JPH08155485A - Anaerobic treatment method - Google Patents

Anaerobic treatment method

Info

Publication number
JPH08155485A
JPH08155485A JP30073794A JP30073794A JPH08155485A JP H08155485 A JPH08155485 A JP H08155485A JP 30073794 A JP30073794 A JP 30073794A JP 30073794 A JP30073794 A JP 30073794A JP H08155485 A JPH08155485 A JP H08155485A
Authority
JP
Japan
Prior art keywords
tank
map
uasb
sludge
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30073794A
Other languages
Japanese (ja)
Other versions
JP3387244B2 (en
Inventor
Sosuke Nishimura
Motoyuki Yoda
元之 依田
総介 西村
Original Assignee
Kurita Water Ind Ltd
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Ind Ltd, 栗田工業株式会社 filed Critical Kurita Water Ind Ltd
Priority to JP30073794A priority Critical patent/JP3387244B2/en
Publication of JPH08155485A publication Critical patent/JPH08155485A/en
Application granted granted Critical
Publication of JP3387244B2 publication Critical patent/JP3387244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PURPOSE: To simultaneously remove organic substances, nitrogen, and phosphorus by a UASB method and to prevent sludge granules from floating and flowing out by depositing MAP(ammonium magnesium phosphate) without causing scaling. CONSTITUTION: Magnesium salt is added into an acid production tank 1 or the outflow water from the tank 1, dissolved carbon dioxide is stripped off while the outflow water from the tank 1 being agitated, and after pH is adjusted at 7-9, water is suppplied to a UASB type methane production tank 3. In this way, MAP is deposited by the addition of Mg salt and the adjustment of pH. Scaling is prevented by agitation to deposit efficiently MAP particles, and the consumption of alkali for pH adjustment can be reduced by stripping dissolved carbon dioxide. Also, sludge granules grow utilizing the MAP particles as nuclei, stabilizing sludge granules.

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は嫌気性処理法に係り、特
に、焼酎廃液、ウイスキー蒸留廃液、ビール仕込排水な
どの、窒素及びリンの栄養塩類を含む高濃度有機性排水
をUASB嫌気処理で効率的に処理して、有機物と共
に、窒素及びリンの同時除去も可能とする嫌気性処理法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anaerobic treatment method, and more particularly, to UASB anaerobic treatment of high-concentration organic wastewater containing nutrient salts of nitrogen and phosphorus, such as shochu liquor, whiskey distillation effluent, and beer-charged wastewater. The present invention relates to an anaerobic treatment method capable of efficiently treating and simultaneously removing nitrogen and phosphorus together with organic substances.
【0002】[0002]
【従来の技術】UASB法、即ち、上向流嫌気性汚泥床
法(Upflow Anaerobic Sludge Blanket Process)は、嫌
気性菌(メタン生成細菌)を、付着担体を用いることな
く自己造粒又は核となる物質に造粒させてなる造粒汚泥
(グラニュール)の汚泥床(スラッジブランケット)を
形成した反応槽(UASB型メタン生成槽)に、原水を
上向流で通水して処理する方法であり、反応槽中に高濃
度の微生物を保持することが可能であることから、高負
荷処理にて、有機性排水中の有機物を効率良く分解除去
することができる方法である。UASB法は、好気性活
性汚泥法に比べて、反応槽容積当りの有機物負荷が10
kg−CODcr/m3 /day以上と高く、曝気のため
のエネルギーが不要で、メタンガスとしてエネルギーの
回収が可能である上に、余剰汚泥発生量が少ないといっ
た優れた特長を備えている。
2. Description of the Related Art The UASB method, that is, the Upflow Anaerobic Sludge Blanket Process, makes anaerobic bacteria (methanogenic bacteria) self-granulate or nucleate without using an adherent carrier. It is a method in which raw water is passed through an upward flow to a reaction tank (UASB-type methane production tank) in which a sludge bed (sludge blanket) of granulated sludge (granule) formed by granulating substances is formed. Since it is possible to retain a high concentration of microorganisms in the reaction tank, it is a method capable of efficiently decomposing and removing the organic matter in the organic waste water by high-load treatment. Compared with the aerobic activated sludge method, the UASB method has an organic matter load of 10 per volume of the reaction tank.
It has a high value of kg-CODcr / m 3 / day or more, does not require energy for aeration, can recover energy as methane gas, and has an excellent feature that the amount of excess sludge generated is small.
【0003】一方、アンモニア性窒素及び正リン酸が共
存する系内に、マグネシウム塩が存在すると、アルカリ
性条件ではMgNH4 PO4 ・6H2 O(リン酸アンモ
ニウムマグネシウム(MAP))の結晶が生成すること
は良く知られている。この反応は、通常、アルカリ側で
NH4 −N>100mg/lの条件で進行すると言われ
ている。
On the other hand, when a magnesium salt is present in the system in which ammoniacal nitrogen and orthophosphoric acid coexist, MgNH 4 PO 4 .6H 2 O (magnesium ammonium phosphate (MAP)) crystals are formed under alkaline conditions. It is well known. It is said that this reaction usually proceeds on the alkaline side under the condition of NH 4 —N> 100 mg / l.
【0004】[0004]
【発明が解決しようとする課題】UASB法において、
余剰汚泥発生量が少ないという特長は、逆に、排水中の
栄養塩類を菌体中に取り込む量が少ないということを意
味し、このため、UASB法では、原水中に含まれる窒
素やリンが、菌体に取り込まれて除去されるという効果
は期待できない。このようなことから、UASB法によ
る処理のみで、有機物と共に窒素やリンを除去すること
は困難であり、閉鎖性水域の富栄養化現象となる窒素や
リンを除去するためには、硝化/脱窒や凝集沈澱などの
後処理プロセスを組み合わせる必要がある。
DISCLOSURE OF THE INVENTION In the UASB method,
On the contrary, the feature that the amount of excess sludge generated is small means that the amount of nutrient salts in the wastewater taken into the bacterial cells is small. Therefore, in the UASB method, nitrogen and phosphorus contained in the raw water are The effect of being taken up by the bacterial cells and removed cannot be expected. From this, it is difficult to remove nitrogen and phosphorus together with organic matter only by the treatment by the UASB method, and in order to remove nitrogen and phosphorus which are eutrophication phenomena in closed water areas, nitrification / denitration is required. It is necessary to combine post-treatment processes such as nitrification and coagulation precipitation.
【0005】ところで、UASB法の操作上の問題点と
して、グラニュール汚泥の浮上、流出が挙げられる。グ
ラニュール汚泥の浮上、流出は、処理水質の悪化とUA
SB反応槽内の菌体量の減少をもたらすため、これを防
止する技術が求められている。
By the way, as a problem in the operation of the UASB method, floating and outflow of granule sludge can be mentioned. Floating and outflow of granule sludge causes deterioration of treated water quality and UA.
Since the amount of bacterial cells in the SB reaction tank is reduced, a technique for preventing this is required.
【0006】前記MAPの生成反応を、UASB反応槽
内で生起させ、グラニュール汚泥中にMAPを析出させ
ることができるならば、UASB法による有機物と窒素
及びリンの同時除去が可能となる上に、汚泥中の無機分
が相対的に増加するため汚泥の沈降性を向上させること
ができる。
[0006] If the MAP formation reaction can be caused to occur in the UASB reaction tank and MAP can be precipitated in the granulated sludge, the organic substances and nitrogen and phosphorus can be simultaneously removed by the UASB method. Since the inorganic content in the sludge relatively increases, the sedimentation property of the sludge can be improved.
【0007】このようなことから、pHをアルカリ側と
すると共に、マグネシウム塩を添加した原水をUASB
法により嫌気性処理することも検討されているが、この
場合には、MAPの結晶はグラニュール汚泥中のみなら
ず、流速の大きい配管内やポンプ内にもスケールとなっ
て析出し、配管閉塞、ポンプの作動不良などの問題を引
き起こす。特に、UASB反応槽内部にまで延びる原水
供給配管にスケールが付着した場合には、スケール除去
は極めて困難である。
From the above, the pH is set to the alkaline side and the raw water containing magnesium salt is added to the UASB.
Although anaerobic treatment by the method is also considered, in this case, MAP crystals are deposited not only in the granulated sludge but also in the pipe with a high flow rate and in the pump as a scale, resulting in blockage of the pipe. , Causing problems such as pump malfunction. Particularly, when the scale adheres to the raw water supply pipe extending to the inside of the UASB reaction tank, it is extremely difficult to remove the scale.
【0008】本発明は上記従来の問題点を解決し、スケ
ーリングを引き起こすことなくMAPを析出させること
により、UASB法により有機物と窒素及びリンの同時
除去を行うと共に、グラニュール汚泥の浮上、流出を防
止する嫌気性処理法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems and precipitates MAP without causing scaling, thereby simultaneously removing organic matter, nitrogen and phosphorus by the UASB method, and floating and outflowing of granule sludge. It aims at providing the anaerobic processing method which prevents.
【0009】[0009]
【課題を解決するための手段】本発明の嫌気性処理法
は、窒素及びリンを含有する有機性排水を酸生成槽で処
理した後、UASB型メタン生成槽で処理する方法にお
いて、酸生成槽又はその流出水にマグネシウム塩を添加
すると共に、撹拌しながらpHを7〜9に調整した後、
UASB型メタン生成槽(以下「UASB反応槽」と称
す。)に通水することを特徴とする。
The anaerobic treatment method of the present invention is a method of treating organic wastewater containing nitrogen and phosphorus in an acid generation tank and then in a UASB type methane generation tank. Alternatively, after adding magnesium salt to the outflow water and adjusting the pH to 7 to 9 with stirring,
Water is passed through a UASB-type methane production tank (hereinafter referred to as "UASB reaction tank").
【0010】以下、図面を参照して本発明の嫌気性処理
法を詳細に説明する。
Hereinafter, the anaerobic treatment method of the present invention will be described in detail with reference to the drawings.
【0011】図1は本発明の嫌気性処理法の一実施例方
法を説明する系統図である。
FIG. 1 is a system diagram for explaining a method of one embodiment of the anaerobic treatment method of the present invention.
【0012】図1に示す方法において、焼酎廃液、ウイ
スキー蒸留廃液、ビール仕込排水などの原水を、配管1
1よりまず酸生成槽1に導入し、水中の糖、タンパクな
どを、乳酸、プロピオン酸、ラク酸、酢酸などの揮発性
低級脂肪酸に分解する。即ち、酸生成槽1では、酸生成
細菌が浮遊状態で又は担体に固定された状態で存在して
おり、低級脂肪酸への分解反応が行われる。
In the method shown in FIG. 1, raw water such as shochu waste liquid, whiskey distilling waste liquid, beer charging waste water, etc. is supplied to a pipe 1
First, it is introduced into the acid generation tank 1 from 1, and sugars, proteins and the like in water are decomposed into volatile lower fatty acids such as lactic acid, propionic acid, lactic acid and acetic acid. That is, in the acid production tank 1, the acid production bacteria exist in a floating state or in a state of being fixed to a carrier, and a decomposition reaction into lower fatty acids is performed.
【0013】本実施例においては、この酸生成槽1に、
後段のUASB反応槽2の処理水の一部をポンプP1
備える配管12より循環すると共に、マグネシウム(M
g)塩を配管13より添加する。
In this embodiment, the acid production tank 1 is
A portion of the treated water in the latter-stage UASB reaction tank 2 is circulated through a pipe 12 equipped with a pump P 1 and magnesium (M
g) Add salt through pipe 13.
【0014】このように、UASB反応槽2の処理水の
一部を循環することにより、酸生成槽1における酸生成
による極端なpH低下を防止して、酸生成速度を高める
と共に、後段のMAP生成槽2において、pH調整のた
めのアルカリ添加量の低減を図ることができる。
By circulating a portion of the treated water in the UASB reaction tank 2 in this manner, an extreme decrease in pH due to acid generation in the acid generation tank 1 is prevented, the acid generation rate is increased, and the MAP at the latter stage is In the production tank 2, the amount of alkali added for pH adjustment can be reduced.
【0015】この酸生成槽1内は処理水の循環水量や原
水濃度等によっても異なるが、通常pHが4〜7、好ま
しくは4.8〜6.5の弱酸性状態になっており、この
中でのMAPの析出はない。酸生成槽1には酸生成速度
を高めるために必要に応じてアルカリを添加することも
できるが、pHはあくまでも上記範囲とするのが好まし
い。
The inside of the acid production tank 1 is in a weakly acidic state of usually pH 4 to 7, preferably 4.8 to 6.5, although it varies depending on the circulating water amount of the treated water and the concentration of raw water. There is no MAP precipitation inside. An alkali may be added to the acid production tank 1 as needed in order to increase the acid production rate, but it is preferable that the pH is in the above range.
【0016】酸生成槽1に添加するMg塩としては、水
酸化マグネシウム(Mg(OH)2)、酸化マグネシウ
ム(MgO)、塩化マグネシウム(MgCl2 )、硫酸
マグネシウム(MgSO4 )等を用いることができ、こ
れらのうち、アルカリ剤としてpH調整にも有効である
ことからMg(OH)2 を用いても良く、また、系内の
pHが6.5を超えるような場合には、MgCl2 等の
酸性塩を添加する。
As the Mg salt added to the acid generator 1, magnesium hydroxide (Mg (OH) 2 ), magnesium oxide (MgO), magnesium chloride (MgCl 2 ), magnesium sulfate (MgSO 4 ), etc. may be used. Of these, Mg (OH) 2 may be used as an alkali agent because it is also effective for pH adjustment, and when the pH in the system exceeds 6.5, MgCl 2 etc. Acid salt is added.
【0017】Mg塩の添加割合は、除去すべきリン、即
ち、原水中のリンの1モル倍以上、好ましくは1.1〜
1.5モル倍とする。
The addition ratio of the Mg salt is 1 mol times or more of the phosphorus to be removed, that is, phosphorus in the raw water, preferably 1.1 to.
1.5 mol times.
【0018】酸生成槽1の流出水は、次いで、配管14
よりMAP生成槽2に送給され、槽内において撹拌され
る。撹拌は機械的撹拌でも良いが散気管15から空気又
は窒素を曝気して撹拌するのが好ましい。なお、このよ
うに曝気することにより溶存炭酸ガスを除去することが
できる。
The effluent water of the acid production tank 1 is then supplied to the piping 14
It is fed to the MAP production tank 2 and stirred in the tank. The stirring may be mechanical stirring, but it is preferable to aerate air or nitrogen from the air diffusing tube 15 and stir. Note that the dissolved carbon dioxide gas can be removed by aeration in this way.
【0019】このMAP生成槽2に配管16より必要に
応じて水酸化ナトリウム(NaOH)等のアルカリが添
加されることにより、pHが7〜9好ましくは8〜8.
5に調整される。このMAP生成槽2でpHを7〜9好
ましくは8〜8.5に調整することにより、MAP生成
槽2内で系内のPO4 −P,NH4 −N及びMg2+が反
応してMAPの微粒子が析出する。
By adding an alkali such as sodium hydroxide (NaOH) to the MAP producing tank 2 through the pipe 16 as needed, the pH is 7-9, preferably 8-8.
Adjusted to 5. By adjusting the pH in the MAP production tank 2 to 7 to 9, preferably 8 to 8.5, PO 4 -P, NH 4 -N and Mg 2+ in the system react in the MAP production tank 2. Fine particles of MAP are deposited.
【0020】この調整pHが7未満ではMAPの析出効
率が悪く、逆に、調整pHが9を超えると、後段のUA
SB反応槽3におけるメタン生成効率が低下する。
If the adjusted pH is less than 7, the deposition efficiency of MAP is poor, and conversely, if the adjusted pH exceeds 9, the UA in the latter stage is
The methane production efficiency in the SB reaction tank 3 decreases.
【0021】このMAP生成槽2におけるpH調整と撹
拌により、スケーリングを引き起こすことなく、MAP
粒子が効率的に析出するようになる。特に曝気で溶存炭
酸ガスをストリッピングして除去することにより、系内
のpHが上昇し、pH調整のために添加するアルカリ量
を少なくすることができる。更に、後段のUASB反応
槽3におけるpHの過上昇を防止することができる。
By adjusting the pH and stirring in the MAP production tank 2, MAP can be produced without causing scaling.
The particles are efficiently deposited. In particular, by stripping and removing the dissolved carbon dioxide gas by aeration, the pH in the system rises, and the amount of alkali added for pH adjustment can be reduced. Furthermore, it is possible to prevent an excessive increase in pH in the UASB reaction tank 3 in the latter stage.
【0022】MAP生成槽2に添加するアルカリとして
は、NaOHの他、水酸化カルシウム(Ca(OH)
2 )等も使用可能であるが、Mg(OH)2 を添加して
pH調整とMg塩の添加とを同時に行うこともできる。
即ち、この場合においては、Mg塩の添加は酸生成槽1
ではなくMAP生成槽2で行えば良い。
Alkali added to the MAP production tank 2 includes, in addition to NaOH, calcium hydroxide (Ca (OH) 2
2 ) and the like can also be used, but it is also possible to add Mg (OH) 2 to adjust the pH and add the Mg salt at the same time.
That is, in this case, addition of Mg salt is
Instead, it may be performed in the MAP production tank 2.
【0023】MAP生成槽2においては、曝気による撹
拌とpH調整により粒径数十μm〜0.3mm程度のM
AP粒子が生成する。このようなMAP粒子の生成のた
めのMAP生成槽2の滞留時間としては10〜60分程
度で十分である。なお、MAP生成槽2における曝気量
は3〜10Nm3 /m3 /Hr程度とするのが好まし
い。
In the MAP production tank 2, M having a particle size of several tens of μm to 0.3 mm is agitated by aeration and pH adjustment.
AP particles are generated. The residence time in the MAP production tank 2 for producing such MAP particles is about 10 to 60 minutes. The amount of aeration in the MAP production tank 2 is preferably about 3 to 10 Nm 3 / m 3 / Hr.
【0024】MAP生成槽2の流出液は次いでポンプP
2 を備える配管17よりUASB反応槽3に送給され
る。UASB反応槽3においては、流入したMAP粒子
の表面に嫌気性生物膜が形成され、それが成長すること
によりグラニュール汚泥が成長し、有機酸からのメタン
生成反応が円滑に進行する。即ち、本発明ではMAP粒
子がグラニュール汚泥の核として機能する。
The effluent of the MAP production tank 2 is then pump P
It is fed to the UASB reaction tank 3 through a pipe 17 provided with 2 . In the UASB reaction tank 3, an anaerobic biofilm is formed on the surface of the inflowing MAP particles, and the growth of the anaerobic biofilm causes the growth of granule sludge and the smooth progress of the methane production reaction from the organic acid. That is, in the present invention, the MAP particles function as the core of the granule sludge.
【0025】これにより、メタン生成反応による有機物
の分解と共に、UASB反応槽3内のグラニュール汚泥
内に、原水中のリン及び窒素がMAPとして固定化さ
れ、有機物、リン及び窒素が除去された処理水は、その
一部が配管12より酸生成槽1に循環され、残部は配管
18より系外へ排出される。
[0025] As a result, phosphorus and nitrogen in the raw water are fixed as MAP in the granule sludge in the UASB reaction tank 3 along with the decomposition of the organic matter by the methane production reaction, and the organic matter, phosphorus and nitrogen are removed. A part of the water is circulated through the pipe 12 to the acid production tank 1, and the rest is discharged out of the system through the pipe 18.
【0026】なお、生成したMAP含有グラニュール汚
泥は、MAP析出により比重が増大することにより、沈
降性が高くなり、UASB反応槽3内での浮上及びUA
SB反応槽3からの流出が防止される。余剰汚泥は、配
管19より抜き出される。
The MAP-containing granulated sludge thus produced has a higher settling property due to an increase in the specific gravity due to the MAP precipitation, and the floating in the UASB reaction tank 3 and the UA.
Outflow from the SB reaction tank 3 is prevented. Excess sludge is extracted from the pipe 19.
【0027】図1に示す方法は、本発明の一実施例方法
を示すものであって、本発明はその要旨を超えない限
り、何ら図示の方法に限定されるものではない。
The method shown in FIG. 1 shows an embodiment method of the present invention, and the present invention is not limited to the illustrated method as long as the gist thereof is not exceeded.
【0028】例えば、UASB反応槽3の処理水の一部
を循環する場合、この循環は図1に示す如く、酸生成槽
1の原水導入配管11に循環するものに限られず、酸生
成槽1に直接循環しても良い。また、酸生成槽1の流出
水配管14、更にはMAP生成槽2に循環しても良く、
いずれの場合も同様の効果を得ることができる。
For example, when a part of the treated water in the UASB reaction tank 3 is circulated, the circulation is not limited to the circulation in the raw water introducing pipe 11 of the acid generation tank 1 as shown in FIG. You may circulate directly to. Further, it may be circulated to the outflow water pipe 14 of the acid production tank 1 and further to the MAP production tank 2,
In any case, the same effect can be obtained.
【0029】Mg塩の添加についても、酸生成槽1に添
加する他、原水導入配管11、酸生成槽1の流出水配管
14、或いはMAP生成槽2に添加しても良い。
Regarding the addition of the Mg salt, in addition to the addition to the acid production tank 1, the raw water introduction pipe 11, the outflow water pipe 14 of the acid production tank 1 or the MAP production tank 2 may be added.
【0030】また、図1に示す如く、MAP生成槽で曝
気及びpH調整を行わずに、曝気槽とpH調整槽とを各
々設け、前段の曝気槽で曝気した後、後段のpH調整槽
でアルカリを添加して撹拌しながらpH調整することも
できる。この場合には、曝気槽におけるMAP析出によ
る散気管の目詰りを有効に防止することができる。
Further, as shown in FIG. 1, without performing aeration and pH adjustment in the MAP production tank, an aeration tank and a pH adjustment tank are provided respectively, and after aeration is performed in the aeration tank in the previous stage, the pH adjustment tank in the subsequent stage is used. The pH can be adjusted by adding an alkali and stirring. In this case, it is possible to effectively prevent clogging of the diffuser pipe due to MAP deposition in the aeration tank.
【0031】なお、本発明の方法においては、生物反応
とMAPの析出による窒素及びリンの除去を共存させる
必要上、生物の増殖量とMAP生成量をある程度の範囲
でバランスさせる必要がある。例えば、生成するMAP
が生物増殖量よりもはるかに多ければ、微生物のSRT
が維持できなくなり、生物処理が不可能となる。従っ
て、この生物反応とMAPの生成とのバランスの面か
ら、本発明の方法は、実用的には、CODcr濃度に対し
て2%程度以下のT−P濃度の原水に適用するのが有効
である。
In the method of the present invention, the biological reaction and the removal of nitrogen and phosphorus by the precipitation of MAP need to be coexistent, and therefore the growth amount of the organism and the MAP production amount must be balanced within a certain range. For example, MAP to generate
Is much higher than the amount of organism growth, SRT of microorganisms
Can no longer be maintained, making biological treatment impossible. Therefore, from the viewpoint of the balance between this biological reaction and the formation of MAP, it is effective that the method of the present invention is practically applied to raw water having a T-P concentration of about 2% or less with respect to the COD cr concentration. Is.
【0032】[0032]
【作用】本発明においては、UASB反応槽の前段でM
g塩を添加すると共にpH調整を行ってMAP粒子を析
出させる。このMAP粒子の析出に当り、溶存炭酸ガス
を除去することにより、pH調整のために必要なアルカ
リ添加量の低減を図ることができ、また、この炭酸ガス
の除去の際のストリッピングによる撹拌作用で、スケー
リングを引き起こすことなくMAP粒子を効率的に析出
させることが可能となる。しかも、後段のUASB反応
槽におけるpHの過上昇によるメタン生成効率の低下を
防止することもできる。因みに、ストリッピングを行わ
ずにアルカリのみでpH調整すると、後段のUASB反
応槽において有機酸がメタンに分解される際にpHが上
昇し、メタン生成細菌の適する上限pHの8.5を超え
ることがあるため、酸でpHを下げる必要がでてくる。
In the present invention, M is added before the UASB reactor.
g salt is added and pH is adjusted to precipitate MAP particles. By removing the dissolved carbon dioxide gas during the precipitation of the MAP particles, the amount of alkali added necessary for pH adjustment can be reduced, and the stirring action by stripping during the removal of the carbon dioxide gas can be achieved. Thus, it becomes possible to efficiently deposit MAP particles without causing scaling. Moreover, it is possible to prevent a decrease in methane production efficiency due to an excessive increase in pH in the UASB reaction tank in the subsequent stage. By the way, if the pH is adjusted only with alkali without stripping, the pH will rise when the organic acid is decomposed into methane in the UASB reaction tank in the latter stage, and it will exceed the suitable upper limit pH of 8.5 for methanogenic bacteria. Therefore, it is necessary to lower the pH with acid.
【0033】このようにしてMAP粒子が析出した水が
UASB反応槽に流入すると、UASB反応槽において
は、このMAP粒子を核としてグラニュール汚泥が成長
する。このMAP粒子はUASB反応槽内に継続的に供
給されるために、安定にグラニュール汚泥も増加し、M
APのグラニュール汚泥内への取り込みによるN、P除
去のみならず、メタン生成効率の向上という効果も奏さ
れる。
When the water in which the MAP particles have been deposited as described above flows into the UASB reaction tank, granule sludge grows in the UASB reaction tank with the MAP particles as the core. Since the MAP particles are continuously supplied into the UASB reactor, the amount of granulated sludge also increases, and
Not only the removal of N and P by the incorporation of AP into the granulated sludge but also the effect of improving the methane production efficiency is exhibited.
【0034】しかも、グラニュール汚泥はMAPを取り
込んでその比重が増大することにより沈降性が高めら
れ、UASB反応槽内での浮上及びUASB反応槽から
の流出が効果的に防止される。
Moreover, the granular sludge takes in MAP and its specific gravity increases, so that the sedimentation property is enhanced, and the floating in the UASB reaction tank and the outflow from the UASB reaction tank are effectively prevented.
【0035】[0035]
【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below.
【0036】実施例1 図1に示す方法に従って、下記基質を含む下記水質の原
水の処理を行った。
Example 1 According to the method shown in FIG. 1, raw water of the following water quality containing the following substrates was treated.
【0037】原水(mg/l) グルコース: 15000 エタノール: 5000 酵母エキス: 600 NH4 −N: 400 PO4 −P: 150 CODcr :約22000 酸生成槽、MAP生成槽及びUASB反応槽の仕様並び
に処理条件は下記の通りとし、ビール工場排水を処理し
ているUASB反応槽より3リットル(125g−VS
S)の種汚泥をUASB反応槽に植種し、酸生成槽にM
g塩としてMgCl2 ・6H2 Oを1280mg/l
(Mg/P=1.3モル比)添加すると共にMAP生成
槽で5リットル/リットル/Hrの曝気を行った(MA
P生成槽滞留時間17分)。酸生成槽のpHは6.0〜
6.2であり、MAP生成槽のpHは7.4〜7.6と
なるように、25重量%のNaOH水溶液を添加して、
3ケ月間連続運転を行った。
Raw water (mg / l) Glucose: 15000 Ethanol: 5000 Yeast extract: 600 NH 4 -N: 400 PO 4 -P: 150 COD cr : about 22000 Specifications of acid production tank, MAP production tank and UASB reaction tank and The treatment conditions are as follows: 3 liters (125 g-VS from the UASB reactor that treats brewery wastewater)
S) seed sludge is planted in the UASB reaction tank, and M is added to the acid generation tank.
MgCl 2 .6H 2 O as g salt 1280 mg / l
(Mg / P = 1.3 molar ratio) and aeration of 5 liter / liter / Hr was performed in the MAP production tank (MA
P production tank residence time 17 minutes). The pH of the acid generator is 6.0
The pH of the MAP production tank is 6.2, and a 25 wt% NaOH aqueous solution is added so that the pH of the MAP production tank is 7.4 to 7.6.
Continuous operation was performed for 3 months.
【0038】処理条件等 酸生成槽:容量2.5リットル(直径10cm×高さ3
2cm) MAP生成槽:容量0.5リットル(直径5cm×高さ
25cm) UASB反応槽:容量9リットル(直径10cm×高さ
1.2m) 温度:30℃(30℃の恒温室内にて実施) 通液量:6.0〜6.2リットル/日 CODcr負荷:14.3〜15.1kg−CODcr/m
3 /日 処理水循環量:原水量の10倍 ポンプ:ペリスタルティックポンプ CODcr除去率の推移を図2に示す。また、UASB反
応槽流入水のNH4 −N濃度及びPO4 −P濃度と、U
ASB反応槽流出水(処理水)のNH4 −N濃度及びP
4 −P濃度の推移を図3に示す。
Treatment conditions, etc. Acid generating tank: capacity 2.5 liters (diameter 10 cm x height 3
2 cm) MAP production tank: 0.5 liter capacity (5 cm diameter x 25 cm height) UASB reaction tank: 9 liter capacity (10 cm diameter x 1.2 m height) Temperature: 30 ° C (conducted in a thermostatic chamber at 30 ° C) Flow rate: 6.0 to 6.2 liters / day COD cr load: 14.3 to 15.1 kg-COD cr / m
3 / day Circulation amount of treated water: 10 times the amount of raw water Pump: Peristaltic pump Figure 2 shows the transition of COD cr removal rate. In addition, the NH 4 -N concentration and PO 4 -P concentration of the inflow water of the UASB reaction tank,
NH 4 -N concentration and P of outflow water (treated water) of ASB reactor
The change in O 4 -P concentration is shown in FIG.
【0039】また、運転開始時と3ケ月連続運転後のU
ASB反応槽の汚泥濃度、汚泥床高さ及び汚泥保持量を
表1に示す。
U at the start of operation and after three months of continuous operation
Table 1 shows the sludge concentration, sludge bed height and sludge retention amount in the ASB reaction tank.
【0040】[0040]
【表1】 [Table 1]
【0041】図2,3及び表1より次のことが明らかで
ある。
The following is clear from FIGS. 2 and 3 and Table 1.
【0042】即ち、本実施例において、UASB反応槽
における有機物のメタンへの分解は極めて順調で、溶解
性CODcr除去率は概ね95%程度であった。また、P
4−Pも70%程度除去され、それにほぼ相当するN
4 −Nが除去された。
That is, in this example, the decomposition of organic matter into methane in the UASB reaction tank was extremely smooth, and the soluble COD cr removal rate was about 95%. Also, P
O 4 -P is also removed by about 70%, and N which is almost equivalent to it
H 4 -N was removed.
【0043】また、MAPを核として次々にグラニュー
ル汚泥が生成されたため、3ケ月連続運転後には汚泥濃
度(VSS)は実験開始時のほぼ1.5倍まで増加し、
しかも、グラニュール汚泥中にMAPが生成するため、
汚泥のVSS/SS比は減少して、沈降性が増した。
Further, since the granule sludge was produced one after another with MAP as the core, the sludge concentration (VSS) increased to almost 1.5 times that at the start of the experiment after the continuous operation for three months,
Moreover, since MAP is generated in the granulated sludge,
The VSS / SS ratio of the sludge decreased and the sedimentation property increased.
【0044】なお、運転期間中は汚泥引き抜きを行って
いないが、実装置では1〜3ケ月に一度程度余剰汚泥と
してグラニュール汚泥を引き抜く必要がある。ただし、
この余剰汚泥は長期間保存可能であるため、他の装置の
立ち上げ用種汚泥として或いは肥料等として有効利用す
ることができる。
Although the sludge is not removed during the operation period, it is necessary to extract the granule sludge as an excess sludge about once every 1 to 3 months in the actual device. However,
Since this excess sludge can be stored for a long period of time, it can be effectively used as seed sludge for starting up other devices or as fertilizer.
【0045】比較例1 MAP生成槽において曝気を行わなかったこと以外は、
実施例1と同様にして運転を行った。
Comparative Example 1 Except that no aeration was performed in the MAP production tank,
The operation was performed in the same manner as in Example 1.
【0046】その結果、pH調整のためのアルカリ使用
量は実施例1の場合の約1.6倍となり、しかも、UA
SB反応槽におけるpH上昇で溶解性CODcrの除去率
が92%に低下した。
As a result, the amount of alkali used for pH adjustment was about 1.6 times that in Example 1, and UA
The removal rate of soluble COD cr decreased to 92% due to the increase in pH in the SB reactor.
【0047】[0047]
【発明の効果】以上詳述した通り、本発明の嫌気性処理
法によれば、焼酎廃液、ウイスキー蒸留廃液、ビール仕
込排水などの、窒素及びリンの栄養塩類を含む高濃度有
機性排水をUASB嫌気処理で効率的に処理して、有機
物と共に、窒素及びリンの同時除去を可能とすることが
でき、従って、後段に凝集処理、硝化/脱窒などのプロ
セスを付加することが不要であるか又は付加しても小型
の装置で良く、処理効率及び処理コストが大幅に改善さ
れる。
As described above in detail, according to the anaerobic treatment method of the present invention, high concentration organic waste water containing nitrogen and phosphorus nutrients such as shochu waste liquid, whiskey distillation waste liquid, beer charging waste water, etc. Can it be efficiently treated by anaerobic treatment to enable simultaneous removal of nitrogen and phosphorus together with organic substances, so is it unnecessary to add processes such as coagulation treatment and nitrification / denitrification in the subsequent stage? Alternatively, even if added, a small device is sufficient, and the processing efficiency and the processing cost are significantly improved.
【0048】更に、グラニュール汚泥の浮上、流出を防
止して、UASB反応槽の菌体保持量を著しく高く維持
することもできることから、高負荷処理による効率的な
処理が可能である。
Furthermore, since floating and outflow of granule sludge can be prevented and the amount of bacterial cells retained in the UASB reaction tank can be maintained at a remarkably high level, efficient treatment by high load treatment is possible.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の嫌気性処理法の一実施例方法を説明す
る系統図である。
FIG. 1 is a system diagram illustrating a method of an embodiment of an anaerobic treatment method of the present invention.
【図2】実施例1におけるCODcr除去率の推移を示す
グラフである。
FIG. 2 is a graph showing changes in COD cr removal rate in Example 1.
【図3】実施例1におけるUASB反応槽流入水のNH
4 −N濃度及びPO4 −P濃度と、UASB反応槽流出
水(処理水)のNH4 −N濃度及びPO4 −P濃度の推
移を示すグラフである。
FIG. 3 NH of UASB reaction tank inflow water in Example 1
4 and -N concentration and PO 4 -P concentration is a graph showing a change in the NH 4 -N concentration and PO 4 -P concentration of UASB reactor effluent (treated water).
【符号の説明】[Explanation of symbols]
1 酸生成槽 2 MAP生成槽 3 UASB反応槽 1 acid production tank 2 MAP production tank 3 UASB reaction tank

Claims (1)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 窒素及びリンを含有する有機性排水を酸
    生成槽で処理した後、UASB型メタン生成槽で処理す
    る方法において、 酸生成槽又はその流出水にマグネシウム塩を添加すると
    共に、撹拌しながらpHを7〜9に調整した後、UAS
    B型メタン生成槽に通水することを特徴とする嫌気性処
    理法。
    1. A method of treating organic wastewater containing nitrogen and phosphorus in an acid generating tank and then treating it in a UASB type methane generating tank, wherein magnesium salt is added to the acid generating tank or its effluent and stirring is performed. While adjusting the pH to 7-9, UAS
    An anaerobic treatment method characterized by passing water through a B-type methane production tank.
JP30073794A 1994-12-05 1994-12-05 Anaerobic treatment method Expired - Fee Related JP3387244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30073794A JP3387244B2 (en) 1994-12-05 1994-12-05 Anaerobic treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30073794A JP3387244B2 (en) 1994-12-05 1994-12-05 Anaerobic treatment method

Publications (2)

Publication Number Publication Date
JPH08155485A true JPH08155485A (en) 1996-06-18
JP3387244B2 JP3387244B2 (en) 2003-03-17

Family

ID=17888502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30073794A Expired - Fee Related JP3387244B2 (en) 1994-12-05 1994-12-05 Anaerobic treatment method

Country Status (1)

Country Link
JP (1) JP3387244B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118687A (en) * 1996-10-22 1998-05-12 Unitika Ltd Treatment method of organic wastewater
JPH1110194A (en) * 1997-06-23 1999-01-19 Kurita Water Ind Ltd Wastewater treatment device
JP2002336885A (en) * 2001-05-21 2002-11-26 Kurita Water Ind Ltd Method for aerobic treatment of waste water
WO2005005328A1 (en) 2003-07-14 2005-01-20 Ebara Corporation Method of utilizing recovered magnesium ammonium phosphate and apparatus therefor
JP2008303074A (en) * 2007-06-05 2008-12-18 Jfe Engineering Kk Apparatus and method for producing ammonium magnesium phosphate from underground brine water
CN102040280A (en) * 2010-12-10 2011-05-04 马翠忠 Pulse ejection internal-circulation anaerobic reactor
DE102008050349B4 (en) * 2007-10-02 2013-01-17 Remondis Aqua Gmbh & Co. Kg Process for the precipitation of phosphorus from phosphate-contaminated wastewater

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118687A (en) * 1996-10-22 1998-05-12 Unitika Ltd Treatment method of organic wastewater
JPH1110194A (en) * 1997-06-23 1999-01-19 Kurita Water Ind Ltd Wastewater treatment device
JP2002336885A (en) * 2001-05-21 2002-11-26 Kurita Water Ind Ltd Method for aerobic treatment of waste water
WO2005005328A1 (en) 2003-07-14 2005-01-20 Ebara Corporation Method of utilizing recovered magnesium ammonium phosphate and apparatus therefor
US7318896B2 (en) 2003-07-14 2008-01-15 Ebara Corporation Method and apparatus for utilization of recovered magnesium ammonium phosphate
JP2008303074A (en) * 2007-06-05 2008-12-18 Jfe Engineering Kk Apparatus and method for producing ammonium magnesium phosphate from underground brine water
DE102008050349B4 (en) * 2007-10-02 2013-01-17 Remondis Aqua Gmbh & Co. Kg Process for the precipitation of phosphorus from phosphate-contaminated wastewater
CN102040280A (en) * 2010-12-10 2011-05-04 马翠忠 Pulse ejection internal-circulation anaerobic reactor

Also Published As

Publication number Publication date
JP3387244B2 (en) 2003-03-17

Similar Documents

Publication Publication Date Title
US5098567A (en) Waste water treating process
JP2812640B2 (en) Wastewater treatment device and wastewater treatment method
US5480548A (en) Wastewater biological phosphorus removal process
EP2496530B1 (en) Method for reducing nutrients from wastewater
JP4681297B2 (en) Method of treating wastewater with sludge granules
US5702604A (en) Apparatus and method for waste water treatment utilizing granular sludge
EP1806325B1 (en) Method of treating nitrogen-containing liquid
US5342522A (en) Method for the treatment of sewage
US6562237B1 (en) Biological nutrient removal using the olaopa process
AU656814B2 (en) Method and system for biologically removing nitrogen from wastewater
US5650069A (en) Dual-stage biological process for removing nitrogen from wastewater
US6406629B1 (en) Biological process for removing phosphorous involving a membrane filter
CN1203011C (en) Process for the treatment of waste water containing ammonia
KR100459986B1 (en) Advanced Step Aeration with Media(ASA, SFC-Biofilter)
Stratful et al. Biological phosphorus removal, its role in phosphorus recycling
US7033503B2 (en) Municipal wastewater treatment apparatus and process with a continuous feed and cyclic aeration
US5232583A (en) Installation for processing manure, fermented manure and kjeldahl-n containing waste water
US5407566A (en) Apparatus for disposing of waste water
US5853589A (en) Advanced biological phosphorus removal using a series of sequencing batch reactors
JP4310196B2 (en) Organic drainage and sludge treatment method and treatment equipment
US6485645B1 (en) Biological process for removing phosphorus involving a membrane filter
US5182021A (en) Biological process for enhanced removal of ammonia, nitrite, nitrate, and phosphate from wastewater
US6712970B1 (en) Sewage treatment process with phosphorus removal
US6616844B2 (en) Method for treating high-concentrated organic wastewater using bio-maker
US8894857B2 (en) Methods and systems for treating wastewater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees