿槽建設費を大幅に低減することができる。
Furthermore, the sedimentation rate of ferrite carrier sludge generated by adding ferrite carrier is more than 10 times that of sludge generated without adding ferrite, making it possible to reduce the size of the settling tank to less than 1/1 o. In this respect as well, the construction cost of the settling tank can be significantly reduced.

一方、以上のことから、フェライト担体は、メタン細菌
を主とする反応に関与する微生物の生育を阻害せず、こ
の微生物が付着して増殖するのに適したものといえる反
面、高価なものであるが、フェライト担体汚泥又はその
焼却灰からフェライト担体の性能を変化させずにその性
質を有効に利用してほぼ完全に回収することができるか
ら、処理コストをほとんど増加させずに済む。
On the other hand, from the above, it can be said that ferrite carriers do not inhibit the growth of microorganisms involved in reactions, mainly methane bacteria, and are suitable for the attachment and proliferation of these microorganisms, but on the other hand, they are expensive. However, since the ferrite carrier can be almost completely recovered from the ferrite carrier sludge or its incinerated ash by effectively utilizing its properties without changing the performance of the ferrite carrier, there is almost no increase in processing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の処理フローを示す概要図、第2図は磁
気発生装置の設置状況を示す概要図、第3図は第2図示
装置の一ユニットを示す斜視図、第4図は離解処理装置
及び磁気分離装置を示す概要図である。第5図はメタン
発酵試験設備の概要図、第6図は第5図示設備に使用し
た磁気発生装置の正面図、第7図は第6図の■−■線断
面図、第8図は重金属フェライト添加及び磁気発生装置
の設置での実験結果を示す線図、第9図は槽内VSSと
発酵槽最大負荷の関係を各実験条件により示す線図であ
る。 1・・調整槽、2・・発酵槽、6・・沈澱槽、9・・脱
水設備、10・・焼却設備、11・・磁場発生装置、1
6・・離解処理装置、19・・磁気分離装置、25・・
発酵槽、26・・流出口、28・・原水入口、31・・
攪拌インペラ、621I・ガス採取口、36・・ガスシ
ール器、64・・温水ジャケット、67・・原水貯槽、
47・・発酵槽流出液貯槽、51・・永久磁石。 叫 〜) ろ 碑 鍛 第2図 第3図 第5図 第6図 第8図 WtMEPL(F3) 第 9 図
Fig. 1 is a schematic diagram showing the processing flow of the present invention, Fig. 2 is a schematic diagram showing the installation situation of the magnetic generation device, Fig. 3 is a perspective view showing one unit of the device shown in Fig. 2, and Fig. 4 is a disaggregation diagram. FIG. 1 is a schematic diagram showing a processing device and a magnetic separation device. Figure 5 is a schematic diagram of the methane fermentation test equipment, Figure 6 is a front view of the magnetic generator used in the equipment shown in Figure 5, Figure 7 is a sectional view taken along the ■-■ line in Figure 6, and Figure 8 is a heavy metal FIG. 9 is a diagram showing the experimental results of adding ferrite and installing a magnetic generator, and FIG. 9 is a diagram showing the relationship between the VSS in the tank and the maximum load of the fermenter under various experimental conditions. 1. Adjustment tank, 2. Fermentation tank, 6. Sedimentation tank, 9. Dehydration equipment, 10. Incineration equipment, 11. Magnetic field generator, 1
6... Disintegration processing device, 19... Magnetic separation device, 25...
Fermentation tank, 26... Outlet, 28... Raw water inlet, 31...
Stirring impeller, 621I・Gas sampling port, 36・・Gas seal device, 64・・Hot water jacket, 67・・Raw water storage tank,
47... Fermenter effluent storage tank, 51... Permanent magnet. (Scream~) Rohiban Figure 2 Figure 3 Figure 5 Figure 6 Figure 8 WtMEPL (F3) Figure 9

Claims (4)

