JP4972817B2 - Anaerobic treatment method for organic wastewater - Google Patents

Anaerobic treatment method for organic wastewater Download PDF

Info

Publication number
JP4972817B2
JP4972817B2 JP2000067503A JP2000067503A JP4972817B2 JP 4972817 B2 JP4972817 B2 JP 4972817B2 JP 2000067503 A JP2000067503 A JP 2000067503A JP 2000067503 A JP2000067503 A JP 2000067503A JP 4972817 B2 JP4972817 B2 JP 4972817B2
Authority
JP
Japan
Prior art keywords
treatment
tank
concentration
anaerobic treatment
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000067503A
Other languages
Japanese (ja)
Other versions
JP2001252686A (en
Inventor
元之 依田
佳美 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000067503A priority Critical patent/JP4972817B2/en
Publication of JP2001252686A publication Critical patent/JP2001252686A/en
Application granted granted Critical
Publication of JP4972817B2 publication Critical patent/JP4972817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Description

【0001】
【発明の属する技術分野】
本発明は有機性排水の嫌気性処理方法に係り、特に、カリウムイオンを高濃度に含有する有機性排水を安定かつ効率的に嫌気性処理する方法に関する。
【0002】
【従来の技術】
食品排水などの産業排水の処理には嫌気性処理法が適用されている。
【0003】
嫌気性処理は、嫌気条件下において、酸生成菌により排水中の有機物を有機酸に変換する酸発酵工程と、生成した有機酸を嫌気条件下においてメタン生成菌によりメタンに分解するメタン発酵工程の2工程からなる。この嫌気性処理装置には、酸発酵工程とメタン発酵工程とを別の槽内で行う二相式のものと、これらを単一の槽で行う一相式のものとがある。
【0004】
二相式の嫌気性処理装置は、主に酸発酵槽とその後段のメタン発酵槽で構成され、メタン発酵槽の処理水は場合により一部が酸発酵槽に返送され、残部は系外へ排出され、更に好気性処理装置などで高度処理が行われる。
【0005】
一方、一相式の嫌気性処理装置では、嫌気槽内液を抜き出して再びこの嫌気槽に戻す循環ラインが設けられ、処理水の循環処理が行われる。
【0006】
嫌気性処理法は、活性汚泥などの好気性処理と比較して余剰汚泥の発生が少なく、動力消費量が小さいなどの利点がある上に、嫌気性処理で発生するバイオガスは、メタンを50〜90%程度含むため、ボイラなどの燃料として有効利用できるという優れた特長を有する。
【0007】
なお、嫌気性処理の反応形式としては、微生物の担持型式により、UASB、EGSB、流動床、固定床などの高負荷型のものが処理効率の面から好適である。このうち、UASB法、即ち、上向流嫌気性汚泥床法(Upflow Anaerobic Sludge Blanket Process)は、メタン生成菌を、付着担体を用いることなく自己造粒又は核となる物質に造粒させてなる造粒汚泥(グラニュール)の汚泥床(スラッジブランケット)を形成した反応槽に、原水を上向流で通水して処理する方法であり、また、EGSB法、即ち、嫌気性膨張グラニュール床法(Expanded Granular Sludge Bed Process)は、同様にスラッジブランケットを形成した反応槽に高流速で上向流通水して処理する方法であり、これらはいずれも反応槽中に15000〜70000mg−VSS/L程度の高濃度の微生物を保持することが可能であることから、0.4〜1.5kg−CODCr/kg−VSS/day程度の高いメタン活性を得て高負荷処理にて有機性排水中の有機物を効率良く分解除去することができるという利点を有する。
【0008】
ところで、カリウムイオン(K)やナトリウムイオン(Na)などの一価の陽イオンは、これが排水中に高濃度で存在すると、嫌気性処理や好気的な生物処理に対して阻害作用があることが知られている。特に、嫌気性処理や硝化脱窒素などの微生物に関与する独立栄養細菌であるメタン生成菌や硝化細菌は、これらの陽イオンに対して通常の他栄養細菌と比較して敏感であることが知られている。また、一般的にK、Naなどの阻害濃度領域は0.1〜0.2M以上であり、0.1M以下では、殆ど影響はないとされている。
【0009】
【発明が解決しようとする課題】
しかしながら、本発明者らが、有機性排水の嫌気性処理並びに嫌気性処理後の好気性処理について種々検討を行った結果、グラニュールを用いるUASBやEGSBなどの高負荷型嫌気性処理では、Kは従来、阻害が生じるとされている濃度よりもかなり低い0.025M程度でも、アンモニウムイオン(NH )がKの1/2モル程度以上共存すると阻害が発現することを知見した。
【0010】
本発明は、このようなNH 共存下でのKによる微生物阻害を防止して、有機性排水の嫌気性処理を安定且つ効率的に行って、高水質の処理水を得る方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の有機性排水の嫌気性処理方法は、カリウムと窒素化合物とを含み、K濃度が0.025M〜0.05Mで、NH 濃度がK濃度の1/2モル倍以上の有機性排水を、グラニュールを用いる嫌気性処理で処理する方法において、該有機性排水中のカリウムイオンに対するナトリウムイオン量が1/50〜1モル倍であって、更に、該有機性排水のナトリウムイオン濃度が1〜50mMとなるように該有機性排水にナトリウムイオン源を添加した後、嫌気性処理することを特徴とする。
【0012】
即ち、本発明者らは、嫌気性処理におけるKによる微生物阻害の問題を解決すべく更に検討を重ねた結果、Kに対して1/50〜1モル倍のNaを共存させることで、Kによる微生物阻害を緩和することができ、嫌気性処理を安定かつ効率的に行うことができること、このNaによる効果は、嫌気性処理のみならず、嫌気性処理後のBOD除去のための好気性処理工程や脱窒素のための硝化脱窒工程にも有効であることを見出し、本発明を完成させた。
【0013】
【発明の実施の形態】
以下に図面を参照して本発明の有機性排水の嫌気性処理方法の実施の形態を詳細に説明する。
【0014】
図1は本発明の有機性排水の嫌気性処理方法の実施の形態を示す系統図である。
【0015】
図示の方法は、酸発酵工程とメタン発酵工程とを別の槽内で行う二相式の嫌気性処理を行った後、好気性処理を行う方法であり、原水(有機性排水)は酸発酵槽1及びメタン発酵槽2で嫌気性処理される。メタン発酵槽2の処理水の一部は酸発酵槽1に循環され、残部は曝気槽3で好気性処理され、処理水は系外へ排出される。
【0016】
酸発酵槽1における処理は、浮遊性分散汚泥を用いて攪拌下で行っても良く、攪拌を行わずにSSの沈殿分離槽を兼ねる槽であっても良い。この酸発酵槽1の処理条件は次のような条件とするのが好ましい。
【0017】
〔酸発酵槽処理条件〕
pH :4〜8
温度 :25〜40℃
滞留時間 :1〜48hr
メタン発酵槽2はUASB、EGSB等の高負荷型、特にグラニュール汚泥を用いて高負荷処理が可能なUASB、EGSB槽が好ましく、このメタン発酵槽2の処理条件は次のような条件とするのが好ましい。
【0018】
〔メタン発酵槽処理条件〕
pH :6〜8.5
温度 :25〜40℃
滞留時間 :2〜48hr
有機物負荷:4〜30kg−CODCr/m/day
このメタン発酵槽2の処理水は一部が酸発酵槽1に返送される。即ち、酸発酵槽1では通常、酸の生成でpHが低下し、一方、メタン発酵槽2では処理によりpHが上昇するため、メタン発酵槽2の処理水の一部を酸発酵槽1に循環することによりpH調整を行うことができるが、この循環は必ずしも必要とされずメタン発酵槽2の処理水の全量を曝気槽3に送給しても良い。
【0019】
曝気槽3は活性汚泥により好気性処理を行ってBODを除去するための槽であり、次のような処理条件が採用される。
【0020】
〔曝気槽処理条件〕
pH :5〜7
温度 :15〜35℃
滞留時間 :4〜48hr
有機物負荷:0.5〜3kg−CODCr/m/day
本発明においては、このような処理において、嫌気性処理される原水中のKの濃度に対してNa濃度が1/50〜1モル倍となるようにNa源を添加する。このNa源としては、NaOH、NaCl、NaCO等を用いることができる。
【0021】
NH 共存下のKによる微生物阻害は、原水中に含まれるアンモニア又は嫌気性処理により有機性窒素(タンパク質)の分解で生じるアンモニアがKの1/2モル以上共存する条件下でのメタン発酵阻害であるため、メタン発酵系内に上記のようなNaが存在するようにNa源が添加されれば良く、その添加箇所は図1において酸発酵槽1の入口(丸数字の1)、酸発酵槽1(丸数字の2)、メタン発酵槽2入口(丸数字の3)、メタン発酵槽3(丸数字の4)のいずれであっても良い。
【0022】
メタン発酵系内のNa濃度がK濃度の1/50モル倍未満では微生物阻害を十分に防止し得ない。Na濃度がK濃度の等モル倍よりも多いと、Naイオンが嫌気性微生物の活性を阻害する恐れがある。
【0023】
従って、Na源は、Na濃度がK濃度の1/50〜1モル倍、好ましくは1/25〜1/5モル倍となるように添加する。
【0024】
このようなNa源の添加で嫌気性処理系内の微生物阻害を防止して、嫌気性処理により十分に有機物を分解した嫌気性処理水を好気性処理することにより、好気性処理においても高いBOD除去効率を得ることができる。
【0025】
なお、図1に示す方法は本発明の有機性排水の嫌気性処理方法の実施の形態の一例であって本発明は何ら図示の方法に限定されるものではない。例えば、酸発酵槽1とメタン発酵槽2との間に脱炭酸槽を設け、脱炭酸処理を行っても良く、酸発槽1とメタン発酵槽2との間にpH調整槽を設けても良い。
【0026】
また、嫌気性処理は、図示の二相式に限らず酸発酵とメタン発酵とを同一の槽内で行う一相式であっても良い。更に、嫌気性処理水を好気性処理する他、脱窒(嫌気)と硝化(好気)を組み合わせて窒素除去するものであっても良い。
【0027】
このような本発明の方法は、K濃度が0.025M(975mg/L)以上で、嫌気性処理によってアンモニア性窒素に転換される窒素を含んでメタン発酵処理時のNH 濃度がK濃度の1/2モル倍以上で、Na濃度がK濃度に比べて著しく低く、例えば、0.001M以下であるような有機性排水の処理に特に有効である。
【0028】
【実施例】
以下に実施例、比較例及び参考例を挙げて本発明をより具体的に説明する。
【0029】
[試験1]
実施例1〜7、比較例1〜3
市水に酢酸とアンモニアを添加して、酢酸濃度300mg/L、アンモニア濃度0.025Mとし、KOHでpH7に調整し、更にKClを添加してK濃度0.05Mとした合成排水を用いて以下の実験を行った。
【0030】
上記の合成排水を容量500mLの三角フラスコにVSSとして約1g添加したグラニュール汚泥と接触させ、恒温水槽内で35℃にて嫌気的に攪拌しながら処理し、NaClの添加量を変えてガス発生速度を調べた。グラニュール汚泥はビール工場の総合排水処理用UASB槽から採取したものを用い、汚泥濃度はVSSとして約50000mg/Lであった。
【0031】
ガス発生速度とフラスコ内の汚泥量からVSSあたりのガス発生速度を求め、酢酸資化性メタン生成活性を比較した。
【0032】
実施例1〜7及び比較例1〜3のNaCl添加量(Na濃度)とメタン生成活性は表1に示す通りであった。
【0033】
【表1】

Figure 0004972817
【0034】
表1より次のことが明らかである。
【0035】
NaClの添加量が1mM以上、即ち、Kに対し、モル比で0.02倍以上のNaを添加した場合には、活性を増大させる効果が認められた。しかし、NaClの添加量が20mM以上では活性は低下傾向にあり、添加量が50mMを超えると活性は0.4g−CODCr/g−VSS/dayに達しなかった。
【0036】
[試験2]
実施例8,9、比較例4,5
以下に示す性状の合成排水を図2で示すフローで処理した。
【0037】
ただし、実施例8及び9では原水にNaClを585mg/L(0.01M)添加し、比較例4,5では原水にNaClを添加せずに処理した。
【0038】
[合成排水性状]
エタノール :10000mg/L
酵母エキス :500mg/L
NH−N :300mg/L(NHClとして1170mg/L)
PO−P :50mg/L(KHPOとして220mg/L)
KCl :3725mg/L(Kとして0.05M)
pH :7.5
各槽の仕様及び処理条件は以下の通りであり、UASB槽5の処理水は原水量の3倍を酸発酵槽4に循環した。また、UASB槽5では槽内の上昇流速を0.5m/hrに維持するために自己循環を行った。
【0039】
嫌気性処理の後処理の好気性処理としては循環法による硝化・脱窒処理を行った。硝化槽7の処理水は原水量の5倍を脱窒槽6に循環し、沈殿槽8で分離した汚泥は脱窒槽6へ返送した。返送汚泥量は原水量の5倍とした。
【0040】
[酸醗酵槽]
容量 :2L
温度 :30〜35℃
内部をポンプで攪拌し、メタン菌の活性維持のための微量金属としてFe2+を10mg/L、Co2+、Ni2+をそれぞれ0.1mg/L添加した。
【0041】
[UASB槽]
内径 :10cm
高さ :120cm
有効容量 :8.5L
内部にビール工場排水を処理している実装置から採取したグラニュール汚泥4Lを汚泥濃度がVSSとして50000mg/Lとなるように充填した。
【0042】
[脱窒槽]
容量 :3L
温度 :室温(約25℃)
[硝化槽]
容量 :4L
温度 :室温(約25℃)
[沈殿槽]
容量 :2L
通水条件を表2に示すように変えて2週間処理し、後半の1週間での処理水質の平均値を表3に示した。
【0043】
【表2】
Figure 0004972817
【0044】
【表3】
Figure 0004972817
【0045】
表3から次のことが明らかである。
【0046】
負荷が高い場合、低い場合のいずれの場合も原水にNaClを添加した方がNaClを添加しない場合に比して嫌気、好気とも処理が良好であった。特に、高負荷での処理を行う場合において、NaClを添加する場合としない場合との差が顕著であった。
【0047】
また、実施例8と比較例4は嫌気処理水の水質は同程度であるにも関わらず好気処理水の水質は実施例8が比較例4より良好で、NaClの添加が後段の好気性処理の処理効率を向上させることが示された。
【0048】
[試験3]
参考例1
試験1で用いた合成排水のKClの添加量を変えて異なったK濃度とし、それぞれの濃度でアンモニアを添加した場合と添加しない場合とでメタン生成活性の違いを比較した。実験は、K濃度及びNHの有無以外は試験1と同様にし、アンモニアを添加する場合のNH濃度は0.025Mとした。
【0049】
結果は、表4に示す通りであった。
【0050】
【表4】
Figure 0004972817
【0051】
表4から以下のことが明らかである。
【0052】
NHが共存する場合もしない場合もK濃度が高くなるに従ってメタン生成活性は低下する。また、活性の低下は、NHが共存する場合の方が、NHが共存しない場合より著しく、特にK濃度が0.03モル以上存在する場合、NHによる阻害は顕著となった。
【0053】
[試験4]
参考例2
参考例1において、K濃度を0.05Mとし、NHの添加濃度を変えてメタン活性の違いを比較した。結果は表5に示す通りであり、NH濃度が0.02Mを超えると活性が急激に低下した。
【0054】
【表5】
Figure 0004972817
【0055】
【発明の効果】
以上詳述した通り、本発明の有機性排水の嫌気性処理方法によれは、NH 共存下でのKによる微生物阻害を防止して、有機性排水の嫌気性処理を安定且つ効率的に行って、高水質の処理水を得ることができる。
【図面の簡単な説明】
【図1】本発明の有機性排水の嫌気性処理方法の実施の形態を示す系統図である。
【図2】実施例8,9及び比較例4,5で用いた試験装置を示す系統図である。
【符号の説明】
1,4 酸発酵槽
2 メタン発酵槽
3 曝気槽
5 UASB槽
6 脱窒槽
7 硝化槽
8 沈殿槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anaerobic treatment method for organic wastewater, and more particularly to a method for anaerobically treating organic wastewater containing potassium ions at a high concentration in a stable and efficient manner.
[0002]
[Prior art]
Anaerobic treatment methods are applied to the treatment of industrial wastewater such as food wastewater.
[0003]
Anaerobic treatment consists of an acid fermentation process that converts organic substances in wastewater into organic acids by acid producing bacteria under anaerobic conditions, and a methane fermentation process that decomposes the generated organic acids into methane by methanogenic bacteria under anaerobic conditions. It consists of two steps. This anaerobic treatment apparatus includes a two-phase type in which the acid fermentation process and the methane fermentation process are performed in separate tanks, and a single-phase type in which these are performed in a single tank.
[0004]
The two-phase anaerobic treatment device is mainly composed of an acid fermenter and a methane fermenter at the subsequent stage. In some cases, part of the treated water from the methane fermenter is returned to the acid fermenter, and the rest goes out of the system. It is discharged and further advanced processing is performed by an aerobic processing device or the like.
[0005]
On the other hand, in the one-phase type anaerobic treatment apparatus, a circulation line for extracting the liquid in the anaerobic tank and returning it to the anaerobic tank is provided to circulate the treated water.
[0006]
The anaerobic treatment method has advantages such as less generation of surplus sludge and less power consumption compared to aerobic treatment such as activated sludge, and the biogas generated in the anaerobic treatment uses 50 methane. Since about 90% is contained, it has the outstanding feature that it can be effectively used as fuel for boilers and the like.
[0007]
As the reaction format of the anaerobic treatment, a high load type such as UASB, EGSB, fluidized bed, fixed bed or the like is preferable from the viewpoint of treatment efficiency, depending on the type of microorganisms. Among them, the UASB method, that is, the upflow anaerobic sludge blanket process, is a method in which methanogenic bacteria are granulated into self-granulating or core substances without using an adherent carrier. This is a method in which raw water is passed in an upward flow through a reaction tank in which a sludge bed (sludge blanket) of granulated sludge (granule) is formed, and EGSB method, that is, an anaerobic expansion granule bed The method (Expanded Granular Sludge Bed Process) is a method in which water is flowed upward at a high flow rate into a reaction tank similarly formed with a sludge blanket, and these are all treated in the reaction tank at 15000 to 70000 mg-VSS / L. organic since it is possible to retain high levels of microorganisms degree at high-load processing to obtain 0.4~1.5kg-COD Cr / kg-VSS / day about high methane activity It has the advantage that the organic matter in the waste water can be efficiently decomposed and removed.
[0008]
By the way, monovalent cations such as potassium ions (K + ) and sodium ions (Na + ) have an inhibitory effect on anaerobic treatment and aerobic biological treatment when they are present at high concentrations in waste water. It is known that there is. In particular, it is known that methanogens and nitrifying bacteria, which are autotrophic bacteria involved in microorganisms such as anaerobic treatment and nitrification / denitrification, are more sensitive to these cations than normal other vegetative bacteria. It has been. In general, the inhibitory concentration range of K + , Na + and the like is 0.1 to 0.2 M or more, and 0.1 M or less has almost no influence.
[0009]
[Problems to be solved by the invention]
However, as a result of various studies on the anaerobic treatment of the organic waste water and the aerobic treatment after the anaerobic treatment, the present inventors have found that in high load type anaerobic treatment such as UASB and EGSB using granule, + conventionally, inhibition even at much lower 0.025M about than the concentration that is to occur, ammonium ion (NH 4 +) has found that inhibiting the coexisting least about 1/2 mole of K + is expressed.
[0010]
The present invention provides a method for preventing microbial inhibition by K + in the presence of NH 4 + and obtaining high-quality treated water by performing anaerobic treatment of organic wastewater stably and efficiently. The purpose is to do.
[0011]
[Means for Solving the Problems]
Anaerobic treatment method of an organic waste water of the present invention comprises a potassium nitrogen compound, K + concentration is 0.025M~0.05M, NH 4 + concentration is equal to or greater than 1/2 times by mole of K + concentration In the method for treating organic wastewater by anaerobic treatment using granules, the amount of sodium ion relative to potassium ion in the organic wastewater is 1/50 to 1 mol times , and sodium in the organic wastewater An anaerobic treatment is performed after adding a sodium ion source to the organic waste water so that the ion concentration becomes 1 to 50 mM .
[0012]
That is, the present inventors have further result of extensive studies to solve the problems of microbial inhibition by K + in the anaerobic treatment, by the coexistence of 1 / 50-1 mol per mol of Na + with respect to K + The ability of K + to mitigate microbial inhibition and to perform anaerobic treatment stably and efficiently, and the effect of Na + is not only for anaerobic treatment but also for removal of BOD after anaerobic treatment. The present invention has been completed by finding that it is also effective for the aerobic treatment step and the nitrification denitrification step for denitrification.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an anaerobic treatment method for organic waste water according to the present invention will be described below in detail with reference to the drawings.
[0014]
FIG. 1 is a system diagram showing an embodiment of the organic wastewater anaerobic treatment method of the present invention.
[0015]
The method shown in the figure is a method for performing an aerobic treatment after performing a two-phase anaerobic process in which an acid fermentation process and a methane fermentation process are performed in separate tanks, and the raw water (organic wastewater) is acid fermentation. Anaerobic treatment is performed in the tank 1 and the methane fermentation tank 2. A part of the treated water in the methane fermentation tank 2 is circulated to the acid fermentation tank 1, the remainder is aerobically treated in the aeration tank 3, and the treated water is discharged out of the system.
[0016]
The treatment in the acid fermentation tank 1 may be performed with stirring using a suspended dispersion sludge, or may be a tank that also serves as a precipitation separation tank for SS without stirring. The treatment conditions for the acid fermenter 1 are preferably as follows.
[0017]
[Acid fermenter treatment conditions]
pH: 4-8
Temperature: 25-40 ° C
Residence time: 1 to 48 hr
The methane fermentation tank 2 is preferably a high-load type such as UASB or EGS B , particularly a UASB or EGSB tank capable of high-load treatment using granular sludge. The treatment conditions of the methane fermentation tank 2 are as follows: It is preferable to do this.
[0018]
[Methane fermentation tank treatment conditions]
pH: 6 to 8.5
Temperature: 25-40 ° C
Residence time: 2 to 48 hr
Organic load: 4 to 30 kg-COD Cr / m 3 / day
A part of the treated water in the methane fermentation tank 2 is returned to the acid fermentation tank 1. That is, in the acid fermenter 1, the pH is usually lowered due to the generation of acid, whereas in the methane fermenter 2, the pH is increased by the treatment, so that a part of the treated water in the methane fermenter 2 is circulated to the acid fermenter 1. Although pH adjustment can be performed by doing this, this circulation is not necessarily required and the whole amount of treated water in the methane fermentation tank 2 may be supplied to the aeration tank 3.
