JP5801769B2 - Method and apparatus for anaerobic digestion treatment of organic wastewater - Google Patents

Method and apparatus for anaerobic digestion treatment of organic wastewater Download PDF

Info

Publication number
JP5801769B2
JP5801769B2 JP2012145297A JP2012145297A JP5801769B2 JP 5801769 B2 JP5801769 B2 JP 5801769B2 JP 2012145297 A JP2012145297 A JP 2012145297A JP 2012145297 A JP2012145297 A JP 2012145297A JP 5801769 B2 JP5801769 B2 JP 5801769B2
Authority
JP
Japan
Prior art keywords
anaerobic
wastewater
water
anaerobic digestion
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012145297A
Other languages
Japanese (ja)
Other versions
JP2014008431A (en
Inventor
隆幸 鈴木
隆幸 鈴木
俊一 塩野
俊一 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2012145297A priority Critical patent/JP5801769B2/en
Publication of JP2014008431A publication Critical patent/JP2014008431A/en
Application granted granted Critical
Publication of JP5801769B2 publication Critical patent/JP5801769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

本発明は、例えば発酵排水や食品系産業排水などのように、固形分を多く含む有機性排水を嫌気性消化処理によって処理する、有機性排水の嫌気性消化処理方法及び装置に関する。   The present invention relates to an organic anaerobic digestion treatment method and apparatus for treating organic wastewater containing a large amount of solids by anaerobic digestion, such as fermentation wastewater and food-based industrial wastewater.

有機性排水の処理方法として、好気性生物処理及び嫌気性生物処理が挙げられる。
嫌気性生物処理は、好気性生物処理と比べて、汚泥発生量が少なく、ブロワ−(曝気)などの電気代が不要なためランニングコストを抑えられるばかりか、発生したメタンガスを有効利用できたりするなどのメリットがあるため、近年、下水処理、し尿処理、産業排水処理等の分野などで普及している処理である。
Examples of organic wastewater treatment methods include aerobic biological treatment and anaerobic biological treatment.
Anaerobic biological treatment has less sludge generation than aerobic biological treatment and does not require an electricity bill such as a blower (aeration), so it can reduce running costs and can effectively use the generated methane gas. In recent years, it is a treatment that has become widespread in fields such as sewage treatment, human waste treatment, and industrial wastewater treatment.

このような嫌気性処理としては、消化槽法などのように、嫌気性菌を浮遊させる方式の浮遊型嫌気性消化法と、UASB(上向流嫌気性汚泥床)法や嫌気性菌が付着増殖する媒体を充填した方法などのように、嫌気性菌を反応槽内に留めて固定化する方式の固定型嫌気性消化法と、が知られている。   As such anaerobic treatment, floating type anaerobic digestion method that floats anaerobic bacteria, such as digestion tank method, UASB (upstream anaerobic sludge bed) method and anaerobic bacteria adhere There is known a fixed type anaerobic digestion method in which anaerobic bacteria are fixed in a reaction tank and fixed, such as a method in which a growing medium is filled.

このうちの浮遊型嫌気性消化法は、典型的には、有機性排水を嫌気性消化タンク(「消化槽」と称する)に供給し、消化槽内に気相ガスを吹き込んだり或いは機械により攪拌したりして撹拌を行い、嫌気性状態で有機物の生物分解を行う処理方法である。
一般的には、消化槽内では、炭水化物、タンパク質、脂肪などの高分子有機物が、酸生成菌の働きで、酢酸、プロピオン酸、酪酸などの揮発性有機酸と低級アルコール類とに加水分解され、その過程でpHが5〜6にまで低下した(酸性発酵期)後、6.8程度まで上昇し(酸性減退期)、次いで、メタン生成菌の作用で、前記有機酸などの中間生成物がメタン、二酸化炭素、アンモニアなどの最終生成物へ分解され、pHは7.0〜7.4程度となる(アルカリ発酵期)。
Of these, the floating type anaerobic digestion method typically supplies organic wastewater to an anaerobic digestion tank (referred to as a “digestion tank”) and blows gas phase gas into the digestion tank or stirs with a machine. It is the processing method which performs biodegradation of organic substance in anaerobic state by stirring.
In general, high-molecular organic substances such as carbohydrates, proteins, and fats are hydrolyzed into volatile organic acids such as acetic acid, propionic acid, and butyric acid and lower alcohols in the digester by the action of acid-producing bacteria. In the process, the pH is lowered to 5 to 6 (acid fermentation period), then rises to about 6.8 (acid decline period), and then an intermediate product such as the organic acid by the action of the methanogen Is decomposed into final products such as methane, carbon dioxide, and ammonia, and the pH becomes about 7.0 to 7.4 (alkaline fermentation period).

このような浮遊型嫌気性消化法は、高濃度のSSを含有する有機性排水の処理が可能である一方、HRT(水の水理的滞留時間)とSRT(汚泥の滞留時間)が同一であるため、増殖速度の遅いメタン生成菌の増殖を維持させるために、長い滞留時間を必要とし、消化槽が大型化すると共に、容積あたりの処理効率が悪いという課題を抱えていた。   Such a floating anaerobic digestion method can treat organic wastewater containing a high concentration of SS, while the HRT (hydraulic water residence time) and SRT (sludge residence time) are the same. For this reason, in order to maintain the growth of the methanogen having a slow growth rate, a long residence time is required, the digester is enlarged, and the processing efficiency per volume is poor.

他方、UASBなどの固定型嫌気性消化法は、被処理水中に多くの固形物が含まれていると、スカムが発生したり、グラニュール汚泥が浮上して流出したり、処理水の水質が悪化するなどの問題が発生するため、高濃度のSSを含有する有機性排水の処理には不向きであるが、HRTに関係なくメタン生成菌濃度を保持できるため、比較的小型の装置で、短い滞留時間で効率良く処理することが可能であるというメリットがある。   On the other hand, fixed anaerobic digestion methods such as UASB can cause scum, granule sludge rising and flowing out, and the quality of the treated water when the water to be treated contains a lot of solids. Since problems such as deterioration occur, it is unsuitable for the treatment of organic wastewater containing high concentrations of SS, but because it can maintain the concentration of methanogens regardless of HRT, it is short with a relatively small device. There is a merit that it is possible to process efficiently with the residence time.

このように、浮遊型嫌気性消化法及び固定型嫌気性消化法はそれぞれに一長一短があるため、両者を組み合わせて有機性排水を処理する方法が提案されている。   Thus, since the floating type anaerobic digestion method and the fixed type anaerobic digestion method have advantages and disadvantages, a method for treating organic wastewater by combining them has been proposed.

例えば特許文献1には、有機性の固形分を含む排水を第1の固液分離装置において固液分離して、固形分濃度が高い高SS排水と、溶解性有機物を含む低SS排水に分離し、前記高SS排水は嫌気性消化槽で嫌気性消化し、消化液の一部を第2の固液分離装置で固液分離し、得られた分離汚泥を嫌気性消化槽に返送する一方、前記低SS排水は高負荷嫌気性処理装置(UASB)で処理する方法が提案されている。   For example, in Patent Document 1, wastewater containing organic solids is separated into solid and liquid in a first solid-liquid separation device, and separated into high SS wastewater having a high solid content concentration and low SS wastewater containing soluble organic matter. The high SS wastewater is anaerobically digested in an anaerobic digester, a part of the digested liquid is solid-liquid separated by a second solid-liquid separator, and the resulting separated sludge is returned to the anaerobic digester. A method of treating the low SS wastewater with a high load anaerobic treatment device (UASB) has been proposed.

また、特許文献2には、有機性汚泥を酸発酵処理した後、固液分離し、該固液分離によって得た分離汚泥と分離水を、それぞれ消化槽とUASBで処理する方法が提案されている。   Patent Document 2 proposes a method in which organic sludge is subjected to an acid fermentation treatment, followed by solid-liquid separation, and the separated sludge and separated water obtained by the solid-liquid separation are treated with a digester and UASB, respectively. Yes.

特開平7−39897号公報JP 7-39897 A 特開2002−361293号公報JP 2002-361293 A

本発明者は、浮遊型嫌気性消化法と固定型嫌気性消化法とを組み合わせて有機性排水を処理する方法に関して、次のような実験を行った。
図1のフローに従い、供試排水として高濃度有機性排水(原水)1を用い、固液分離装置2で溶解性有機物を含む固形分濃度の低い低SS排水3と、固形分濃度の高い高SS排水10とに分離し、低SS排水3をUASB(嫌気性消化装置)4で処理し、高SS排水10を消化槽(嫌気性消化装置)13で処理し、UASB(嫌気性消化装置)4の流出水6を順次、限外ろ過膜装置(SS除去装置)7、逆浸透膜装置(膜分離装置)9で処理するようにした。
The present inventor conducted the following experiment on a method for treating organic wastewater by combining a floating anaerobic digestion method and a fixed anaerobic digestion method.
In accordance with the flow of FIG. 1, a high concentration organic wastewater (raw water) 1 is used as a test wastewater, and the solid-liquid separator 2 has a low solids concentration 3 containing a soluble organic substance and a low solids concentration 3 Separated into SS wastewater 10, low SS wastewater 3 is treated with UASB (anaerobic digester) 4, high SS wastewater 10 is treated with digestion tank (anaerobic digester) 13, and UASB (anaerobic digester) 4 effluent water 6 was sequentially treated by an ultrafiltration membrane device (SS removing device) 7 and a reverse osmosis membrane device (membrane separation device) 9.

このような処理によって、初期段階では再利用可能な水質を得ることができた。しかし、高SS排水を処理する消化槽13において、pHが低下傾向になり、有機物の分解率が低下し、流出水6のBOD濃度を十分低減することができない場合が認められた。この原因は、消化槽13で処理する被処理水のSS濃度が高いために、有機物の容積負荷が高くなった結果、有機酸生成速度がメタン転換速度よりも高くなり、反応途中でpHが低下したためであると考えられる。   By such treatment, it was possible to obtain reusable water quality in the initial stage. However, in the digester tank 13 for treating high SS wastewater, the pH tends to decrease, the decomposition rate of organic matter decreases, and the BOD concentration of the effluent 6 cannot be sufficiently reduced. This is because the SS concentration of the water to be treated in the digestion tank 13 is high, and as a result, the volume load of the organic matter is increased. As a result, the organic acid production rate becomes higher than the methane conversion rate, and the pH is lowered during the reaction. This is probably because

このような問題解決のために、消化槽にpH調整剤を加えることも考えられるが、高SS排水を処理する消化槽にpH調整剤を加えてpH調整するというのは、コスト及び効率の面から考えて現実的な方法と言えるものでない。   In order to solve such problems, it is conceivable to add a pH adjuster to the digester, but adjusting the pH by adding a pH adjuster to the digester that treats high SS wastewater is a cost and efficiency aspect. This is not a realistic method.

そこで本発明の目的は、固形分濃度の高い高SS排水を処理する浮遊型嫌気性消化工程において、pHを安定化させることにより、高有機物負荷で効率よく、しかも長期間安定して処理することができる、新たな嫌気性処理方法および装置を提供せんとするものである。   Accordingly, an object of the present invention is to efficiently treat with a high organic load and stably for a long period of time by stabilizing the pH in a floating anaerobic digestion process for treating high SS wastewater with a high solid content concentration. It is intended to provide a new anaerobic treatment method and apparatus capable of performing the above.

本発明は、固形分を含む有機性排水を、固形分濃度の低い低SS排水と固形分濃度の高い高SS排水とに分離する固液分離工程と、嫌気性菌を固定化させる方式の嫌気性消化法により、前記低SS排水を嫌気性消化する嫌気性消化工程Aと、嫌気性菌を浮遊させる方式の嫌気性消化法により、前記高SS排水を嫌気性消化する嫌気性消化工程Bと、前記嫌気性消化工程Aの流出水を、逆浸透膜により、透過水と塩類濃縮水とに分離する膜分離工程と、前記膜分離工程で得られた塩類濃縮水の全部又は一部を前記嫌気性消化工程Bに供給する塩類濃縮水供給工程と、を備えた有機性排水の嫌気性消化処理方法を提案する。 The present invention relates to a solid-liquid separation process for separating organic wastewater containing solids into low SS wastewater having a low solid content concentration and high SS wastewater having a high solid content concentration, and anaerobic method of immobilizing anaerobic bacteria. An anaerobic digestion process A for anaerobically digesting the low SS wastewater by sexual digestion, and an anaerobic digestion process B for anaerobically digesting the high SS wastewater by an anaerobic digestion method of floating anaerobic bacteria. , A membrane separation step of separating the effluent from the anaerobic digestion step A into permeated water and salt concentrated water by a reverse osmosis membrane , and all or part of the salt concentrated water obtained in the membrane separation step The present invention proposes an anaerobic digestion treatment method for organic wastewater, comprising: a salt concentrate supply process for supplying anaerobic digestion process B.

本発明はまた、固形分を含む有機性排水を、固形分濃度の低い低SS排水と固形分濃度の高い高SS排水とに分離する固液分離装置と、前記低SS排水の供給管が接続され、嫌気性菌を固定化させる方式の嫌気性消化装置Aと、前記高SS排水の供給管が接続され、嫌気性菌を浮遊させる方式の嫌気性消化装置Bと、前記嫌気性消化装置Aからの流出水の供給管が接続され、逆浸透膜を備えた膜分離装置と、前記膜分離装置で得られた塩類濃縮水の全部又は一部を前記嫌気性消化装置Bに供給する塩類濃縮水供給管と、を備えた有機性排水の嫌気性消化装置を提案する。 The present invention also connects a solid-liquid separation device that separates organic wastewater containing solids into low SS wastewater having a low solid content concentration and high SS wastewater having a high solid content concentration, and a supply pipe for the low SS wastewater. An anaerobic digester A of a method for immobilizing anaerobic bacteria, an anaerobic digester B of a system for connecting the high SS drainage supply pipe and floating the anaerobic bacteria, and the anaerobic digester A Separation Concentration for Supplying All or Part of Salt Concentrated Water Obtained by Membrane Separator with Reverse Osmosis Membrane and the Membrane Separator to the Anaerobic Digestor B An organic anaerobic digester with a water supply pipe is proposed.

本発明が提案する有機性排水の嫌気性消化処理方法及び処理装置によれば、固形分を含む有機性排水を、固液分離工程で低SS排水と高SS排水とに分離し、低SS排水については、嫌気性菌を固定化させる方式の嫌気性消化工程Aにより、高負荷で大量の水を効率良く処理することができる一方、高SS排水については、嫌気性菌を浮遊させる方式の嫌気性消化工程Bにより確実に処理することができる。
また、前記嫌気性消化工程Aの流出水を膜分離して得られる塩類濃縮水を当該嫌気性処理工程Bに供給することで、当該塩類濃縮水にはアルカリ度を高める成分が含まれているため、高SS排水を処理する嫌気性消化工程BにおけるpHを安定化させることができ、嫌気性処理工程Bのメタン発酵を促進させることができる。
このように、本発明が提案する有機性排水の嫌気性消化処理方法及び処理装置によれば、固形分濃度の高い有機性排水を、高有機物負荷で効率よく、しかも長期間安定して処理することができる。
According to the method and apparatus for anaerobic digestion of organic wastewater proposed by the present invention, organic wastewater containing solids is separated into low SS wastewater and high SS wastewater in a solid-liquid separation process, and low SS wastewater is obtained. As for, while anaerobic digestion process A with a method of immobilizing anaerobic bacteria, a large amount of water can be efficiently processed at a high load, while for high SS wastewater, anaerobic with a method of floating anaerobic bacteria. It can process reliably by the sex digestion process B.
Moreover, the salt concentration water contains the component which raises an alkalinity by supplying the salt concentration water obtained by carrying out the membrane separation of the effluent of the anaerobic digestion step A to the anaerobic processing step B. Therefore, pH in the anaerobic digestion process B which processes high SS wastewater can be stabilized, and methane fermentation of the anaerobic process B can be promoted.
Thus, according to the anaerobic digestion treatment method and treatment apparatus for organic wastewater proposed by the present invention, organic wastewater with a high solid content concentration is efficiently treated with a high load of organic matter and stably for a long period of time. be able to.

本発明の有機性排水の嫌気性消化処理方法及び処理装置の比較例としてのフローを示した図である。It is the figure which showed the flow as a comparative example of the anaerobic digestion processing method of the organic waste_water | drain of this invention, and a processing apparatus. 本発明の有機性排水の嫌気性消化処理方法及び処理装置の一例としてのフローを示した図である。It is the figure which showed the flow as an example of the anaerobic digestion processing method and processing apparatus of the organic waste_water | drain of this invention.

次に、本発明を実施するための態様の一例について説明する。   Next, an example of an embodiment for carrying out the present invention will be described.

<本処理方法>
本実施形態に係る有機性排水の嫌気性消化処理方法(「本処理方法」と称する)は、図2に示すように、固形分を含む有機性排水(原水)1を、固液分離装置2において固形分濃度の低い低SS排水3と固形分濃度の高い高SS排水10とに分離し(「固液分離工程」)、高SS排水10を嫌気性消化装置13に供給する一方、必要に応じて前記低SS排水3にアルカリ度を増加するための薬剤16を添加した後、該低SS排水3を嫌気性消化装置4に供給し、嫌気性消化装置4において、嫌気性菌を固定化させる方式の嫌気性消化法により嫌気性消化し、バイオガス5を回収すると共に消化液としての流出水6を得(「嫌気性消化工程A」)、該流出水6を必要に応じてSS除去装置7に供給し、該SS除去装置7において流出水6から固形分(SS)を除去してSS除去水8とSS濃縮水11を得、SS除去水8を膜分離装置9に供給し、膜分離装置9においてSS除去水8から透過水17と塩類濃縮水12を分離し(「膜分離工程」)、前記膜分離工程で得られたSS濃縮水11及び塩類濃縮水12を、塩類濃縮水供給管を通じて嫌気性消化装置13に供給し(「塩類濃縮水供給工程」)、嫌気性消化装置13において、SS濃縮水11及び塩類濃縮水12と共に前記高SS排水10を、嫌気性菌を浮遊させる方式の嫌気性消化法により嫌気性消化し、バイオガス5を回収すると共に消化液としての流出水14を得る(「嫌気性消化工程B」)ことを特徴とする方法である。
<This processing method>
As shown in FIG. 2, the organic wastewater anaerobic digestion treatment method (referred to as “the present treatment method”) according to the present embodiment converts an organic wastewater (raw water) 1 containing solids into a solid-liquid separation device 2. Is separated into a low SS wastewater 3 having a low solid content concentration and a high SS wastewater 10 having a high solid content concentration (“solid-liquid separation process”), while supplying the high SS wastewater 10 to the anaerobic digester 13, as required Accordingly, after adding the chemical 16 for increasing the alkalinity to the low SS wastewater 3, the low SS wastewater 3 is supplied to the anaerobic digester 4, and the anaerobic bacteria are immobilized in the anaerobic digester 4. The anaerobic digestion method is used to recover the biogas 5 and obtain the effluent 6 as a digestion liquid (“anaerobic digestion step A”), and remove the SS as necessary from the effluent 6 Is supplied to the apparatus 7, and the SS removal apparatus 7 fixes the effluent water 6 Minute (SS) is removed to obtain SS-removed water 8 and SS-concentrated water 11, SS-removed water 8 is supplied to the membrane separation device 9. 12 (“membrane separation step”), the SS concentrated water 11 and the salt concentrated water 12 obtained in the membrane separation step are supplied to the anaerobic digester 13 through the salt concentrated water supply pipe (“the salt concentrated water”). In the anaerobic digester 13, the high SS wastewater 10 together with the SS concentrated water 11 and the salt concentrated water 12 is subjected to anaerobic digestion by an anaerobic digestion method in which anaerobic bacteria are suspended. And effluent 14 as digestive fluid is obtained (“anaerobic digestion step B”).

<原水>
本処理方法の被処理水である、固形分を含む有機性排水(原水)1は、有機固形分乃至無機固形分を含んだ有機性排水である。このような有機性排水としては、例えば発酵排水、食品系産業排水、家畜糞尿のような有機性固形分を高濃度で含むスラリー状の有機性排水を挙げることができる。
<Raw water>
The organic waste water (raw water) 1 containing solids, which is the water to be treated in this treatment method, is an organic waste water containing organic solids or inorganic solids. Examples of such organic wastewater include slurry-like organic wastewater containing a high concentration of organic solids such as fermentation wastewater, food-based industrial wastewater, and livestock manure.

有機性排水(原水)1の固形物濃度すなわちSS濃度は、5000mg/Lより高いことが好ましく、中でも7500mg/L以上、中でも特に10000mg/L以上であるのがさらに好ましい。有機性排水(原水)1のSS濃度が5000mg/Lより高い場合には、UASBなどのような嫌気性菌を固定化させる方式の嫌気性消化法では処理できないため、本処理方法を適用する効果をより一層享受できるようになる。   The solid matter concentration of the organic waste water (raw water) 1, that is, the SS concentration is preferably higher than 5000 mg / L, more preferably 7500 mg / L or more, and particularly preferably 10,000 mg / L or more. When the organic wastewater (raw water) 1 has an SS concentration higher than 5000 mg / L, it cannot be treated by an anaerobic digestion method of immobilizing anaerobic bacteria such as UASB. Can be enjoyed even more.

<固液分離工程>
本工程では、固液分離装置2により、固形分を含む有機性排水(原水)1を固液分離して、固形分濃度の低い低SS排水3と、固形分濃度の高い高SS排水10とに分離する。
<Solid-liquid separation process>
In this step, the organic waste water (raw water) 1 containing the solid content is solid-liquid separated by the solid-liquid separation device 2, and the low SS waste water 3 having a low solid content concentration and the high SS waste water 10 having a high solid content concentration, To separate.

ここで、固形分濃度の低い低SS排水3は、SS濃度が5000mg/L未満であるのが好ましく、中でも2000mg/L以下、その中でも特に1000mg/L以下であるのがさらに好ましい。   Here, the low SS wastewater 3 having a low solid content concentration preferably has an SS concentration of less than 5000 mg / L, more preferably 2000 mg / L or less, and particularly preferably 1000 mg / L or less.

本工程で採用し得る固液分離法としては、例えば沈降分離、清澄ろ過、浮上分離、ろ過分離、膜分離、遠心分離など、公知の固液分離方法を挙げることができる。複数の固液分離方法を組み合わせて実施することもできる。   Examples of solid-liquid separation methods that can be employed in this step include known solid-liquid separation methods such as sedimentation separation, clarification filtration, flotation separation, filtration separation, membrane separation, and centrifugal separation. A plurality of solid-liquid separation methods can also be implemented in combination.

<嫌気性消化工程A>
嫌気性消化工程Aでは、前記固液分離工程で分離された低SS排水3を、嫌気性消化装置4において、嫌気性菌を固定化させる方式の嫌気性消化法(「固定化型嫌気性消化法」とも称する)により嫌気性消化し、バイオガス5を回収すると共に、消化液としての流出水6を得る。
<Anaerobic digestion process A>
In the anaerobic digestion step A, the low SS wastewater 3 separated in the solid-liquid separation step is anaerobic digestion apparatus 4 in which anaerobic bacteria are immobilized (an “immobilized anaerobic digestion”). The anaerobic digestion is also carried out by the “method” to collect the biogas 5 and to obtain the effluent 6 as a digested liquid.

嫌気性菌を固定化させる方式の嫌気性消化法とは、嫌気性菌を反応槽内に何等かの方法で留める方式の嫌気性消化法である。例えば、UASB法などのように、メタン生成菌の自己固定化(自己造粒)現象を利用した方法(「自己造粒型嫌気性菌利用メタン発酵方法」とも称する)や、ハニカム型プラスチック、粒状セラミック、粒状活性炭、粒状ゼオライトなどの微生物付着担体を用いる嫌気性流動層法や嫌気性固定床法(これらをまとめて「付着型嫌気性菌利用メタン発酵方法」とも称する)を挙げることができる。   The anaerobic digestion method of immobilizing anaerobic bacteria is an anaerobic digestion method of retaining anaerobic bacteria in a reaction tank by some method. For example, a method using a self-immobilization (self-granulation) phenomenon of a methanogen such as the UASB method (also called “self-granulating anaerobic methane fermentation method”), honeycomb type plastic, granular Examples include an anaerobic fluidized bed method and an anaerobic fixed bed method using a microorganism-adhering carrier such as ceramic, granular activated carbon, and granular zeolite (these are collectively referred to as “adherent type anaerobic methane fermentation method”).

中でも代表的なUASB法(上向流嫌気性汚泥床法)は、嫌気性微生物の集塊作用を利用して活性の高い菌体をグラニュール(直径2〜3mmの粒状汚泥、糸状性の酢酸資化性メタン生成属細菌が中心となった緻密なフロック)として反応槽に大量に保持する方法で,反応槽の下部から排水(被処理水)を注入して嫌気状態で排水中の有機物を分解させる方法である。
上向流嫌気性汚泥ろ床法(UASB)は、嫌気性微生物の自己造粒機能を利用して沈降性の優れたグラニュール汚泥を槽内に高濃度で保持できるため、CODcr負荷を高めることができる。しかも、通常の嫌気性処理に比べて、比較的低濃度の排水にも適用できるうえ、高速の処理が可能で、且つ曝気を必要としないため、わずかな電力で運転でき、副産物として大量のメタンガスを生成することができる。
Among them, the typical UASB method (upward-flow anaerobic sludge bed method) uses highly agglutinating action of anaerobic microorganisms to granulate highly active cells (granular sludge with a diameter of 2 to 3 mm, filamentous acetic acid). It is a method of maintaining a large amount in the reaction tank as a dense floc centered on assimilable methanogens), and injecting waste water (treated water) from the bottom of the reaction tank to remove organic matter in the anaerobic state. It is a method of decomposing.
The upflow anaerobic sludge filter bed method (UASB) uses the self-granulating function of anaerobic microorganisms to maintain highly settled granular sludge in the tank at a high concentration, thus increasing the CODcr load. Can do. Moreover, compared to ordinary anaerobic treatment, it can be applied to wastewater with a relatively low concentration, and high-speed treatment is possible and aeration is not required. Can be generated.

嫌気性消化装置Aは、例えば、メタン発酵槽の内部に気固液分離部(GSS)を備え、被水供給管と、汚泥を移送するメタン発酵処理汚泥排出管と、メタン発酵処理水を排出するメタン発酵処理水排出管と、発生ガス排出管が接続されたものが好ましい。   The anaerobic digester A includes, for example, a gas-solid-liquid separator (GSS) inside the methane fermentation tank, and discharges the hydrated water supply pipe, the methane fermentation treated sludge discharge pipe for transferring sludge, and the methane fermentation treated water. The methane fermentation treated water discharge pipe and the generated gas discharge pipe are preferably connected.

固定化型嫌気性消化法の処理温度は、嫌気性処理菌の種類に適した温度に設定するのが好ましい。よって、中温メタン発酵処理菌の場合であれば、35〜38℃が至適温度となるように温度調整するのが好ましく、高温メタン発酵処理菌の場合であれば、50〜55℃が至適温度となるように温度調整するのが好ましい。   The treatment temperature of the immobilized anaerobic digestion method is preferably set to a temperature suitable for the type of anaerobic bacteria. Therefore, in the case of a medium temperature methane fermentation treatment bacterium, it is preferable to adjust the temperature so that 35 to 38 ° C. becomes an optimum temperature, and in the case of a high temperature methane fermentation treatment bacterium, 50 to 55 ° C. is optimum. It is preferable to adjust the temperature so as to be the temperature.

嫌気性消化工程Aの被処理水のpHが6.1よりも低い場合には、嫌気性消化工程Aの被処理水である低SS排水に、アルカリ度を増加する薬剤16を添加して、被処理水のpHを6.5〜7.8に調整するのが好ましい。このようなpH領域を維持することで、遅滞なく反応を促進させることができる。
この際、添加する薬剤16としては、例えば水酸化ナトリウム、炭酸水素ナトリウムなどのアルカリ剤を挙げることができる。
In the case where the pH of the water to be treated in the anaerobic digestion step A is lower than 6.1, the agent 16 for increasing the alkalinity is added to the low SS wastewater that is the water to be treated in the anaerobic digestion step A, It is preferable to adjust the pH of the water to be treated to 6.5 to 7.8. By maintaining such a pH range, the reaction can be promoted without delay.
In this case, examples of the agent 16 to be added include alkaline agents such as sodium hydroxide and sodium hydrogen carbonate.

<膜分離工程>
膜分離工程では、前記嫌気性消化工程Aの流出水6を、膜分離装置9において、塩類を濃縮可能な膜を用いた膜分離により、透過水17と塩類濃縮水12とに分離すればよい。
但し、図2に示したように、該流出水6をSS除去装置7において固形分(SS)を除去しておき、得られたSS除去水8を膜分離装置9において処理するのがより一層好ましい。
<Membrane separation process>
In the membrane separation step, the effluent 6 of the anaerobic digestion step A may be separated into the permeated water 17 and the salt concentrated water 12 by membrane separation using a membrane capable of concentrating salts in the membrane separation device 9. .
However, as shown in FIG. 2, it is still more preferable to remove the solid content (SS) from the effluent 6 in the SS remover 7 and treat the obtained SS removed water 8 in the membrane separator 9. preferable.

膜分離工程で得られる塩類濃縮水12には、嫌気性消化工程Aで分解されなかった有機物や無機物が含まれ、その中には、例えば炭酸ナトリウムやアンモニア塩などのように、アルカリ度を高めることができる成分が含まれる。また、上述のように、嫌気性消化工程Aの被処理水である低SS排水3に、アルカリ度を増加する薬剤16を添加した場合には、この薬剤成分も含まれることになる。よって、塩類濃縮水12は、アルカリ度を高める作用を有する。   The salt-enriched water 12 obtained in the membrane separation step contains organic and inorganic substances that have not been decomposed in the anaerobic digestion step A, and the alkalinity is increased, for example, sodium carbonate or ammonia salt. Ingredients that can be included. Moreover, as above-mentioned, when the chemical | medical agent 16 which increases alkalinity is added to the low SS waste_water | drain 3 which is the to-be-processed water of the anaerobic digestion process A, this chemical | medical component will also be contained. Therefore, the salt concentrated water 12 has the effect | action which raises alkalinity.

塩類を濃縮可能な膜を用いた膜分離としては、逆浸透(RO)膜を代表例として挙げることができ、他にもNF(ナノ膜)、電気透析などを挙げることができる。
但し、塩類を濃縮可能な膜を用いた膜分離の前段に塩類を濃縮不可能な膜、例えばUF膜などをSS分離用として組み合わせて利用することは可能である。
As a membrane separation using a membrane capable of concentrating salts, a reverse osmosis (RO) membrane can be given as a representative example, and other examples include NF (nanomembrane) and electrodialysis.
However, it is possible to use a membrane that cannot concentrate salts, such as a UF membrane, for SS separation before the membrane separation using a membrane that can concentrate salts.

SS分を除去した後、膜分離する場合には、凝集沈殿、MF(精密ろ過膜)、UF(限外ろ過膜)などでの方法でSS分を除去した後、SSが除去された分離水を、RO(逆浸透膜)、NF(ナノ膜)等の塩類分離能力の高い膜を用いて膜分離し、前記分離水に溶解しているアルカリ度分を回収・濃縮するのが好ましい。   When the membrane is separated after removing the SS component, the SS component is removed by a method such as coagulation sedimentation, MF (microfiltration membrane) or UF (ultrafiltration membrane), and then the separated water from which SS has been removed. Is preferably separated using a membrane having a high ability to separate salts such as RO (reverse osmosis membrane) and NF (nanomembrane), and the alkalinity dissolved in the separated water is recovered and concentrated.

他方、固液分離によって脱塩された透過水17は、処理施設あるいは工場等のプロセス用水として利用可能である。揮発性アルカリ度成分濃度が低い場合は、蒸発法、減圧蒸発濃縮法などアルカリ度成分に対応して公知の濃縮法を採用することができる。   On the other hand, the permeated water 17 desalted by solid-liquid separation can be used as process water in a treatment facility or a factory. When the concentration of the volatile alkalinity component is low, a known concentration method such as an evaporation method or a reduced pressure evaporation concentration method can be employed corresponding to the alkalinity component.

<塩類濃縮水供給工程>
塩類濃縮水供給工程では、前記膜分離工程で得られた塩類濃縮水12乃至SS濃縮水11を、塩類濃縮水供給管を通じて嫌気性消化装置13に供給する。
この際、塩類濃縮水12乃至SS濃縮水11の全部を嫌気性消化装置13に供給するようにしてもよいし、塩類濃縮水12乃至SS濃縮水11の一部を嫌気性消化装置13に供給するようにしてもよい。
また、塩類濃縮水12乃至SS濃縮水11を嫌気性消化装置13に直接供給するようにしてもよいし、塩類濃縮水12乃至SS濃縮水11を前記高SS排水10に混合した後、この混合液を嫌気性消化装置13に供給するようにしてもよい。
<Salt concentrate supply process>
In the salt concentrate supply process, the salt concentrate 12 to SS concentrate 11 obtained in the membrane separation process are supplied to the anaerobic digester 13 through the salt concentrate supply pipe.
At this time, all of the salt concentrate 12 to SS concentrate 11 may be supplied to the anaerobic digester 13, or a part of the salt concentrate 12 to SS concentrate 11 is supplied to the anaerobic digester 13. You may make it do.
Moreover, you may make it supply the salt concentration water 12 thru | or SS concentration water 11 directly to the anaerobic digester 13, or mix this after mixing the salt concentration water 12 thru | or SS concentration water 11 with the said high SS waste_water | drain 10. The liquid may be supplied to the anaerobic digester 13.

<嫌気性消化工程B>
嫌気性消化工程Bでは、膜分離工程から供給される塩類濃縮水12乃至SS濃縮水11と共に、高SS排水10を、嫌気性消化装置13において、嫌気性菌を浮遊させる方式の嫌気性消化法により嫌気性消化し、バイオガス5を回収すると共に消化液としての流出水14を得る。
<Anaerobic digestion process B>
In the anaerobic digestion process B, the anaerobic digestion method of floating anaerobic bacteria in the anaerobic digester 13 together with the salt concentrated water 12 to the SS concentrated water 11 supplied from the membrane separation process. To obtain an effluent water 14 as a digestive liquid.

この際、前記膜分離工程から供給される塩類濃縮水12乃至SS濃縮水11の量を調整することによって、嫌気性消化工程Bの反応槽(「嫌気性消化槽」と称する)内の汚泥濃度がSS濃度として4%以下、特に2〜3%程度になるように調整するのが好ましい。
嫌気性消化槽内の汚泥濃度が高いと、十分に攪拌することが難しくなり、消化反応の進行が妨げられる。そのため、嫌気性消化槽内の汚泥濃度がSS濃度として2%〜3%になるようにするのが特に好ましい。例えば高SS分離水SSのSS分解率が75%の場合、分離水SSを10%に調整すると、反応槽SSは2.5%になる。
At this time, the sludge concentration in the reaction tank (referred to as “anaerobic digestion tank”) of the anaerobic digestion process B is adjusted by adjusting the amount of the salt concentrate 12 to the SS concentrate 11 supplied from the membrane separation process. Is preferably adjusted so that the SS concentration is 4% or less, particularly about 2-3%.
When the sludge concentration in the anaerobic digestion tank is high, it becomes difficult to sufficiently stir and the progress of the digestion reaction is hindered. Therefore, it is particularly preferable that the sludge concentration in the anaerobic digester is 2% to 3% as the SS concentration. For example, when the SS decomposition rate of the high SS separated water SS is 75%, the reaction tank SS becomes 2.5% when the separated water SS is adjusted to 10%.

嫌気性菌を浮遊させる方式の嫌気性消化法(装置)とは、典型的には、消化槽を用いた嫌気性消化法(装置)である。   An anaerobic digestion method (apparatus) of a system in which anaerobic bacteria are suspended is typically an anaerobic digestion method (apparatus) using a digestion tank.

このうちの浮遊型嫌気性消化法は、典型的には、有機性排水を嫌気性消化タンク(「消化槽」と称する)に供給し、消化槽内に気相ガスを吹き込んだり或いは機械により攪拌したりして撹拌を行い、嫌気性状態で有機物の生物分解を行う方法である。   Of these, the floating type anaerobic digestion method typically supplies organic wastewater to an anaerobic digestion tank (referred to as a “digestion tank”) and blows gas phase gas into the digestion tank or stirs with a machine. In this method, the organic substance is biodegraded in an anaerobic state.

嫌気性消化装置13としては、例えばメタン発酵槽である消化槽と汚泥回収槽(例えば沈殿池)からなる構成の装置を例示することができ、汚泥回収槽で回収された余剰汚泥を消化槽に返送する構成であってもよい。   As an anaerobic digester 13, the apparatus of the structure which consists of a digester tank which is a methane fermentation tank and a sludge collection tank (for example, sedimentation pond) can be illustrated, for example, The excess sludge collect | recovered by the sludge collection tank is used as a digester tank. The structure which returns may be sufficient.

消化槽内では、通常、酸生成菌の働きで、有機物が酢酸やギ酸などの有機酸と低級アルコール類とに加水分解され、pHが5〜6にまで低下した(酸性発酵期)後、pHが6.8程度まで上昇し(酸性減退期)、次いで、メタン生成菌の作用で有機酸などの中間生成物がメタン、二酸化炭素、アンモニアなどの最終生成物へ分解され、pHは7.0〜7.4程度となる(アルカリ発酵期)。
この際、被処理水のSS濃度が高いと、有機物の容積負荷が高くなり、有機酸生成速度がメタン転換速度よりも高くなるため、pHが低下する可能性があるが、本処理方法では、後述するように、嫌気性消化工程Aの流出水を膜分離して得られる塩類濃縮水を当該嫌気性処理工程Bに供給することで、嫌気性消化工程BでのpHの低下を抑えることができ、有機物の分解率を維持し、流出水のBOD濃度を十分低減することができる。
In the digestion tank, the organic substances are usually hydrolyzed into organic acids such as acetic acid and formic acid and lower alcohols by the action of acid-producing bacteria, and the pH is lowered to 5-6 (acid fermentation period), and then the pH. Rises to about 6.8 (acid decline period), and then intermediate products such as organic acids are decomposed into final products such as methane, carbon dioxide, and ammonia by the action of the methanogen, and the pH is 7.0. ˜7.4 (alkaline fermentation period).
At this time, if the SS concentration of the water to be treated is high, the volume load of the organic matter becomes high, and the organic acid production rate becomes higher than the methane conversion rate, so that the pH may be lowered. As described later, by supplying salt concentrated water obtained by membrane separation of the effluent from the anaerobic digestion step A to the anaerobic treatment step B, it is possible to suppress a decrease in pH in the anaerobic digestion step B. It is possible to maintain the organic matter decomposition rate and sufficiently reduce the BOD concentration of the effluent water.

浮遊型嫌気性消化法の処理温度は、嫌気性処理菌の種類に適した温度に設定するのが好ましい。よって、中温メタン発酵処理菌の場合であれば、30〜35℃が至適温度となるように温度調整するのが好ましく、高温メタン発酵処理菌の場合であれば、50〜55℃が至適温度となるように温度調整するのが好ましい。   The treatment temperature of the floating anaerobic digestion method is preferably set to a temperature suitable for the type of anaerobic bacteria. Therefore, in the case of a medium temperature methane fermentation treatment bacterium, it is preferable to adjust the temperature so that 30 to 35 ° C. is the optimum temperature, and in the case of a high temperature methane fermentation treatment bacterium, 50 to 55 ° C. is optimum. It is preferable to adjust the temperature so as to be the temperature.

嫌気性消化工程Bの流出水14すなわち消化液は、例えば好気性生物処理装置15に供給し、例えば活性汚泥処理法、酸化池法など、生物学的な好気性処理して残留するBOD及びCOD等を処理することが可能である。但し、直接液肥として利用することも可能である。
また、嫌気性消化工程Bの流出水14を固液分離して、分離水を前記のように好気性処理するようにしてもよい。このようにすれば、未消化のSS分を固液分離で除去することができるため、好気性処理での汚濁負荷を軽減することができる。
なお、この際に固液分離した固分は、発酵処理して堆肥化すれば農業に利用可能である。
また、嫌気性消化工程Bで発生したバイオガス5は、回収して利用することができる。
The effluent 14 of the anaerobic digestion process B, that is, the digested liquid, is supplied to, for example, the aerobic biological treatment apparatus 15, and remains BOD and COD remaining after biological aerobic treatment such as activated sludge treatment method and oxidation pond method. Etc. can be processed. However, it can also be used directly as liquid fertilizer.
Alternatively, the effluent 14 from the anaerobic digestion step B may be subjected to solid-liquid separation, and the separated water may be subjected to aerobic treatment as described above. In this way, undigested SS can be removed by solid-liquid separation, so that the pollution load in the aerobic treatment can be reduced.
In addition, the solid content separated at this time can be used for agriculture if fermented and composted.
Moreover, the biogas 5 generated in the anaerobic digestion step B can be recovered and used.

<語句の説明>
本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
<Explanation of words>
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), unless otherwise specified, “X is preferably greater than X” or “preferably Y”. It also includes the meaning of “smaller”.
In addition, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), it is “preferably greater than X” or “preferably less than Y”. Includes intentions.

以下、実施例に基づいて本発明を説明する。ただし、本発明がここで説明する実施例に限定されるものではない。   Hereinafter, the present invention will be described based on examples. However, the present invention is not limited to the embodiments described here.

(実施例1)
本実施例は、図2のフローに従って実施した。
(Example 1)
This example was implemented according to the flow of FIG.

原水には、固形分を含む有機性排水1としてアルコール蒸留廃液(CODCr84000mg/L、BOD42000mg・/L)を2倍希釈したものを使用した。
この原水を、遠心分離機(固液分離装置2)で低SS排水3と高SS排水10に分離し、一方の低SS排水3は、アルカリ度の補給のため炭酸水素ナトリウム(薬剤16)を添加し溶解させた後、UASB(嫌気性消化装置4)に導入して固定型嫌気性消化法によるメタン発酵処理を行った。他方の高SS排水10は、機械攪拌機が付帯した消化槽(嫌気性消化装置13)に導入し、浮遊型嫌気性消化法によるメタン発酵処理を行った。
The raw water used was an organic distillation wastewater 1 containing solid content diluted with alcohol distillation waste liquid (CODCr 84000 mg / L, BOD 42000 mg / L) twice.
This raw water is separated into a low SS drainage 3 and a high SS drainage 10 by a centrifuge (solid-liquid separation device 2), and one of the low SS drainages 3 is supplied with sodium bicarbonate (drug 16) for replenishment of alkalinity. After adding and dissolving, it introduce | transduced into UASB (anaerobic digester 4) and performed the methane fermentation process by the fixed type anaerobic digestion method. The other high SS drainage 10 was introduced into a digester (anaerobic digester 13) equipped with a mechanical stirrer, and subjected to a methane fermentation treatment by a floating anaerobic digestion method.

UASB流出水(流出水6)はUF膜装置(SS除去装置7)でUF膜濃縮水(SS濃縮水11)と分離水(SS除去水8)に分離した後、該分離水(SS除去水8)をRO膜装置(膜分離装置9)に導入してRO透過水17とRO濃縮水(塩類濃縮水12)に分離した。
UF膜濃縮水(SS濃縮水11)とRO濃縮水(塩類濃縮水12)は、前記高SS排水10と混合して、高SS排水10とともに消化槽(嫌気性消化装置13)に導入し、浮遊型嫌気性消化法によるメタン発酵処理を行った。
メタン発酵槽流出水14は、好気性生物処理装置15であるMBR(メンブランバイオリアクター)で好気処理を行った。
The UASB effluent (effluent 6) is separated into UF membrane concentrated water (SS concentrated water 11) and separated water (SS removed water 8) by the UF membrane device (SS remover 7), and then the separated water (SS removed water). 8) was introduced into the RO membrane device (membrane separation device 9) and separated into RO permeated water 17 and RO concentrated water (salt concentrated water 12).
UF membrane concentrated water (SS concentrated water 11) and RO concentrated water (salt concentrated water 12) are mixed with the high SS drainage 10 and introduced into the digestion tank (anaerobic digester 13) together with the high SS drainage 10, Methane fermentation treatment by floating anaerobic digestion was performed.
The methane fermentation tank effluent 14 was subjected to an aerobic treatment by an MBR (membrane bioreactor) which is an aerobic biological treatment device 15.

以下、実施装置の仕様を表1に示し、実施条件を表2に示す。
また、実施を開始して50日を経過したのち、継続して10日間の測定、分析を行った結果(平均値)として、各水質を表3に示し,各水量を表4に示す。
The specifications of the implementation apparatus are shown in Table 1, and the implementation conditions are shown in Table 2.
In addition, after 50 days have passed since the start of the implementation, each water quality is shown in Table 3 and each water amount is shown in Table 4 as a result (average value) of continuous measurement and analysis for 10 days.

Figure 0005801769
Figure 0005801769

Figure 0005801769
Figure 0005801769

Figure 0005801769
Figure 0005801769

Figure 0005801769
Figure 0005801769

(実施例2)
本実施例は、図2のフローにおいて、流出水6を、SS除去装置7を経由せずに直接膜分離装置9に導入して、膜分離装置9でSSと塩類が混合した塩類濃縮液12と透過水17に分離するようにした(図は省略)。該塩類濃縮水12は、実施例1と同様に高SS排水10とともに嫌気性消化装置13に導入した(図は省略)。
その結果、膜分離装置9の膜洗浄頻度は増加したが、嫌気性消化装置13にアルカリ剤を添加せずに実施例1と同様の透過水水質、MBR処理水質を得ることができた。
(Example 2)
In this embodiment, in the flow of FIG. 2, the effluent 6 is directly introduced into the membrane separation device 9 without going through the SS removal device 7, and the salt concentrate 12 in which SS and salts are mixed in the membrane separation device 9. And permeated water 17 (not shown). The salt-enriched water 12 was introduced into the anaerobic digester 13 together with the high SS drainage 10 as in Example 1 (not shown).
As a result, although the membrane cleaning frequency of the membrane separation device 9 increased, the permeated water quality and MBR treated water quality similar to those in Example 1 could be obtained without adding an alkaline agent to the anaerobic digester 13.

(結果・考察)
実施例のように、UASBから流出したアルカリ度分を濃縮してメタン発酵槽に導入することによって、次のように従来では達成できなかった効果を得ることができた。すなわち、UASBの円滑な反応に利用したアルカリ度分を全量消化槽に導入することができたので、メタン発酵槽で反応が円滑化した。さらに、UASBリアクター流出水量を濃縮したことによって、メタン発酵槽への流入量を減少することができたので、消化槽のHRT(水理学的滞留時間)を長くすることができるので、さらに安定したメタン発酵が可能になった。
(Results and discussion)
By concentrating the alkalinity component flowing out from UASB and introducing it into the methane fermentation tank as in the examples, the following effects that could not be achieved in the past could be obtained. That is, since the alkalinity used for the smooth reaction of UASB could be introduced into the digestion tank, the reaction was smoothed in the methane fermentation tank. Furthermore, by concentrating the amount of UASB reactor effluent, the amount of inflow into the methane fermentation tank could be reduced, so the HRT (hydraulic residence time) of the digester could be lengthened, making it more stable. Methane fermentation has become possible.

さらに、次のような効果により効率的、かつ安定した排水処理を行うことができることが判明した。すなわち、膜分離工程の濃縮水を消化槽に導入することにより、濃縮水の排出が容易になったことにより、過度の濃縮による膜の閉塞を未然に防止することができ安定した透過流束(フラックス)を保つことができた。
UASBと消化槽の合計流出量を脱塩水透過分削減することができたので、最終的な好気性処理工程の水量負荷を低減することができた。
UASBから流出するメタン菌を補足して、濃縮水とともにメタン発酵槽に導入することにより、消化槽にアルカリ度分のほかメタン菌も補給することができた。
アルカリ度分濃縮分離にRO膜を利用することによって、プロセス用水として利用可能な脱塩水を得ることができた。
Furthermore, it has been found that efficient and stable wastewater treatment can be performed by the following effects. That is, by introducing the concentrated water of the membrane separation step into the digestion tank, it becomes easy to discharge the concentrated water, so that the membrane can be prevented from being clogged due to excessive concentration, and a stable permeation flux ( Flux) could be maintained.
Since the total outflow amount of the UASB and the digester was able to be reduced in the amount of permeated demineralized water, the water load in the final aerobic treatment process could be reduced.
By supplementing methane bacteria flowing out from UASB and introducing them into the methane fermentation tank together with concentrated water, it was possible to replenish methane bacteria in addition to the alkalinity in the digestion tank.
By using the RO membrane for alkalinity concentration and separation, demineralized water that can be used as process water could be obtained.

1 有機性排水(原水)
2 固液分離装置
3 低SS排水
4 嫌気性消化装置(固定化方式)
5 バイオガス
6 流出水
7 SS除去装置
8 SS除去水
9 膜分離装置
10 高SS排水
11 SS濃縮水
12 塩類濃縮水
13 嫌気性消化装置(浮遊方式)
14 流出水
15 好気性生物処理装置
16 薬剤
17 透過水
1 Organic wastewater (raw water)
2 Solid-liquid separator 3 Low SS drainage 4 Anaerobic digester (immobilization method)
5 Biogas 6 Outflow water 7 SS removal device 8 SS removal water 9 Membrane separation device 10 High SS drainage 11 SS concentrated water 12 Salt concentrated water 13 Anaerobic digester (floating method)
14 Outflow water 15 Aerobic biological treatment device 16 Drug 17 Permeated water

Claims (3)

固形分を含む有機性排水を、固形分濃度の低い低SS排水と固形分濃度の高い高SS排水とに分離する固液分離工程と、嫌気性菌を固定化させる方式の嫌気性消化法により、前記低SS排水を嫌気性消化する嫌気性消化工程Aと、嫌気性菌を浮遊させる方式の嫌気性消化法により、前記高SS排水を嫌気性消化する嫌気性消化工程Bと、前記嫌気性消化工程Aの流出水を、逆浸透膜により、透過水と塩類濃縮水とに分離する膜分離工程と、前記膜分離工程で得られた塩類濃縮水の全部又は一部を前記嫌気性消化工程Bに供給する塩類濃縮水供給工程と、を備えた有機性排水の嫌気性消化処理方法。 Solid-liquid separation process that separates organic wastewater containing solids into low SS wastewater with low solids content and high SS wastewater with high solids content, and anaerobic digestion method that immobilizes anaerobic bacteria The anaerobic digestion process A for anaerobically digesting the low SS wastewater, the anaerobic digestion process B for anaerobically digesting the high SS wastewater by an anaerobic digestion method of floating anaerobic bacteria, and the anaerobic A membrane separation step for separating the effluent from the digestion step A into a permeated water and a salt-concentrated water using a reverse osmosis membrane , and an anaerobic digestion step for all or part of the salt-concentrated water obtained in the membrane separation step An anaerobic digestion method for organic wastewater, comprising: a salt-concentrated water supply step for supplying to B. 前記嫌気性消化工程Aの被処理水である低SS排水に、アルカリ度を増加する薬剤を添加することを特徴とする請求項1に記載の有機性排水の嫌気性消化処理方法。 The method for anaerobic digestion of organic wastewater according to claim 1, wherein a chemical that increases alkalinity is added to the low SS wastewater that is treated water in the anaerobic digestion step A. 固形分を含む有機性排水を、固形分濃度の低い低SS排水と固形分濃度の高い高SS排水とに分離する固液分離装置と、前記低SS排水の供給管が接続され、嫌気性菌を固定化させる方式の嫌気性消化装置Aと、前記高SS排水の供給管が接続され、嫌気性菌を浮遊させる方式の嫌気性消化装置Bと、前記嫌気性消化装置Aからの流出水の供給管が接続され、逆浸透膜を備えた膜分離装置と、前記膜分離装置で得られた塩類濃縮水の全部又は一部を前記嫌気性消化装置Bに供給する塩類濃縮水供給管と、を備えた有機性排水の嫌気性消化装置。 A solid-liquid separator that separates organic wastewater containing solids into low SS wastewater with low solids content and high SS wastewater with high solids content, and a supply pipe for the low SS wastewater are connected, and anaerobic bacteria The anaerobic digester A of the type that immobilizes the water, the supply pipe for the high SS drainage, and the anaerobic digester B of the type that floats anaerobic bacteria, and the effluent water from the anaerobic digester A A membrane separator having a reverse osmosis membrane to which a supply pipe is connected; a salt concentrate supply pipe for supplying all or part of the salt concentrate obtained by the membrane separator to the anaerobic digester B; An anaerobic digester for organic wastewater.
JP2012145297A 2012-06-28 2012-06-28 Method and apparatus for anaerobic digestion treatment of organic wastewater Active JP5801769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012145297A JP5801769B2 (en) 2012-06-28 2012-06-28 Method and apparatus for anaerobic digestion treatment of organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012145297A JP5801769B2 (en) 2012-06-28 2012-06-28 Method and apparatus for anaerobic digestion treatment of organic wastewater

Publications (2)

Publication Number Publication Date
JP2014008431A JP2014008431A (en) 2014-01-20
JP5801769B2 true JP5801769B2 (en) 2015-10-28

Family

ID=50105591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012145297A Active JP5801769B2 (en) 2012-06-28 2012-06-28 Method and apparatus for anaerobic digestion treatment of organic wastewater

Country Status (1)

Country Link
JP (1) JP5801769B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108623076A (en) * 2017-03-17 2018-10-09 天津科技大学 A kind of method and apparatus of processing whey wastewater
CN107892440A (en) * 2017-12-04 2018-04-10 青岛市黎明水处理设备有限公司 A kind of pickles, the full reuse treatment process of salted vegetables high-salinity wastewater zero-emission
CN110451706B (en) * 2019-05-13 2023-10-27 上海晶宇环境工程股份有限公司 Separation process of high-concentration organic matters and salt in zero-emission process of strong brine and special equipment
CN113149341A (en) * 2021-03-25 2021-07-23 中化环境科技工程有限公司 Advanced treatment method for high-salinity wastewater

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845796A (en) * 1981-09-16 1983-03-17 Nishihara Environ Sanit Res Corp Anaerobic digestion of highly-concentrated organic waste water
JPS61185399A (en) * 1985-02-12 1986-08-19 Kurita Water Ind Ltd Apparatus for treating organic waste water
JPH0635000B2 (en) * 1985-03-12 1994-05-11 栗田工業株式会社 Sewage treatment equipment
JPS6470195A (en) * 1987-09-11 1989-03-15 Aqua Renaissance Gijutsu Method and device for anaerobic treatment of high-concentration organic waste water
JPH0576870A (en) * 1991-09-19 1993-03-30 Ebara Corp Separation of suspension
JP3152357B2 (en) * 1991-11-21 2001-04-03 三機工業株式会社 Anaerobic treatment method and apparatus for high-concentration organic wastewater containing organic suspended matter
JP3351034B2 (en) * 1993-07-27 2002-11-25 栗田工業株式会社 Method and apparatus for treating wastewater containing organic solids
JP5148550B2 (en) * 2009-04-20 2013-02-20 水ing株式会社 Anaerobic treatment method and apparatus provided with evaporative concentration means for methane fermentation treated water

Also Published As

Publication number Publication date
JP2014008431A (en) 2014-01-20

Similar Documents

Publication Publication Date Title
US11001517B2 (en) Bioreactor for treating sewage and sewage treatment system comprising the same
US9845260B2 (en) Treatment of municipal wastewater with anaerobic digestion
JP5194771B2 (en) Biological treatment method and apparatus for water containing organic matter
US20130134089A1 (en) Method and system for treating wastewater
Liao et al. Treatment of kraft evaporator condensate using a thermophilic submerged anaerobic membrane bioreactor
US10464833B2 (en) Systems and methods for treating dilute wastewater
CN105776766A (en) Advanced treatment system for biorefractory wastewater of industrial park
CN111762970A (en) Method for treating leachate of garbage transfer station
JP2012206040A (en) Treatment method and treatment apparatus of organic matter containing wastewater
JP2019025438A (en) Organic waste water treatment apparatus and organic wastewater treatment method
JP5801769B2 (en) Method and apparatus for anaerobic digestion treatment of organic wastewater
KR20180116806A (en) Bio-reactor for sewage treatment and sewage treatment system comprising the same
JP2012192367A (en) Treatment device for organic waste water containing nitrogen
KR102100991B1 (en) Liquefied fertilizer purification apparatus using porous ceramic membrane
KR100327151B1 (en) A Process for Treatment of Wastewater Using Intermittently Aerated Membrane Bioreactor
JP5873736B2 (en) Organic wastewater treatment method and treatment apparatus
KR20080097779A (en) Livestock wastewater treatment method for the production of liquid fertilizer
KR20180116805A (en) Bio-reactor for sewage treatment and sewage treatment system comprising the same
JP2001327998A (en) Organic sludge digesting method
JP7150899B2 (en) Anaerobic treatment apparatus and anaerobic treatment method
KR20190001090A (en) Bio-reactor for sewage treatment and sewage treatment system comprising the same
KR20190000157A (en) The method and apparatus for treatment of livestock manure, livestock wastewater or livestock washing water using ceramic membrane
KR20180137960A (en) Bio-reactor for sewage treatment and sewage treatment system comprising the same
KR20180119950A (en) Compact type aeration tank for sewage treatment and sewage treatment system comprising the same
KR102139744B1 (en) An anaerobic sewage treatment apparatus comprising a dissolved methane recovery apparatus and anaerobic sewage treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150827

R150 Certificate of patent or registration of utility model

Ref document number: 5801769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250