【特許請求の範囲】[Claims] (1)発酵槽内にフェライト担体を添加してフェライト
担体汚泥床を形成することを特徴とするメタン発酵法。
(1) A methane fermentation method characterized by adding a ferrite carrier into a fermenter to form a ferrite carrier sludge bed.
(2)発酵槽内に磁場発生装置を設置し、フェライト担
体の槽外流出を防止することを特徴とする特許請求の範
囲第1項記載のメタン発酵法。
(2) The methane fermentation method according to claim 1, characterized in that a magnetic field generator is installed in the fermenter to prevent the ferrite carrier from flowing out of the tank.
(3)発酵槽外に流出した汚泥中から磁気分離装置によ
りフェライト担体を回収して発酵槽へ返送することを特
徴とする特許請求の範囲第1項又は第2項記載のメタン
発酵法。
(3) The methane fermentation method according to claim 1 or 2, wherein the ferrite carrier is recovered from the sludge flowing out of the fermenter using a magnetic separator and returned to the fermenter.
(4)磁気分離装置の前段に離解処理装置を設け、該装
置により処理した汚泥中から前記磁気分離装置によりフ
ェライト担体を回収することを特徴とする特許請求の範
囲第1項又は第2項記載のメタン発酵法。
(4) A disintegration treatment device is provided upstream of the magnetic separation device, and the ferrite carrier is recovered by the magnetic separation device from the sludge treated by the device, according to claim 1 or 2. methane fermentation method.
JP60138125A 1985-06-25 1985-06-25 Methane fermentation method Pending JPS621497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60138125A JPS621497A (en) 1985-06-25 1985-06-25 Methane fermentation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60138125A JPS621497A (en) 1985-06-25 1985-06-25 Methane fermentation method

Publications (1)

Publication Number Publication Date
JPS621497A true JPS621497A (en) 1987-01-07

Family

ID=15214554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60138125A Pending JPS621497A (en) 1985-06-25 1985-06-25 Methane fermentation method

Country Status (1)

Country Link
JP (1) JPS621497A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035194A (en) * 2010-08-06 2012-02-23 Kobelco Eco-Solutions Co Ltd Anaerobic treatment device and anaerobic treatment method
JP2014172032A (en) * 2013-03-13 2014-09-22 Toshiba Corp Method and apparatus for recovering phosphorus from phosphorus-containing waste water
JP2018134597A (en) * 2017-02-22 2018-08-30 株式会社セイネン Water quality purification system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4857473A (en) * 1971-11-18 1973-08-11
JPS5827694A (en) * 1981-08-12 1983-02-18 Ebara Infilco Co Ltd Semibatch-type catalytic digestion of organic waste water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4857473A (en) * 1971-11-18 1973-08-11
JPS5827694A (en) * 1981-08-12 1983-02-18 Ebara Infilco Co Ltd Semibatch-type catalytic digestion of organic waste water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035194A (en) * 2010-08-06 2012-02-23 Kobelco Eco-Solutions Co Ltd Anaerobic treatment device and anaerobic treatment method
JP2014172032A (en) * 2013-03-13 2014-09-22 Toshiba Corp Method and apparatus for recovering phosphorus from phosphorus-containing waste water
JP2018134597A (en) * 2017-02-22 2018-08-30 株式会社セイネン Water quality purification system

Similar Documents

Publication Publication Date Title
Yu et al. Effects of Fe2+ on sludge granulation in upflow anaerobic sludge blanket reactors
US5944986A (en) Liquid purification apparatus
US3697420A (en) Method and apparatus for treatment of aqueous liquor
CN109928511B (en) Physicochemical-biological coupling nitrogen and phosphorus removal method and reactor based on iron-carbon micro-electrolysis
CN102923866A (en) Device for implementing strengthened treatment for sewage through changing magnetic field and sewage treatment method
Barber The effects of ultrasound on sludge digestion
CN105906133B (en) A kind of water body purification method and device of strong magnetic separation-magnetic green substance charcoal absorption
CN109336325A (en) A kind of apparatus and method of zero discharge treatment treatment of advanced stage landfill leachate
CN103102012B (en) Anaerobic biochemistry treatment method for cellulose ethanol wastewater
CN101774740A (en) Treatment technology and device for resource utilization of sludge
CN105884030A (en) Anaerobic-anoxic-aerobic sewage treatment device
US20150122709A1 (en) Water treatment system
Bose et al. Mine sludge waste recycling as bio-stimulant for applications in anaerobic wastewater treatment
JP5610198B2 (en) Waste liquid treatment equipment
EP2649017B1 (en) An anaerobic reactor for wastewater treatment
Gupta et al. Assessment of the efficiency and economic viability of various methods of treatment of sanitary landfill leachate
Riffat et al. Laboratory studies on the anaerobic biosorption process
JPS621497A (en) Methane fermentation method
CN101327961B (en) Magnetic seed material, preparation and use thereof
Sprouse et al. Colloid removal in fluidized-bed biofilm reactor
CN105903459B (en) A kind of charcoal carried magnetic gelatin composite material and preparation method thereof and purposes
CN106865753B (en) A kind of processing unit and processing method removing nano-scale particle in waste water based on aerobic particle mud
CN109626677A (en) A kind of advanced treatment process of coking waste water
Li et al. Treatment of landfill leachate by electrochemical oxidation and anaerobic process
Zhang et al. Re-activation characteristics of preserved aerobic granular sludge