[0019]
The aeration tank 3 is a tank for performing aerobic treatment with activated sludge to remove BOD, and the following treatment conditions are employed.
[0020]
[Aeration tank treatment conditions]
pH: 5-7
Temperature: 15-35 ° C
Residence time: 4 to 48 hours
Organic load: 0.5 to 3 kg-COD Cr / m 3 / day
In the present invention, in such treatment, the Na + source is added so that the Na + concentration is 1/50 to 1 mol times the concentration of K + in the raw water to be anaerobically treated. As this Na + source, NaOH, NaCl, Na 2 CO 3 or the like can be used.
[0021]
Microbial inhibition by K + in the presence of NH 4 + is under the condition where ammonia contained in raw water or ammonia produced by decomposition of organic nitrogen (protein) by anaerobic treatment coexists with more than 1/2 mol of K + . for methane, the fermentation inhibitor, it is sufficient Na + source is added so Na + as described above is present in the methane fermentation system, the addition point in Fig. 1, the inlet (circled acid fermentation tank 1 1), the acid fermentation tank 1 (2 circled number), methane fermentation tank 2 inlet (3 circled) may be either methane fermentation tank 3 (4 circled).
[0022]
When the Na + concentration in the methane fermentation system is less than 1/50 mol times the K + concentration, microbial inhibition cannot be sufficiently prevented. If the Na + concentration is more than an equimolar multiple of the K + concentration, Na + ions may inhibit the activity of anaerobic microorganisms.
[0023]
Therefore, the Na + source is added so that the Na + concentration is 1/50 to 1 mol times, preferably 1/25 to 1/5 mol times the K + concentration.
[0024]
The addition of such Na + source prevents microbial inhibition in the anaerobic treatment system, and anaerobic treatment of the anaerobic treated water that has sufficiently decomposed organic matter by the anaerobic treatment is high even in the aerobic treatment. BOD removal efficiency can be obtained.
[0025]
The method shown in FIG. 1 is an example of the embodiment of the organic waste water anaerobic treatment method of the present invention, and the present invention is not limited to the illustrated method. For example, a decarboxylation tank may be provided between the acid fermentation tank 1 and the methane fermentation tank 2 to perform a decarboxylation treatment, or a pH adjustment tank may be provided between the acid generation tank 1 and the methane fermentation tank 2. good.
[0026]
In addition, the anaerobic treatment is not limited to the illustrated two-phase method, and may be a one-phase method in which acid fermentation and methane fermentation are performed in the same tank. Furthermore, in addition to aerobic treatment of anaerobic treated water, nitrogen removal may be performed by a combination of denitrification (anaerobic) and nitrification (aerobic).
[0027]
Such a method of the present invention has a K + concentration of 0.025 M (975 mg / L) or more, contains nitrogen that is converted to ammonia nitrogen by anaerobic treatment, and has an NH 4 + concentration of K at the time of methane fermentation treatment. + 1/2 mole times or more of concentration, Na + concentration is significantly lower than the K + concentration, for example, is particularly effective in the treatment of certain such organic waste water below 0.001 M.
[0028]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, Comparative Examples and Reference Examples.
[0029]
[Test 1]
Examples 1-7, Comparative Examples 1-3
Acetic acid and ammonia were added to city water to make acetic acid concentration 300mg / L, ammonia concentration 0.025M, adjusted to pH 7 with KOH, and further using KCI to make K concentration 0.05M The experiment was conducted.
[0030]
The above synthetic waste water is brought into contact with granule sludge added with about 1 g of VSS in a 500 mL Erlenmeyer flask as VSS, treated in an isothermal water bath at 35 ° C. while anaerobically stirring, and the amount of NaCl added is changed to generate gas. The speed was examined. Granule sludge was collected from a UASB tank for comprehensive wastewater treatment at a beer factory, and the sludge concentration was about 50000 mg / L as VSS.
[0031]
The gas generation rate per VSS was determined from the gas generation rate and the amount of sludge in the flask, and the acetic acid-assimilating methane generation activity was compared.
[0032]
Table 1 shows the NaCl addition amount (Na concentration) and the methanogenic activity in Examples 1 to 7 and Comparative Examples 1 to 3.
[0033]
[Table 1]
Figure 0004972817
[0034]
From Table 1, the following is clear.
[0035]
When the addition amount of NaCl was 1 mM or more, that is, 0.02 times or more of Na in terms of molar ratio with respect to K + , an effect of increasing the activity was observed. However, the amount of NaCl is 20mM or more activity is on a downward trend, active when the amount exceeds 50mM did not reach 0.4g-COD Cr / g-VSS / day.
[0036]
[Test 2]
Examples 8 and 9, Comparative Examples 4 and 5
The synthetic wastewater having the following properties was treated by the flow shown in FIG.
[0037]
However, in Examples 8 and 9, 585 mg / L (0.01 M) of NaCl was added to the raw water, and in Comparative Examples 4 and 5, the raw water was treated without adding NaCl.
[0038]
[Synthetic drainage properties]
Ethanol: 10000 mg / L
Yeast extract: 500 mg / L
NH 4 —N: 300 mg / L (1170 mg / L as NH 4 Cl)
PO 4 -P: 50 mg / L (220 mg / L as KH 2 PO 4 )
KCl: 3725 mg / L (0.05 M as K + )
pH: 7.5
The specifications and treatment conditions of each tank were as follows, and the treated water in the UASB tank 5 was circulated to the acid fermentation tank 4 by 3 times the amount of raw water. Further, in the UASB tank 5, self-circulation was performed in order to maintain the rising flow velocity in the tank at 0.5 m / hr.
[0039]
As an aerobic treatment after anaerobic treatment, nitrification and denitrification treatment was performed by a circulation method. The treated water in the nitrification tank 7 was circulated to the denitrification tank 6 five times the amount of the raw water, and the sludge separated in the precipitation tank 8 was returned to the denitrification tank 6. The amount of returned sludge was 5 times the amount of raw water.
[0040]
[Acid fermentation tank]
Capacity: 2L
Temperature: 30-35 ° C
The inside was stirred with a pump, and Fe 2+ was added at 10 mg / L, and Co 2+ and Ni 2+ were added at 0.1 mg / L as trace metals for maintaining the activity of methane bacteria.
[0041]
[UASB tank]
Inner diameter: 10 cm
Height: 120cm
Effective capacity: 8.5L
Granule sludge 4L collected from an actual apparatus treating beer factory waste water was filled so that the sludge concentration would be 50000 mg / L as VSS.
[0042]
[Denitrification tank]
Capacity: 3L
Temperature: Room temperature (about 25 ° C)
[Nitrification tank]
Capacity: 4L
Temperature: Room temperature (about 25 ° C)
[Settling tank]
Capacity: 2L
The water flow conditions were changed as shown in Table 2, and the treatment was conducted for 2 weeks. The average value of the treated water quality in the latter half of the week was shown in Table 3.
[0043]
[Table 2]
Figure 0004972817
[0044]
[Table 3]
Figure 0004972817
[0045]
From Table 3, the following is clear.
[0046]
In both cases of high load and low load, treatment with both anaerobic and aerobic treatment was better when NaCl was added to the raw water than when NaCl was not added. In particular, when processing with a high load is performed, the difference between the case where NaCl is added and the case where NaCl is not added is remarkable.
[0047]
Further, in Example 8 and Comparative Example 4, although the quality of the anaerobic treated water is similar, the quality of the aerobic treated water in Example 8 is better than that in Comparative Example 4, and the addition of NaCl is the latter aerobic. It has been shown to improve the processing efficiency of the process.
[0048]
[Test 3]
Reference example 1
The amount of KCl added to the synthetic waste water used in Test 1 was varied to obtain different K concentrations, and the difference in methane production activity was compared between when ammonia was added and when it was not added. The experiment was the same as in Test 1 except for the K concentration and the presence or absence of NH 4 , and the NH 4 concentration when adding ammonia was 0.025 M.
[0049]
The results were as shown in Table 4.
[0050]
[Table 4]
Figure 0004972817
[0051]
From Table 4, the following is clear.
[0052]
Whether NH 4 coexists or not, the methanogenic activity decreases as the K concentration increases. A decrease in the activity is better when the NH 4 coexist significantly than when NH 4 does not coexist, particularly when K concentration occurs more than 0.03 mol, inhibition by NH 4 became prominent.
[0053]
[Test 4]
Reference example 2
In Reference Example 1, the difference in methane activity was compared by changing the concentration of K 4 to 0.05 M and changing the concentration of NH 4 added. The results are as shown in Table 5. When the NH 4 concentration exceeded 0.02M, the activity decreased rapidly.
[0054]
[Table 5]
Figure 0004972817
[0055]
【Effect of the invention】
As described above in detail, according to the method for anaerobic treatment of organic wastewater of the present invention, microorganisms are prevented from being inhibited by K + in the presence of NH 4 + , so that the anaerobic treatment of organic wastewater is stable and efficient. It is possible to obtain high-quality treated water.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of the organic waste water anaerobic treatment method of the present invention.
FIG. 2 is a system diagram showing a test apparatus used in Examples 8 and 9 and Comparative Examples 4 and 5;
[Explanation of symbols]
1,4 Acid fermentation tank 2 Methane fermentation tank 3 Aeration tank 5 UASB tank 6 Denitrification tank 7 Nitrification tank 8 Precipitation tank

Claims (2)

カリウムイオンと窒素化合物とを含み、K濃度が0.025M〜0.05Mで、NH 濃度がK濃度の1/2モル倍以上の有機性排水を、グラニュールを用いる嫌気性処理で処理する方法において、
該有機性排水中のカリウムイオンに対するナトリウムイオン量が1/50〜1モル倍であって、更に、該有機性排水のナトリウムイオン濃度が1〜50mMとなるように該有機性排水にナトリウムイオン源を添加した後、嫌気性処理することを特徴とする有機性排水の嫌気性処理方法。
And a potassium ion and a nitrogen compound, K + concentration is 0.025M~0.05M, NH 4 + concentration is 1/2 mole times or more of the organic waste water of the K + concentration, anaerobic treatment with granular In the method of processing in
A sodium ion source in the organic waste water such that the amount of sodium ions relative to potassium ions in the organic waste water is 1/50 to 1 mol times , and the sodium ion concentration of the organic waste water is 1 to 50 mM. An anaerobic treatment method for organic wastewater, characterized by anaerobic treatment after addition of.
請求項1において、嫌気性処理水を更に好気性処理することを特徴とする有機性排水の嫌気性処理方法。2. The method for anaerobic treatment of organic waste water according to claim 1, further comprising aerobic treatment of the anaerobic treated water.
JP2000067503A 2000-03-10 2000-03-10 Anaerobic treatment method for organic wastewater Expired - Fee Related JP4972817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000067503A JP4972817B2 (en) 2000-03-10 2000-03-10 Anaerobic treatment method for organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000067503A JP4972817B2 (en) 2000-03-10 2000-03-10 Anaerobic treatment method for organic wastewater

Publications (2)

Publication Number Publication Date
JP2001252686A JP2001252686A (en) 2001-09-18
JP4972817B2 true JP4972817B2 (en) 2012-07-11

Family

ID=18586685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000067503A Expired - Fee Related JP4972817B2 (en) 2000-03-10 2000-03-10 Anaerobic treatment method for organic wastewater

Country Status (1)

Country Link
JP (1) JP4972817B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899253B2 (en) * 2001-05-21 2012-03-21 栗田工業株式会社 Wastewater aerobic treatment method
AUPR833301A0 (en) * 2001-10-17 2001-11-08 Advanced Environmental Technologies Pty Ltd Organic waste treatment
JP3999036B2 (en) * 2002-05-10 2007-10-31 株式会社荏原製作所 Method and apparatus for treating organic wastewater
JP2005087853A (en) * 2003-09-17 2005-04-07 Fuji Electric Systems Co Ltd Method and apparatus for treating methane fermentation waste liquid
JP2007007620A (en) * 2005-07-04 2007-01-18 Fuji Electric Holdings Co Ltd Method for treating nitrogen-containing liquid waste
JP5731209B2 (en) * 2011-01-24 2015-06-10 大阪瓦斯株式会社 Method and apparatus for treating soap production waste liquid
JP5873736B2 (en) * 2012-02-29 2016-03-01 水ing株式会社 Organic wastewater treatment method and treatment apparatus
JP6005547B2 (en) * 2013-02-25 2016-10-12 住友重機械エンバイロメント株式会社 Methane fermentation system and methane fermentation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173777A (en) * 1985-01-25 1986-08-05 Agency Of Ind Science & Technol Immobilized bacterium, production thereof and method of water treatment
JP3203774B2 (en) * 1992-06-25 2001-08-27 栗田工業株式会社 Organic wastewater treatment method and methane fermentation treatment device
JP3814851B2 (en) * 1995-10-31 2006-08-30 栗田工業株式会社 Anaerobic treatment

Also Published As

Publication number Publication date
JP2001252686A (en) 2001-09-18

Similar Documents

Publication Publication Date Title
CN1203011C (en) Process for the treatment of waste water containing ammonia
CN106242045B (en) A kind of aerobic particle mud fast culture process
US20140367330A1 (en) Wastewater treatment process that utilizes granular sludge to reduce cod concentration in wastewater
JPH0696155B2 (en) Method and apparatus for treating organic wastewater by methane fermentation
JP2014024002A (en) Organic waste liquid treatment method and organic waste liquid treatment apparatus
JP2009066505A (en) Method of forming aerobic granule, water treatment method and water treatment apparatus
JP4972817B2 (en) Anaerobic treatment method for organic wastewater
CN102676434B (en) Strain capable of heterotrophic nitrifying-aerobic denitrifying and dephosphorizing synchronously at low temperature and application
CN102719374A (en) Acinetobacter johnsonii bacterial strain capable of low-temperature synchronous denitrification phosphorous removal and application thereof
Mojiri et al. A review on anaerobic digestion, bio-reactor and nitrogen removal from wastewater and landfill leachate by bio-reactor
JP2004358391A (en) Treatment method and treatment apparatus of organic waste
KR100783785B1 (en) Carbon source preparing method for advanced biological treatment of sewage and wastewater
JPH08141592A (en) Anaerobic treatment method
JP2006272252A (en) Method for treating nitrogen-containing organic drainage
CN105712570A (en) Processing method of high concentration selenium-containing wastewater
JP4529277B2 (en) Method for collecting autotrophic denitrifying microorganisms and method for biological nitrogen removal
CN101928068A (en) Method of all self-oxygen ammonia nitrogen removal by particle sludge
JP5930805B2 (en) Anaerobic wastewater treatment method and apparatus for organic wastewater
CN107253761A (en) A kind of Anammox based on inactivated sludge quickly strengthens startup method
JP2563004B2 (en) Treatment of wastewater containing methanol
JP4433550B2 (en) Anaerobic treatment of plant extract extraction wastewater
JPH08155485A (en) Anaerobic treatment method
JPH08155486A (en) Anaerobic treatment method for organic drainage
JP5199794B2 (en) Nitrogen-containing organic wastewater treatment method
KR101849803B1 (en) Method and device for anaerobically treating wastewater containing terephthalic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees