JP4655974B2 - Waste water treatment method and treatment apparatus - Google Patents

Waste water treatment method and treatment apparatus Download PDF

Info

Publication number
JP4655974B2
JP4655974B2 JP2006076724A JP2006076724A JP4655974B2 JP 4655974 B2 JP4655974 B2 JP 4655974B2 JP 2006076724 A JP2006076724 A JP 2006076724A JP 2006076724 A JP2006076724 A JP 2006076724A JP 4655974 B2 JP4655974 B2 JP 4655974B2
Authority
JP
Japan
Prior art keywords
wastewater
floc
water
pressurized
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006076724A
Other languages
Japanese (ja)
Other versions
JP2007252968A (en
Inventor
繁樹 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006076724A priority Critical patent/JP4655974B2/en
Publication of JP2007252968A publication Critical patent/JP2007252968A/en
Application granted granted Critical
Publication of JP4655974B2 publication Critical patent/JP4655974B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Physical Water Treatments (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、油のような水難溶性の懸濁物質と有機物とを含む廃水を処理する方法および装置に関し、特に、廃水から水難溶性物質を除去するための浮上分離処理と生物処理とを組み合わせた廃水の処理方法および装置に関する。   The present invention relates to a method and apparatus for treating wastewater containing hardly water-soluble suspended substances such as oil and organic matter, and in particular, combined floating treatment and biological treatment for removing hardly water-soluble substances from wastewater. The present invention relates to a wastewater treatment method and apparatus.

従来、有機物を含む有機性廃水の処理法として、有機物を基質として増殖する種々の微生物の働きを利用する生物処理が知られている。例えば、好気的条件下で生物処理を行なう方法としては、活性汚泥と呼ばれる好気性微生物群集を用いた活性汚泥法、または嫌気的条件下で生物処理を行なう方法としては、酸生成菌およびメタン生成菌(以下、これらを「メタン発酵菌」と総称する場合がある)を用いたメタン発酵法等が知られている。   Conventionally, as a method for treating organic wastewater containing organic matter, biological treatment utilizing the action of various microorganisms that grow using the organic matter as a substrate is known. For example, as a method for biological treatment under aerobic conditions, an activated sludge method using an aerobic microorganism community called activated sludge, or a method for biological treatment under anaerobic conditions includes acid-producing bacteria and methane. A methane fermentation method using the producing bacteria (hereinafter sometimes collectively referred to as “methane fermentation bacteria”) is known.

生物処理法は、微生物活動を利用して有機物を分解するため処理コストが低く、産業排水または下水等の処理に広く用いられている。しかし、微生物活動を阻害する物質が廃水に含まれる場合は、生物分解が良好に進行しない。例えば、油、界面活性剤、または分散剤等は微生物分解され難いため、微生物活動を阻害したり、生物処理過程で分解されず処理水に残留したりするといった問題を引き起こすおそれがある。   Biological treatment methods use organic microorganisms to decompose organic matter and thus have a low treatment cost, and are widely used for the treatment of industrial wastewater or sewage. However, biodegradation does not proceed well when wastewater contains substances that inhibit microbial activity. For example, since oils, surfactants, dispersants, and the like are difficult to be microbially decomposed, there is a possibility of causing problems such as inhibiting microbial activity and remaining in treated water without being decomposed during the biological treatment process.

そこで、難分解性物質を含む廃水を生物処理する前に、あらかじめ難分解性物質を液分と分離する方法が提案されている。例えば特許文献1では、油脂含有水にリパーゼを添加して油脂を加水分解した後にメタン発酵させる処理法が開示されている。特許文献1に開示された方法によれば、生物処理に先立ち油脂を加水分解することから、メタン発酵される被処理液は微生物分解されやすく、生物処理工程での処理効率の低下を防止できる。
特開平6−246295号公報
Therefore, a method has been proposed in which a hardly decomposable substance is separated from a liquid component in advance before biological treatment of wastewater containing the hardly decomposable substance. For example, Patent Document 1 discloses a treatment method in which lipase is added to oil-and-fat-containing water to hydrolyze the oil and fat, followed by methane fermentation. According to the method disclosed in Patent Document 1, since the fat and oil is hydrolyzed prior to biological treatment, the liquid to be treated that is subjected to methane fermentation is easily microbially decomposed, and a reduction in treatment efficiency in the biological treatment step can be prevented.
JP-A-6-246295

特許文献1に記載された方法では、油脂を加水分解させるためにリパーゼの添加が必要となるため、処理コストが高くなる。これに対し、油脂等の難水溶性物質を含む有機物含有廃水を生物処理する前に浮上分離等の固液分離操作を行って油脂等を除去する構成とすれば、油脂等を分解する特異な添加剤は必要ない。しかし、かかる構成では生物処理工程の前に凝集沈殿槽または加圧浮上槽を別途、設けるため、処理装置の構成が複雑化し、装置設置面積も大きくなる問題がある。   In the method described in Patent Document 1, it is necessary to add lipase in order to hydrolyze fats and oils, so that the processing cost increases. On the other hand, if it is configured to remove fats and oils by performing solid-liquid separation operation such as flotation separation before biological treatment of organic matter-containing wastewater containing poorly water-soluble substances such as fats and oils, it is unique No additives are necessary. However, in such a configuration, a coagulation sedimentation tank or a pressure levitation tank is separately provided before the biological treatment step, and thus there is a problem that the configuration of the processing apparatus becomes complicated and the apparatus installation area increases.

本発明は上記課題に鑑みてなされ、構成が簡素で装置が長大になることを回避し、かつ、油のような物質を含む被処理水を生物処理する際の処理効率の低下を防止できる廃水処理方法および設備を提供することを目的とする。   The present invention has been made in view of the above problems, avoids an increase in the size of the apparatus with a simple configuration, and can prevent a reduction in treatment efficiency when biologically treating water to be treated containing a substance such as oil. It aims at providing a processing method and equipment.

本発明者は、上記課題を解決すべく検討した結果、嫌気的条件で廃水を生物処理する過程で生成されるガスを利用して浮上分離を行えることを見出し、本発明を完成させた。具体的には、本発明は、以下を提供する。   As a result of studying to solve the above problems, the present inventor has found that flotation separation can be performed using a gas generated in the process of biologically treating wastewater under anaerobic conditions, and has completed the present invention. Specifically, the present invention provides the following.

(1)水難溶性物質と有機物とを含む廃水を、密閉可能な容器内に導入してフロックを共存させた状態で嫌気的に生物処理してガスを生成させることにより、前記廃水に前記ガスを加圧状態で含ませた加圧廃水を得る加圧廃水生成工程と、前記加圧廃水を減圧することにより、前記水難溶性物質が前記フロックに吸着された吸着フロックを浮上させて液分と分離して前記吸着フロックと分離水とを得る浮上分離工程と、前記分離水を活性汚泥処理する後処理工程と、を含み、前記後処理工程で生成された汚泥を前記フロックとして前記密閉容器に供給する廃水の処理方法。
(2)水難溶性物質と有機物とを含む廃水を、密閉可能な容器内に導入してフロックを共存させた状態で嫌気的に生物処理してガスを生成させることにより、前記廃水に前記ガスを加圧状態で含ませた加圧廃水を得る加圧廃水生成工程と、前記加圧廃水を減圧することにより、前記水難溶性物質が前記フロックに吸着された吸着フロックを浮上させて液分と分離して前記吸着フロックと分離水とを得る浮上分離工程と、前記分離水をメタン生成槽に導入してメタン発酵させるメタン生成工程と、前記メタン生成工程で得られた処理水を活性汚泥処理する後処理工程と、を含み、前記後処理工程で生成された汚泥を前記フロックとして前記密閉容器に供給し、前記加圧廃水生成工程で、生物処理として酸生成菌による酸生成を行なう廃水の処理方法。
(3)前記水難溶性物質は油である請求項(1)または(2)に記載の廃水の処理方法。
(4)前記加圧廃水生成工程の前に、前記廃水に凝集剤を添加して前記フロックを形成させる凝集反応工程をさらに含む請求項(1)から(3)いずれかに記載の廃水の処理方法。
(5)水難溶性物質と有機物とを含む廃水が導入される密閉可能な容器を備え、該容器内で、フロックを共存させた状態で前記廃水を嫌気的に生物処理してガスを生成させることにより、前記廃水に前記ガスを加圧状態で含ませた加圧廃水を得る加圧廃水生成手段と、前記加圧廃水を減圧することにより、前記水難溶性物質が前記フロックに吸着された吸着フロックを浮上させて液分と分離して前記吸着フロックと分離水とを得る浮上分離手段と、前記分離水を導入して活性汚泥処理する後処理槽と、前記後処理槽で生成された汚泥を前記フロックとして前記容器に供給する汚泥フロック供給路と、を含む廃水の処理装置。
(6)水難溶性物質と有機物とを含む廃水が導入される密閉可能な容器を備え、該容器内で、フロックを共存させた状態で前記廃水を嫌気的に生物処理してガスを生成させることにより、前記廃水に前記ガスを加圧状態で含ませた加圧廃水を得る加圧廃水生成手段と、前記加圧廃水を減圧することにより、前記水難溶性物質が前記フロックに吸着された吸着フロックを浮上させて液分と分離して前記吸着フロックと分離水とを得る浮上分離手段と、前記分離水を導入してメタン発酵させるメタン生成槽と、前記メタン生成槽から流出する処理水を導入して活性汚泥処理する後処理槽と、前記後処理槽で生成された汚泥を前記フロックとして前記容器に供給する汚泥フロック供給路と、を含み、前記容器は酸生成菌を保持し、酸生成を行なうように構成されている廃水の処理装置。
(7)前記浮上分離手段は、前記容器に設けられた開閉可能な弁を含んで構成される請求項(5)または(6)に記載の廃水の処理装置。
(8)前記廃水に凝集剤を添加して前記フロックを形成させる凝集反応槽と、前記凝集反応槽前で生成された前記フロックを前記容器に供給する凝集フロック供給路と、をさらに含む請求項(5)から(7)のいずれかに記載の廃水の処理装置。
(1) By introducing waste water containing a poorly water-soluble substance and an organic substance into a sealable container and anaerobically biologically treating the floc in a coexisting state with floc, the gas is generated in the waste water. Pressurized wastewater generation step for obtaining pressurized wastewater contained in a pressurized state, and by depressurizing the pressurized wastewater, the poorly water-soluble substance is caused to float on the adsorbed floc adsorbed on the floc and separate from the liquid component And supplying the airtight container with the sludge generated in the post-treatment step as the floc, and a floating separation step for obtaining the adsorption floc and the separation water, and a post-treatment step for treating the separation water with activated sludge. processing method of waste water.
(2) By introducing waste water containing a poorly water-soluble substance and organic matter into a sealable container and anaerobically biotreating the floc in a coexisting state to generate gas, the gas is added to the waste water. Pressurized wastewater generation step for obtaining pressurized wastewater contained in a pressurized state, and by depressurizing the pressurized wastewater, the poorly water-soluble substance is caused to float on the adsorbed floc adsorbed on the floc and separate from the liquid component The floating separation step for obtaining the adsorption floc and the separation water, the methane generation step for introducing the separation water into a methane generation tank and performing methane fermentation, and the treated sludge treatment of the treated water obtained in the methane generation step A post-treatment step, the sludge produced in the post-treatment step is supplied to the sealed container as the floc, and in the pressurized waste water production step, acid treatment by acid-producing bacteria is performed as a biological treatment. Law.
(3) The method for treating wastewater according to (1) or (2), wherein the poorly water-soluble substance is oil.
(4) The wastewater treatment according to any one of (1) to (3), further comprising a coagulation reaction step of adding a flocculant to the wastewater to form the floc before the pressurized wastewater generation step. Method.
(5) Provide a sealable container into which waste water containing a poorly water-soluble substance and an organic substance is introduced, and generate gas by anaerobically biologically treating the waste water in the presence of floc in the container. The pressurized waste water generating means for obtaining pressurized waste water containing the gas in a pressurized state in the waste water, and the adsorption floc in which the poorly water-soluble substance is adsorbed on the floc by depressurizing the pressurized waste water Floating separation means for separating the liquid from the liquid to obtain the adsorption floc and separation water, a post-treatment tank for introducing activated water sludge by introducing the separation water, and sludge generated in the post-treatment tank. A wastewater treatment apparatus comprising: a sludge floc supply path for supplying the container as the floc.
(6) Provide a sealable container into which waste water containing a poorly water-soluble substance and organic matter is introduced, and generate gas by anaerobically biologically treating the waste water in the presence of floc in the container. The pressurized waste water generating means for obtaining pressurized waste water containing the gas in a pressurized state in the waste water, and the adsorption floc in which the poorly water-soluble substance is adsorbed on the floc by depressurizing the pressurized waste water The floating separation means for floating the liquid and separating it from the liquid to obtain the adsorption floc and separated water, the methane production tank for introducing the separated water to perform methane fermentation, and the treated water flowing out from the methane production tank are introduced. A post-treatment tank for treating activated sludge, and a sludge floc supply path for supplying the sludge produced in the post-treatment tank to the container as the floc, wherein the container holds acid-producing bacteria and generates acid. I will do Processing apparatus wastewater are configured.
(7) The wastewater treatment apparatus according to ( 5) or (6), wherein the floating separation means includes a valve that can be opened and closed provided in the container.
(8) A coagulation reaction tank for adding a flocculant to the waste water to form the floc, and a coagulation floc supply path for supplying the floc generated in front of the coagulation reaction tank to the container. (5) The wastewater treatment apparatus according to any one of (7).

本明細書において「水難溶性物質」とは、水中にSSとして存在する固体、および室温付近で水と混合されずに相分離する液体を指すものとする。具体的には、油、界面活性剤、乳たんぱく、および分散剤等が挙げられる。   In the present specification, the “poorly water-soluble substance” refers to a solid that exists as SS in water and a liquid that undergoes phase separation without being mixed with water near room temperature. Specific examples include oil, surfactant, milk protein, and dispersant.

「フロック」とは、SSが集合した浮遊物を指すものとする。フロックは、生物的に形成された生物フロック(微生物の集合体)であってもよく、凝集剤の添加により形成された凝集フロックであってもよい。   “Flock” refers to a suspended matter in which SSs are gathered. The flocs may be biologically formed flocs (aggregates of microorganisms) or may be flocculent flocs formed by the addition of flocculants.

加圧廃水生成工程における生物処理としては、被処理液中の酸素濃度がほぼゼロである嫌気的条件で、有機物を基質としてガスを生成する生物反応が起こる処理を行なう。具体的にはメタン発酵、および従属栄養型脱窒が挙げられる。   As a biological treatment in the pressurized wastewater production step, a treatment in which a biological reaction that produces a gas using an organic substance as a substrate is performed under anaerobic conditions in which the oxygen concentration in the liquid to be treated is almost zero. Specific examples include methane fermentation and heterotrophic denitrification.

メタン発酵は、糖またはたんぱく質等を基質として酪酸等の酸を生成する「酸生成工程」および酢酸または水素からメタンを生成する「メタン生成工程」とに分けられる。酸生成工程はさらに、糖等から酪酸およびプロピオン酸等の低級脂肪酸を生成する「低級脂肪酸生成工程」と、低級脂肪酸から酢酸を生成する「酢酸生成工程」とに分けることもできる。加圧廃水生成工程では、メタン発酵工程を2以上に分割し、加圧廃水を生成させるための生物処理として、いずれか一つの工程のみを行なうようにしてもよい。   Methane fermentation is divided into an “acid production step” in which an acid such as butyric acid is produced using sugar or protein as a substrate, and a “methane production step” in which methane is produced from acetic acid or hydrogen. The acid production step can be further divided into a “lower fatty acid production step” for producing lower fatty acids such as butyric acid and propionic acid from sugar and the like, and an “acetic acid production step” for producing acetic acid from lower fatty acids. In the pressurized wastewater generation step, the methane fermentation step may be divided into two or more, and only one of the steps may be performed as a biological treatment for generating pressurized wastewater.

加圧廃水生成工程において生成されるガスは、微生物の代謝活動により生成されるガス(「微生物生成ガス」と称する場合がある)であり、具体的には、メタン発酵過程で生成される炭酸ガス、メタンガス、水素ガス、および脱窒過程で生成される窒素ガス等が挙げられる。   The gas produced in the pressurized wastewater production process is a gas produced by metabolic activity of microorganisms (sometimes referred to as “microbe production gas”), and specifically, carbon dioxide produced in the methane fermentation process. Methane gas, hydrogen gas, and nitrogen gas produced in the denitrification process.

かかる加圧廃水生成工程では、水難溶性物質と有機物とを含む廃水は密閉可能な容器に導入され、嫌気的条件でガス生成を伴う生物反応により処理されるため、生成されたガスが容器内の液体に加圧状態で溶解されることになる。このため、容器内の微生物生成ガスを含んだ液体(加圧廃水)を急激に大気圧開放することで、加圧状態で溶解していたガスがマイクロエアと呼ばれる微細気泡となって浮上する。このとき、微細気泡と水難溶性物質とはフロックに付着し、水難溶性物質を吸着した吸着フロックが容器内の液面近くに浮上するため、吸着フロックを液分と分離することで水難溶性物質を除去できる。このため、分離水をさらに生物処理する場合の処理効率の低下を防止できる。   In this pressurized wastewater generation process, wastewater containing poorly water-soluble substances and organic substances is introduced into a sealable container and treated by a biological reaction involving gas generation under anaerobic conditions, so that the generated gas is contained in the container. It will be dissolved in the liquid under pressure. For this reason, the liquid (pressure waste water) containing the microorganism-generated gas in the container is suddenly released to atmospheric pressure, whereby the gas dissolved in the pressurized state floats as micro bubbles called micro air. At this time, the fine bubbles and the poorly water-soluble substance adhere to the floc, and the adsorption floc that has adsorbed the poorly water-soluble substance floats near the liquid surface in the container.Therefore, the poorly water-soluble substance is separated by separating the adsorption floc from the liquid. Can be removed. For this reason, the fall of the processing efficiency at the time of carrying out biological treatment of the separated water further can be prevented.

特に、油は比重が軽いためマイクロエアの生成量が少なくても良好に浮上分離できる。   In particular, since oil has a low specific gravity, it can be floated and separated satisfactorily even if the amount of micro air produced is small.

有機物含有廃水の嫌気処理は生物化学的酸素消費量で表される有機物(BOD)濃度が1,000mg/L以上程度の高濃度有機物廃水の処理に適する一方、下水放流可能なレベルの水質の処理水を得ることは難しい。このため、加圧廃水生成工程でメタン発酵を行なった場合、メタン発酵後の処理水には、数百mg/L程度の有機物が含まれる場合がある。そこで後処理工程において、メタン発酵した後の処理水を活性汚泥法で処理すると、メタン発酵処理水に残留する有機物をさらに分解して良好な水質の処理水を得ることができる。また、後処理工程で生成される汚泥(生物フロック)は、浮上分離の際に水難溶性物質を付着させるフロックとして利用できる。   Anaerobic treatment of wastewater containing organic matter is suitable for the treatment of high-concentration organic wastewater whose organic matter (BOD) concentration expressed by biochemical oxygen consumption is about 1,000 mg / L or more, while treating the water quality at a level that allows sewage discharge. It is difficult to get water. For this reason, when methane fermentation is performed in the pressurized wastewater generation step, the treated water after methane fermentation may contain about several hundred mg / L of organic matter. Therefore, in the post-treatment process, when the treated water after methane fermentation is treated by the activated sludge method, the organic matter remaining in the methane fermentation treated water can be further decomposed to obtain treated water with good water quality. Moreover, the sludge (biological floc) produced | generated at a post-processing process can be utilized as a floc to which a poorly water-soluble substance adheres in the case of floating separation.

浮上分離の際に要するフロックは、加圧廃水生成工程に導入される廃水に凝集剤を添加することにより生成させてもよい。   The floc required for flotation separation may be generated by adding a flocculant to the wastewater introduced into the pressurized wastewater generation step.

また、メタン発酵工程を少なくとも酸生成工程とメタン生成工程とに分割し、酸生成工程を加圧廃水生成工程で行った後、浮上分離工程で加圧廃水を固液分離し、得られた分離水をメタン生成工程で処理してもよい。この場合、糖等が酸に変換されSS濃度が低減された分離水をメタン生成工程の被処理液とできる。かかる分離水は、グラニュール汚泥等を保持する高負荷型のメタン発酵槽での高負荷処理が可能であるため、処理装置をより小型化できる。なお、本明細書において「高負荷」とは例えば、化学的酸素消費量で表される有機物(CODcr)の容積負荷を2kg−CODcr/m/d以上とできることを意味するものとする。 In addition, the methane fermentation process is divided into at least an acid generation process and a methane generation process, and after the acid generation process is performed in the pressurized wastewater generation process, the pressure wastewater is subjected to solid-liquid separation in the floating separation process, and the resulting separation is obtained. Water may be treated in the methane production step. In this case, the separated water in which the sugar or the like is converted into an acid and the SS concentration is reduced can be used as the liquid to be treated in the methane production step. Since such separated water can be subjected to a high load treatment in a high load type methane fermentation tank holding granule sludge and the like, the treatment apparatus can be further downsized. In the present specification, “high load” means that, for example, the volume load of an organic substance (CODcr) represented by chemical oxygen consumption can be 2 kg-CODcr / m 3 / d or more.

加圧廃水を一気に大気圧開放する方法としては、密閉可能な容器にバルブを設け、このバルブを開くことにより容器内を急激に減圧する方法がある。また、加圧廃水を生成させる生物処理槽とは別に浮上分離を行う浮上分離槽を設け、生物処理槽と浮上分離槽とを減圧弁を備える通路で接続し、この通路から加圧廃水を浮上分離槽に導いて一気に大気圧開放してもよい。   As a method for releasing the pressurized waste water at atmospheric pressure at once, there is a method in which a valve is provided in a sealable container and the inside of the container is rapidly depressurized by opening the valve. In addition, a flotation separation tank that performs flotation separation is provided separately from the biological treatment tank that generates pressurized wastewater, the biological treatment tank and the flotation separation tank are connected by a passage having a pressure reducing valve, and the pressurized wastewater is floated from this passage. You may lead to a separation tank and release atmospheric pressure at a stretch.

本発明によれば、嫌気処理槽を浮上分離槽として利用することで、処理装置が過大になることを防止し、かつ、生物処理効率の低下を防止できる。   ADVANTAGE OF THE INVENTION According to this invention, it can prevent that a processing apparatus becomes excessive by using an anaerobic processing tank as a floating separation tank, and can prevent the biological treatment efficiency from falling.

以下、図面を参照して、難水溶性物質と有機物を含む廃水として油脂含有廃水を処理対象として本発明を実施する場合の実施形態について説明する。以下、同一機能を奏する部材には同一符号を付す。   Hereinafter, with reference to the drawings, an embodiment in which the present invention is carried out using oil-containing wastewater as a wastewater containing a hardly water-soluble substance and an organic substance will be described. Hereinafter, members having the same function are denoted by the same reference numerals.

図1は、第1実施形態に係る油脂含有廃水の処理方法および処理装置の実施の形態を示す系統図である。処理装置101は、原水貯槽1、凝集反応槽2、酸生成槽3、高負荷メタン生成槽5、後処理槽6、および沈殿池7を含み、これらはこの順で互いに直列に接続されている。処理装置101また、付随設備としてメタン発酵槽8、汚泥脱水機9、脱硫塔10、およびガスホルダ11を備える。   FIG. 1 is a system diagram showing an embodiment of a method and apparatus for treating fat and oil-containing wastewater according to the first embodiment. The treatment apparatus 101 includes a raw water storage tank 1, a coagulation reaction tank 2, an acid generation tank 3, a high load methane generation tank 5, a post-treatment tank 6, and a settling tank 7, which are connected in series in this order. . The processing apparatus 101 also includes a methane fermentation tank 8, a sludge dehydrator 9, a desulfurization tower 10, and a gas holder 11 as accompanying equipment.

原水貯槽1には原水管21と脱離液管40の一端縁とが接続されている。脱離液管40の他端縁は汚泥脱水機9に接続されており、油脂含有廃水と汚泥脱水濾液(脱離液)が原水管21および脱離液管40をそれぞれ経由して原水貯槽1に供給され、一時的に貯留される。原水貯槽1は導入管22を介して凝集反応槽2と接続されており、油脂含有廃水と脱離液の混合液が原水として凝集反応槽2に導入される。   The raw water storage tank 1 is connected to the raw water pipe 21 and one end edge of the desorption liquid pipe 40. The other end of the desorbed liquid pipe 40 is connected to the sludge dehydrator 9, and the oil-containing waste water and the sludge dehydrated filtrate (desorbed liquid) pass through the raw water pipe 21 and the desorbed liquid pipe 40, respectively. To be temporarily stored. The raw water storage tank 1 is connected to the agglomeration reaction tank 2 via an introduction pipe 22, and a mixed liquid of oil-containing waste water and desorption liquid is introduced into the aggregation reaction tank 2 as raw water.

凝集反応槽2には、凝集剤注入管23が接続されており、凝集剤貯槽2Bに貯留された凝集剤が添加され、原水が凝集処理される。凝集反応槽2で原水に添加される凝集剤としては特に限定されず、鉄塩およびアルミニウム塩等の無機凝集剤、アニオン性、カチオン性、または両性ポリマー等の有機高分子凝集剤を単独または組み合わせて使用できる。凝集反応槽2では原水に凝集剤を添加して攪拌することで凝集フロックが形成される。このため、凝集反応槽2から流出する凝集処理水は凝集フロックを含み、凝集処理水管24は凝集フロック供給路を構成している。   A coagulant injection pipe 23 is connected to the coagulation reaction tank 2, and the coagulant stored in the coagulant storage tank 2B is added to coagulate the raw water. The flocculant added to the raw water in the flocculation reaction tank 2 is not particularly limited, and an inorganic flocculant such as an iron salt and an aluminum salt, or an organic polymer flocculant such as an anionic, cationic or amphoteric polymer is used alone or in combination. Can be used. In the agglomeration reaction tank 2, a flocculant floc is formed by adding a flocculant to the raw water and stirring. For this reason, the agglomerated water that flows out of the agglomeration reaction tank 2 includes agglomerated floc, and the agglomerated water pipe 24 constitutes an agglomerated floc supply path.

凝集反応槽2と酸生成槽3とは凝集処理水管24を介して互いに接続されており、凝集処理水は凝集処理水管24から酸生成槽3に導入される。本実施形態において酸生成槽3は密閉可能な耐圧容器を備え、この耐圧容器には開閉可能な弁Vが設けられている。容器内には酸生成菌が保持されており、原水を供給して弁Vを閉じて容器を密閉した状態で嫌気的生物処理としての酸生成反応を行なう。   The aggregation reaction tank 2 and the acid generation tank 3 are connected to each other via an aggregation treatment water pipe 24, and the aggregation treatment water is introduced into the acid generation tank 3 from the aggregation treatment water pipe 24. In the present embodiment, the acid generation tank 3 includes a pressure-resistant container that can be sealed, and a valve V that can be opened and closed is provided in the pressure-resistant container. Acid producing bacteria are held in the container, and an acid producing reaction is performed as an anaerobic biological treatment in a state in which raw water is supplied, the valve V is closed and the container is sealed.

酸生成工程では、原水に含まれる有機物を基質として酪酸、プロピオン酸、および酢酸等が生成され、酸生成に伴って主として炭酸ガスを含むガスが生成される。酸生成槽3の容器内部はガス生成により加圧された状態となり、生成された酸およびガスが含まれた加圧廃水が得られる。このように、本実施形態では酸生成槽3の容器は加圧廃水生成手段として機能する。なお、酸生成に伴い生成されるガスには硫化水素やアンモニア等が含まれる場合がある。そこで、本実施形態では弁Vに排ガス管36Bを接続し、この排ガス管36Bの出口側端縁を第1ガス路27に接続することにより、生成されたガスを脱硫塔10で処理してガスホルダ11に貯留できるように構成している。   In the acid generation step, butyric acid, propionic acid, acetic acid, and the like are generated using an organic substance contained in the raw water as a substrate, and a gas mainly containing carbon dioxide gas is generated along with the acid generation. The inside of the container of the acid generation tank 3 is in a pressurized state by gas generation, and pressurized waste water containing the generated acid and gas is obtained. Thus, in this embodiment, the container of the acid production | generation tank 3 functions as a pressurized waste water production | generation means. In addition, hydrogen sulfide, ammonia, etc. may be contained in the gas produced | generated with acid production | generation. Therefore, in the present embodiment, the exhaust gas pipe 36B is connected to the valve V, and the outlet side end edge of the exhaust gas pipe 36B is connected to the first gas passage 27, whereby the generated gas is processed in the desulfurization tower 10 and the gas holder 11 can be stored.

酸生成槽3は、弁Vを急激に開放することにより、容器内の加圧廃水が大気圧開放され、加圧状態で液中に溶解されていたガスが微細気泡化する。微細気泡は、凝集フロックに付着して凝集フロックを浮上させ、かかる浮上の際に油脂成分は凝集フロックに吸着される。このため、容器の上部界面近傍に油脂成分を吸着したフロックが集積し、このフロックを液分と分離することで吸着フロックと分離水とが分離される。このように、酸生成槽3の容器は浮上分離槽を兼ね、容器と弁Vとにより浮上分離手段が構成される。   In the acid generation tank 3, by opening the valve V rapidly, the pressurized waste water in the container is opened to atmospheric pressure, and the gas dissolved in the liquid in a pressurized state is turned into fine bubbles. The fine bubbles adhere to the aggregated floc and float the aggregated floc, and the oil and fat component is adsorbed by the aggregated floc during the ascent. For this reason, the floc which adsorb | sucked the fats and oils component accumulates in the upper interface vicinity of a container, and an adsorption | suction floc and isolation | separation water are isolate | separated by isolate | separating this floc from a liquid component. Thus, the container of the acid generation tank 3 also serves as a floating separation tank, and the container and the valve V constitute a floating separation means.

浮上分離工程で浮上分離を良好に行うためには、酸生成工程を水理学的滞留時間(HRT)<5日、温度20℃以上の条件とすることが好ましい。   In order to satisfactorily perform flotation separation in the flotation separation step, it is preferable that the acid generation step is performed under the conditions of a hydraulic residence time (HRT) <5 days and a temperature of 20 ° C. or higher.

耐圧容器の一端面には浮上汚泥管36が接続され、吸着フロックは浮上汚泥管36を介してメタン発酵槽8に送られる。吸着フロックは、浮遊性のメタン発酵菌が保持されるメタン発酵槽8で嫌気消化され、発生したメタンガスを含む微生物生成ガスは第2ガス路37を介して脱硫塔10に送られる。微生物生成ガスは、メタン発酵過程で生成される硫化水素を含んでおり、脱硫塔10で処理されることにより硫化水素が除去された脱硫ガスが脱硫ガス路28を介してガスホルダ11に送られ、ガスホルダ11に貯留される。   A floating sludge pipe 36 is connected to one end face of the pressure vessel, and the adsorbed floc is sent to the methane fermentation tank 8 via the floating sludge pipe 36. The adsorbed floc is anaerobically digested in the methane fermentation tank 8 in which the floating methane fermentation bacteria are held, and the microbial gas containing the generated methane gas is sent to the desulfurization tower 10 via the second gas path 37. The microorganism-generated gas contains hydrogen sulfide generated in the methane fermentation process, and the desulfurized gas from which hydrogen sulfide has been removed by being treated in the desulfurization tower 10 is sent to the gas holder 11 via the desulfurization gas passage 28. It is stored in the gas holder 11.

メタン発酵槽8での発酵残渣(消化汚泥)は、消化汚泥管38を介して汚泥脱水機9に供給され脱水処理される。脱水過程で生じる脱離液は脱離液管40を介して原水貯槽1に戻される。消化汚泥が脱水された脱水ケーキは、脱水汚泥管39から系外へ排出され、廃棄物等として処分される。   The fermentation residue (digested sludge) in the methane fermentation tank 8 is supplied to the sludge dehydrator 9 through the digested sludge pipe 38 and dehydrated. The desorbed liquid generated in the dehydration process is returned to the raw water storage tank 1 through the desorbed liquid pipe 40. The dewatered cake from which the digested sludge has been dewatered is discharged out of the system from the dewatered sludge tube 39 and disposed of as waste.

一方、吸着フロックと分離された分離水は、酸を含み油脂成分が低減されSS濃度が低い。そこで、分離水管26から高負荷メタン生成槽5に分離水を供給してメタン生成を行なう。本実施形態では高負荷メタン生成槽5には、メタン生成菌を粒状にしたグラニュール汚泥が保持され、2kg−CODcr/m/d以上程度の高負荷で上向流スラッジブランケット(UASB)法によるメタン生成が行なわれる。ただし、分離水のメタン発酵の方式はこれに限定されず、膜式メタン発酵や嫌気流動床法等の他の方式としてもよい。 On the other hand, the separated water separated from the adsorbed floc has an acid content, a reduced fat content, and a low SS concentration. Therefore, separated water is supplied from the separated water pipe 26 to the high-load methane production tank 5 to generate methane. In this embodiment, granule sludge in which methane-producing bacteria are granulated is held in the high-load methane production tank 5, and an upward sludge blanket (UASB) method with a high load of about 2 kg-CODcr / m 3 / d or more. Methane production is performed. However, the method of methane fermentation of separated water is not limited to this, and may be other methods such as membrane methane fermentation and anaerobic fluidized bed method.

高負荷メタン生成槽5で生成されたメタンガスを含む微生物生成ガスは、第1ガス路27を介して脱硫塔10に送られる。脱硫塔10に送られた微生物生成ガスは、脱硫された後、ガスホルダ11に貯留され、ガス管29からボイラー等に送られ、エネルギーとして利用される。   The microorganism-producing gas containing methane gas produced in the high-load methane production tank 5 is sent to the desulfurization tower 10 via the first gas passage 27. The microbial product gas sent to the desulfurization tower 10 is desulfurized and then stored in the gas holder 11 and sent from the gas pipe 29 to a boiler or the like and used as energy.

高負荷メタン生成槽5から発生した余剰汚泥は、必要に応じて嫌気余剰汚泥管30を介してメタン発酵槽8に送給され、浮上汚泥とともに嫌気消化される。このように、メタン生成菌を高濃度で含む高負荷メタン生成槽5から発生する余剰汚泥(嫌気余剰汚泥)をメタン発酵槽8に供給すると、メタン発酵槽8に高濃度のメタン生成菌を接種することになる。このため、メタン発酵槽8におけるメタン発酵の安定化、効率化を図れる。   Excess sludge generated from the high-load methane production tank 5 is fed to the methane fermentation tank 8 through the anaerobic surplus sludge pipe 30 as necessary, and is anaerobically digested together with the floating sludge. Thus, when surplus sludge (anaerobic surplus sludge) generated from the high-load methane production tank 5 containing a high concentration of methanogens is supplied to the methane fermentation tank 8, the methane fermentation tank 8 is inoculated with a high concentration of methanogens. Will do. For this reason, stabilization and efficiency improvement of the methane fermentation in the methane fermentation tank 8 can be achieved.

一方、高負荷メタン生成槽5から流出する処理水には、数百mg/L程度の有機物が含まれることから、嫌気処理水管32を介して後処理槽6に導入する。後処理槽6には活性汚泥が保持されている。後処理槽6では、散気管31等の散気手段から空気等の酸素含有ガスを供給しながら通常用いられる条件で好気的に生物処理する。   On the other hand, the treated water flowing out from the high-load methane production tank 5 contains about several hundred mg / L of organic matter, and is therefore introduced into the post-treatment tank 6 through the anaerobic treated water pipe 32. Activated sludge is held in the post-treatment tank 6. In the post-treatment tank 6, the biological treatment is performed aerobically under conditions normally used while supplying an oxygen-containing gas such as air from the air diffuser such as the air diffuser 31.

かかる好気処理により得られる活性汚泥処理水は、活性汚泥処理水管33から沈殿池7に導入されて固液分離される。沈殿池7で得られた液分は処理水として処理水管34から系外へ排出される。分離汚泥は排泥管35から引抜かれる。排泥管35からは汚泥返送管35Aおよび好気余剰汚泥管35Bが分岐している。汚泥返送管35Aは後処理槽6に接続されており、分離汚泥の一部は汚泥返送管35Aから後処理槽6に返送される。好気余剰汚泥管35Bはメタン発酵槽8に接続されており、分離汚泥の残部はメタン発酵槽8に供給され、浮上汚泥等とともにメタン発酵される。   The activated sludge treated water obtained by such aerobic treatment is introduced into the sedimentation basin 7 from the activated sludge treated water pipe 33 and separated into solid and liquid. The liquid obtained in the sedimentation basin 7 is discharged out of the system from the treated water pipe 34 as treated water. The separated sludge is drawn out from the sludge pipe 35. A sludge return pipe 35A and an aerobic surplus sludge pipe 35B are branched from the sludge pipe 35. The sludge return pipe 35A is connected to the post-treatment tank 6, and a part of the separated sludge is returned to the post-treatment tank 6 from the sludge return pipe 35A. The aerobic surplus sludge pipe 35B is connected to the methane fermentation tank 8, and the remainder of the separated sludge is supplied to the methane fermentation tank 8, and methane-fermented together with the floating sludge and the like.

この処理装置101では、酸生成槽3で生物処理を行なうとともに加圧状態でガスが溶解された液体(加圧廃水)を生成し、加圧廃水を大気圧開放することで、油脂が吸着された吸着フロックを浮上分離できる。このように、酸生成槽3で浮上分離を行うことができるため、浮上分離槽を別途設けることなく油脂を浮上分離でき、処理装置101を小型化できる。また、処理装置101では酸生成槽3において、原水中の油脂やSSの一部を可溶化、有機酸化するため、加圧廃水の溶解性COD濃度を上げることができる。また、メタン発酵槽8に供給する浮上汚泥も事前に酸発酵を受けることになるので、メタン発酵槽8での処理の安定化、有機物分解効率の向上を図ることができる。   In this processing apparatus 101, fats and oils are adsorbed by performing biological treatment in the acid generation tank 3 and generating a liquid (pressurized wastewater) in which gas is dissolved in a pressurized state, and releasing the pressurized wastewater to atmospheric pressure. The adsorbed floc can be levitated and separated. As described above, since the floating separation can be performed in the acid generation tank 3, the oil and fat can be floated and separated without providing a separate floating separation tank, and the processing apparatus 101 can be downsized. Moreover, in the processing apparatus 101, in the acid generation tank 3, since the fats and oils and SS of raw | natural water are solubilized and organically oxidized, the soluble COD density | concentration of pressurized wastewater can be raised. Moreover, since the floating sludge supplied to the methane fermentation tank 8 is also subjected to acid fermentation in advance, the treatment in the methane fermentation tank 8 can be stabilized and the organic matter decomposition efficiency can be improved.

次に、図2を参照して本発明の第2実施形態について説明する。図2は、本発明の第2実施形態に係る油脂含有廃水の処理方法および処理装置102の実施の形態を示す系統図である。処理装置102は、以下の3点で第1実施形態に係る処理装置101と異なっている。   Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a system diagram showing an embodiment of the method for treating fat and oil-containing wastewater and the treatment apparatus 102 according to the second embodiment of the present invention. The processing apparatus 102 is different from the processing apparatus 101 according to the first embodiment in the following three points.

まず、処理装置102では、好気余剰汚泥管35Bはメタン発酵槽8に接続されず、代わりに凝集反応槽2に接続されている。また、嫌気余剰汚泥管30もメタン発酵槽8ではなく、次に述べる消化汚泥分岐管38Bを介して凝集反応槽2に接続されている。さらに、消化汚泥管38から消化汚泥分岐管38Bが分岐し、凝集反応槽2に接続されている。   First, in the processing apparatus 102, the aerobic surplus sludge pipe 35B is not connected to the methane fermentation tank 8, but is connected to the agglomeration reaction tank 2 instead. The anaerobic surplus sludge pipe 30 is also connected to the agglomeration reaction tank 2 through the digested sludge branch pipe 38B described below, not the methane fermentation tank 8. Further, the digested sludge branch pipe 38B branches from the digested sludge pipe 38 and is connected to the agglomeration reaction tank 2.

かかる構成により、処理装置102では後処理槽6で生成される好気余剰汚泥、高負荷メタン生成槽5から生じる嫌気余剰汚泥、および消化汚泥が凝集反応槽2に送給される。凝集反応槽2に供給されたこれらの汚泥は、原水と混合されることにより、原水中の油分はこれらの汚泥に吸着される。即ち、これらの汚泥は油脂を吸着する生物フロックとして機能するため、凝集剤の必要添加量は大幅に減少するか、凝集剤無添加での浮上分離が可能となる。このように、処理装置102では、好気余剰汚泥管35B、嫌気余剰汚泥管30、および消化汚泥分岐管38Bの3つの配管が汚泥フロック供給路を構成している。   With this configuration, the aerobic surplus sludge generated in the post-treatment tank 6, the anaerobic surplus sludge generated from the high-load methane generation tank 5, and the digested sludge are fed to the agglomeration reaction tank 2 in the processing apparatus 102. These sludges supplied to the agglomeration reaction tank 2 are mixed with raw water, whereby oil in the raw water is adsorbed by these sludges. That is, since these sludges function as biological flocs that adsorb fats and oils, the required amount of flocculant is greatly reduced, or floating separation without flocculant addition becomes possible. Thus, in the processing apparatus 102, the three pipes of the aerobic surplus sludge pipe 35B, the anaerobic surplus sludge pipe 30, and the digested sludge branch pipe 38B constitute a sludge floc supply path.

また、本発明の第3実施形態について図3を参照して説明する。図3は、本発明の第3実施形態に係る油脂含有廃水の処理方法および処理装置103の実施の形態を示す系統図である。処理装置103は、消化汚泥分岐管38Bが設けられておらず、一方で脱水汚泥管39から分岐する脱水汚泥返送管39Bが設けられている点で第2実施形態の処理装置102と異なっている。また、嫌気余剰汚泥管30は凝集反応槽2に直接、接続されている。   A third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a system diagram showing an embodiment of the method for treating fat and oil-containing wastewater and the treatment apparatus 103 according to the third embodiment of the present invention. The processing apparatus 103 is different from the processing apparatus 102 of the second embodiment in that the digested sludge branch pipe 38B is not provided, while the dehydrated sludge return pipe 39B branched from the dehydrated sludge pipe 39 is provided. . The anaerobic excess sludge pipe 30 is directly connected to the agglomeration reaction tank 2.

この処理装置103では、メタン発酵槽8から引き抜いた消化汚泥を汚泥脱水機(または汚泥濃縮機)9で脱水または濃縮後、脱水汚泥または濃縮汚泥の一部または全部をメタン発酵槽8に返送する。これにより、メタン発酵槽8内の汚泥濃度を高め、同時に、メタン発酵槽8での汚泥の滞留時間(SRT)を長くできる。このため、メタン発酵槽8を高負荷で運転することができ、メタン発酵槽8の小型化が可能となる。かかる構成によるメタン発酵槽8の運転条件は、槽内汚泥濃度20000mg/L以上、好ましくは20000〜100000mg/L、SRTを15日以上、好ましくは15〜40日、浮上汚泥等の被処理物の滞留時間(HRT)を20日以下、好ましくは3〜20日とすることができる。   In this processing apparatus 103, the digested sludge extracted from the methane fermentation tank 8 is dehydrated or concentrated by a sludge dehydrator (or sludge concentrator) 9, and then part or all of the dehydrated sludge or concentrated sludge is returned to the methane fermentation tank 8. . Thereby, the sludge density | concentration in the methane fermentation tank 8 can be raised, and the residence time (SRT) of the sludge in the methane fermentation tank 8 can be lengthened simultaneously. For this reason, the methane fermentation tank 8 can be operated with a high load, and the methane fermentation tank 8 can be downsized. The operating conditions of the methane fermentation tank 8 with such a configuration are as follows: the sludge concentration in the tank is 20000 mg / L or more, preferably 20000 to 100000 mg / L, the SRT is 15 days or more, preferably 15 to 40 days, The residence time (HRT) can be 20 days or less, preferably 3 to 20 days.

図1〜3に示す処理は、本発明の実施の形態の一例であって、本発明はその要旨を超えない限り、何ら図示の処理に限定されるものではない。例えば、浮上分離工程で得られる分離水は、好気性処理と高負荷嫌気性処理との併用に限らず、他の方法で処理してもよく、いずれか一方の処理のみでもよい。   The process shown in FIGS. 1-3 is an example of embodiment of this invention, Comprising: This invention is not limited to the process of illustration at all unless the summary is exceeded. For example, the separated water obtained in the levitation separation step is not limited to the combined use of the aerobic treatment and the high-load anaerobic treatment, and may be treated by other methods, or only one of the treatments.

また、図2の処理装置102において、好気余剰汚泥、嫌気余剰汚泥、および消化汚泥のいずれかのみを凝集反応槽2に返送してもよい。例えば、図2の処理装置102および図3の処理装置103において、好気余剰汚泥はメタン発酵槽8に導入するようにしてもよい。あるいは、好気余剰汚泥は凝集反応2に返送して、高負荷メタン生成槽5からの嫌気余剰汚泥をメタン発酵槽8に導入してメタン発酵槽8のメタン生成菌の高濃度化を図ってもよい。さらに、メタン発酵槽8の消化汚泥と共にあるいは消化汚泥の代りに、汚泥脱水機9からの脱水汚泥の一部を凝集反応槽2に返送するようにしてもよい。この場合も結果的にメタン発酵槽8の汚泥濃度を高めて高負荷運転を行うことができる。   Moreover, in the processing apparatus 102 of FIG. 2, you may return only aerobic surplus sludge, anaerobic surplus sludge, and digested sludge to the aggregation reaction tank 2. FIG. For example, aerobic surplus sludge may be introduced into the methane fermentation tank 8 in the processing apparatus 102 of FIG. 2 and the processing apparatus 103 of FIG. Alternatively, the aerobic surplus sludge is returned to the flocculation reaction 2 and the anaerobic surplus sludge from the high-load methane production tank 5 is introduced into the methane fermentation tank 8 to increase the concentration of the methane producing bacteria in the methane fermentation tank 8. Also good. Furthermore, a part of the dewatered sludge from the sludge dewatering machine 9 may be returned to the agglomeration reaction tank 2 together with the digested sludge in the methane fermentation tank 8 or instead of the digested sludge. Also in this case, as a result, the sludge concentration in the methane fermentation tank 8 can be increased and high-load operation can be performed.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

[実施例1]
図2に示す処理装置102を用いて、水難溶性物質として油脂を含む以下の水質の食品工場廃水(流量430m/d)を処理した。有機物濃度はBOD濃度で示し、油脂濃度はノルマルヘキサン抽出物濃度として示す。
[原水水質]
BOD:2300mg/L
SS :653mg/L
n−ヘキサン抽出物:170mg/L
[Example 1]
The following water quality food factory wastewater (flow rate 430 m 3 / d) containing fats and oils as a poorly water-soluble substance was treated using the treatment apparatus 102 shown in FIG. The organic substance concentration is shown as BOD concentration, and the fat and oil concentration is shown as normal hexane extract concentration.
[Raw water quality]
BOD: 2300mg / L
SS: 653 mg / L
n-hexane extract: 170 mg / L

この油脂含有廃水は油脂濃度が比較的低く、加圧浮上処理と、加圧浮上処理後に得られた分離水をメタン発酵させずに活性汚泥法で処理した場合の汚泥の構成比が3:4(加圧浮上スカム:余剰汚泥)程度の水質のものである。   This oil-containing wastewater has a relatively low fat concentration, and the composition ratio of sludge when the activated sludge process is performed without subjecting the separated water obtained after the pressure flotation treatment and the pressure flotation treatment to methane fermentation is 3: 4. (Pressurized flotation scum: excess sludge)

各槽の仕様は次の通りである。
酸生成槽容積:110m
高負荷メタン生成槽容積:210m(有機物負荷:10〜15kg−CODcr/m/d)
後処理槽容積:150m
メタン発酵槽容積:45m(有機物負荷:10〜15kg−CODcr/m/d)
The specifications of each tank are as follows.
Acid production tank volume: 110 m 3
High load methane production tank volume: 210 m 3 (organic load: 10-15 kg-CODcr / m 3 / d)
Post-treatment tank volume: 150 m 3
Methane fermentation tank volume: 45 m 3 (organic load: 10-15 kg-CODcr / m 3 / d)

その結果、メタン発生量は526m/d、脱水ケーキの含水率は85%、発生量は0.73ton/dであった。また、高負荷メタン生成槽5での処理効率の低下、および後処理槽6でのバルキングの発生等の生物処理の悪化は認められなかった。 As a result, the amount of methane generated was 526 m 3 / d, the water content of the dehydrated cake was 85%, and the amount generated was 0.73 ton / d. Moreover, deterioration of the biological treatment, such as the reduction of the processing efficiency in the high-load methane production tank 5 and the occurrence of bulking in the post-treatment tank 6, was not recognized.

このように、本発明によれば加圧浮上槽を設けることなく、生物分解が困難な油脂を浮上分離し、分離水をUASB法等の高負荷でメタン発酵させることができる。このため、処理装置を簡略化できる。   Thus, according to the present invention, without providing a pressurized flotation tank, fats and oils that are difficult to biodegrade can be floated and separated, and the separated water can be methane-fermented with a high load such as the UASB method. For this reason, a processing apparatus can be simplified.

本発明は、油脂含有廃水等を嫌気的条件で処理する有機物含有廃水の処理に用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be used for the treatment of organic matter-containing wastewater that treats fat-containing wastewater or the like under anaerobic conditions.

本発明の第1実施形態に係る廃水の処理装置の模式図である。It is a schematic diagram of the wastewater treatment apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る廃水の処理装置の模式図である。It is a schematic diagram of the wastewater treatment apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る廃水の処理装置の模式図である。It is a schematic diagram of the wastewater treatment apparatus which concerns on 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 原水貯槽
2 凝集反応槽
3 酸生成槽
5 高負荷メタン発酵
6 後処理槽
7 沈殿池
8 メタン発酵槽
9 汚泥脱水機
10 脱硫塔
11 ガスホルダ
101〜104 廃水の処理装置
DESCRIPTION OF SYMBOLS 1 Raw water storage tank 2 Coagulation reaction tank 3 Acid production tank 5 High load methane fermentation 6 Post-treatment tank 7 Sedimentation tank 8 Methane fermentation tank 9 Sludge dewatering machine 10 Desulfurization tower 11 Gas holder 101-104 Wastewater processing equipment

Claims (8)

水難溶性物質と有機物とを含む廃水を、密閉可能な容器内に導入してフロックを共存させた状態で嫌気的に生物処理してガスを生成させることにより、前記廃水に前記ガスを加圧状態で含ませた加圧廃水を得る加圧廃水生成工程と、
前記加圧廃水を減圧することにより、前記水難溶性物質が前記フロックに吸着された吸着フロックを浮上させて液分と分離して前記吸着フロックと分離水とを得る浮上分離工程と、
前記分離水を活性汚泥処理する後処理工程と、を含み、前記後処理工程で生成された汚泥を前記フロックとして前記密閉容器に供給する廃水の処理方法。
By introducing waste water containing poorly water-soluble substances and organic substances into a sealable container and anaerobically biotreating the floc in a coexisting state, the gas is pressurized to the waste water. A pressurized wastewater generation step for obtaining pressurized wastewater contained in
A levitation separation step of depressurizing the pressurized wastewater to float the adsorption floc adsorbed on the floc so that the poorly water-soluble substance is separated from the liquid to obtain the adsorption floc and separated water;
Wherein the post-processing of the separated water to the activated sludge process, only containing, treatment method of the waste water supplied to the sealed container sludge generated in the post-processing step as the flock.
水難溶性物質と有機物とを含む廃水を、密閉可能な容器内に導入してフロックを共存させた状態で嫌気的に生物処理してガスを生成させることにより、前記廃水に前記ガスを加圧状態で含ませた加圧廃水を得る加圧廃水生成工程と、By introducing waste water containing poorly water-soluble substances and organic substances into a sealable container and anaerobically biotreating the floc in a coexisting state, the gas is pressurized to the waste water. A pressurized wastewater generation step for obtaining pressurized wastewater contained in
前記加圧廃水を減圧することにより、前記水難溶性物質が前記フロックに吸着された吸着フロックを浮上させて液分と分離して前記吸着フロックと分離水とを得る浮上分離工程と、A levitation separation step of depressurizing the pressurized wastewater to float the adsorption floc adsorbed on the floc so that the poorly water-soluble substance is separated from the liquid to obtain the adsorption floc and separated water;
前記分離水をメタン生成槽に導入してメタン発酵させるメタン生成工程と、A methane production step of introducing the separated water into a methane production tank and performing methane fermentation;
前記メタン生成工程で得られた処理水を活性汚泥処理する後処理工程と、を含み、A post-treatment step of treating the treated water obtained in the methane generation step with an activated sludge,
前記後処理工程で生成された汚泥を前記フロックとして前記密閉容器に供給し、Supplying the sludge generated in the post-treatment step to the sealed container as the floc,
前記加圧廃水生成工程で、生物処理として酸生成菌による酸生成を行なう廃水の処理方法。A method for treating wastewater, wherein acid production by acidogenic bacteria is performed as biological treatment in the pressurized wastewater production step.
前記水難溶性物質は油である請求項1または2に記載の廃水の処理方法。 The wastewater treatment method according to claim 1 or 2 , wherein the poorly water-soluble substance is oil. 前記加圧廃水生成工程の前に、前記廃水に凝集剤を添加して前記フロックを形成させる凝集反応工程をさらに含む請求項1から3いずれかに記載の廃水の処理方法。 The wastewater treatment method according to any one of claims 1 to 3, further comprising a coagulation reaction step in which a flocculant is added to the wastewater to form the floc before the pressurized wastewater generation step. 水難溶性物質と有機物とを含む廃水が導入される密閉可能な容器を備え、該容器内で、フロックを共存させた状態で前記廃水を嫌気的に生物処理してガスを生成させることにより、前記廃水に前記ガスを加圧状態で含ませた加圧廃水を得る加圧廃水生成手段と、
前記加圧廃水を減圧することにより、前記水難溶性物質が前記フロックに吸着された吸着フロックを浮上させて液分と分離して前記吸着フロックと分離水とを得る浮上分離手段と、
前記分離水を導入して活性汚泥処理する後処理槽と、
前記後処理槽で生成された汚泥を前記フロックとして前記容器に供給する汚泥フロック供給路と、
を含む廃水の処理装置。
By providing a sealable container into which waste water containing a poorly water-soluble substance and an organic substance is introduced, and in the container, the waste water is anaerobically biologically treated to generate gas in a state where floc coexists. A pressurized wastewater generating means for obtaining pressurized wastewater containing the gas in a pressurized state in the wastewater;
A levitation separation means for depressurizing the pressurized wastewater to float the adsorption flocs adsorbed by the flocs on the flocs so as to separate the liquids from the liquid components and obtain the adsorption flocs and separated water;
A post-treatment tank for introducing activated water sludge by introducing the separated water;
A sludge floc supply path for supplying the sludge generated in the post-treatment tank to the container as the flock;
Wastewater treatment equipment including.
水難溶性物質と有機物とを含む廃水が導入される密閉可能な容器を備え、該容器内で、フロックを共存させた状態で前記廃水を嫌気的に生物処理してガスを生成させることにより、前記廃水に前記ガスを加圧状態で含ませた加圧廃水を得る加圧廃水生成手段と、By providing a sealable container into which waste water containing a poorly water-soluble substance and an organic substance is introduced, and in the container, the waste water is anaerobically biologically treated to generate gas in a state where floc coexists. A pressurized wastewater generating means for obtaining pressurized wastewater containing the gas in a pressurized state in the wastewater;
前記加圧廃水を減圧することにより、前記水難溶性物質が前記フロックに吸着された吸着フロックを浮上させて液分と分離して前記吸着フロックと分離水とを得る浮上分離手段と、A levitation separation means for depressurizing the pressurized wastewater to float the adsorption flocs adsorbed by the flocs on the flocs so as to separate the liquids from the liquid components and obtain the adsorption flocs and separated water;
前記分離水を導入してメタン発酵させるメタン生成槽と、A methane production tank for introducing methane fermentation by introducing the separated water;
前記メタン生成槽から流出する処理水を導入して活性汚泥処理する後処理槽と、A post-treatment tank that introduces treated water flowing out of the methane generation tank to treat activated sludge;
前記後処理槽で生成された汚泥を前記フロックとして前記容器に供給する汚泥フロック供給路と、をさらに含み、A sludge floc supply path for supplying the sludge generated in the post-treatment tank to the container as the floc,
前記容器は酸生成菌を保持し、酸生成を行なうように構成されている廃水の処理装置。The said container hold | maintains an acid production microbe, The wastewater processing apparatus comprised so that acid generation might be performed.
前記浮上分離手段は、前記容器に設けられた開閉可能な弁を含んで構成される請求項5または6に記載の廃水の処理装置。 The waste water treatment apparatus according to claim 5 or 6, wherein the floating separation means includes an openable / closable valve provided in the container. 前記廃水に凝集剤を添加して前記フロックを形成させる凝集反応槽と、
前記凝集反応槽前で生成された前記フロックを前記容器に供給する凝集フロック供給路と、をさらに含む請求項からのいずれかに記載の廃水の処理装置。
An agglomeration reaction tank in which a flocculant is added to the wastewater to form the floc;
The wastewater treatment apparatus according to any one of claims 5 to 7 , further comprising a coagulation floc supply path for supplying the floc generated in front of the coagulation reaction tank to the container.
JP2006076724A 2006-03-20 2006-03-20 Waste water treatment method and treatment apparatus Expired - Fee Related JP4655974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006076724A JP4655974B2 (en) 2006-03-20 2006-03-20 Waste water treatment method and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006076724A JP4655974B2 (en) 2006-03-20 2006-03-20 Waste water treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JP2007252968A JP2007252968A (en) 2007-10-04
JP4655974B2 true JP4655974B2 (en) 2011-03-23

Family

ID=38627738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006076724A Expired - Fee Related JP4655974B2 (en) 2006-03-20 2006-03-20 Waste water treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP4655974B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5371510B2 (en) * 2009-03-27 2013-12-18 大阪瓦斯株式会社 Combined treatment of wastewater and organic residue
KR100945055B1 (en) * 2009-11-27 2010-03-05 전주시 Process system of liquid food waste mandarin by-product and its process method
WO2012117541A1 (en) * 2011-03-02 2012-09-07 住友重機械エンバイロメント株式会社 Palm oil effluent treatment device
JP6150574B2 (en) * 2013-03-22 2017-06-21 大阪瓦斯株式会社 Biomass processing method and biomass processing apparatus
CN103232140B (en) * 2013-04-25 2016-04-20 泉州师范学院 The multilevel processing technology of biodiesel wastewater
JP6216253B2 (en) * 2014-01-14 2017-10-18 水ing株式会社 Method and apparatus for treating oil-containing wastewater
CN105850864A (en) * 2016-04-18 2016-08-17 中国矿业大学 Self-purification aquarium having electricity production function

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691898A (en) * 1979-12-25 1981-07-25 Nishihara Environ Sanit Res Corp Condensation of digested sludge
JPS59189994A (en) * 1983-04-12 1984-10-27 Nippon Steel Corp Oil-contg. waste water disposal
US4948509A (en) * 1988-08-24 1990-08-14 Charles Stack & Associates, Inc. Anaerobic fermentation process
JPH05111699A (en) * 1991-10-22 1993-05-07 Kawasaki Heavy Ind Ltd Method and device for thickning anaerobic sludge
JPH05277493A (en) * 1992-03-31 1993-10-26 Ishikawajima Harima Heavy Ind Co Ltd Method for treatment of waste water containing oil
JP2000218288A (en) * 1999-02-01 2000-08-08 Kurita Water Ind Ltd Batch anaerobic treatment and device therefor
JP2002153897A (en) * 2000-11-17 2002-05-28 Sumitomo Heavy Ind Ltd Method and device for treating organic discharged water
JP2002233890A (en) * 2001-02-13 2002-08-20 Mitsubishi Kakoki Kaisha Ltd Oil-containing wastewater treatment system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691898A (en) * 1979-12-25 1981-07-25 Nishihara Environ Sanit Res Corp Condensation of digested sludge
JPS59189994A (en) * 1983-04-12 1984-10-27 Nippon Steel Corp Oil-contg. waste water disposal
US4948509A (en) * 1988-08-24 1990-08-14 Charles Stack & Associates, Inc. Anaerobic fermentation process
JPH05111699A (en) * 1991-10-22 1993-05-07 Kawasaki Heavy Ind Ltd Method and device for thickning anaerobic sludge
JPH05277493A (en) * 1992-03-31 1993-10-26 Ishikawajima Harima Heavy Ind Co Ltd Method for treatment of waste water containing oil
JP2000218288A (en) * 1999-02-01 2000-08-08 Kurita Water Ind Ltd Batch anaerobic treatment and device therefor
JP2002153897A (en) * 2000-11-17 2002-05-28 Sumitomo Heavy Ind Ltd Method and device for treating organic discharged water
JP2002233890A (en) * 2001-02-13 2002-08-20 Mitsubishi Kakoki Kaisha Ltd Oil-containing wastewater treatment system

Also Published As

Publication number Publication date
JP2007252968A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
WO2006035594A1 (en) Method and apparatus for biologically treating wastewater containing fats and oils
JP4655974B2 (en) Waste water treatment method and treatment apparatus
KR101312809B1 (en) Complex method of foodwaste leachate using the pulpwastewater engineering
JP6909878B2 (en) Organic matter processing method and processing equipment
JP5211769B2 (en) Biological treatment method and treatment apparatus for organic waste liquid
JP5371510B2 (en) Combined treatment of wastewater and organic residue
EP1679287A1 (en) Wastewater treatment method utilizing white rot and brown rot fungi
CN108773982B (en) Treatment method of high-concentration wastewater
JP2010012446A (en) Fat and oil containing waste water treatment apparatus
JP6216253B2 (en) Method and apparatus for treating oil-containing wastewater
JP5873736B2 (en) Organic wastewater treatment method and treatment apparatus
CN219823906U (en) Garbage leachate and kitchen sewage cooperative treatment system
JP5811563B2 (en) Method and apparatus for anaerobic treatment of kraft pulp drainage
JP2006218344A (en) Method and apparatus for treating water containing fats and fatty oils, and method and apparatus for treating organic waste material
WO2016103949A1 (en) Treatment method and treatment device for fat and/or oil-containing waste water
JP3856218B2 (en) Startup method of activated sludge treatment equipment
JPH0739895A (en) Treating method and device for waste liquid containing organic solid content
JP2015123437A (en) Treatment method and treatment device for grease-containing waste water
JP2004089858A (en) Organic waste processing method and apparatus
WO2020021755A1 (en) Method for treating organic wastewater and device for treating organic wastewater
JP3672091B2 (en) Organic wastewater treatment method and equipment
JP2005185967A (en) Treatment method and treatment apparatus for organic waste water
US7201847B1 (en) Wastewater treatment method utilizing white rot and brown rot fungi
JP2002224686A (en) Anaerobic treatment method and equipment for starch particle-containing liquid
WO2023087371A1 (en) Maleic anhydride wastewater treatment method and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees