JPH08141592A - Anaerobic treatment method - Google Patents
Anaerobic treatment methodInfo
- Publication number
- JPH08141592A JPH08141592A JP29129794A JP29129794A JPH08141592A JP H08141592 A JPH08141592 A JP H08141592A JP 29129794 A JP29129794 A JP 29129794A JP 29129794 A JP29129794 A JP 29129794A JP H08141592 A JPH08141592 A JP H08141592A
- Authority
- JP
- Japan
- Prior art keywords
- water
- tank
- acid
- uasb
- reaction tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は嫌気性処理法に係り、特
に、焼酎廃液、ウイスキー蒸留廃液、ビール仕込排水な
どの、窒素及びリンの栄養塩類を含む高濃度有機性排水
をUASB嫌気処理で効率的に処理して、有機物と共
に、窒素及びリンの同時除去も可能とする嫌気性処理法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anaerobic treatment method, and more particularly, to UASB anaerobic treatment of high-concentration organic wastewater containing nutrient salts of nitrogen and phosphorus, such as shochu liquor, whiskey distillation effluent, and beer-charged wastewater. The present invention relates to an anaerobic treatment method capable of efficiently treating and simultaneously removing nitrogen and phosphorus together with organic substances.
【0002】[0002]
【従来の技術】UASB法、即ち、上向流嫌気性汚泥床
法(Upflow Anaerobic Sludge Blanket Process)は、嫌
気性菌(メタン生成細菌)を、付着担体を用いることな
く自己造粒又は核となる物質に造粒させてなる造粒汚泥
(グラニュール)の汚泥床(スラッジブランケット)を
形成した反応槽(UASB型メタン生成槽)に、原水を
上向流で通水して処理する方法であり、反応槽中に高濃
度の微生物を保持することが可能であることから、高負
荷処理にて、有機性排水中の有機物を効率良く分解除去
することができる方法である。UASB法は、好気性活
性汚泥法に比べて、反応槽容積当りの有機物負荷が10
kg−CODcr/m3 /day以上と高く、曝気のため
のエネルギーが不要で、メタンガスとしてエネルギーの
回収が可能である上に、余剰汚泥発生量が少ないといっ
た優れた特長を備えている。2. Description of the Related Art The UASB method, that is, the Upflow Anaerobic Sludge Blanket Process, makes anaerobic bacteria (methanogenic bacteria) self-granulate or nucleate without using an adherent carrier. It is a method in which raw water is passed through an upward flow to a reaction tank (UASB-type methane production tank) in which a sludge bed (sludge blanket) of granulated sludge (granule) formed by granulating substances is formed. Since it is possible to retain a high concentration of microorganisms in the reaction tank, it is a method capable of efficiently decomposing and removing the organic matter in the organic waste water by high-load treatment. Compared with the aerobic activated sludge method, the UASB method has an organic matter load of 10 per volume of the reaction tank.
It has a high value of kg-COD cr / m 3 / day or more, does not require energy for aeration, can recover energy as methane gas, and has an excellent feature that the amount of excess sludge generated is small.
【0003】一方、アンモニア性窒素及び正リン酸が共
存する系内に、マグネシウム塩が存在すると、アルカリ
性条件ではMgNH4 PO4 ・6H2 O(リン酸アンモ
ニウムマグネシウム(MAP))の結晶が生成すること
は良く知られている。この反応は、通常、アルカリ側で
NH4 −N>100mg/lの条件で進行すると言われ
ている。On the other hand, when a magnesium salt is present in the system in which ammoniacal nitrogen and orthophosphoric acid coexist, MgNH 4 PO 4 .6H 2 O (magnesium ammonium phosphate (MAP)) crystals are formed under alkaline conditions. It is well known. It is said that this reaction usually proceeds on the alkaline side under the condition of NH 4 —N> 100 mg / l.
【0004】[0004]
【発明が解決しようとする課題】UASB法において、
余剰汚泥発生量が少ないという特長は、逆に、排水中の
栄養塩類を菌体中に取り込む量が少ないということを意
味し、このため、UASB法では、原水中に含まれる窒
素やリンが、菌体に同化されて除去されるという効果は
期待できない。このようなことから、UASB法による
処理のみで、有機物と共に窒素やリンを除去することは
困難であり、閉鎖性水域の富栄養化現象となる窒素やリ
ンを除去するためには、硝化/脱窒や凝集沈澱などの後
処理プロセスを組み合わせる必要がある。DISCLOSURE OF THE INVENTION In the UASB method,
On the contrary, the feature that the amount of excess sludge generated is small means that the amount of nutrient salts in the wastewater taken into the bacterial cells is small. Therefore, in the UASB method, nitrogen and phosphorus contained in the raw water are The effect of being assimilated by bacterial cells and removed cannot be expected. From this, it is difficult to remove nitrogen and phosphorus together with organic matter only by the treatment by the UASB method, and in order to remove nitrogen and phosphorus which are eutrophication phenomena in closed water areas, nitrification / denitration is required. It is necessary to combine post-treatment processes such as nitrification and coagulation precipitation.
【0005】ところで、UASB法の操作上の問題点と
して、グラニュール汚泥の浮上、流出が挙げられる。グ
ラニュール汚泥の浮上、流出は、処理水質の悪化とUA
SB反応槽内の菌体量の減少をもたらすため、これを防
止する技術が求められている。By the way, as a problem in the operation of the UASB method, floating and outflow of granule sludge can be mentioned. Floating and outflow of granule sludge causes deterioration of treated water quality and UA.
Since the amount of bacterial cells in the SB reaction tank is reduced, a technique for preventing this is required.
【0006】前記MAPの生成反応を、UASB反応槽
内で生起させ、グラニュール汚泥中にMAPを析出させ
ることができるならば、UASB法による有機物と窒素
及びリンの同時除去が可能となる上に、汚泥中の無機分
が相対的に増加するため汚泥の沈降性を向上させること
ができる。[0006] If the MAP formation reaction can be caused to occur in the UASB reaction tank and MAP can be precipitated in the granulated sludge, the organic substances and nitrogen and phosphorus can be simultaneously removed by the UASB method. Since the inorganic content in the sludge relatively increases, the sedimentation property of the sludge can be improved.
【0007】このようなことから、pHをアルカリ側と
すると共に、マグネシウム塩を添加した原水をUASB
法により嫌気性処理することも検討されているが、この
場合には、MAPの結晶はグラニュール汚泥中のみなら
ず、流速の大きい配管内やポンプ内にもスケールとなっ
て析出し、配管閉塞、ポンプの作動不良などの問題を引
き起こす。特に、UASB反応槽内部にまで延びる原水
供給配管にスケールが付着した場合には、スケール除去
は極めて困難である。From the above, the pH is set to the alkaline side and the raw water containing magnesium salt is added to the UASB.
Although anaerobic treatment by the method is also considered, in this case, MAP crystals are deposited not only in the granulated sludge but also in the pipe with a high flow rate and in the pump as a scale, resulting in blockage of the pipe. , Causing problems such as pump malfunction. Particularly, when the scale adheres to the raw water supply pipe extending to the inside of the UASB reaction tank, it is extremely difficult to remove the scale.
【0008】しかも、水中に生成したMAP粒子は、処
理水中に浮遊して流出するため、除去効果は十分である
とはいえない。Moreover, the MAP particles produced in water are suspended in the treated water and flow out, so that it cannot be said that the removal effect is sufficient.
【0009】本発明は上記従来の問題点を解決し、スケ
ーリングを引き起こすことなく、グラニュール汚泥表面
又は汚泥内のみにMAPを析出させることにより、UA
SB法により有機物と窒素及びリンの同時除去を行うと
共に、グラニュール汚泥の浮上、流出を防止する嫌気性
処理法を提供することを目的とする。The present invention solves the above-mentioned conventional problems and allows UA to be deposited only on the surface of or within granule sludge without causing scaling.
It is an object of the present invention to provide an anaerobic treatment method for simultaneously removing organic matters, nitrogen and phosphorus by the SB method and preventing floating and outflow of granule sludge.
【0010】[0010]
【課題を解決するための手段】本発明の嫌気性処理法
は、窒素及びリンを含有する有機性排水を酸生成槽で処
理した後、UASB型メタン生成槽で処理する方法にお
いて、酸生成槽の流入水又は流出水にマグネシウム塩を
添加すると共に、UASB型メタン生成槽の流入水のp
Hを5.8〜6.5に調整することを特徴とする。The anaerobic treatment method of the present invention is a method of treating organic wastewater containing nitrogen and phosphorus in an acid generation tank and then in a UASB type methane generation tank. In addition to adding magnesium salt to the inflow water or outflow water of the
It is characterized in that H is adjusted to 5.8 to 6.5.
【0011】以下、図面を参照して本発明の嫌気性処理
法を詳細に説明する。The anaerobic treatment method of the present invention will be described in detail below with reference to the drawings.
【0012】図1は本発明の嫌気性処理法の一実施例方
法を説明する系統図である。FIG. 1 is a system diagram for explaining a method of an embodiment of the anaerobic treatment method of the present invention.
【0013】図1に示す方法において、焼酎廃水、ウイ
スキー蒸留廃水、ビール仕込排水などの原水を、配管1
1よりまず酸生成槽1に導入し、水中の糖、タンパクな
どを、乳酸、プロピオン酸、ラク酸、酢酸などの揮発性
低級脂肪酸に分解する。即ち、酸生成槽1では、酸生成
細菌が浮遊状態で又は担体に固定された状態で存在して
おり、低級脂肪酸への分解反応が行われる。In the method shown in FIG. 1, raw water such as shochu wastewater, whiskey distilling wastewater, beer preparation wastewater, etc. is supplied to the pipe 1
First, it is introduced into the acid generation tank 1 from 1, and sugars, proteins and the like in water are decomposed into volatile lower fatty acids such as lactic acid, propionic acid, lactic acid and acetic acid. That is, in the acid production tank 1, the acid production bacteria exist in a floating state or in a state of being fixed to a carrier, and a decomposition reaction into lower fatty acids is performed.
【0014】本実施例においては、この酸生成槽1に、
後段のUASB反応槽2の処理水の一部を配管12,1
3より循環すると共に、マグネシウム(Mg)塩を配管
14より添加する。In this embodiment, the acid production tank 1 is
A part of the treated water in the latter-stage UASB reaction tank 2 is piped 12,
While circulating from No. 3, magnesium (Mg) salt is added from the pipe 14.
【0015】このように、UASB反応槽2の処理水の
一部を循環することにより、酸生成槽1における酸生成
による極端なpH低下を防止して、酸生成速度を高める
と共に、後述のUASB反応槽2の流入水のpH調整の
ためのアルカリ添加量の低減を図ることができる。By circulating a portion of the treated water in the UASB reaction tank 2 in this manner, an extreme decrease in pH due to acid generation in the acid generation tank 1 is prevented, the acid generation rate is increased, and the UASB described later is used. It is possible to reduce the amount of alkali added for adjusting the pH of the inflow water of the reaction tank 2.
【0016】この酸生成槽1内は処理水の循環水量や原
水濃度等によっても異なるが、通常pHが4〜6.5の
弱酸性状態になっており、この中でのMAPの析出はな
い。酸生成槽1には必要に応じて、アルカリを添加する
こともできるが、pHはあくまでも上記範囲とするのが
好ましい。The inside of the acid production tank 1 is usually in a weakly acidic state of pH 4 to 6.5, though it varies depending on the circulating water amount of the treated water, the concentration of raw water, etc., and there is no deposition of MAP therein. . If necessary, an alkali may be added to the acid production tank 1, but the pH is preferably kept within the above range.
【0017】酸生成槽1に添加するMg塩としては、水
酸化マグネシウム(Mg(OH)2)、酸化マグネシウ
ム(MgO)、塩化マグネシウム(MgCl2 )、硫酸
マグネシウム(MgSO4 )等を用いることができ、こ
れらのうち、アルカリ剤としてpH調整にも有効である
ことからMg(OH)2 を用いるのが好ましい。なお、
系内のpHが6.5を超えるような場合には、MgCl
2 等の酸性塩を添加する。As the Mg salt added to the acid generator 1, magnesium hydroxide (Mg (OH) 2 ), magnesium oxide (MgO), magnesium chloride (MgCl 2 ), magnesium sulfate (MgSO 4 ), etc. may be used. Of these, Mg (OH) 2 is preferably used because it is effective as an alkaline agent for pH adjustment. In addition,
If the pH in the system exceeds 6.5, MgCl 2
Add an acid salt such as 2 .
【0018】Mg塩の添加割合は、除去すべきリン、即
ち、原水中のリンの1モル倍以上、好ましくは1.1〜
1.5モル倍とする。The addition ratio of the Mg salt is 1 mol times or more of the phosphorus to be removed, that is, phosphorus in the raw water, preferably 1.1 to.
1.5 mol times.
【0019】酸生成槽1の流出水は、次いで、配管15
よりUASB反応槽2に送給されるが、この過程で配管
16より必要に応じて水酸化ナトリウム(NaOH)等
のアルカリが添加されて、pH5.8〜6.5の範囲に
調整される。17はpH計である。The outflow water of the acid production tank 1 is then supplied to the pipe 15
Although it is fed to the UASB reaction tank 2, an alkali such as sodium hydroxide (NaOH) is added from the pipe 16 as needed in this process to adjust the pH to the range of 5.8 to 6.5. 17 is a pH meter.
【0020】この調整pHが5.8未満では生物活性が
低下し、UASB反応槽2内でのメタン生成効率が低下
する。逆に、調整pHが6.5を超えるとこの配管15
内でMAPの析出が起こり、スケール生成により配管閉
塞を引き起こしたり、UASB反応槽2内において、後
述の如く、グラニュール汚泥の表面や内部でのMAPの
析出のみならず、液中でもMAPが析出することによ
り、処理水中にMAPが流出したりするなどの不具合が
生じる。When the adjusted pH is less than 5.8, the biological activity is lowered and the efficiency of methane production in the UASB reaction tank 2 is lowered. Conversely, if the adjusted pH exceeds 6.5, this pipe 15
Precipitation of MAP occurs in the interior, causing pipe clogging due to scale formation, and in the UASB reaction tank 2, not only precipitation of MAP on the surface and inside of the granulated sludge as described later, but also MAP precipitates in the liquid This causes a problem such as MAP flowing out into the treated water.
【0021】UASB反応槽2に流入した酸生成処理水
は、Mg塩を含有すると共に、そのpHが5.8〜6.
5の範囲に調整されたものであるが、UASB反応槽2
内で嫌気性処理され、有機酸からのメタン生成の進行に
伴ってpHが上昇し、例えば、焼酎廃液やウイスキー蒸
留廃液では通常の場合pH7.5〜8となる。このpH
の上昇に伴って、系内のPO4 −P,NH4 −N,Mg
2+が反応し、グラニュール汚泥表面やグラニュール汚泥
内部にMAPが析出する。The acid-forming treated water that has flowed into the UASB reactor 2 contains Mg salt and has a pH of 5.8 to 6.
Although adjusted to the range of 5, the UASB reaction tank 2
It is anaerobically treated and the pH increases with the progress of methane production from organic acids. For example, in the case of shochu waste liquid and whiskey distillation waste liquid, the pH is usually 7.5 to 8. This pH
With increasing temperature, PO 4 -P, NH 4 -N, Mg in the system
2+ reacts and MAP is deposited on the surface of the granulated sludge and inside the granulated sludge.
【0022】これにより、メタン生成反応による有機物
の分解と共に、UASB反応槽2内のグラニュール汚泥
内に、原水中のリン及び窒素が固定化され、有機物、リ
ン及び窒素が除去された処理水は、その一部が配管1
2,13より酸生成槽1に循環され、残部は配管18よ
り系外へ排出される。As a result, phosphorus and nitrogen in the raw water are fixed in the granulated sludge in the UASB reaction tank 2 along with the decomposition of organic matter by the methane production reaction, and the treated water from which organic matter, phosphorus and nitrogen have been removed is treated. , Part of which is piping 1
It is circulated to the acid production tank 1 from Nos. 2 and 13, and the rest is discharged from the system through the pipe 18.
【0023】なお、生成したMAP含有グラニュール汚
泥は、MAP析出により比重が増大することにより、沈
降性が高くなり、UASB反応槽内での浮上及びUAS
B反応槽からの流出が防止される。余剰汚泥は、配管1
9より抜き出し、従来と同様に脱水埋立処分することが
可能であるが、乾燥させた後に肥料として有効利用する
ことも可能である。The MAP-containing granulated sludge thus produced has a higher specific gravity due to the increased MAP precipitation, and thus has a higher sedimentation property, and is floated in the UASB reaction tank and UASB.
Outflow from the B reactor is prevented. Excess sludge is pipe 1
Although it can be extracted from No. 9 and disposed of in a dehydrated landfill as in the conventional case, it can also be effectively used as fertilizer after being dried.
【0024】図1に示す方法は、本発明の一実施例方法
を示すものであって、本発明はその要旨を超えない限
り、何ら図示の方法に限定されるものではない。The method shown in FIG. 1 shows an embodiment method of the present invention, and the present invention is not limited to the illustrated method as long as the gist thereof is not exceeded.
【0025】例えば、UASB反応槽2の処理水の一部
を循環する場合、この循環はpH調整のためのアルカリ
添加量の低減のために行うものであるから、図1に示す
如く、酸生成槽1に循環するものに限られず、酸生成槽
の流出水、即ち、配管12,20を経て、配管15内に
注入しても良い。また、原水の導入配管11に注入する
ことも可能であり、いずれの場合も同様の効果を得るこ
とができる。For example, when a portion of the treated water in the UASB reaction tank 2 is circulated, this circulation is carried out to reduce the amount of alkali added for pH adjustment. Therefore, as shown in FIG. The water is not limited to the one circulating in the tank 1, and may be injected into the pipe 15 through the water flowing out of the acid generation tank, that is, the pipes 12 and 20. Further, it is also possible to inject the raw water into the introduction pipe 11, and in any case, the same effect can be obtained.
【0026】また、Mg塩の添加についても、酸生成槽
1に添加する他、原水導入配管11、酸生成槽の流出水
配管15に添加しても良い。Regarding addition of the Mg salt, in addition to the addition to the acid production tank 1, it may be added to the raw water introduction pipe 11 and the outflow water pipe 15 of the acid production tank.
【0027】なお、本発明の方法においては、生物反応
とMAPの析出による窒素及びリンの除去を共存させる
必要上、生物の増殖量とMAP生成量をある程度の範囲
でバランスさせる必要がある。例えば、生成するMAP
が生物増殖量よりもはるかに多ければ、微生物のSRT
が維持できなくなり、生物処理が不可能となる。従っ
て、この生物反応とMAPの生成とのバランスの面か
ら、本発明の方法は、実用的には、CODcr濃度に対し
て2%程度以下のT−P濃度の原水に適用するのが有効
である。In the method of the present invention, the biological reaction and the removal of nitrogen and phosphorus by the precipitation of MAP need to be coexistent, and the growth amount of the organism and the MAP production amount must be balanced to some extent. For example, MAP to generate
Is much higher than the amount of organism growth, SRT of microorganisms
Can no longer be maintained, making biological treatment impossible. Therefore, from the viewpoint of the balance between this biological reaction and the formation of MAP, it is effective that the method of the present invention is practically applied to raw water having a T-P concentration of about 2% or less with respect to the COD cr concentration. Is.
【0028】[0028]
【作用】本発明において、UASB反応槽には、Mg塩
を含有すると共にpHが5.8〜6.5の被処理水が導
入される。In the present invention, the water to be treated containing Mg salt and having a pH of 5.8 to 6.5 is introduced into the UASB reactor.
【0029】この被処理水はMg塩を含有するが、その
pHが5.8〜6.5であり、MAPが生成するpH条
件より低pHであるため、UASB反応槽への被処理水
導入配管等にMAPの析出は殆どみられない。しかし、
UASB反応槽内では有機酸からメタンが生成すること
によりpHが上昇する。このpHの変化はUASB反応
槽の入口から出口側へ向って徐々に上昇するものではな
く、UASB反応槽内は発生するメタンガスによる攪乱
で完全混合状態に近い状態となっているため、被処理水
の導入配管からUASB反応槽内に流入した瞬間にpH
上昇が起こる。This water to be treated contains Mg salt, but its pH is 5.8 to 6.5, which is lower than the pH condition for producing MAP, so that the water to be treated is introduced into the UASB reactor. Almost no deposition of MAP was found in the piping. But,
In the UASB reaction tank, the pH rises due to the production of methane from the organic acid. This change in pH does not gradually increase from the inlet to the outlet of the UASB reaction tank, and the inside of the UASB reaction tank is in a state close to a completely mixed state due to the disturbance by the generated methane gas. PH at the moment when it flows into the UASB reaction tank from the introduction pipe of
A rise occurs.
【0030】このpH上昇により、UASB反応槽系内
は一般にMAP析出条件のアルカリ側となっており、被
処理水中のリン、窒素及びMg塩がこのMAP析出pH
条件下で反応してグラニュール汚泥表面にMAPが析出
する。グラニュール汚泥はその表面、即ち、液との界面
よりも、内部でより高pH条件となっているため、MA
Pの析出はグラニュール汚泥内部でも起こる。Due to this increase in pH, the inside of the UASB reaction tank system is generally on the alkaline side of the MAP precipitation conditions, and the phosphorus, nitrogen and Mg salts in the water to be treated are the MAP precipitation pH.
MAP is deposited on the surface of the granulated sludge by reacting under the conditions. Granule sludge has a higher pH condition on the inside than on the surface, that is, the interface with the liquid, so
Precipitation of P also occurs inside the granulated sludge.
【0031】このため、本発明の方法によれば、UAS
B反応槽内において、有機物の分解除去と共に、リン及
び窒素をMAPの形で除去してグラニュール汚泥内に固
定化することができる。Therefore, according to the method of the present invention, the UAS
In the B reaction tank, phosphorus and nitrogen can be removed in the form of MAP along with decomposition and removal of organic matter, and immobilized in the granule sludge.
【0032】しかして、MAPを含有するグラニュール
汚泥は、無機分が相対的に増加することによりその比重
が増大し、このため沈降性が著しく高められる。これに
より、UASB反応槽内でのグラニュール汚泥の浮上及
びUASB反応槽からのグラニュール汚泥の流出が防止
され、汚泥の流出による処理水の悪化を防止すると共
に、UASB反応槽内の菌体量を高く維持して高負荷処
理を行うことが可能となる。However, the specific gravity of the MAP-containing granule sludge increases due to the relative increase in the inorganic content, and therefore the sedimentation property is significantly enhanced. As a result, the floating of granule sludge in the UASB reaction tank and the outflow of granule sludge from the UASB reaction tank are prevented, the deterioration of treated water due to the outflow of sludge is prevented, and the amount of bacterial cells in the UASB reaction tank is prevented. It is possible to maintain a high value and perform high load processing.
【0033】因みに、UASB反応槽流入水の調整pH
が5.8未満であると、pH値が低過ぎて生物活性が低
下し、UASB反応槽における反応効率が悪く、メタン
生成量、即ち、有機酸分解量が低減する。Incidentally, the adjusted pH of the inflow water of the UASB reaction tank
Is less than 5.8, the pH value is too low, the biological activity is lowered, the reaction efficiency in the UASB reaction tank is poor, and the methane production amount, that is, the organic acid decomposition amount is reduced.
【0034】逆に、UASB反応槽流入水の調整pHが
6.5以上、特に7以上では、流入水配管中やUASB
反応槽内の液中でのMAP析出が起こるようになる。こ
の場合には、配管内にスケールが生成して配管閉塞を引
き起こす。また、UASB反応槽の液中で生成したコロ
イダルMAPがグラニュール汚泥内に取り込まれること
なくそのまま処理水中に流出し、処理水水質が悪化する
などの問題が生じる。On the contrary, when the adjusted pH of the inflow water of the UASB reaction tank is 6.5 or more, particularly 7 or more, the inflow water pipe or the UASB is
Precipitation of MAP occurs in the liquid in the reaction tank. In this case, scale is generated in the pipe and causes pipe clogging. Further, the colloidal MAP produced in the liquid in the UASB reaction tank flows out into the treated water as it is without being taken into the granulated sludge, which causes a problem that the quality of the treated water deteriorates.
【0035】[0035]
【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below.
【0036】実施例1,2、比較例1,2 図1に示す方法に従って、下記基質を含む下記水質の原
水の処理を行った。Examples 1, 2 and Comparative Examples 1, 2 Raw water of the following water quality containing the following substrates was treated according to the method shown in FIG.
【0037】原水(mg/l) グルコース: 15000 エタノール: 5000 酵母エキス: 600 NH4 −N: 400 PO4 −P: 150 CODcr :約22000 酸生成槽及びUASB反応槽の仕様並びに処理条件は下
記の通りとし、酸生成槽にMg塩としてMgCl2 ・2
H2 Oを365mg/l(Mg/P=1.3モル比)添
加すると共に、酸生成槽の流出液にNaOHを添加し
て、表1に示すpH条件に調整した。 Raw water (mg / l) Glucose: 15000 Ethanol: 5000 Yeast extract: 600 NH 4 -N: 400 PO 4 -P: 150 COD cr : about 22000 The specifications and treatment conditions of the acid production tank and the UASB reaction tank are as follows. And MgCl 2 · 2 as Mg salt in the acid generation tank.
H 2 O was added at 365 mg / l (Mg / P = 1.3 molar ratio), and NaOH was added to the effluent of the acid generator to adjust the pH conditions shown in Table 1.
【0038】処理条件等 酸生成槽:容量2.5リットル(直径10cm×高さ3
2cm) UASB反応槽:容量9リットル(直径10cm×高さ
1.2m) 温度:30℃(30℃の恒温室内にて実施) 通液量:6.0〜6.2リットル/日 CODcr負荷:14.3〜15.1kg−CODcr/m
3 /日 処理水循環量:原水量の10倍(酸生成槽のみに循環) 各々、2週間処理を継続して行い、UASB反応槽にお
ける発生メタンガス量を測定すると共に、処理水水質を
調べてS−CODcr、T−P及びNH4 −Hの除去率を
求め、2週間の平均結果を表1に示した。 Treatment conditions, etc. Acid generating tank: capacity 2.5 liters (diameter 10 cm x height 3
2 cm) UASB reaction tank: Capacity 9 liters (diameter 10 cm x height 1.2 m) Temperature: 30 ° C (conducted in a constant temperature room at 30 ° C) Liquid flow rate: 6.0 to 6.2 liters / day COD cr load : 14.3 to 15.1 kg-COD cr / m
3 / day Circulation amount of treated water: 10 times the amount of raw water (circulation only in the acid production tank) Each treatment was continued for 2 weeks, the amount of methane gas generated in the UASB reaction tank was measured, and the quality of the treated water was investigated. The removal rates of —COD cr , T-P and NH 4 —H were determined, and the average results for 2 weeks are shown in Table 1.
【0039】また、UASB反応槽の流入配管内部にス
テンレス(SUS304)テストピースを浸漬させ、付
着したスケール量を測定し、結果を表1に示した。Further, a stainless (SUS304) test piece was dipped inside the inflow pipe of the UASB reaction tank, and the amount of attached scale was measured. The results are shown in Table 1.
【0040】[0040]
【表1】 [Table 1]
【0041】表1より次のことが明らかである。The following is clear from Table 1.
【0042】即ち、比較例1では、UASB反応槽の流
入水のpHがやや低いことから有機物処理が不安定であ
り、プロピオン酸、酢酸を中心に残留CODcrが高く、
UASB反応槽内pHも6.6程度のため、処理水の窒
素、リン濃度は原水と殆ど変わらない。実施例1,2で
は、いずれも、メタン生成も良好であり、良好な処理が
行われている。因みに、処理水中の溶解性CODcrは1
000mg/l以下であった。また、窒素、リンの除去
率も70%程度と良好であった。比較例2でも、ほぼ同
様にメタン生成は良好に進行していたが、微細なコロイ
ダルMAPの生成によって処理水のT−P濃度は、実施
例1,2と比較してやや高かった。また、テストピース
表面に付着したスケールは、1cm2 当りで比較する
と、比較例2が圧倒的に大きく、長期間の運転では配管
閉塞が予想される。That is, in Comparative Example 1, since the pH of the inflow water of the UASB reaction tank was slightly low, the treatment of organic substances was unstable, and the residual COD cr was high mainly in propionic acid and acetic acid.
Since the pH in the UASB reaction tank is about 6.6, the nitrogen and phosphorus concentrations of the treated water are almost the same as the raw water. In each of Examples 1 and 2, methane production was good, and good treatment was performed. By the way, the soluble COD cr in the treated water is 1
It was 000 mg / l or less. In addition, the removal rate of nitrogen and phosphorus was good at about 70%. In Comparative Example 2 as well, methane production proceeded satisfactorily almost similarly, but the TP concentration of the treated water was slightly higher than in Examples 1 and 2 due to the production of fine colloidal MAP. In addition, the scale attached to the surface of the test piece is overwhelmingly large in Comparative Example 2 when compared per 1 cm 2 , and pipe clogging is expected in long-term operation.
【0043】なお、実施例1において、pH調整に必要
なNaOH量は34g−NaOH/kg−CODcrであ
った。一方、処理水を図1に示す配管12,20を経て
酸生成槽の流出水配管(配管15)に循環した場合は、
同じpHに調整するのに必要なNaOH量は38g−N
aOH/kg−CODcrであった。これに対し、処理水
の循環を行わずにpH調整した場合は、NaOH必要量
は620g−NaOH/kg−CODcrとなり、循環に
よりpH調整に必要なアルカリ剤量を大幅に節減できる
ことが確認された。In Example 1, the amount of NaOH required for pH adjustment was 34 g-NaOH / kg-COD cr . On the other hand, when the treated water is circulated through the pipes 12 and 20 shown in FIG. 1 to the outflow water pipe (pipe 15) of the acid production tank,
The amount of NaOH required to adjust to the same pH is 38g-N
It was aOH / kg-COD cr . On the other hand, when the pH was adjusted without circulating the treated water, the required amount of NaOH was 620 g-NaOH / kg-COD cr , and it was confirmed that the amount of the alkaline agent required for pH adjustment could be significantly reduced by the circulation. It was
【0044】[0044]
【発明の効果】以上詳述した通り、本発明の嫌気性処理
法によれば、焼酎廃液、ウイスキー蒸留廃液、ビール仕
込排水などの、窒素及びリンの栄養塩類を含む高濃度有
機性排水をUASB嫌気処理で効率的に処理して、有機
物と共に、窒素及びリンの同時除去を可能とすることが
でき、しかも、後段に凝集処理、硝化/脱窒などのプロ
セスを付加することが不要であるか又は付加しても小型
の装置で良く、処理効率及び処理コストが大幅に改善さ
れる。As described in detail above, according to the anaerobic treatment method of the present invention, highly concentrated organic wastewater containing nutrients of nitrogen and phosphorus such as shochu waste liquid, whiskey distillation waste liquid, beer charging wastewater, etc. can be treated with UASB. Is it possible to efficiently remove nitrogen and phosphorus together with organic substances by efficiently performing anaerobic treatment, and is it unnecessary to add processes such as coagulation treatment and nitrification / denitrification in the subsequent stage? Alternatively, even if added, a small device is sufficient, and the processing efficiency and the processing cost are significantly improved.
【0045】さらに、グラニュール汚泥の浮上、流出を
防止して、UASB反応槽の菌体保持量を著しく高く維
持することもできることから、高負荷処理による効率的
な処理が可能である。Furthermore, since it is possible to prevent the floating and outflow of the granulated sludge and maintain the cell retention amount in the UASB reaction tank to be remarkably high, it is possible to perform efficient treatment by high load treatment.
【図1】本発明の嫌気性処理法の一実施例方法を説明す
る系統図である。FIG. 1 is a system diagram illustrating a method of an embodiment of an anaerobic treatment method of the present invention.
1 酸生成槽 2 UASB反応槽 1 acid production tank 2 UASB reaction tank
Claims (1)
生成槽で処理した後、UASB型メタン生成槽で処理す
る方法において、 酸生成槽の流入水又は流出水にマグネシウム塩を添加す
ると共に、UASB型メタン生成槽の流入水のpHを
5.8〜6.5に調整することを特徴とする嫌気性処理
法。1. A method of treating organic wastewater containing nitrogen and phosphorus in an acid generating tank and then treating it in a UASB type methane generating tank, wherein magnesium salt is added to inflow water or outflow water of the acid generating tank. , An anaerobic treatment method, characterized in that the pH of the inflow water of the UASB type methane production tank is adjusted to 5.8 to 6.5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29129794A JP3358348B2 (en) | 1994-11-25 | 1994-11-25 | Anaerobic treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29129794A JP3358348B2 (en) | 1994-11-25 | 1994-11-25 | Anaerobic treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08141592A true JPH08141592A (en) | 1996-06-04 |
JP3358348B2 JP3358348B2 (en) | 2002-12-16 |
Family
ID=17767070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29129794A Expired - Fee Related JP3358348B2 (en) | 1994-11-25 | 1994-11-25 | Anaerobic treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3358348B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10118687A (en) * | 1996-10-22 | 1998-05-12 | Unitika Ltd | Treatment method of organic wastewater |
JP2000167587A (en) * | 1998-12-02 | 2000-06-20 | Hitachi Plant Eng & Constr Co Ltd | Method and apparatus for anaerobic biological treatment of organic solid-containing waste water |
JP2001038378A (en) * | 1999-07-29 | 2001-02-13 | Sumitomo Heavy Ind Ltd | Method and device for anaerobically treating organic waste water |
JP2001252687A (en) * | 2000-03-10 | 2001-09-18 | Kurita Water Ind Ltd | Anaerobic treatment method for waste water from plant extraction |
JP2003033781A (en) * | 2001-07-24 | 2003-02-04 | Sanki Eng Co Ltd | System for methane gas production |
JP2005193189A (en) * | 2004-01-09 | 2005-07-21 | Kurita Water Ind Ltd | Anaerobic treatment method and anaerobic treatment apparatus |
JP2006087986A (en) * | 2004-09-21 | 2006-04-06 | Kaneka Corp | Scale generation prevention method |
JP2012076001A (en) * | 2010-09-30 | 2012-04-19 | Kuraray Co Ltd | Anaerobic wastewater treatment apparatus |
JP2013208594A (en) * | 2012-03-30 | 2013-10-10 | Suntory Holdings Ltd | Method and apparatus for anaerobic wastewater treatment of organic wastewater |
JP2018164890A (en) * | 2017-03-28 | 2018-10-25 | 住友重機械エンバイロメント株式会社 | Water treatment apparatus |
CN110498578A (en) * | 2019-09-25 | 2019-11-26 | 厦门海洋职业技术学院 | A kind of recovery method of fats and oils processing high phosphorus Phosphorus From Wastewater |
-
1994
- 1994-11-25 JP JP29129794A patent/JP3358348B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10118687A (en) * | 1996-10-22 | 1998-05-12 | Unitika Ltd | Treatment method of organic wastewater |
JP2000167587A (en) * | 1998-12-02 | 2000-06-20 | Hitachi Plant Eng & Constr Co Ltd | Method and apparatus for anaerobic biological treatment of organic solid-containing waste water |
JP2001038378A (en) * | 1999-07-29 | 2001-02-13 | Sumitomo Heavy Ind Ltd | Method and device for anaerobically treating organic waste water |
JP2001252687A (en) * | 2000-03-10 | 2001-09-18 | Kurita Water Ind Ltd | Anaerobic treatment method for waste water from plant extraction |
JP2003033781A (en) * | 2001-07-24 | 2003-02-04 | Sanki Eng Co Ltd | System for methane gas production |
JP4501432B2 (en) * | 2004-01-09 | 2010-07-14 | 栗田工業株式会社 | Anaerobic treatment method and apparatus |
JP2005193189A (en) * | 2004-01-09 | 2005-07-21 | Kurita Water Ind Ltd | Anaerobic treatment method and anaerobic treatment apparatus |
JP2006087986A (en) * | 2004-09-21 | 2006-04-06 | Kaneka Corp | Scale generation prevention method |
JP4565945B2 (en) * | 2004-09-21 | 2010-10-20 | 株式会社カネカ | Scale generation prevention method |
JP2012076001A (en) * | 2010-09-30 | 2012-04-19 | Kuraray Co Ltd | Anaerobic wastewater treatment apparatus |
JP2013208594A (en) * | 2012-03-30 | 2013-10-10 | Suntory Holdings Ltd | Method and apparatus for anaerobic wastewater treatment of organic wastewater |
JP2018164890A (en) * | 2017-03-28 | 2018-10-25 | 住友重機械エンバイロメント株式会社 | Water treatment apparatus |
CN110498578A (en) * | 2019-09-25 | 2019-11-26 | 厦门海洋职业技术学院 | A kind of recovery method of fats and oils processing high phosphorus Phosphorus From Wastewater |
Also Published As
Publication number | Publication date |
---|---|
JP3358348B2 (en) | 2002-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0509609B1 (en) | Method and apparatus for processing manure | |
EP0423889B1 (en) | Method and installation for processing manure, fermented manure and Kjeldahl-N containing waste water | |
KR20130003522A (en) | Treatment system for waste water | |
CN102092898A (en) | Efficient denitrification, dephosphorization, denitrification and phosphorus resource recycling process for urban sewage | |
AU5889098A (en) | Process, using ammonia rich water for the selection and enrichment of nitrifying micro-organisms for nitrification of wastewater | |
JP4925208B2 (en) | Aerobic granule formation method, water treatment method and water treatment apparatus | |
CN112093981B (en) | Sewage treatment device and process for synchronous efficient pollutant removal and comprehensive recycling | |
JP3358348B2 (en) | Anaerobic treatment method | |
JP3122654B2 (en) | Method and apparatus for treating highly concentrated wastewater | |
CN108569824A (en) | A kind of starch gourmet powder waste water biochemistry intensive treatment system and technique | |
JPH07155790A (en) | Waste water treating device | |
JP3387244B2 (en) | Anaerobic treatment method | |
JP2003033790A (en) | Denitrification device and method therefor | |
JP2006272252A (en) | Method for treating nitrogen-containing organic drainage | |
JP4972817B2 (en) | Anaerobic treatment method for organic wastewater | |
JP3799557B2 (en) | Wastewater treatment method | |
JP2002086190A (en) | Waste water treating device | |
JP2531418B2 (en) | Treatment method of beet sugar manufacturing wastewater | |
JPH08155486A (en) | Anaerobic treatment method for organic drainage | |
JPH08141597A (en) | Apparatus for treating waste water containing nitrogen and fluorine | |
JPH05228493A (en) | Method for treating waste water using sulfur bacterium and apparatus therefor | |
CN113480098A (en) | Separated type MAP-anaerobic membrane distillation biological reaction mariculture wastewater treatment system | |
JPH08141591A (en) | Treatment of organic waste water | |
CN208292824U (en) | A kind of starch gourmet powder waste water biochemistry intensive treatment system | |
CN201809250U (en) | Novel biological treatment removal tank for total nitrogen in landfill leachate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071011 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081011 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091011 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091011 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101011 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101011 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111011 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111011 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121011 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121011 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131011 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |