JP2002224686A - Anaerobic treatment method and equipment for starch particle-containing liquid - Google Patents

Anaerobic treatment method and equipment for starch particle-containing liquid

Info

Publication number
JP2002224686A
JP2002224686A JP2001028402A JP2001028402A JP2002224686A JP 2002224686 A JP2002224686 A JP 2002224686A JP 2001028402 A JP2001028402 A JP 2001028402A JP 2001028402 A JP2001028402 A JP 2001028402A JP 2002224686 A JP2002224686 A JP 2002224686A
Authority
JP
Japan
Prior art keywords
starch
liquid
ozone
treatment
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001028402A
Other languages
Japanese (ja)
Inventor
Mikio Kitagawa
幹夫 北川
Yoshimi Taguchi
佳美 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001028402A priority Critical patent/JP2002224686A/en
Publication of JP2002224686A publication Critical patent/JP2002224686A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W10/12

Abstract

PROBLEM TO BE SOLVED: To provide an anaerobic treatment method and equipment for a starch particle-containing liquid capable of efficiently subjecting the entire part of the starch particle-containing liquid to anaerobic treatment under a high load at a high speed. SOLUTION: The starch particle-containing liquid is separated to starch particles 10 and a starch separating liquid in a settling tank 1. The starch particle concentrate containing the starch particles 10 is introduced into an ozone treating vessel 2 where the concentrate is subjected to ozone treatment after regulation to a pH <=5 by hydrochloric acid. The treated liquid is introduced into an acid forming vessel 3 where the liquid is mixed with the starch separating liquid and its anaerobic property is maintained. After organic acid formation is effected by acid forming bacteria and the acid forming liquid is introduced into a methane fermenter 4 where the acid forming liquid is passed in upward current through a sludge blanket 27. The organic acids are anaerobically decomposed by methane forming bacteria and are converted to methane and carbon dioxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は澱粉粒子含有液を嫌
気性処理する方法および装置に関し、特に馬鈴薯や甘薯
等から澱粉を製造する工程から排出される澱粉製造排水
の処理に適した澱粉粒子含有液の嫌気性処理方法および
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for anaerobically treating a starch particle-containing liquid, and more particularly to a starch particle-containing liquid suitable for treating starch-producing wastewater discharged from a step of producing starch from potato, sweet potato or the like. The present invention relates to a method and an apparatus for anaerobic treatment of a liquid.

【0002】[0002]

【従来の技術】澱粉は、一般的に馬鈴薯や甘薯などの原
料をすりつぶして冷水にさらした後、澱粉粒子を回収
し、これを脱水、乾燥、精製して製造されている。この
ような澱粉製造工程から排出される排水は、未回収の微
細澱粉粒子や破砕した薯滓、析出した蛋白質を主とする
SSが500〜5000mg/l程度含まれ、BODは
2000〜30000mg/l程度の高濃度排水であ
り、BOD負荷量は1日当たり数千kg以上に達し、非
常に汚濁負荷量の多い排水である。また、馬鈴薯澱粉に
代表されるように、澱粉製造期間は年間数か月間と短期
間に集中している。
2. Description of the Related Art Generally, starch is produced by grinding raw materials such as potatoes and sweet potatoes, exposing the raw materials to cold water, collecting starch particles, dehydrating, drying and purifying the starch particles. The wastewater discharged from such a starch manufacturing process contains about 500 to 5000 mg / l of SS mainly composed of unrecovered fine starch particles, crushed potato scum, and precipitated protein, and has a BOD of 2000 to 30000 mg / l. This is a wastewater with a very high concentration of pollution, a BOD load of several thousand kg or more per day, and a very high pollution load. Further, as represented by potato starch, the starch production period is concentrated for a few months and a short time per year.

【0003】従来の澱粉製造排水の処理方法は、活性汚
泥処理に代表される好気性処理が主流であるが、非常に
負荷量が多いことから大容量の曝気槽、好気性ラグーン
を必要とし、多大な建設費、維持管理費となっている。
さらに、発生する余剰汚泥処理や、排水貯槽、曝気槽等
から発生する臭気対策が大きな課題となっている。好気
性処理に代る方法としては嫌気性処理がある。この嫌気
性処理法の中には、排水の全体を消化槽に滞留させて嫌
気性消化(メタン発酵)を行う嫌気性消化法があるが、
長い滞留時間を必要とするため大容量の消化槽を必要と
するという問題点がある。
The conventional method of treating wastewater for producing starch is mainly aerobic treatment represented by activated sludge treatment, but requires a large-capacity aeration tank and aerobic lagoon due to a very large load. The construction and maintenance costs are enormous.
Further, the treatment of excess sludge generated and the measures against odor generated from a drainage storage tank, an aeration tank, and the like have become major issues. Anaerobic treatment is an alternative to aerobic treatment. Among these anaerobic treatment methods, there is an anaerobic digestion method in which the entire wastewater is retained in a digestion tank to perform anaerobic digestion (methane fermentation).
There is a problem that a large capacity digestion tank is required because a long residence time is required.

【0004】最近、これらの処理法の問題点を解決する
ため、UASB(Upflow Anaerobic
Sludge Blanket・・・・上向流式嫌気性スラ
ッジブランケット)方式、流動床方式、固定床方式など
に代表される高負荷型嫌気性処理の適用が検討されてい
る。この方法は嫌気性微生物をスラッジブランケット、
固定床等に高密度で集積した汚泥に、主として溶解性B
ODを含む被処理液を高負荷かつ高流速で接触させるこ
とにより効率よく有機物を分解する方法である。
Recently, in order to solve the problems of these processing methods, a UASB (Upflow Anaerobic) has been proposed.
An application of a high-load anaerobic treatment typified by a sludge blanket method, an upward flow anaerobic sludge blanket method, a fluidized bed method, a fixed bed method, and the like is being studied. This method removes anaerobic microorganisms into sludge blankets,
It is mainly soluble B in sludge accumulated at high density on fixed beds.
This is a method for efficiently decomposing organic substances by contacting a liquid to be treated containing OD with a high load and a high flow rate.

【0005】ところが、この嫌気性処理方法で澱粉製造
排水を処理する場合、前もって排水中のSS成分を除去
しておく必要があり、またSS成分を含めた排水全体を
処理すると処理性能が低下する。その原因は、澱粉製造
排水中に含まれている微細な澱粉粒子の嫌気性分解速度
が非常に遅いためである。このため、前もって沈殿槽や
原水槽で澱粉粒子を含むSSを除去し、澱粉粒子の少な
い排水を高負荷型嫌気性処理することが行われている。
However, when the starch production wastewater is treated by this anaerobic treatment method, it is necessary to remove the SS component in the wastewater in advance, and if the entire wastewater including the SS component is treated, the treatment performance deteriorates. . This is because the anaerobic decomposition rate of the fine starch particles contained in the starch production wastewater is extremely slow. For this reason, SS containing starch particles is removed in advance in a sedimentation tank or a raw water tank, and wastewater with a small amount of starch particles is subjected to high-load anaerobic treatment.

【0006】しかし、このような従来の高負荷型嫌気性
処理では前もって分離したSSを別途処理する必要があ
り、このSSは農地へ還元したり、埋立処理が行われて
いるが、貯留段階で発生する悪臭が大きな問題となって
いる。また農地へ還元する場合は窒素過多、病害発生源
などの問題もある。このため、澱粉粒子を分離除去する
ことなく、澱粉製造排水全体を高負荷で嫌気性処理する
ことができる方法が要望されている。
[0006] However, in such conventional high-load anaerobic treatment, it is necessary to separately treat the SS separated in advance, and this SS is returned to farmland or landfilled. The generated odor is a major problem. In addition, when returning to farmland, there are problems such as excess nitrogen and disease sources. For this reason, there is a demand for a method capable of performing anaerobic treatment of the entire starch production wastewater at a high load without separating and removing the starch particles.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、澱粉
粒子含有液を高負荷かつ高速で効率よく嫌気性処理する
ことができる澱粉粒子含有液の嫌気性処理方法および装
置を提供することである。
An object of the present invention is to provide a method and an apparatus for anaerobic treatment of a starch particle-containing liquid which can efficiently and efficiently perform anaerobic treatment of a starch particle-containing liquid at a high load and at a high speed. is there.

【0008】[0008]

【課題を解決するための手段】本発明は次の澱粉粒子含
有液の嫌気性処理方法および装置である。 (1) 澱粉粒子含有液をpH5以下でオゾン処理する
オゾン処理工程と、オゾン処理液を嫌気性微生物を含む
汚泥の存在下に嫌気性処理する嫌気性処理工程とを有す
る澱粉粒子含有液の嫌気性処理方法。 (2) 澱粉粒子含有液を澱粉粒子濃縮液と澱粉分離液
とに分離する濃縮分離工程と、前記澱粉粒子濃縮液をp
H5以下でオゾン処理するオゾン処理工程と、オゾン処
理液および前記澱粉分離液を導入し、嫌気性微生物を含
む汚泥の存在下に嫌気性処理する嫌気性処理工程とを有
する澱粉粒子含有液の嫌気性処理方法。 (3) 澱粉粒子含有液または濃縮液をpH5以下でオ
ゾン処理するオゾン処理装置と、少なくともオゾン処理
液を導入し、嫌気性微生物を含む汚泥の存在下に嫌気性
処理する嫌気性反応槽とを有する澱粉粒子含有液の嫌気
性処理装置。
The present invention provides the following anaerobic treatment method and apparatus for a starch particle-containing liquid. (1) Anaerobic starch starch-containing liquid having an ozone treatment step of ozone-treating a starch particle-containing liquid at a pH of 5 or less and an anaerobic treatment step of anaerobic-treating the ozonized liquid in the presence of sludge containing anaerobic microorganisms. Sex treatment method. (2) a concentration separation step of separating the starch particle-containing solution into a starch particle concentrate and a starch separation solution;
Anaerobic starch starch-containing liquid having an ozone treatment step of ozone treatment at H5 or less, and an anaerobic treatment step of introducing an ozone treatment liquid and the starch separation liquid and performing anaerobic treatment in the presence of sludge containing anaerobic microorganisms Sex treatment method. (3) An ozone treatment apparatus for ozone-treating a starch particle-containing liquid or a concentrated liquid at a pH of 5 or less, and an anaerobic reaction tank for introducing at least an ozone-treated liquid and performing anaerobic treatment in the presence of sludge containing anaerobic microorganisms. Anaerobic treatment device for starch particle-containing liquids.

【0009】本発明で処理対象とする澱粉粒子含有液
は、澱粉粒子を含有する排水であり、蛋白質や脂質など
が含まれていてもよい。通常澱粉を含む植物から澱粉を
分離して製造する工程から排出される澱粉製造排水であ
る。このような澱粉粒子含有液としては、馬鈴薯澱粉製
造工程から排出される澱粉製造排水が典型的であるが、
くず、その他の植物からの澱粉製造排水であってもよ
い。
The starch particle-containing liquid to be treated in the present invention is waste water containing starch particles, and may contain proteins, lipids and the like. This is a starch production wastewater discharged from a process of separating and producing starch from a plant containing starch. As such a starch particle-containing liquid, starch production wastewater discharged from a potato starch production step is typical,
Waste water from starch production from other plants may be used.

【0010】馬鈴薯澱粉製造工程から排出される排水と
しては、BODが30000mg/l付近、SSが50
00mg/l付近の高濃度のデカンター排水と、BOD
が2000mg/l付近、SSが500mg/l付近の
ハイドロサイクロン排水に大別されるが、本発明ではど
ちらの排水も処理することができる。またこれらの排水
を混合して処理することもできる。澱粉粒子はハイドロ
サイクロン排水に多く含まれており、時にはSSの大部
分が澱粉粒子であるハイドロサイクロン排水もあるが、
本発明はこのようなハイドロサイクロン排水の処理にも
好適に適用することができる。
The wastewater discharged from the potato starch production process has a BOD of around 30,000 mg / l and an SS of 50
High concentration decanter drainage around 00mg / l and BOD
Is roughly classified into hydrocyclone wastewater of around 2000 mg / l and SS of around 500 mg / l. In the present invention, both wastewaters can be treated. Further, these wastewaters can be mixed and treated. Starch particles are abundant in hydrocyclone wastewater, and sometimes there is hydrocyclone wastewater in which most of the SS is starch particles,
The present invention can be suitably applied to such treatment of hydrocyclone wastewater.

【0011】本発明のオゾン処理工程は、澱粉粒子を液
化しやすいように改質処理する工程であり、澱粉粒子含
有液をpH5以下、好ましくは3以下に保持し、オゾン
含有ガスを供給して澱粉粒子をオゾン処理する。このオ
ゾン処理により澱粉粒子は表面が軟化し、嫌気性処理に
よる液化が容易になる。蛋白質その他の有機性固形物も
液化しやすいように改質される。オゾン処理には、澱粉
粒子含有液を前記pHに調整することができるpH調整
手段およびオゾン含有ガス供給手段を備えた装置を使用
することができる。オゾン含有ガスとしては純オゾンの
ほか、オゾンと他のガスの混合ガス、例えばオゾン化空
気などが使用できる。
In the ozone treatment step of the present invention, the starch particles are modified so as to be easily liquefied. The starch particle-containing liquid is maintained at a pH of 5 or less, preferably 3 or less, and an ozone-containing gas is supplied. The starch particles are ozonated. This ozone treatment softens the surface of the starch particles, and facilitates liquefaction by anaerobic treatment. Proteins and other organic solids are also modified to facilitate liquefaction. For the ozone treatment, an apparatus provided with a pH adjusting means capable of adjusting the pH of the starch particle-containing liquid to the above-mentioned pH and an ozone-containing gas supply means can be used. As the ozone-containing gas, besides pure ozone, a mixed gas of ozone and another gas, for example, ozonized air can be used.

【0012】pHを前記範囲に調整するには、塩酸、硫
酸等の鉱酸;水酸化ナトリウム等のアルカリなどが使用
できる。澱粉製造排水の場合は通常pHは中性付近にあ
るので、通常酸を添加してpHを調整する。この場合、
後工程の嫌気性処理における硫化水素発生低減の観点か
ら、塩酸が好ましい。
To adjust the pH to the above range, mineral acids such as hydrochloric acid and sulfuric acid; alkalis such as sodium hydroxide can be used. In the case of starch-producing effluent, the pH is usually around neutral, so that the pH is usually adjusted by adding an acid. in this case,
Hydrochloric acid is preferred from the viewpoint of reducing the generation of hydrogen sulfide in the anaerobic treatment in the subsequent step.

【0013】澱粉粒子含有液中の澱粉粒子は上記pHに
保持され、SSあたり0.1〜1重量%のオゾン含有ガ
スを供給してオゾン処理することにより、通常1〜2時
間でほぼ完全に改質される。ここで改質されるとは、顕
微鏡観察において澱粉の粒子が観察されなくなるか、あ
るいは表面が酸化されて変質し、またヨウ素・澱粉反応
による呈色反応が認められなくなることを意味する。澱
粉粒子は完全に液化されると嫌気性処理工程が容易にな
るが、そのためには多量のオゾンと長時間の処理時間が
必要になるので、液化しないで残留する澱粉粒子その他
のSS成分の表面が変質して易分解性になる程度にオゾ
ン処理するのが好ましい。
The starch particles in the starch particle-containing liquid are maintained at the above-mentioned pH, and are supplied with 0.1 to 1% by weight of ozone-containing gas per SS to ozone-treat, so that they are almost completely treated in 1 to 2 hours. Be reformed. Here, "modified" means that starch particles are no longer observed under a microscope, or the surface is oxidized and deteriorated, and no color reaction by iodine-starch reaction is observed. When the starch particles are completely liquefied, the anaerobic treatment process is facilitated. However, since a large amount of ozone and a long treatment time are required, the surface of the remaining starch particles and other SS components without liquefaction is required. It is preferable to perform the ozone treatment to such an extent that the material is degraded and easily decomposed.

【0014】オゾン処理は、SS(澱粉粒子量)あたり
0.1〜1重量%オゾンに対応するオゾン含有ガスを供
給するのが好ましいが、これは例えば液化反応槽への澱
粉粒子の移送量が100kg−DS/hrの時は100
〜1000g−O3/hrのオゾン含有ガスを供給する
ことを意味する。
In the ozone treatment, it is preferable to supply an ozone-containing gas corresponding to 0.1 to 1% by weight of ozone per SS (amount of starch particles). 100 for 100 kg-DS / hr
It means supplying an ozone-containing gas of 10001000 g-O 3 / hr.

【0015】オゾン処理のpHが3以下の場合で、オゾ
ン処理槽が十分に撹拌されている場合は、オゾン含有ガ
ス供給量が少なくても澱粉粒子をオゾン処理する効果は
高く、pHが4〜5である場合はその効果が低減する。
またpHが5を超える場合は、pHが3以下の場合と比
較してオゾン処理効果は1/3以下となり、適切なオゾ
ン含有ガス供給量はオゾン処理槽内のpHおよび撹拌状
況等に左右される。従って例えば澱粉粒子の濃度が10
000mg/l以上であり、オゾン処理槽内のpHが3
以下で、十分な撹拌が行われている場合のオゾン含有ガ
ス供給量は、SSの0.1重量%でよく、オゾン処理槽
の滞留時間は1〜2時間でよい。
When the pH of the ozone treatment is 3 or less and the ozone treatment tank is sufficiently stirred, the effect of ozone treatment of the starch particles is high even if the supply amount of the ozone-containing gas is small. If it is 5, the effect is reduced.
When the pH exceeds 5, the ozone treatment effect becomes 1/3 or less as compared with the case where the pH is 3 or less, and the appropriate supply amount of the ozone-containing gas depends on the pH in the ozone treatment tank, the stirring state, and the like. You. Therefore, for example, when the concentration of starch particles is 10
000 mg / l or more, and the pH in the ozone treatment tank is 3
Hereinafter, the supply amount of the ozone-containing gas when sufficient stirring is performed may be 0.1% by weight of SS, and the residence time of the ozone treatment tank may be 1 to 2 hours.

【0016】一方オゾン処理のpHが4.6未満の場
合、被処理液中の蛋白質が酸変性してゲル状となる割合
が多くなり、このためゲルに包含される澱粉粒子の量も
多くなるが、オゾン処理によりゲル化した蛋白質も酸化
により改質されて嫌気性処理工程で容易に液化するた
め、澱粉粒子がゲル化した蛋白質に包含されても液化効
率は低下しない。オゾン処理により澱粉粒子の液化が容
易になる主因は明確ではないが、オゾンの酸化力により
澱粉粒子の構造(結晶状態)が軟弱化するため嫌気性処
理の酸生成工程における液化が容易になると推定され
る。
On the other hand, when the pH of the ozone treatment is less than 4.6, the rate of protein denaturation in the liquid to be treated becomes a gel due to acid modification, and therefore the amount of starch particles contained in the gel also increases. However, since the protein gelled by the ozone treatment is also modified by oxidation and easily liquefied in the anaerobic treatment step, the liquefaction efficiency does not decrease even if the starch particles are included in the gelled protein. The main cause of the liquefaction of starch particles by ozone treatment is not clear, but it is estimated that liquefaction in the acid generation step of anaerobic treatment becomes easy because the structure (crystalline state) of starch particles is weakened by the oxidizing power of ozone. Is done.

【0017】オゾン処理する被処理液は、不溶性の澱粉
粒子を主とし、蛋白質、脂質なども含むSSを1000
0mg/l以上、好ましくは10000〜20000m
g/lの濃度で含んでいるものが望ましい。澱粉製造排
水中のSS濃度は通常500〜5000mg/l程度で
あるので、オゾン処理工程の前に濃縮分離工程を設け、
澱粉粒子を濃縮した澱粉粒子濃縮液についてオゾン処理
を行うのが好ましい。澱粉粒子濃縮液をオゾン処理する
ことにより、オゾン処理装置の小型化、pH調整剤の低
減、オゾン供給量の低減などが可能となる。
The liquid to be subjected to the ozone treatment is mainly composed of insoluble starch particles, and contains SS containing proteins, lipids and the like at a concentration of 1000.
0 mg / l or more, preferably 10,000 to 20,000 m
g / l is desirable. Since the SS concentration in the starch production wastewater is usually about 500 to 5000 mg / l, a concentration separation step is provided before the ozone treatment step,
It is preferable to perform ozone treatment on a starch particle concentrate obtained by concentrating starch particles. The ozone treatment of the starch particle concentrate makes it possible to reduce the size of the ozone treatment apparatus, reduce the amount of pH adjuster, reduce the amount of ozone supplied, and the like.

【0018】本発明において必要に応じてオゾン処理工
程の前に設けられる濃縮分離工程は、澱粉粒子含有液を
澱粉粒子濃縮液と澱粉分離液とに分離する工程である。
濃縮分離工程は、液中から固形分を分離または濃縮でき
る公知の装置または手段を用いて行うことができ、例え
ばデカンター型遠心分離機、分離板型遠心分離機、沈降
分離による沈殿槽、ろ布等を用いたろ過分離装置などが
使用可能である。例えば、沈殿槽を用いて澱粉粒子含有
液を分離する場合、2〜4時間の滞留時間で沈降分離す
ることができる。濃縮分離工程で得られた澱粉粒子濃縮
液は前記オゾン処理に供し、澱粉分離液は後述の嫌気性
処理に供する。
In the present invention, the concentration separation step provided before the ozone treatment step as necessary is a step of separating the starch particle-containing liquid into a starch particle concentrated liquid and a starch separation liquid.
The concentration separation step can be performed using a known device or means capable of separating or concentrating a solid content from a liquid, for example, a decanter centrifuge, a separation plate centrifuge, a sedimentation tank by sedimentation, a filter cloth. For example, a filtration / separation device using such a method can be used. For example, when a starch particle-containing liquid is separated using a precipitation tank, sedimentation and separation can be performed with a residence time of 2 to 4 hours. The starch particle concentrate obtained in the concentration separation step is subjected to the above-mentioned ozone treatment, and the starch separation liquid is subjected to the later-described anaerobic treatment.

【0019】オゾン処理工程に用いるオゾン供給装置と
しては、前記澱粉粒子濃縮液中の澱粉粒子量が、50〜
100kg−DS/hrに達し、澱粉粒子量あたり0.
1重量%のオゾンを供給する場合で50〜100g−オ
ゾン/hrが必要量とされるため、大型で高い効率のオ
ゾン供給装置が適し、乾燥空気や高濃度酸素ガスを原料
とした放電方式が好ましい。
In the ozone supply apparatus used in the ozone treatment step, the amount of the starch particles in the starch particle concentrate is 50 to 50%.
100 kg-DS / hr, which is equivalent to 0.1 kg / starch particle amount.
When 1% by weight of ozone is supplied, 50 to 100 g-ozone / hr is required. Therefore, a large and highly efficient ozone supply device is suitable, and a discharge method using dry air or high-concentration oxygen gas as a raw material is used. preferable.

【0020】本発明の嫌気性処理工程は、前記オゾン処
理したオゾン処理液を嫌気性微生物を含む汚泥の存在下
に嫌気性処理する工程である。濃縮分離工程を設けた場
合は、通常オゾン処理液と濃縮分離工程で得られた澱粉
分離液とを嫌気性処理するのが好ましいが、オゾン処理
液だけを嫌気性処理することもできる。
The anaerobic treatment step of the present invention is a step of anaerobically treating the ozonized solution subjected to the ozone treatment in the presence of sludge containing anaerobic microorganisms. When the concentration separation step is provided, it is usually preferable to perform anaerobic treatment on the ozonized liquid and the starch separated liquid obtained in the concentration separation step, but it is also possible to perform anaerobic treatment on only the ozonized liquid.

【0021】嫌気性処理は、公知の装置により公知の方
法で行うことができるが、UASB、流動床、固定床等
を利用した高負荷型嫌気性処理を行うのが好ましい。高
負荷型嫌気性処理では溶解性有機物が処理の対象とな
り、固形物は前もって酸生成工程で液化することが好ま
しい。本発明ではオゾン処理により澱粉、蛋白質、その
他の有機性の固形物は易分解性に改質されるので、酸生
成工程において高速で液化することができる。高負荷型
嫌気性処理はメタン生成菌を高濃縮した状態で嫌気性処
理槽に保持し、被処理液と高負荷かつ高速で接触させて
短時間で嫌気性処理を行う方式の処理方法である。
The anaerobic treatment can be performed by a known method using a known apparatus, but it is preferable to perform a high-load anaerobic treatment using a UASB, a fluidized bed, a fixed bed, or the like. In high-load anaerobic treatment, soluble organic matter is targeted for treatment, and solid matter is preferably liquefied in advance in the acid generation step. In the present invention, starch, proteins, and other organic solids are modified to be easily decomposed by ozone treatment, so that they can be liquefied at a high speed in the acid generation step. The high-load anaerobic treatment is a method in which the methane-producing bacterium is highly concentrated and held in an anaerobic treatment tank, and the anaerobic treatment is performed in a short time by contacting the liquid to be treated with a high load at a high speed. .

【0022】UASB方式はメタン生成菌を含む汚泥を
高濃縮して形成したグラニュール汚泥からなるスラッジ
ブランケットに被処理液を上向流で高速に通液して接触
させ処理する方式のものである。流動床方式は砂等の担
体を担持させて流動床を形成し、被処理液と接触させる
方式のものである。固定床方式は担体に汚泥を形成した
固定床に被処理液を通液して接触させる方式のものであ
る。いずれも汚泥を高濃度の状態で保持することによ
り、高負荷かつ高速での処理を可能とする。
The UASB method is a method in which a liquid to be treated is brought into contact with a sludge blanket made of granulated sludge formed by highly concentrating sludge containing methane-producing bacteria in an upward flow at a high speed to contact the sludge blanket. . The fluidized bed system is a system in which a carrier such as sand is carried to form a fluidized bed and brought into contact with the liquid to be treated. The fixed bed system is a system in which the liquid to be treated is brought into contact with a fixed bed in which sludge is formed on a carrier. In any case, by maintaining sludge in a high concentration state, high-load and high-speed treatment can be performed.

【0023】嫌気性処理は酸生成菌により有機物を有機
酸に分解する酸生成工程と、メタン生成菌により有機酸
をメタンに分解するメタン生成工程とからなり、本発明
ではこれらを同時に行う一相式でもよいが、酸生成工程
とメタン生成工程とを別工程にして、メタン生成工程の
前段で酸生成菌により液化澱粉、蛋白質、その他の有機
物から有機酸を生成させた後、メタン生成菌を高濃度で
保持するUASB方式などにより、高負荷で有機酸から
メタン生成を行う二相式が、処理速度、メタン生成量の
点から好ましい。一相式、二相式いずれの場合もメタン
生成菌を利用する嫌気性処理は30〜38℃、好ましく
は35〜36℃、BOD濃度2000〜30000mg
/l、好ましくは3000〜6000mg/lで嫌気状
態に保つことにより、メタン生成菌の活性を高くして効
率よく処理を行うことができる。
The anaerobic treatment comprises an acid generation step of decomposing organic substances into organic acids by acid-producing bacteria, and a methane generation step of decomposing organic acids into methane by methane-producing bacteria. The acid generation step and the methane generation step may be separated from each other, and an organic acid is generated from liquefied starch, protein, and other organic substances by an acid-producing bacterium at a stage prior to the methane generation step. A two-phase system in which methane is generated from an organic acid under a high load by a UASB method or the like in which the concentration is maintained at a high concentration is preferable in terms of the processing speed and the amount of methane generated. Anaerobic treatment using methanogens at 30-38 ° C., preferably 35-36 ° C., BOD concentration of 2000-30000 mg in any of the one-phase type and the two-phase type.
/ L, preferably 3000 to 6000 mg / l, can maintain the anaerobic state to increase the activity of the methane-producing bacteria and perform the treatment efficiently.

【0024】嫌気性処理工程における酸生成工程におい
て、オゾン処理液中の澱粉、蛋白質、その他の有機物粒
子は表面構造が軟弱化され、液化および酸生成が生じや
すい状態となっている。澱粉排水中にはオゾン処理後の
澱粉を蟻酸、酢酸、プロピオン酸等の低級脂肪酸(有機
酸)に転換する酸生成細菌が多量に存在するため、酸生
成工程に流入するオゾン処理槽中の細菌が、オゾン処理
により死滅または不活性化されていても澱粉分離液中の
細菌により酸生成反応は生じるので、澱粉排水を固液分
離し、濃縮液をオゾン処理してオゾン処理液を澱粉分離
液と混合して嫌気性処理するのが好ましい。
In the acid generation step in the anaerobic treatment step, the surface structure of starch, protein, and other organic particles in the ozonized solution is weakened, and liquefaction and acid generation are likely to occur. The starch wastewater contains a large amount of acid-producing bacteria that convert ozonized starch into lower fatty acids (organic acids) such as formic acid, acetic acid, and propionic acid. However, even if it is killed or inactivated by the ozone treatment, the acid generation reaction is caused by the bacteria in the starch separated solution. Therefore, the starch wastewater is separated into solid and liquid, the concentrated solution is treated with ozone, and the ozonized solution is separated into the starch separated solution And anaerobic treatment is preferred.

【0025】澱粉排水をそのままオゾン処理する場合で
も、酸生成槽に担体等を投入して汚泥を保持することに
より、液化を十分に行うことができる。また酸生成反応
を促進させる目的でメタン生成工程から生じる処理水の
一部を酸生成工程に返送することもでき、その場合の返
送量は酸生成工程流入液量の1容量%程度でよい。
Even when the starch wastewater is directly subjected to ozone treatment, liquefaction can be sufficiently performed by charging a carrier or the like into the acid generation tank and holding the sludge. A part of the treated water generated from the methane generation step can be returned to the acid generation step for the purpose of accelerating the acid generation reaction. In this case, the amount returned may be about 1% by volume of the inflow of the acid generation step.

【0026】酸生成工程の滞留時間は槽内液の水温が3
5〜37°Cで、pHが5〜7に調整されている場合は
4〜12時間程度である。なお酸生成槽内のpHが澱粉
分離液の流入により低下するときは、水酸化ナトリウム
等のアルカリ剤によりpH調整することができる。
The residence time of the acid generating step is 3 hours when the temperature of the solution in the tank is 3
When the pH is adjusted to 5 to 7 at a temperature of 5 to 37 ° C., it takes about 4 to 12 hours. When the pH in the acid generating tank is lowered by the inflow of the starch separation liquid, the pH can be adjusted with an alkaline agent such as sodium hydroxide.

【0027】嫌気性処理工程におけるメタン生成工程の
負荷はBOD負荷として5〜20kg/m3/d、好ま
しくは10〜15kg/m3/dとするのが望ましい。
BOD負荷が上記範囲にある場合、より高水質の処理水
をより効率よく得ることができる。
The load of the methanogenesis step in anaerobic treatment step 5~20kg / m 3 / d as BOD load, preferably it is desirable to 10~15kg / m 3 / d.
When the BOD load is in the above range, higher quality treated water can be obtained more efficiently.

【0028】嫌気性処理により澱粉その他の固形物が液
化した溶解性有機物が分解され、メタンおよび炭酸ガス
が発生する。ここで発生するガスは回収して燃料として
利用することができる。処理液はそのまま、または必要
により他の低濃度排水や工業用水等で希釈して下水道等
に放流することもできるし、他の低濃度排水とともに好
気性処理することにより、残留する有機物を分解するこ
ともできる。
[0028] The anaerobic treatment decomposes soluble organic substances obtained by liquefying starch and other solid substances, and generates methane and carbon dioxide gas. The gas generated here can be collected and used as fuel. The treatment liquid can be used as it is or diluted with other low-concentration wastewater or industrial water, etc., and discharged to sewers, etc., or by aerobic treatment with other low-concentration wastewater to decompose residual organic matter. You can also.

【0029】このように、本発明は澱粉粒子をオゾン処
理工程においてオゾン処理することにより、オゾン処理
液を嫌気性処理することが可能となり、従来の方法のよ
うに澱粉粒子を農地に還元したり、埋立処理する必要は
なくなり、澱粉製造排水全体を高負荷かつ高速で効率よ
く嫌気性処理することができる。このため、農地還元、
埋立処理する場合に発生する臭気を防止できる。また本
発明はオゾン処理装置を設置することにより、既存の嫌
気性処理設備で実施することが可能であるので、低コス
トでの処理が可能である。さらに高負荷での高度な処理
が可能であり、また澱粉製造排水処理全体における発生
メタンガス量が増大し、有効利用も可能になる。
As described above, according to the present invention, the ozone-treated solution can be subjected to anaerobic treatment by subjecting the starch particles to ozone treatment in the ozone treatment step, and the starch particles can be reduced to agricultural land as in the conventional method. This eliminates the need for landfill treatment, and the entire starch production wastewater can be efficiently anaerobic treated at high load and at high speed. Therefore, farmland return,
Odors generated during landfill processing can be prevented. In addition, the present invention can be carried out with existing anaerobic treatment equipment by installing an ozone treatment apparatus, so that treatment can be performed at low cost. Further, advanced treatment under high load is possible, and the amount of methane gas generated in the entire wastewater treatment for starch production is increased, so that effective use is possible.

【0030】通常、澱粉粒子の嫌気性反応は、次の3段
階の反応で進行する。 1)第1反応 澱粉粒子を可溶化澱粉に転換させる液化反応。 2)第2反応 可溶化澱粉から酢酸およびプロピオン酸等の有機酸を生
成させる有機酸生成反応。 3)第3反応 有機酸からメタンガスを発生させるメタン生成反応。
Usually, the anaerobic reaction of starch particles proceeds in the following three steps. 1) First reaction A liquefaction reaction for converting starch particles into solubilized starch. 2) Second reaction An organic acid generating reaction for generating organic acids such as acetic acid and propionic acid from the solubilized starch. 3) Third reaction A methane generation reaction for generating methane gas from an organic acid.

【0031】結晶状態の澱粉の場合、上記一連の反応に
要する時間の中では、第1反応である液化反応の時間が
最も長く、pHが中性付近、液温36℃付近の嫌気性条
件下では3〜4日間を要することがわかった。第2反応
である有機酸生成反応は、液化反応が十分に進行してい
る場合には4〜12時間で進行する。また第3反応であ
るメタン生成反応は、有機酸生成反応が十分に進行して
いる場合にはBOD負荷10kg/m3/d以上の高負
荷処理も可能である。
In the case of starch in a crystalline state, the time required for the liquefaction reaction, which is the first reaction, is the longest among the time required for the above series of reactions, and the pH is around neutral, and the anaerobic condition at a liquid temperature of around 36 ° C. It turns out that it takes three to four days. The organic acid generation reaction, which is the second reaction, proceeds in 4 to 12 hours when the liquefaction reaction has sufficiently proceeded. In the methane formation reaction as the third reaction, a high load treatment with a BOD load of 10 kg / m 3 / d or more is possible when the organic acid formation reaction is sufficiently proceeding.

【0032】pH4.6〜5.4、温度50〜70℃で
液化処理することにより澱粉粒子の液化反応を進行させ
る方法では、澱粉粒子中に多量の蛋白質を含有している
場合には、pH処理によりゲル化した蛋白質が澱粉粒子
を包み込むことで液化反応効率は低下する。
In the method of proceeding the liquefaction reaction of starch particles by liquefaction at a pH of 4.6 to 5.4 and a temperature of 50 to 70 ° C., when a large amount of protein is contained in the starch particles, the pH is lowered. The liquefaction reaction efficiency is reduced because the protein gelled by the treatment wraps the starch particles.

【0033】本発明では、pH5以下でオゾン処理する
ことにより、上記の有機酸生成工程に要する時間内に、
澱粉その他の固形物の液化と酸生成を同時に行うことが
できる。このため、澱粉粒子を分離して農地に還元した
り、埋立処理する必要はなくなり、澱粉製造排水全体を
高負荷かつ高速で効率よく嫌気性処理することができ
る。
In the present invention, the ozone treatment at a pH of 5 or less allows the ozone treatment to be carried out within the time required for the organic acid generating step.
Liquefaction of starch and other solids and acid generation can be performed simultaneously. For this reason, there is no need to separate the starch particles and reduce them to agricultural land, or to perform landfill treatment, and the entire starch production wastewater can be efficiently subjected to anaerobic treatment at high load and at high speed.

【0034】[0034]

【発明の効果】本発明の澱粉粒子含有液の嫌気性処理方
法は、澱粉粒子含有液または澱粉粒子濃縮液をpH5以
下でオゾン処理したのち嫌気性処理するので、澱粉粒子
を別途処理することなく、澱粉粒子含有液全体を高負荷
かつ高速で効率よく嫌気性処理することができる。本発
明の澱粉粒子含有液の嫌気性処理装置は、澱粉粒子濃縮
液をpH5以下でオゾン処理するオゾン処理装置を有し
ているので、澱粉粒子を別途処理することなく、澱粉粒
子含有液全体を高負荷かつ高速で効率よく嫌気性処理す
ることができる。
According to the anaerobic treatment method of the starch particle-containing liquid of the present invention, the starch particle-containing liquid or the starch particle concentrated liquid is subjected to the anaerobic treatment after the ozone treatment at pH 5 or less, so that the starch particles are not separately treated. In addition, the entire starch particle-containing liquid can be efficiently subjected to anaerobic treatment at a high load and at a high speed. The apparatus for anaerobic treatment of starch particle-containing liquid of the present invention has an ozone treatment apparatus for ozone-treating the starch particle concentrated liquid at pH 5 or less, so that the entire starch particle-containing liquid can be treated without separately treating the starch particles. Anaerobic treatment can be performed efficiently at high load and at high speed.

【0035】[0035]

【発明の実施の形態】本発明の実施形態を図面により説
明する。図1は、実施形態の澱粉粒子含有液の嫌気性処
理装置を示す系統図である。図1において、1は沈殿
槽、2はオゾン処理槽、3は酸生成槽、4はUASB方
式のメタン発酵槽、5はオゾン発生機である。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram illustrating an apparatus for anaerobic treatment of a starch particle-containing liquid according to an embodiment. In FIG. 1, 1 is a sedimentation tank, 2 is an ozone treatment tank, 3 is an acid generation tank, 4 is a UASB methane fermentation tank, and 5 is an ozone generator.

【0036】沈殿槽1には原水路11、濃縮液路12お
よび澱粉分離液路13が接続している。オゾン処理槽2
には、濃縮液路12、オゾン処理液路14、pH調整剤
供給路15およびオゾン供給路18が接続し、内部に撹
拌機17が設けられており、沈殿槽1で沈降分離した澱
粉粒子濃縮液を濃縮液路12から導入し、槽内液のpH
が5以下、好ましくは3以下となるようにpHを保持
し、オゾン発生機5でオゾン含有ガスを発生させてオゾ
ン供給路18からオゾン含有ガスを供給し、オゾン処理
するように構成されている。
The settling tank 1 is connected to a raw water channel 11, a concentrated liquid channel 12, and a starch separated liquid channel 13. Ozone treatment tank 2
Is connected to a concentrate passage 12, an ozonation treatment passage 14, a pH adjusting agent supply passage 15, and an ozone supply passage 18, and a stirrer 17 is provided therein. The solution is introduced from the concentrate channel 12 and the pH of the solution in the tank is adjusted.
Is maintained at 5 or less, preferably 3 or less, and the ozone generator 5 generates an ozone-containing gas, supplies the ozone-containing gas from the ozone supply path 18, and performs ozone treatment. .

【0037】酸生成槽3には、澱粉分離液路13、オゾ
ン処理液路14、酸生成液路21、pH調整剤供給路2
3が接続し、内部には撹拌器22が設けられている。メ
タン発酵槽4には酸生成液路21が下部に接続し、ガス
回収路28が上部に接続している。処理水路25は、返
送路26が分岐して、処理水の一部を酸生成槽3に返送
している。メタン発酵槽4の内部にはスラッジブランケ
ット27が形成されている。酸生成槽3とメタン発酵槽
4とで嫌気性反応槽を構成している。
In the acid generating tank 3, a starch separating liquid path 13, an ozone treatment liquid path 14, an acid generating liquid path 21, a pH adjusting agent supply path 2
3 are connected, and a stirrer 22 is provided inside. The methane fermenter 4 is connected to an acid-generating liquid passage 21 at a lower portion and a gas recovery passage 28 to an upper portion. In the treated water channel 25, a return line 26 is branched, and a part of the treated water is returned to the acid generation tank 3. A sludge blanket 27 is formed inside the methane fermenter 4. The acid production tank 3 and the methane fermentation tank 4 constitute an anaerobic reaction tank.

【0038】図1の嫌気性処理装置で澱粉粒子含有液を
処理するには、原水として澱粉粒子含有液を原水路11
から沈殿槽1に導入し、重力沈降により澱粉粒子10と
澱粉分離液とに分離する。澱粉粒子10を含む澱粉粒子
濃縮液は濃縮液路12からオゾン処理槽2に導入してオ
ゾン処理し、澱粉分離液は澱粉分離液路13から酸生成
槽3に導入して有機酸を生成させる。
In order to treat the starch particle-containing liquid with the anaerobic treatment apparatus shown in FIG.
Into the precipitation tank 1 and separated into starch particles 10 and a starch separation liquid by gravity sedimentation. The starch particle concentrate containing the starch particles 10 is introduced into the ozone treatment tank 2 from the concentrate passage 12 for ozone treatment, and the starch separated solution is introduced into the acid generation tank 3 from the starch separation passage 13 to generate an organic acid. .

【0039】オゾン処理槽2では澱粉粒子10を含む澱
粉粒子濃縮液を濃縮液路12から導入し、pH調整剤供
給路15から槽内液のpHが前記pHとなるように塩酸
を供給するとともに、オゾン供給路18からオゾン含有
ガスを供給してオゾン処理する。通常1〜2時間で、澱
粉粒子10はほぼ完全に易液化性に改質される。オゾン
含有ガスはオゾン発生機5で発生させ、SSあたり0.
1〜1重量%オゾンの量となるように供給する。
In the ozone treatment tank 2, a concentrated starch particle solution containing the starch particles 10 is introduced from the concentrated liquid passage 12, and hydrochloric acid is supplied from the pH adjusting agent supply passage 15 so that the pH of the liquid in the tank becomes the above-mentioned pH. Then, an ozone-containing gas is supplied from the ozone supply path 18 to perform ozone treatment. Usually, in 1 to 2 hours, the starch particles 10 are almost completely modified to be liquefiable. The ozone-containing gas is generated by the ozone generator 5 and has a volume of 0.1 g / SS.
The ozone is supplied in an amount of 1 to 1% by weight.

【0040】酸生成槽3では、オゾン処理液および沈殿
槽1で分離した澱粉分離液を導入するが、オゾン処理液
の流入により酸生成槽3内のpHが低下する時は、pH
調整剤供給路23から水酸化ナトリウムの水溶液を供給
し、嫌気性を維持して撹拌器22で緩やかに撹拌しなが
ら酸生成菌を含む槽内液と混合し、澱粉その他の改質固
形物の液化と有機酸生成を行う。これにより、槽内の有
機物は酸生成菌により分解され有機酸が生成する。
In the acid generating tank 3, the ozone treatment liquid and the starch separation liquid separated in the precipitation tank 1 are introduced.
An aqueous solution of sodium hydroxide is supplied from the regulator supply channel 23, mixed with the solution in the tank containing the acid-producing bacterium while maintaining anaerobic and gently stirring with the stirrer 22 to remove starch and other modified solids. Liquefaction and organic acid generation. Thereby, the organic matter in the tank is decomposed by the acid-producing bacteria to produce an organic acid.

【0041】有機酸生成液は酸生成液路21からメタン
発酵槽4の下部に導入し、上向流でスラッジブランケッ
ト27を通過させる。このとき、透過液は嫌気性下にグ
ラニュール汚泥と接触し、これにより有機酸はグラニュ
ール汚泥に含まれるメタン生成菌の作用により嫌気的に
分解されてメタンと二酸化炭素に転換される。メタン発
酵処理液は処理水として処理水路25から排出するが、
一部は分岐して返送路26から酸生成槽3に返送する。
返送量は酸生成槽3の流入液量の1%程度でよい。発生
ガスはガス回収路28から回収して燃料ガス等として利
用する。
The organic acid producing liquid is introduced into the lower part of the methane fermentation tank 4 from the acid producing liquid passage 21 and is passed upward through the sludge blanket 27. At this time, the permeated liquid comes into contact with the granular sludge under anaerobic conditions, whereby the organic acid is anaerobically decomposed and converted into methane and carbon dioxide by the action of methane-producing bacteria contained in the granular sludge. The methane fermentation treatment liquid is discharged from the treatment water channel 25 as treatment water,
A part is branched and returned to the acid generation tank 3 from the return path 26.
The amount returned may be about 1% of the amount of the inflow liquid into the acid generation tank 3. The generated gas is recovered from the gas recovery path 28 and used as fuel gas or the like.

【0042】図1の装置において、UASB方式などの
高負荷型嫌気性処理装置の代わりに浮遊式のメタン発酵
槽を使用することもできる。さらに沈殿槽1を省略し
て、原水を直接オゾン処理槽2に導入して液化処理する
こともできる。
In the apparatus shown in FIG. 1, a floating methane fermentation tank may be used instead of a high-load anaerobic treatment apparatus such as a UASB method. Furthermore, the precipitation tank 1 may be omitted, and the raw water may be directly introduced into the ozone treatment tank 2 for liquefaction.

【0043】[0043]

【実施例】実施例1 図1の装置により、澱粉製造排水を嫌気性処理した。す
なわち、馬鈴薯澱粉製造工程から排出されるデカンター
排水とハイドロサイクロン排水との混合排水について、
嫌気性処理を行った。上記デカンター排水はBODが3
0000mg/l付近、SSが5000mg/l付近で
あり、ハイドロサイクロン排水はBODが2000mg
/l付近、SSが500mg/l付近であり、粒子状の
澱粉はハイドロサイクロン排水に多く含まれている。処
理対象の混合排水はデカンター排水をハイドロサイクロ
ン排水で10倍に希釈した混合排水であり、この混合排
水のSSは950mg/l、BODは4800mg/l
である(表1参照)。上記混合排水を、滞留時間4時間
原水槽を兼ねた沈殿槽1(初沈槽)で沈降分離し、澱粉
粒子濃縮液と澱粉分離液とを得た。これらのSSおよび
BODを表1に示す。
EXAMPLE 1 The starch production wastewater was anaerobically treated by the apparatus shown in FIG. That is, regarding the mixed wastewater of decanter wastewater and hydrocyclone wastewater discharged from the potato starch production process,
Anaerobic treatment was performed. The above decanter drainage has BOD of 3
0000mg / l, SS is around 5000mg / l, and hydrocyclone wastewater has BOD of 2000mg
/ L, SS is about 500 mg / l, and particulate starch is contained in a large amount in hydrocyclone wastewater. The mixed wastewater to be treated is a mixed wastewater obtained by diluting the decanter wastewater with hydrocyclone wastewater 10 times, and the SS of this mixed wastewater is 950 mg / l and the BOD is 4800 mg / l.
(See Table 1). The mixed waste water was settled and separated in the sedimentation tank 1 (initial sedimentation tank) also serving as a raw water tank for a residence time of 4 hours to obtain a starch particle concentrated liquid and a starch separated liquid. The SS and BOD are shown in Table 1.

【0044】上記澱粉粒子濃縮液はオゾン処理槽2へ導
入し、塩酸でpH3に調整後、強撹拌下でオゾン含有率
100mg−オゾン/lのオゾン含有ガスと接触させ、
1時間オゾン処理した。オゾン量はSS量の0.1重量
%に相当する15mg−オゾン/lである。このオゾン
処理液は、SSが3000mg/lであったが、ヨウ素
・澱粉反応による呈色反応では青色の呈色は観察され
ず、また顕微鏡観察でも澱粉粒子は認められなかった。
オゾン処理液のSSの主体は、SSの有機態窒素の測定
結果から、蛋白質がゲル化析出したものであることが明
らかとなったが、表面構造は軟弱化している状態であっ
た。
The above-mentioned starch particle concentrate is introduced into an ozone treatment tank 2, adjusted to pH 3 with hydrochloric acid, and then brought into contact with an ozone-containing gas having an ozone content of 100 mg-ozone / l under vigorous stirring.
Ozone treatment was performed for 1 hour. The ozone amount is 15 mg-ozone / l corresponding to 0.1% by weight of the SS amount. This ozone-treated solution had an SS of 3000 mg / l, but no blue color was observed in a color reaction by an iodine-starch reaction, and no starch particles were observed by microscopic observation.
As a result of the measurement of organic nitrogen in SS, it was revealed that the main component of SS in the ozonized solution was a protein gelled and precipitated, but the surface structure was in a weakened state.

【0045】オゾン処理液は沈殿槽1で得られた澱粉分
離液と混合し、この混合液を酸生成槽3に導入し、pH
6に調整後、液温36℃、滞留時間8時間の条件で緩速
撹拌し有機酸生成を行った。得られた有機酸生成液(メ
タン発酵槽導入液)のSSは酸生成細菌の増殖も加わり
550mg/l、BODは澱粉粒子が液化してBODに
測定されやすくなったことから5500mg/lと増加
した。BOD成分の80%は酢酸、プロピオン酸、乳
酸、酪酸等の低級脂肪酸(有機酸)とエタノールであ
り、十分な有機酸生成反応が進行していた。
The ozonized solution was mixed with the starch separation solution obtained in the precipitation tank 1, and this mixture was introduced into the acid generation tank 3, and the pH of the mixture was adjusted to pH.
After adjusting to 6, the mixture was slowly stirred under the conditions of a liquid temperature of 36 ° C. and a residence time of 8 hours to produce an organic acid. The SS of the obtained organic acid-generating solution (introduced into the methane fermentation tank) increased to 550 mg / l due to the growth of acid-producing bacteria, and the BOD increased to 5500 mg / l because starch particles were liquefied and easily measured in BOD. did. 80% of the BOD component was lower fatty acids (organic acids) such as acetic acid, propionic acid, lactic acid, and butyric acid and ethanol, and a sufficient organic acid generation reaction had progressed.

【0046】上記有機酸生成液はUASB方式のメタン
発酵槽4に導入して上向流で通液し、メタン発酵処理し
た。有機酸生成液のメタン生成速度を回分方式で測定
し、メタン発酵槽4の負荷量(除去量)を求めた。メタ
ン発酵槽4の滞留時間は、沈殿槽1の分離液量に対して
8時間に設定し、槽内pHは7.0、液温は36℃に調
整した。メタン生成速度は発生したメタンガス量から求
め、計算上のメタン発酵槽4のBOD負荷量は14kg
/m3/dの高負荷に達した。メタン発酵処理液(処理
水)はBODが300〜350mg/lであり、発生ガ
ス量はメタン発酵槽4容量当たり9.1〜9.7倍に達
した。なお、発生ガス中の炭酸ガス含有量は18〜25
容量%であった。結果を表1に示す。
The organic acid-producing liquid was introduced into a UASB-type methane fermentation tank 4 and passed therethrough in an upward flow to be subjected to methane fermentation. The methane production rate of the organic acid production liquid was measured by a batch method, and the load (removal amount) of the methane fermenter 4 was determined. The residence time in the methane fermentation tank 4 was set to 8 hours with respect to the amount of the separated liquid in the precipitation tank 1, the pH in the tank was adjusted to 7.0, and the liquid temperature was adjusted to 36 ° C. The methane production rate is obtained from the amount of generated methane gas, and the calculated BOD load of the methane fermenter 4 is 14 kg.
/ M 3 / d. The methane fermentation treatment liquid (treated water) had a BOD of 300 to 350 mg / l, and the amount of generated gas reached 9.1 to 9.7 times per 4 volumes of the methane fermentation tank. The content of carbon dioxide in the generated gas is 18-25.
% By volume. Table 1 shows the results.

【0047】[0047]

【表1】 [Table 1]

【0048】実施例2 実施例1において、オゾン処理液に澱粉分離液を混合す
ることなく、オゾン処理液を単独で有機酸生成処理し
た。酸生成槽3の滞留時間は24時間、メタン発酵槽4
の滞留時間は48時間とした。他の条件は実施例1と同
じである。有機酸生成液(メタン発酵槽導入液)のBO
D濃度は12000〜21000mg/l、メタン発酵
槽4のBOD負荷量は6〜10.5kg/m3/dであ
り、実施例1の負荷量に比べて3/4〜1/2に設定し
た。結果を表2に示す。
Example 2 In Example 1, the ozone-treated solution was subjected to the organic acid generation treatment alone without mixing the ozone-treated solution with the starch separation solution. The residence time of the acid generation tank 3 is 24 hours, and the methane fermentation tank 4
Was 48 hours. Other conditions are the same as in the first embodiment. BO of organic acid production liquid (methane fermentation tank introduction liquid)
The D concentration was 12000 to 21000 mg / l, and the BOD load of the methane fermenter 4 was 6 to 10.5 kg / m 3 / d, which was set to 3/4 to て compared to the load of Example 1. . Table 2 shows the results.

【0049】[0049]

【表2】 [Table 2]

【0050】実施例2のメタン発酵処理液(処理水)の
SSおよびBODは実施例1に比べて高く、このまま放
流できない場合は、さらに好気性処理する。
The SS and BOD of the methane fermentation solution (treated water) of Example 2 are higher than those of Example 1, and if the methane fermentation solution cannot be discharged as it is, aerobic treatment is further performed.

【0051】参考例1 実施例2で得られた有機酸生成液を市水で5倍に希釈し
(BOD=2400〜4200mg/l)、この希釈液
をメタン発酵槽4に導入してBOD負荷量2.4〜4.
2kg/m3/d(滞留時間24時間)でメタン発酵処
理を行ったところ、メタン発酵処理液(処理水)のBO
Dは実施例1と同等の300〜350mg/lが得られ
た。
Reference Example 1 The organic acid solution obtained in Example 2 was diluted 5-fold with city water (BOD = 2400 to 4200 mg / l), and this diluted solution was introduced into the methane fermentation tank 4 to load the BOD. Amount 2.4-4.
When the methane fermentation treatment was performed at 2 kg / m 3 / d (residence time: 24 hours), the BO of the methane fermentation treatment liquid (treated water) was
As for D, 300 to 350 mg / l equivalent to that of Example 1 was obtained.

【0052】比較例1 実施例1において、沈殿槽1で得られた澱粉分離液を単
独で有機酸生成を行った。酸生成槽3の条件は実施例1
と同じである。得られた有機酸生成液をメタン発酵槽4
(滞留時間8時間)に導入し、メタン発酵処理を行っ
た。その結果、メタン発酵槽4の負荷量は10〜10.
5kg/m3/d、発生ガス量はメタン発酵槽4容量当
たり6.5〜6.9倍、メタン発酵処理液のBODは実
施例1と同等な300〜350mg/lであった。結果
を表3に示す。
Comparative Example 1 In Example 1, the starch separated solution obtained in the precipitation tank 1 was used alone to produce an organic acid. Example 1 is the condition of the acid generation tank 3.
Is the same as The obtained organic acid solution is supplied to the methane fermenter 4
(Residence time: 8 hours), and methane fermentation treatment was performed. As a result, the load of the methane fermenter 4 is 10 to 10.
5 kg / m 3 / d, the amount of generated gas was 6.5 to 6.9 times per 4 volumes of the methane fermentation tank, and the BOD of the methane fermentation solution was 300 to 350 mg / l, which is equivalent to that of Example 1. Table 3 shows the results.

【0053】[0053]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の澱粉粒子含有液の嫌気性処理
装置を示す系統図である。
FIG. 1 is a system diagram illustrating an apparatus for anaerobic treatment of a starch particle-containing liquid according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 沈殿槽 2 オゾン処理槽 3 酸生成槽 4 メタン発酵槽 5 オゾン発生機 10 澱粉粒子 11 原水路 12 濃縮液路 13 澱粉分離液路 14 オゾン処理液路 15、23 pH調整剤供給路 17、22 撹拌器 18 オゾン含有ガス供給路 21 酸生成液路 25 処理水路 26 返送路 27 スラッジブランケット 28 ガス回収路 REFERENCE SIGNS LIST 1 sedimentation tank 2 ozone treatment tank 3 acid generation tank 4 methane fermentation tank 5 ozone generator 10 starch particles 11 raw water path 12 concentrated liquid path 13 starch separation liquid path 14 ozone treatment liquid path 15, 23 pH adjuster supply path 17, 22 Stirrer 18 Ozone-containing gas supply path 21 Acid generation liquid path 25 Treatment water path 26 Return path 27 Sludge blanket 28 Gas recovery path

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 9/00 503 C02F 9/00 503C 504 504A 504E ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 9/00 503 C02F 9/00 503C 504 504A 504E

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 澱粉粒子含有液をpH5以下でオゾン処
理するオゾン処理工程と、 オゾン処理液を嫌気性微生物を含む汚泥の存在下に嫌気
性処理する嫌気性処理工程とを有する澱粉粒子含有液の
嫌気性処理方法。
1. A starch particle-containing liquid comprising: an ozone treatment step of ozone-treating a starch particle-containing liquid at a pH of 5 or less; and an anaerobic treatment step of anaerobic-treating the ozonized liquid in the presence of sludge containing anaerobic microorganisms. Anaerobic treatment method.
【請求項2】 澱粉粒子含有液を澱粉粒子濃縮液と澱粉
分離液とに分離する濃縮分離工程と、 前記澱粉粒子濃縮液をpH5以下でオゾン処理するオゾ
ン処理工程と、 オゾン処理液および前記澱粉分離液を導入し、嫌気性微
生物を含む汚泥の存在下に嫌気性処理する嫌気性処理工
程とを有する澱粉粒子含有液の嫌気性処理方法。
2. A concentration separation step of separating a starch particle-containing liquid into a starch particle concentrate and a starch separation liquid; an ozone treatment step of ozone-treating the starch particle concentrate at a pH of 5 or less; an ozone treatment liquid and the starch An anaerobic treatment step of introducing a separation liquid and anaerobic treatment in the presence of sludge containing anaerobic microorganisms.
【請求項3】 澱粉粒子含有液または濃縮液をpH5以
下でオゾン処理するオゾン処理装置と、 少なくともオゾン処理液を導入し、嫌気性微生物を含む
汚泥の存在下に嫌気性処理する嫌気性反応槽とを有する
澱粉粒子含有液の嫌気性処理装置。
3. An ozonation apparatus for ozone-treating a starch particle-containing liquid or a concentrated liquid at a pH of 5 or less, and an anaerobic reaction tank for introducing at least an ozonation liquid and anaerobic-treating in the presence of sludge containing anaerobic microorganisms. An anaerobic treatment apparatus for a starch particle-containing liquid, comprising:
JP2001028402A 2001-02-05 2001-02-05 Anaerobic treatment method and equipment for starch particle-containing liquid Pending JP2002224686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001028402A JP2002224686A (en) 2001-02-05 2001-02-05 Anaerobic treatment method and equipment for starch particle-containing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001028402A JP2002224686A (en) 2001-02-05 2001-02-05 Anaerobic treatment method and equipment for starch particle-containing liquid

Publications (1)

Publication Number Publication Date
JP2002224686A true JP2002224686A (en) 2002-08-13

Family

ID=18892911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001028402A Pending JP2002224686A (en) 2001-02-05 2001-02-05 Anaerobic treatment method and equipment for starch particle-containing liquid

Country Status (1)

Country Link
JP (1) JP2002224686A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125202A (en) * 2003-10-22 2005-05-19 Sumitomo Heavy Ind Ltd Organic waste water treatment apparatus
JP2008279384A (en) * 2007-05-11 2008-11-20 Kurita Water Ind Ltd Anaerobic treatment apparatus for paper industry sewage
JP2010194531A (en) * 2009-01-27 2010-09-09 Ihi Corp Anaerobic treatment equipment and method, and treatment equipment and method for starch manufacture drainage water
JP2014133210A (en) * 2013-01-10 2014-07-24 Swing Corp Anaerobic treatment method and anaerobic treatment apparatus of organic effluent
CN104016505A (en) * 2013-02-28 2014-09-03 盛银河 Method for preparing products by using maize straw and fresh sweet potato yellow serofluid
CN109776688A (en) * 2019-03-25 2019-05-21 安徽紫山农业科技有限公司 A kind of extracting method and extract equipment of starch from sweet potato

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125202A (en) * 2003-10-22 2005-05-19 Sumitomo Heavy Ind Ltd Organic waste water treatment apparatus
JP2008279384A (en) * 2007-05-11 2008-11-20 Kurita Water Ind Ltd Anaerobic treatment apparatus for paper industry sewage
JP2010194531A (en) * 2009-01-27 2010-09-09 Ihi Corp Anaerobic treatment equipment and method, and treatment equipment and method for starch manufacture drainage water
JP2014133210A (en) * 2013-01-10 2014-07-24 Swing Corp Anaerobic treatment method and anaerobic treatment apparatus of organic effluent
CN104016505A (en) * 2013-02-28 2014-09-03 盛银河 Method for preparing products by using maize straw and fresh sweet potato yellow serofluid
CN109776688A (en) * 2019-03-25 2019-05-21 安徽紫山农业科技有限公司 A kind of extracting method and extract equipment of starch from sweet potato

Similar Documents

Publication Publication Date Title
WO2006035594A1 (en) Method and apparatus for biologically treating wastewater containing fats and oils
JP3846131B2 (en) Anaerobic treatment method for starch production wastewater
JP4655974B2 (en) Waste water treatment method and treatment apparatus
JP3846138B2 (en) Method and apparatus for anaerobic treatment of liquid containing starch particles
JP2002361293A (en) Method and apparatus for reducing volume of organic sludge
JP2002224686A (en) Anaerobic treatment method and equipment for starch particle-containing liquid
JP4376539B2 (en) Method and apparatus for treating organic wastewater or sludge
JP2004008843A (en) Method for treating organic waste water
JP4457391B2 (en) Organic sludge treatment method and treatment apparatus
JP3970163B2 (en) Organic waste treatment method and apparatus
JP2005193146A (en) Method for treating organic waste and the treating system
JP2004041953A (en) Method and equipment for treating organic waste water
JP2001025789A (en) Treatment of organic waste liquid and device therefor
JP2005185967A (en) Treatment method and treatment apparatus for organic waste water
JP4010733B2 (en) Organic wastewater treatment method and apparatus
JP2004041902A (en) Sludge treatment equipment and sludge treatment method
JP3906323B2 (en) Treatment method for highly concentrated waste liquid
JP3969144B2 (en) Biological treatment method and biological treatment apparatus
JP3800990B2 (en) Anaerobic digestion method and apparatus of organic sludge
JP4200601B2 (en) Anaerobic digestion treatment method of organic sludge
JP2003320394A (en) Treatment apparatus and treatment method for organic waste
KR20190001090A (en) Bio-reactor for sewage treatment and sewage treatment system comprising the same
JP2005324173A (en) Method and apparatus for treating sludge
JPH10328693A (en) Biological treatment for waste liquid containing organic solid matter
JP2003071411A (en) Method for treating organic wastes