KR100783785B1 - Carbon source preparing method for advanced biological treatment of sewage and wastewater - Google Patents

Carbon source preparing method for advanced biological treatment of sewage and wastewater Download PDF

Info

Publication number
KR100783785B1
KR100783785B1 KR1020050114692A KR20050114692A KR100783785B1 KR 100783785 B1 KR100783785 B1 KR 100783785B1 KR 1020050114692 A KR1020050114692 A KR 1020050114692A KR 20050114692 A KR20050114692 A KR 20050114692A KR 100783785 B1 KR100783785 B1 KR 100783785B1
Authority
KR
South Korea
Prior art keywords
acid fermentation
tank
fermentation tank
sewage
carbon source
Prior art date
Application number
KR1020050114692A
Other languages
Korean (ko)
Other versions
KR20070056260A (en
Inventor
나창운
이종우
Original Assignee
주식회사 포스코건설
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코건설 filed Critical 주식회사 포스코건설
Priority to KR1020050114692A priority Critical patent/KR100783785B1/en
Publication of KR20070056260A publication Critical patent/KR20070056260A/en
Application granted granted Critical
Publication of KR100783785B1 publication Critical patent/KR100783785B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/18Treatment of sludge; Devices therefor by thermal conditioning
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Treatment Of Sludge (AREA)

Abstract

본원 발명은 하수 슬러지를 이용한 하·폐수의 고도처리용 탄소원 제조방법에 있어서, 1) 상기 하수 슬러지를 가수분해 및 산발효시키기 위해 중온산발효조에 유입시키는 단계; 2) 상기 중온산발효조의 유출수를 고형물과 산발효액으로 분리하기 위해 침전조에 유입시키는 단계; 3) 상기 분리된 고형물을 추가적으로 가수분해 및 산발효시키기 위해 고온산발효조에 유입시키는 단계; 4) 상기 3)단계에서 생성된 유출수를 상기 중온산발효조로 반송시키는 단계; 5) 상기 침전조로부터 고도처리용 탄소원으로 활용할 수 있는 산발효액을 생산하는 단계를 특징으로 하는 하·폐수의 고도처리용 탄소원 제조방법에 관한 것이다. 이에 따라 본 발명은 중온 고온산발효공정에 의해 하수 슬러지의 양은 현저히 감소시키고 그와 동시에 고도처리용 탄소원을 효율적으로 얻을 수 있다.The present invention provides a method for producing a carbon source for advanced treatment of sewage and wastewater using sewage sludge, comprising: 1) introducing the sewage sludge into a mesophilic fermentation tank for hydrolysis and acid fermentation; 2) introducing the effluent of the mesophilic fermentation tank into the settling tank to separate the solids and the acid fermentation broth; 3) introducing the separated solids into a hot acid fermentation tank for further hydrolysis and acid fermentation; 4) returning the effluent produced in step 3) to the mesophilic fermentation tank; 5) The present invention relates to a method for producing a highly treated carbon source for sewage and wastewater, characterized by producing an acid fermentation solution that can be utilized as a highly treated carbon source from the sedimentation tank. Accordingly, the present invention can significantly reduce the amount of sewage sludge by the medium temperature high temperature acid fermentation process and at the same time efficiently obtain a carbon source for advanced treatment.

탄소원, 하폐수, 고온산발효조, 저온산발효조 Carbon source, wastewater, high temperature acid fermentation tank, low temperature acid fermentation tank

Description

하·폐수의 고도처리용 탄소원 제조방법 {CARBON SOURCE PREPARING METHOD FOR ADVANCED BIOLOGICAL TREATMENT OF SEWAGE AND WASTEWATER}Carbon source for advanced treatment of sewage and wastewater {CARBON SOURCE PREPARING METHOD FOR ADVANCED BIOLOGICAL TREATMENT OF SEWAGE AND WASTEWATER}

도 1은 본 발명에 따른 하·폐수의 고도처리용 탄소원 제조방법을 수행하는 제조 시스템을 개략적으로 도시한 공정도.1 is a process diagram schematically showing a manufacturing system for performing a method for producing a carbon source for advanced treatment of sewage and wastewater according to the present invention.

도면의 주요 부분에 대한 부호의 설명Explanation of symbols for the main parts of the drawings

1: 침전조1: settling tank

2: pH 조정조2: pH adjusting tank

3: 약품 탱크3: chemical tank

4: 중온산발효조4: Medium temperature fermentation tank

5: 고온산발효조5: high temperature acid fermentation tank

6: 침전조6: settling tank

7: 산발효액 저장조7: Acid Fermentation Liquid Storage Tank

8: 무산소조8: anaerobic tank

9: drain조9: drain tank

10: 유량조정조10: flow adjustment tank

본 발명은 하·폐수의 고도처리용 탄소원 제조방법에 관한 것으로, 보다 상세하게는 중온-고온 복합 혐기성 산발효공정에 의해 슬러지 생산량을 감소시키고 영양염류 등을 제거하기 위해 사용되는 탄소원을 얻기 위한 하·폐수의 고도처리용 탄소원 제조방법에 관한 것이다.The present invention relates to a method for producing a carbon source for advanced treatment of sewage and wastewater, and more particularly, to obtain a carbon source used to reduce sludge production and remove nutrients by a middle temperature and high temperature anaerobic fermentation process. It relates to a method for producing a carbon source for advanced treatment of wastewater.

우리나라의 하수종말처리장에 유입되는 하수는 BOD(생화학적산소요구량) 값이 평균 80 - 100 mg/L 로서 유입수질이 설계수질에 크게 미치지 못하고 있으며, 특히 BOD/T-N 비의 값이 낮아 질소 및 인의 제거를 위한 고도처리공정을 도입하는 데에 여러 가지 어려움이 있다. 일반적으로 효율적인 질소제거를 위해서 필요한 BOD/T-N 의 비를 5 이상 제시하고 있으나 국내 하수의 경우 대부분 BOD/T-N 의 비는 2-3 정도에 불과하여 심각한 탄소원 부족문제에 직면하고 있다. 일반적으로 하폐수의 질소 및 인을 제거하기 위한 고도처리공정에서 유입 탄소원이 부족한 경우 외부탄소원으로서 메탄올을 권장하고 있으나 고가의 메탄올 구입비용은 고도처리 공정의 운영비에 상당한 부담을 주게 되어 하폐수의 고도처리를 더욱 어렵게 하는 요인이 된다.The sewage flowing into Korea's sewage treatment plant has a BOD (biochemical oxygen demand) value of 80-100 mg / L on average, and the inflow water quality is not much lower than the design water quality. There are several difficulties in introducing advanced treatment processes for removal. Generally, the ratio of BOD / T-N required for efficient nitrogen removal is presented above 5, but most of domestic sewage is facing a serious carbon shortage problem because the ratio of BOD / T-N is only 2-3. In general, methanol is recommended as an external carbon source when there is a shortage of influent carbon sources in the advanced treatment process to remove nitrogen and phosphorus from sewage water. However, expensive methanol purchase costs put a considerable burden on the operation cost of the advanced treatment process. It becomes a more difficult factor.

일반적으로 하수처리 과정에서 전체 처리하수량의 약 1 - 2 %에 달하는 하수슬러지가 발생한다. 하수 슬러지는 혐기성 조건하에서 산발효시킬 경우 가용화되어 하수 슬러지내의 입자성 유기물이 용해성 유기물로 전환되며, 이때 생성되는 유기산 및 용해성 유기물의 일부는 고도처리시스템의 탈질공정에서 효율적인 외부탄소원으로 사용될 수 있다. 따라서, 하수처리 과정에서 발생하는 하수슬러지를 이용하 여 고도처리용 탄소원을 효율적으로 생산하기 위한 방법은 대단히 중요하다.In general, sewage sludge generates as much as 1-2% of the total treated sewage. Sewage sludge is solubilized when acid fermented under anaerobic conditions so that the particulate organics in the sewage sludge are converted to soluble organics, and some of the organic acids and soluble organics produced can be used as an efficient external carbon source in the denitrification process of advanced treatment systems. Therefore, a method for efficiently producing an advanced carbon source using sewage sludge generated during sewage treatment is very important.

국내 하수처리장의 활성슬러지 공정을 살펴보면, 최근 부하변동에 대해 적응성이 뛰어난 연속회분식반응조(Sequencing Bath Reactor, SBR)에 대한 연구가 활발히 진행되고 있다. SBR은 소요부지가 적고 설비 및 운전이 간단한 장점이 있어 최근 적용사례가 증가하고 있지만, 대규모 처리시설에는 적용이 어렵다는 문제점이 있어 국내 하수처리장에는 거의 적용되지 않고 있는 실정이다. 최근 회분식의 단점을 극복하기 위해 일부 원수를 연속적으로 주입하는 CASS (Cyclic Activated Sludge System) 나 ICEAS (Intermittent Cycle Extended Aeration System)와 같은 변형된 SBR 의 경우도 개발되었으나 여전히 대규모 처리에는 어려운 상황이다.Looking at activated sludge processes in domestic sewage treatment plants, research on sequencing bath reactors (SBRs), which are highly adaptable to load fluctuations, is being actively conducted. SBR has a small number of sites and simple facilities and operation. Recently, the number of application cases is increasing. However, SBR is rarely applied to domestic sewage treatment plants because it is difficult to apply to large-scale treatment facilities. Recently, modified SBR such as Cyclic Activated Sludge System (CAS) or Intermittent Cycle Extended Aeration System (ICEAS), which continuously injects some raw water, has been developed to overcome the disadvantage of batch type, but it is still difficult for large scale processing.

현재 연구되고 있는 기존 생물학적 고도처리공정(Biological Nutrient Removal, BNR)들은 대부분 외국에서 개발된 것으로 국내의 특성 즉, 하수의 농도, 처리장 시설, 기술수준, 경제환경 등에 비추어 볼 때, 국내에 적용하기 위해서는 시스템 변경과 운전기술의 축적 등이 선행되어야 한다. The existing Biological Nutrient Removal Processes (BNRs) currently being studied are mostly developed in foreign countries. In view of domestic characteristics such as sewage concentration, treatment plant facilities, technology level, economic environment, etc. Changes to the system and accumulation of operating techniques must be preceded.

최근 국내에서도 우리 하수 성상에 적합한 공정을 개발하기 시작하였다. 국내 공정을 보면 A2/0 를 설치한 후 메탄올을 주입함으로써 질소, 인 제거율을 극대화 시킨 DeN & P 공정, 기존 MLE(Modified Ludzak-Ettinger) 공정에 Phostrip 공정을 결합한 M/PL- II 공정, 기존 폭기조를 분할하여 운전하는 간헐폭기공정 등이 연구되고 있다. 그 외에 Bio-SAC BNR 공법, 그리고 스폰지 메디아를 이용한 공법 등이 연구되고 있다.Recently, we have started to develop a process suitable for our sewage. In Korea, A2 / 0 was installed, followed by methanol injection to maximize the removal of nitrogen and phosphorus, the DeN & P process, the MLE (Modified Ludzak-Ettinger) process combined with the Phostrip process, and the existing aeration tank. The intermittent aeration process, which operates by dividing with, has been studied. In addition, Bio-SAC BNR method and sponge media method are being studied.

그러나 이들 공정 대부분의 질소제거율은 DeN & P 공정과 같이 탈질과정에서 유기탄소원을 주입하지 않는 이상 90% 이상의 높은 제거율을 얻기가 어려운 상황이고, 이러한 외부탄소원은 대부분 메탄올, acetate 등의 고가인 문제점이 있다.However, the nitrogen removal rate of most of these processes is difficult to obtain a high removal rate of more than 90% unless an organic carbon source is injected in the denitrification process, such as the DeN & P process, and these external carbon sources are mostly expensive such as methanol, acetate, etc. have.

따라서, 본 발명의 목적은 중온-고온 복합 혐기성 산발효공정에 의해 슬러지 생산량을 감소시키고 영양염류 등을 제거하기 위해 사용되는 탄소원을 얻기 위한 하·폐수의 고도처리용 탄소원 제조방법을 제공하는데 있다.Accordingly, it is an object of the present invention to provide a method for producing a highly treated carbon source for sewage and wastewater to reduce the sludge production by the middle temperature-high temperature anaerobic acid fermentation process and to obtain a carbon source used to remove nutrients.

본 발명은 하수 슬러지를 이용한 하·폐수의 고도처리용 탄소원 제조방법에 있어서, 1) 상기 하수 슬러지를 가수분해 및 산발효시키기 위해 중온산발효조에 유입시키는 단계; 2) 상기 중온산발효조의 유출수를 고형물과 산발효액으로 분리하기 위해 침전조에 유입시키는 단계; 3) 상기 분리된 고형물을 추가적으로 가수분해 및 산발효시키기 위해 고온산발효조에 유입시키는 단계; 4) 상기 3)단계에서 생성된 유출수를 상기 중온산발효조로 반송시키는 단계; 5) 상기 침전조로부터 고도처리용 탄소원으로 활용할 수 있는 산발효액을 생산하는 단계를 특징으로 하는 하·폐수의 고도처리용 탄소원 제조방법에 관한 것이다.     The present invention provides a method for producing a carbon source for advanced treatment of sewage and wastewater using sewage sludge, comprising the steps of: 1) introducing the sewage sludge into a mesophilic fermentation tank for hydrolysis and acid fermentation; 2) introducing the effluent of the mesophilic fermentation tank into the settling tank to separate the solids and the acid fermentation broth; 3) introducing the separated solids into a hot acid fermentation tank for further hydrolysis and acid fermentation; 4) returning the effluent produced in step 3) to the mesophilic fermentation tank; 5) The present invention relates to a method for producing a highly treated carbon source for sewage and wastewater, characterized by producing an acid fermentation solution that can be utilized as a highly treated carbon source from the sedimentation tank.

상기 중온산발효조의 내부 온도가 20℃에서 45℃사이로 유지되며 상기 중온산 발효조의 수리학적 체류시간은 0.1일에서 10일이다.  The internal temperature of the mesophilic acid fermentation tank is maintained between 20 ° C and 45 ° C and the hydraulic retention time of the mesophilic acid fermentation tank is 0.1 to 10 days.

또한, 상기 고온산발효조의 내부 온도가 45℃ 에서 75℃사이로 유지된다. 상기 고온산발효조의 수리학적 체류시간은 0.1일에서 5일인 것을 특징으로 한다. 또한 상기 중온산발효조와 고온산발효조의 적정 운전 pH는 5.5 초과 7 미만의 범위인 것 을 특징으로 한다.  In addition, the internal temperature of the high temperature acid fermentation tank is maintained between 45 ° C and 75 ° C. The hydraulic residence time of the high temperature acid fermentation tank is characterized in that 0.1 to 5 days. In addition, the proper operating pH of the mesophilic acid fermentation tank and the high temperature acid fermentation tank is characterized in that the range of more than 5.5 and less than 7.

상기 1)단계는 상기 하수 슬러지를 pH 조정조에 유입하는 단계를 더 포함하며, 상기 pH 조정조에 상기 중온산발효조 및 상기 고온산발효조의 적정 pH를 유지하기 위해 황산을 주입하는 것을 특징으로 하는 하·폐수의 고도처리용 탄소원 제조방법에 관한 것이다.The step 1) further includes the step of introducing the sewage sludge into the pH adjustment tank, characterized in that the sulfuric acid injecting sulfuric acid fermentation tank and the hot acid fermentation tank to maintain the proper pH It relates to a method for producing a carbon source for advanced treatment of wastewater.

이하 본 발명을 첨부된 도면에 도시된 공정도를 중심으로 상세히 설명한다. Hereinafter, the present invention will be described in detail with reference to a flowchart illustrated in the accompanying drawings.

도 1은 본 발명에 따른 하·폐수의 고도처리용 탄소원 제조방법을 수행하는 제조 시스템을 개략적으로 도시한 공정도이다.1 is a process diagram schematically showing a manufacturing system for performing a method for producing a carbon source for advanced treatment of sewage and wastewater according to the present invention.

하수처리장 생물학적 처리공정에서 발생된 MLSS는 침전조(1)에서 고액분리되고, 여기에서 분리된 하수 슬러지는 후속하는 pH 조정조(2)로 유입된다. 약품 탱크(3)에 저장된 황산은 pH 조정조(2)에 주입되고 슬러지의 pH를 2-3으로 조정한다. 여기서 황산은 후술할 중온산발효조(4)와 고온산발효조(5)의 적정 유지 pH를 유지하도록 하는데 중요한 인자가 된다. 산발효조의 pH는 알카리도에 의해 결정되는데 산 발효가 진행됨에 따라 알카리도는 증가하고 산발효조의 pH에 영향을 준다. 즉, 중온산발효조(4)의 pH는 자체적으로 생성되는 알카리도와 고온산발효조(5)으로부터 유입되는 알카리도 그리고 pH 조정조(2)에서 유입되는 산도의 조합에 의해 결정된다. 따라서, pH조정조에 황산의 유입이 없다면 중온산발효조(4)나 고온산발효조(5)의 pH는 적정 pH를 유지하지 못하고 상승하게 될 것이다. The MLSS generated in the sewage treatment plant biological treatment process is solid-liquid separated in the sedimentation tank (1), and the sewage sludge separated therefrom is introduced into the subsequent pH adjusting tank (2). Sulfuric acid stored in the chemical tank 3 is injected into the pH adjusting tank 2 to adjust the pH of the sludge to 2-3. Sulfuric acid is an important factor in maintaining the proper holding pH of the mesophilic acid fermentation tank 4 and the high temperature acid fermentation tank 5 to be described later. The pH of the acid fermentation tank is determined by alkalinity. As acid fermentation proceeds, the alkalinity increases and affects the pH of the acid fermentation tank. That is, the pH of the mesophilic acid fermentation tank 4 is determined by the combination of the alkalinity generated by itself, the alkalinity introduced from the high temperature acid fermentation tank 5, and the acidity introduced from the pH adjusting tank 2. Therefore, if there is no inflow of sulfuric acid in the pH adjustment tank pH of the mesophilic acid fermentation tank (4) or high temperature acid fermentation tank (5) will rise without maintaining the proper pH.

상기 pH 조정조(2)에 유입된 슬러지는 원수이송펌프(미도시)에 의해 완전혼합형 중온산발효조(4)로 유입되고 슬러지에 포함된 유기물질은 가수분해 및 산발효 된다. 가수분해된 유기물은 산발효균에 의해 유기산으로 전환된다. The sludge introduced into the pH adjustment tank (2) is introduced into the completely mixed mesophilic acid fermentation tank (4) by the raw water transfer pump (not shown), and the organic material contained in the sludge is hydrolyzed and acid fermented. Hydrolyzed organics are converted to organic acids by acid fermentation bacteria.

상기 중온산발효조(4)의 내부 적정 온도는 20 ℃ 내지 45 ℃로 유지되며, 바람직하게는 30 ℃ 내지 40 ℃, 가장 바람직하게는 중온균의 활성이 가장 활발한 35 ℃ 내외이다. 중온산발효조(4)의 적정유지 pH는 6.0 내지 6.5 범위에서 운전되며 이로 인하여 메탄균의 활성이 억제되고 생성된 유기산의 일부는 황산염 환원균을 위한 전자공여체로 사용되어 슬러지에 함유된 유기물의 감량이 일어난다. The internal titration temperature of the mesophilic acid fermentation tank 4 is maintained at 20 ° C to 45 ° C, preferably 30 ° C to 40 ° C, and most preferably at about 35 ° C where the activity of the mesophilic bacteria is most active. The proper maintenance pH of the mesophilic acid fermentation tank (4) is operated in the range of 6.0 to 6.5, whereby the activity of methane bacteria is suppressed and some of the generated organic acid is used as an electron donor for sulfate reducing bacteria to reduce the organic matter contained in the sludge. This happens.

가령, 중온산발효조(4)의 pH가 7이상으로 증가할 경우 메탄균의 급격한 성장으로 메탄가스가 대량으로 발생하며, 결국 pH가 더욱 증가하게 되어 산발효조로서의 기능을 상실하게 된다. 반면 pH가 5.5이하로 감소하면 산발효균의 활성은 점차 감소하여 결국 산발효조의 기능을 상실하게 된다. 따라서 지속적인 가수분해와 산 발효에 의해 슬러지에 함유된 유기물의 감량을 유도하기 위해서는 적정 pH 6.0 에서 6.5범위를 유지하는 것이 중요하다.For example, when the pH of the mesophilic fermentation tank 4 increases to 7 or more, methane gas is generated in a large amount due to the rapid growth of the methane bacteria, and eventually the pH is further increased to lose the function of the acid fermentation tank. On the other hand, when the pH decreases below 5.5, the activity of acid fermentation bacteria gradually decreases, eventually losing the function of the acid fermentation tank. Therefore, in order to induce the reduction of organic matter contained in the sludge by continuous hydrolysis and acid fermentation, it is important to maintain a range of 6.5 to 6.5 pH.

또한, 상기 중온산발효조(4)에서의 수리학적 체류시간은 0.1일 내지 10일의 범위를 가지며, 바람직하게는 2-3일이다. 만약 수리학적 체류시간이 0.1보다 적은 경우 산발효의 기능이 현저히 감소하며, 10일이상인 경우 메탄균의 성장으로 유기산의 보존이 어렵게 된다.In addition, the hydraulic retention time in the mesophilic acid fermentation tank (4) has a range of 0.1 day to 10 days, preferably 2-3 days. If the hydraulic retention time is less than 0.1, the function of acid fermentation is significantly reduced. If it is more than 10 days, it is difficult to preserve organic acid due to the growth of methane.

상기 조건에서 가수분해와 산발효가 완료된 후 중온산발효조(4)의 유출수는 후속하는 침전조(6)로 유입된다. 상기 침전조(6)는 상기 유출수를 고형물 슬러지와 산발효액으로 분리한다. 상기 침전조(6)는 중력식 침전조, 원심분리기 등을 포함한 상용화된 여러 가지 방법 등이 사용될 수 있다.After completion of the hydrolysis and acid fermentation under the above conditions, the effluent of the mesophilic acid fermentation tank 4 flows into the subsequent settling tank 6. The settling tank 6 separates the effluent into solid sludge and an acid fermentation solution. The settling tank 6 may be used a variety of commercialized methods including a gravity settling tank, a centrifuge, and the like.

상기 침전조(6)에서 고액분리된 상등액인 산발효액은 고도처리공정의 탄소원으로 활용되기 위하여 산발효액 저장조(7)로 유입된다.The acid fermentation liquor, which is the supernatant liquid separated from the settling tank 6, is introduced into the acid fermentation liquor storage tank 7 in order to be utilized as a carbon source of the advanced treatment process.

반면, 상기 침전조(6)에서 분리된 잔류고형물은 슬러지 이송 펌프(미도시)에 의해 고온 혐기성 조건으로 운전되는 완전혼합형 고온산발효조(5)로 유입된다. 상기 고온산발효조(5)의 내부 온도는 45℃ 내지 75℃에서 운전되며 바람직하게는 50 ℃ 내지 60℃, 가장 바람직하게는 고온균의 활성이 가장 좋은 55 ℃ 내외이다. 상기 고온산발효조(5)의 수리학적 체류시간은 0.1일 내지 5일의 범위를 가지며, 바람직하게는 2-3일이다. 상기 고온산발효조(5)의 적정 pH는 중온산발효조(4)의 적정 pH 범위와 동일하다.On the other hand, the residual solid separated in the settling tank (6) is introduced into the fully mixed high temperature acid fermentation tank (5) which is operated in a high temperature anaerobic condition by a sludge transfer pump (not shown). The internal temperature of the high temperature acid fermentation tank 5 is operated at 45 ° C to 75 ° C, preferably at 50 ° C to 60 ° C, and most preferably at about 55 ° C with the best activity of the high temperature bacteria. Hydraulic residence time of the high temperature acid fermentation tank (5) has a range of 0.1 to 5 days, preferably 2-3 days. The proper pH of the high temperature acid fermentation tank 5 is the same as the proper pH range of the intermediate temperature fermentation tank 4.

상기 고온산발효조(5)로 유입된 잔류 고형물 슬러지는 고온 및 황산염 환원 조건에서 추가적인 가수분해 및 산 발효 과정이 진행된다. 상기 고온산발효조(5)에서 생성된 저급유기산의 일부는 중온산발효조(4)에서와 같이 고온산 발효가 진행되는 동안 황산염 환원균을 위한 전자 공여체로 이용되어 슬러지의 유기물 감량화가 진행된다. Residual solid sludge introduced into the high temperature acid fermentation tank (5) undergoes further hydrolysis and acid fermentation under high temperature and sulfate reduction conditions. Some of the low organic acid produced in the high temperature acid fermentation tank 5 is used as an electron donor for sulfate reducing bacteria during the high temperature acid fermentation as in the middle temperature acid fermentation tank 4 to reduce the organic matter of the sludge.

상기 고온산발효조(5)에서 가수분해 및 산발효 과정이 진행된 후 생성된 유출수는 고온산발효조(5)의 잔류 고형물의 추가적인 산발효 진행을 위해 중온산발효조(4)로 이송된다.After the hydrolysis and acid fermentation process in the high temperature acid fermentation tank (5) proceeds, the resulting effluent is transferred to the intermediate temperature fermentation tank (4) for further acid fermentation of the residual solids of the high temperature acid fermentation tank (5).

다시 중온산발효조(4)로 이송된 유출수는 가수분해 및 산 발효가 진행되고 다음 단계인 침전조(6)로 유입된다. 상기 침전조(6)에 유입된 유출수는 분리되어 상등액인 산발효액은 고도처리용 탄소원으로 사용하기 위해 상기 산발효액 저장조 (7)로 이송된다. The effluent transferred to the mesophilic fermentation tank 4 is hydrolyzed and acid fermented, and then flows into the precipitation tank 6, which is the next step. The effluent flowing into the settling tank 6 is separated and the acid fermentation liquor, which is a supernatant, is transferred to the acid fermenting liquor storage tank 7 for use as a carbon source for advanced processing.

그리고, 상기 반송된 산발효액은 처리수 펌프(미도시)에 의해 상기 산발효액 저장조(7)와 연결된 하수처리공정의 무산소조(8)로 이송된다. 상기 무산소조(8)는 고도처리공정에서 질소를 제거하기 위해 사용되는 반응조로써 미생물이 암모니아성 질소를 아질산성질소 및 질산성질소로 전환시키는 역할을 하며, 이 때 미생물이 유기물(탄소원)을 이용하므로 산발효조에서 생상된 유기물을 주입하므로써 질소제거 효율을 향상시킬 수 있다.Then, the returned acid fermentation liquid is transferred to an anaerobic tank 8 of the sewage treatment process connected to the acid fermentation liquid storage tank 7 by a treated water pump (not shown). The oxygen-free tank (8) is a reaction tank used to remove nitrogen in the advanced treatment process serves to convert the ammonia nitrogen to nitrite nitrogen and nitrate nitrogen, the microorganism uses organic matter (carbon source) Nitrogen removal efficiency can be improved by injecting organic materials produced in the fermenter.

Drain 조(9)는 산발효 생산에 이용되는 반응조 설비에 문제가 생길 경우에 대비해서 반응조내 폐수를 배출하기 위한 비상 개념의 설비이다. Drain tank (9) is an emergency concept for discharging wastewater in the reactor in case of problems in the reactor equipment used for acid fermentation production.

다음은 본 발명의 실시예와 비교예에 의해 본 발명을 보다 구체적으로 설명하고자 한다.Next, the present invention will be described in more detail with reference to Examples and Comparative Examples of the present invention.

<실시예 > <Example>

본 발명의 실시예는 구리 환경사업소내 생활하수를 이용한 96 m3/d의 용량의 모형시설(Pilot Plant)을 설치하여 12개월간 운전하여 얻은 결과이다. Example of the present invention is a result obtained by operating a model plant (Pilot Plant) of a capacity of 96 m 3 / d using the living sewage in the copper environmental establishment for 12 months.

본 발명의 모형시설은 생활하수내의 질소 인 처리를 위한 하수고도처리공정과 탄소원 공급을 위한 중온 고온산발효공정으로 구성되었다. 하수고도처리공정은 혐기조, 무산소조, 호기조, 침전조로 구성되었다. 중온 고온산발효공정에 사용된 대상슬러지는 하수고도처리공정의 침전조에서 발생된 슬러지로 구성하였다. 슬러지의 유입시 pH는 5.2 내지 5.8이었다. 상기 슬러지는 먼저 pH 조정조에 유입시켜 pH 를 2-3으로 감소시켰고 원수이송펌프에 의해 중온산발효조로 유입시켰다. The model facility of the present invention is composed of an advanced sewage treatment process for nitrogen phosphorus treatment in domestic sewage and a medium temperature high temperature acid fermentation process for supplying a carbon source. The sewage advanced treatment process consists of anaerobic tank, anaerobic tank, aerobic tank and sedimentation tank. The sludge used in the medium temperature high temperature fermentation process consisted of the sludge generated in the sedimentation tank of the sewage treatment process. The pH of the sludge inflow was 5.2 to 5.8. The sludge was first introduced into the pH adjustment tank to reduce the pH to 2-3 and introduced into the mesophilic fermentation tank by the raw water transfer pump.

중온산발효조는 35℃내외, pH 6.0~6.5범위에서 운전하여 가수분해와 산분해에 의해 혼합 슬러지의 유기물 감량이 일어나도록 하였다. 이후 중온산발효조의 유출수는 후속하는 침전조에 유입시켜 고형물 슬러지와 산발효액으로 분리하였다.The mesophilic acid fermentation tank was operated at a pH of 6.0 to 6.5, and the organic sludge was reduced by hydrolysis and acid decomposition. The effluent of the mesophilic acid fermentation tank was introduced into a subsequent settling tank and separated into solid sludge and acid fermentation broth.

침전조에서 분리된 상등액은 산발효액 저장조로 이송시켰고, 잔류고형물은 슬러지이송펌프에 의해 고온산발효조로 반송하였다. The supernatant separated from the settling tank was transferred to the acid fermentation liquor storage tank, and the residual solids were returned to the high temperature acid fermentation tank by the sludge transfer pump.

고온산발효조에서 추가적인 가수분해와 산발효를 진행시켜 유기물의 감량화를 진행했으며 고온산발효조의 유출수는 중온산발효조로 이송시켰다. In the high temperature acid fermentation tank, further hydrolysis and acid fermentation were carried out to reduce organic matter, and the effluent from the high temperature acid fermentation tank was transferred to the intermediate temperature fermentation tank.

이러한 과정에 의해 침전조에서 분리된 상등액은 산발효액저장조에 이송하였고 처리수펌프에 의해 무산소조에 유입시켰다. The supernatant separated from the settling tank by this process was transferred to the acid fermentation liquor storage tank and introduced into the anoxic tank by the treated water pump.

그 결과 본 발명의 중온-고온 2단 산발효공정의 운전시 하수고도처리공정에서 발생되는 슬러지를 전량 산발효공정에서 사용하여 슬러지 폐기량이 거의 없었으며, 하수고도처리공정에서 필요한 탄소원을 효율적으로 얻을 수 있었다.As a result, all the sludge generated in the sewage altitude treatment process during the operation of the middle temperature-high temperature two-stage acid fermentation process of the present invention was used in the acid fermentation process, so that there was almost no sludge waste and the carbon source required in the sewage altitude treatment process was efficiently Could.

<비교예>Comparative Example

본 발명의 비교예로 사용된 단상 중온 발효 공정은 통상의 발효조로 대상슬러지를 1차슬러지로 사용한 것과 고온산발효조가 없는 것을 제외하고는 중온 고온 발효공정과 동일한 조건에서 실험하였다. The single-phase mesophilic fermentation process used as a comparative example of the present invention was tested under the same conditions as the mesophilic high temperature fermentation process except that the target sludge was used as the primary sludge and the high temperature acid fermentation tank was not used.

상기 실시예와 비교예에 따라 실험데이터를 하기 표1 과 같이 정리하였다.According to the above Examples and Comparative Examples, the experimental data is summarized as shown in Table 1 below.

<표 1>TABLE 1

항목Item 중온 고온 2단 산발효공정Medium temperature high temperature two stage acid fermentation process 단상 중온 산발효공정Single Phase Mid Temperature Acid Fermentation Process 유입inflow 유출(탄소원)Emissions (carbon source) 유입inflow 유출(탄소원)Emissions (carbon source) 대상슬러지Target sludge 1차 및 2차 혼합슬러지Primary and Secondary Mixed Sludge 1차 슬러지Primary sludge pHpH 5.2-5.85.2-5.8 6.3-6.56.3-6.5 6.5-7.06.5-7.0 6.0-7.06.0-7.0 알카리도(mg/L CaCO3)Alkaline (mg / L CaCO3) 500- 1,000500- 1,000 2,000- 2,5002,000-2,500 1,500- 2,0001,500- 2,000 2,000- 3,0002,000- 3,000 용해성화학적 산소요구량(mg/L)Soluble Chemical Oxygen Demand (mg / L) 3,200- 5,0003,200- 5,000 8,000- 12,0008,000-12,000 2,000- 3,0002,000- 3,000 3,500- 4,0003,500- 4,000 휘발성지방산(mg HAc/L)Volatile Fatty Acids (mg HAc / L) 1,200- 2,0001,200- 2,000 3,000- 4,0003,000- 4,000 1,0001,000 1,600- 2,0001,600- 2,000 수리학적체류시간 (days)Hydraulic stay (days) 2.52.5 2.52.5 중온산발효조 : 고온산발효조부피비Middle temperature fermentation tank: High temperature acid fermentation tank volume ratio 5 :1 5: 1 - -

상기 중온산발효조와 고온산발효조의 비는 각 발효조의 HRT 와 고온조로 반송되는 유량에 의해서 결정된다. 통상적으로 중온산발효조와 고온산발효조의 HRT가 각각 2일 및 1일이라고 할 때 중온산발효조에서 고온산발효조로 반송가능한 범위는 중온산발효조로 유입되는 원 슬러지 유량의 10% 내지 60%범위이다. 따라서, 바람직한 중온산발효조에 대한 고온산발효조의 부피비는 20:1에서 1.67:1 의 범위가 바람직하나 최적범위는 5:1로 상기 실시예는 최적 범위로 실시하였다.The ratio of the mesophilic acid fermentation tank and the high temperature acid fermentation tank is determined by the flow rate returned to the HRT and the high temperature bath of each fermentation tank. Typically, when the HRT of the mesophilic fermentation tank and the high temperature acid fermentation tank is 2 days and 1 day, respectively, the range that can be returned from the mesophilic acid fermentation tank to the high temperature acid fermentation tank is in the range of 10% to 60% of the raw sludge flow rate flowing into the mesophilic fermentation tank. . Therefore, the volume ratio of the high temperature acid fermentation tank to the preferred mesophilic acid fermentation tank is preferably in the range of 20: 1 to 1.67: 1, but the optimum range is 5: 1.

상기 표 1에서 알 수 있듯이 단상 중온산발효 공정에 의한 비교예의 결과를 보면 생성된 탄소원의 용해성 화학적 산소 요구량과 유기산의 농도는 각각 3500 ~ 4000mg/L 및 1600 ~ 2000mg HAc/L 에 불과하였다.  As can be seen from Table 1, the results of the comparative example by the single-phase mesophilic acid fermentation process showed that the soluble chemical oxygen demand and the concentration of the organic acid of the carbon source were only 3500 to 4000 mg / L and 1600 to 2000 mg HAc / L, respectively.

그러나, 본 발명의 실시예에 의하면, 탄소원의 용해성 화학적 산소 요구량 및 휘발성 지방산의 농도는 각각 8000~12000mg/L 및 3000~ 4000 mg HAc/L 로서 매우 우수한 하폐수의 고도처리용 탄소원을 생산하였음을 알 수 있다.However, according to the embodiment of the present invention, it was found that the soluble chemical oxygen demand of the carbon source and the concentration of volatile fatty acids were 8000 to 12000 mg / L and 3000 to 4000 mg HAc / L, respectively. Can be.

따라서, 본 발명은 중온 고온산발효공정에 의해 하수 슬러지의 양은 현저히 감소시키고 그와 동시에 고도처리용 탄소원을 효율적으로 얻을 수 있다.Therefore, the present invention can significantly reduce the amount of sewage sludge by the medium temperature high temperature acid fermentation process and at the same time efficiently obtain a carbon source for advanced treatment.

Claims (8)

1) 하수 슬러지를 가수분해 및 산발효시키기 위해 중온산발효조에 유입시키는 단계, 2) 상기 중온산발효조의 유출수를 고형물과 산발효액으로 분리하기 위해 침전조에 유입시키는 단계, 3) 상기 분리된 고형물을 추가적으로 가수분해 및 산발효시키기 위해 고온산발효조에 유입시키는 단계, 4) 상기 3)단계에서 생성된 유출수를 상기 중온산발효조로 이송시키는 단계, 5) 상기 침전조에서 분리된 산발효액을 저장조로 유입시키는 단계로 이루어진 하·폐수의 고도처리용 탄소원 제조방법에 있어서,1) introducing the sewage sludge into a mesophilic fermentation tank for hydrolysis and acid fermentation, 2) introducing the effluent of the mesophilic fermentation tank into a settling tank to separate the solids and the acid fermentation liquor, and 3) the separated solids. Additionally inflowing into a high temperature acid fermentation tank for hydrolysis and acid fermentation, 4) transferring the effluent generated in step 3) to the mesophilic fermentation tank , 5) introducing the acid fermentation liquid separated from the precipitation tank into a storage tank In the method of producing a carbon source for advanced treatment of sewage and wastewater, 상기 1)단계에 앞서, 상기 하수 슬러지를 pH 조정조에 유입하는 단계를 더 포함하고, Prior to the step 1), further comprising the step of introducing the sewage sludge into the pH adjustment tank , 상기 중온산발효조 및 상기 고온산발효조가 pH 5.5 초과 내지 pH 7 미만의 범위에서 운전될 수 있도록, 상기 pH 조정조에 황산을 조절하여 주입하는 것을 특징으로 하는 하·폐수의 고도처리용 탄소원 제조방법.And the sulfuric acid fermentation tank and the high temperature acid fermentation tank are operated by adjusting sulfuric acid to the pH adjustment tank so as to be operated in a range of more than pH 5.5 to less than pH 7. 제1항에 있어서, 상기 중온산발효조의 내부 온도가 20℃ 에서 45℃사이로 유지되는 것을 특징으로 하는 하·폐수의 고도처리용 탄소원 제조방법.The method of claim 1, wherein the internal temperature of the mesophilic fermentation tank is maintained between 20 ° C and 45 ° C. 제1항에 있어서, 상기 중온산발효조의 수리학적 체류시간은 0.1일에서 10일인 것을 특징으로 하는 하·폐수의 고도처리용 탄소원 제조방법.The method of claim 1, wherein the hydraulic retention time of the mesophilic fermentation tank is 0.1 to 10 days. 제1항에 있어서, 상기 고온산발효조의 내부 온도가 45℃ 에서 75℃사이로 유 지되는 것을 특징으로 하는 하·폐수의 고도처리용 탄소원 제조방법.The method of claim 1, wherein the internal temperature of the high temperature acid fermentation tank is maintained between 45 ° C and 75 ° C. 제1항에 있어서, 상기 고온산발효조의 수리학적 체류시간은 0.1일에서 5일인 것을 특징으로 하는 하·폐수의 고도처리용 탄소원 제조방법.The method of claim 1, wherein the hydraulic residence time of the high temperature acid fermentation tank is 0.1 to 5 days. 삭제delete 삭제delete 삭제delete
KR1020050114692A 2005-11-29 2005-11-29 Carbon source preparing method for advanced biological treatment of sewage and wastewater KR100783785B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050114692A KR100783785B1 (en) 2005-11-29 2005-11-29 Carbon source preparing method for advanced biological treatment of sewage and wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050114692A KR100783785B1 (en) 2005-11-29 2005-11-29 Carbon source preparing method for advanced biological treatment of sewage and wastewater

Publications (2)

Publication Number Publication Date
KR20070056260A KR20070056260A (en) 2007-06-04
KR100783785B1 true KR100783785B1 (en) 2007-12-10

Family

ID=38354045

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050114692A KR100783785B1 (en) 2005-11-29 2005-11-29 Carbon source preparing method for advanced biological treatment of sewage and wastewater

Country Status (1)

Country Link
KR (1) KR100783785B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058479A (en) * 2013-01-24 2013-04-24 上海理工大学 Treatment method of typical drug in sludge
KR20180117008A (en) 2017-04-18 2018-10-26 주영피앤씨(주) Wastewater treatment method with the step of denitrification using eco friendly carbon source

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951184B1 (en) * 2007-11-26 2010-04-06 신강하이텍(주) Method for recycling and purifying livestock wastewater or high concentration wastewater by microbial high rate reactor
GB2455335A (en) * 2007-12-06 2009-06-10 United Utilities Plc Dewatering of Sludge by Fermentation
CN111747625A (en) * 2020-08-06 2020-10-09 安徽建筑大学 Carbon source recovery-based municipal sludge physicochemical and biochemical combined treatment and reduction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980034060A (en) * 1996-11-05 1998-08-05 맹원재 Two stage anaerobic fermentation method of organic waste liquid
KR20010046705A (en) * 1999-11-15 2001-06-15 장기훈 Annexation disposal method of food waste and sewage
KR20010078472A (en) * 2001-03-09 2001-08-21 백병천 Production of Carbon Source from Sewage Sludge and Denitrification Technologies for Advanced Treatment of Wastewater
KR20030046557A (en) * 2001-12-05 2003-06-18 박종웅 Method for carbon source of biological denitrification using distillery wastewater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980034060A (en) * 1996-11-05 1998-08-05 맹원재 Two stage anaerobic fermentation method of organic waste liquid
KR20010046705A (en) * 1999-11-15 2001-06-15 장기훈 Annexation disposal method of food waste and sewage
KR20010078472A (en) * 2001-03-09 2001-08-21 백병천 Production of Carbon Source from Sewage Sludge and Denitrification Technologies for Advanced Treatment of Wastewater
KR20030046557A (en) * 2001-12-05 2003-06-18 박종웅 Method for carbon source of biological denitrification using distillery wastewater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058479A (en) * 2013-01-24 2013-04-24 上海理工大学 Treatment method of typical drug in sludge
KR20180117008A (en) 2017-04-18 2018-10-26 주영피앤씨(주) Wastewater treatment method with the step of denitrification using eco friendly carbon source

Also Published As

Publication number Publication date
KR20070056260A (en) 2007-06-04

Similar Documents

Publication Publication Date Title
CN102753489B (en) The anoxic biological phosphate-eliminating simultaneously carried out and nitrogen and recovered energy
CN110668566B (en) Device and method for realizing sludge reduction and total nitrogen removal by sludge fermentation coupling short-cut denitrification series connection two-stage anaerobic ammonia oxidation
EP3018105B1 (en) Enhanced sewage biological nitrogen and phosphorus removal method based on polyhydroxyalkanoates metabolic regulation
US20230331609A1 (en) System and method for realizing partial anammox advanced nitrogen and phosphorus removal through mainstream and sidestream biofilm cyclic alternating for municipal wastewater treatment plant
CN102964035A (en) Device for autotrophic nitrogen removal of composite biological membrane and operation method
KR100783785B1 (en) Carbon source preparing method for advanced biological treatment of sewage and wastewater
CN103112948B (en) Method for rapidly culturing autotrophic nitrogen removal granule sludge under conditions of low substrate concentration and high ascending velocity
CN108383239B (en) Integrated biological treatment process for shortcut nitrification anaerobic ammonia oxidation and phosphorus removal under intermittent aeration mode
KR100853287B1 (en) High rate methanc production system using anaerobic archaea
Mojiri et al. A review on anaerobic digestion, bio-reactor and nitrogen removal from wastewater and landfill leachate by bio-reactor
CN108483821A (en) Using nitrosation-anaerobic ammoxidation as the municipal sewage efficient denitrification technique of core
KR100304544B1 (en) Method for removing nitrogen and phosphorus using anaerobic digestion
JP2006272252A (en) Method for treating nitrogen-containing organic drainage
KR20110059692A (en) Apparatus for removing nitrogen from anaerobic digested waste water
KR20160099067A (en) System for treating organic matter and nutrient fused bio-electrochemical reaction and intermittent aeration method comprising internal recycle line
KR100782960B1 (en) Elutriated two-phase anaerobic digestion apparatus and method of treating wastewater using thereit
CN116216989A (en) Fecal sewage treatment method and system
KR101045975B1 (en) Method for removing nitrogen from anaerobic digested waste water
CN105110561A (en) Method for treating high ammonia-nitrogen wastewater under low dissolved oxygen condition
CN110697905B (en) Rapid culture of short-range denitrifying bacteria and NO production by using fermented sludge as carbon source2-In a semiconductor device
JP2005103375A (en) Methane fermentation treatment method and apparatus
KR20110045812A (en) Apparatus and method for removing nitrogen from anaerobic digested waste water
KR100542431B1 (en) High concentration organic wastewater treatment system combining biofilm fermentation tank and anaerobic, anaerobic and aerobic tank
JP5353664B2 (en) Hydrogen / methane fermentation method and system
KR20000026051A (en) Tertiary treatment of wastewater using digested sludge

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20121203

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131202

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141201

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151201

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161201

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171201

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181203

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191202

Year of fee payment: 13