JP2004008843A - Method for treating organic waste water - Google Patents

Method for treating organic waste water Download PDF

Info

Publication number
JP2004008843A
JP2004008843A JP2002162529A JP2002162529A JP2004008843A JP 2004008843 A JP2004008843 A JP 2004008843A JP 2002162529 A JP2002162529 A JP 2002162529A JP 2002162529 A JP2002162529 A JP 2002162529A JP 2004008843 A JP2004008843 A JP 2004008843A
Authority
JP
Japan
Prior art keywords
sludge
treatment
ammonia
solubilization
biological treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002162529A
Other languages
Japanese (ja)
Inventor
Toshiaki Nakazawa
中沢 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2002162529A priority Critical patent/JP2004008843A/en
Publication of JP2004008843A publication Critical patent/JP2004008843A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating organic waste water by which the cost for operation and facilities can be reduced, excess sludge is efficiently decomposed to recover gas essentially comprising methane gas and the gas can be effectively used as a fuel or the like in a method for treating waste water by which the amount of excess sludge can be eliminated or at least the volume can be reduced. <P>SOLUTION: The method for treating organic waste water includes steps of: (1) aerobic biological treatment of organic waste water; (2) solid-liquid separation of the sludge in the mixture liquid after the biological treatment; (3) sludge returning process to return at least a part of the separated sludge to the aerobic biological treatment step; (4) solubilization to solubilize at least a part of the residual sludge; (5) ammonia stripping process to eliminate ammonia in the solubilized liquid after the solubilization; (6) anaerobic digestion to anaerobically digest the solubilized liquid from which ammonia is eliminated; and (7) digested sludge returning process to return the digested sludge after the anaerobic digestion treatment to the aerobic biological treatment step. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、有機性排水を生物処理する排水処理方法に関し、更に詳しくは、有機性排水を好気性処理する工程で発生する余剰汚泥の排出量を削減すると共に汚泥を分解処理し、メタンガスを効率的に回収して有効利用を図ることのできる有機性排水の処理方法に関する。
【0002】
【従来の技術】
従来、下水、食品排水、厨房排水又は浄化槽汚泥などの有機性排水(以下原水ということもある。)を処理する装置としては、活性汚泥処理装置、固定床式生物処理装置又は流動床式処理装置などの好気性処理装置が用いられている。
【0003】
前記活性汚泥処理装置にあっては、好気性微生物である汚泥の浮遊する処理槽内に排水を供給し、空気で曝気することにより、汚泥の生物学的作用で原水中の有機物を酸化分解処理する装置であり、また、固定床式生物処理装置にあっては、処理槽内に合成樹脂製などの生物保持担体の固定床を設け、空気で曝気することにより微生物を担体の表面に付着増殖させ、付着した微生物の生物学的作用で原水中の有機物を酸化分解処理する装置であり、更に、流動床式処理装置は、好気性生物処理槽内の液中に流動可能に合成樹脂粒子などの生物保持担体を充填し、原水を供給して空気で曝気することにより、流動化する生物保持担体の表面に付着増殖した微生物の生物学的作用で原水中の有機物を酸化分解処理する装置である。
【0004】
前記生物処理装置では、いずれも有機物を生物学的に分解処理するのに伴い、増殖した微生物が汚泥として大量に発生する。発生した汚泥は沈殿槽などで分離濃縮され、その一部は生物処理工程に循環されるが、残部は余剰汚泥として系外に排出され、その余剰汚泥を濃縮、脱水したのち焼却や埋め立てなどにより処分している。なお、前記余剰汚泥量は、生物処理工程に導入された原水中の有機物量(BOD)の20〜50%が発生するといわれている。
【0005】
前記従来の余剰汚泥の処分方法で、汚泥を濃縮、脱水したのち焼却又は埋め立て処分する方法にあっては、汚泥の濃縮、脱水後においても含水率が70〜80wt%と高いため嵩が大きく、廃棄物業者に処分を依頼する場合には、引き取りコストが高くなり、排水処理全体にかかるコストの多くを占めているのが現状である。
【0006】
更に、埋め立て処分においては、産業廃棄物埋立処分場の残余年数が少なくなっており、引き取りコストも年々高騰している。また、焼却処分においては、含水率が高いため燃料消費量が多くなり燃料費が嵩み、更に、排出ガスや焼却灰の処理が必要であり、近年はダイオキシン問題等から焼却処理自体が困難になってきている状況である。
【0007】
前記の事情に鑑みて、発生汚泥をできるだけ減容化する各種の方法が開示されているが、本願発明と同様に、汚泥を可溶化処理し、処理後の可溶化処理液を嫌気性処理工程で汚泥の減容化を図る装置としては、特開平2−211299号公報、特開平9−001179号公報及び特開2001−157900号公報などに開示されており、また、汚泥をアルカリ性で可溶化処理し、可溶化処理液を嫌気性処理する方法が、特許第2659895号公報及び特開平6−099199号公報などに開示されている。
【0008】
前記特開平2−211299号公報に開示された方法は、有機性汚泥を適宜な可溶化処理工程で可溶化したのち、所定のpH範囲と処理日数で嫌気性消化処理する方法であり、特開平9−001179号公報に開示された方法は、沈降分離した汚泥を高温条件で可溶化処理し、分離水と可溶化処理液を嫌気性処理する方法であり、また、特開2001−157900号公報に開示された方法は、有機性汚泥を嫌気性で消化処理し、処理後の嫌気消化汚泥を固液分離して汚泥を濃縮し、濃縮汚泥を適宜な改質処理工程(可溶化処理工程)で可溶化処理して嫌気性処理工程に返送する方法である。
【0009】
また、特許第2659895号公報に開示された方法は、汚泥をアルカリ性にし、所定の温度範囲で熱アルカリ処理して可溶化させ、可溶化処理液を所定のpH範囲と所定の温度範囲で嫌気性消化処理する方法であり、また、特開平6−099199号公報に開示された方法は、余剰汚泥をアルカリ性にし、所定の温度範囲で熱アルカリ処理して可溶化させ、可溶化処理液を嫌気性消化処理する方法である。
【0010】
【発明が解決しようとする課題】
嫌気性消化法により減容化処理する方法にあっては、嫌気性微生物の生物学的作用で汚泥中の有機物を、メタンガスや炭酸ガス等に分解処理する方法であり、メタンガスを燃料等に有効活用できる利点があるため好ましい方法であるが、前記従来の各種装置及び方法にあっては、好気性生物処理した汚泥中のアンモニアを除去する操作が行われていないため、可溶化処理された可溶化処理液中のアンモニアイオンの影響で、嫌気性消化工程における嫌気性微生物の活性が阻害され、効率的に消化処理することができない問題がある。
【0011】
また、アンモニア濃度は高くなればなるほど嫌気性微生物であるメタン菌に対する活性阻害が大きくなり、2000mg/L以上では、実質的にメタン発酵が不可能となるといわれている。また、単に汚泥をアルカリ性とし、機械的な攪拌をしたとしても、アンモニアを効率的に揮散除去することはできないため、前記問題点を解消することはできない。
【0012】
本発明は、前記従来の汚泥処分及び減容化処理における問題点に鑑みて成されたものであり、余剰汚泥発生量のゼロ化又は少なくとも減容化を図ることができる排水処理方法において、運転経費や設備費などが低廉化でき、また、余剰汚泥を効率的に分解してメタンガスを主体としたガスを回収し、燃料などとして有効利用を可能とする有機性排水の処理方法を提供する目的で成されたものである。
【0013】
【課題を解決するための手段】
前記目的を達成するための本発明の要旨は、請求項1に記載した発明においては、下記工程を設けたことを特徴とする有機性排水の処理方法である。
イ)有機性排水を好気性で生物処理する好気性生物処理工程と、ロ)前記好気性生物処理工程で生物処理された混合液中の汚泥を固液分離する固液分離工程と、ハ)前記固液分離工程で分離された汚泥の少なくとも一部を返送汚泥として前記好気性生物処理工程に返送する汚泥返送工程と、ニ)残部の分離汚泥の少なくとも一部を可溶化処理する可溶化処理工程と、ホ)前記可溶化処理工程で可溶化処理された可溶化処理液中のアンモニアをキャリアガスでストリッピングするアンモニアストリッピング工程と、ヘ)前記アンモニアストリッピング工程でアンモニアを除去された可溶化処理液を嫌気性で消化処理する嫌気性消化処理工程と、ト)前記嫌気性消化処理工程で嫌気性消化処理された消化汚泥を前記好気性生物処理工程に返送する消化汚泥返送工程。
【0014】
前記工程を設けたことにより、嫌気性消化処理工程に供給される可溶化処理液中にはアンモニアが殆ど含まれていないため、アンモニアイオンの影響で、嫌気性消化工程における嫌気性微生物の活性が阻害される恐れが無く、効率的に消化処理することができ、余剰汚泥発生量のゼロ化又は少なくとも減容化を図ることができる。更に、生成したメタンガスを燃料などとして有効利用することができ、運転経費や設備費などが低廉化できる。
【0015】
前記において、好気性生物処理工程では、通常の活性汚泥処理槽の他に、合成樹脂や繊維状などの生物保持担体を固定して充填した固定床式処理槽や生物保持担体を流動可能に充填した流動床式生物処理槽などでもよい。また、嫌気性消化処理工程では、嫌気性消化槽による単一槽での処理や酸発酵槽と嫌気性消化槽とを組み合わせた二槽での処理装置又は上向流嫌気性処理装置などがある。
【0016】
また、固液分離工程では、沈殿槽、濾過装置、濾過膜分離装置又は遠心分離機などを用いることができる。更に、可溶化工程では、好熱細菌による生物学的可溶化、アルカリ法やオゾン法などの化学的可溶化、超音波法や機械的破砕法などの物理的可溶化又はそれらを組合せた方法など適宜に使用することができる。
【0017】
また、アンモニアストリッピング工程では、スチームや空気などをキャリアガスとして、曝気槽、棚段塔又は充填塔など適宜に用いることができるが、ストリッピング効果や汚泥の影響を考慮して棚段塔を用いるのが好ましい。なお、可溶化処理工程における可溶化方法によっては、可溶化処理液をストリッピング工程に供給する前又はストリッピング工程中にアルカリを添加してpH調整する必要があり、また、ストリッピング工程後の可溶化処理液を嫌気性消化処理工程に供給する前にpH調整する必要がある。
【0018】
なお、嫌気性消化処理工程における嫌気性消化槽では、温度25〜75℃、好ましくは38〜60℃、滞留時間24時間〜2週間で処理される。温度が25℃よりも低いと、生物学的嫌気性消化処理が進みにくいなどの問題があり、また、75℃よりも高いと、嫌気性微生物が生存しにくいなどの問題がある。
【0019】
また、前記においては、余剰汚泥を濃縮する汚泥濃縮工程を設け、可溶化処理工程を濃縮汚泥の少なくとも一部を可溶化処理する可溶化処理工程として構成してもよく、濃縮した汚泥を可溶化処理工程を経て嫌気性消化処理工程に供給することにより、可溶化処理が迅速に行われ、また、嫌気性生物処理における、より好適な含水率及び有機物濃度となり、処理容量を低減することができるため、効率的にメタンガスが得られると同時に汚泥の可溶化も効率的に行うことができる。
【0020】
【発明の実施の形態】
以下に本発明の実施の形態について図面に基づいて説明する。図1は本発明の一実施の形態の有機性排水処理方法を適用する排水処理装置の系統図である。
【0021】
図において、1は、下水、食品排水、厨房排水又は浄化槽汚泥などの有機性排水(原水)の排水供給量及びpH値などを調整する調整槽、2は、底部に散気手段7が内設され、供給された原水を空気などの酸素含有気体で曝気することにより、原水中の有機物を好気性で生物学的処理する好気性生物処理工程である活性汚泥処理槽、3は、生物処理された混合液中の汚泥を沈降分離する固液分離工程である沈殿槽、4は、沈降分離された汚泥の少なくとも一部の汚泥を可溶化処理する可溶化処理工程であるアルカリ可溶化装置、5は、可溶化処理された可溶化処理液中のアンモニアをキャリアガスでストリッピングするアンモニアストリッピング工程の棚段式ストリッピング塔であり、また、6は、ストリッピング処理された可溶化処理液を嫌気性で消化処理する嫌気性消化処理工程である嫌気性消化槽である。
【0022】
また、前記実施の形態においては、好気性生物処理工程に、通常の活性汚泥処理装置が用いられているが、合成樹脂や繊維状などの生物保持担体を固定して充填した固定床式処理槽や生物保持担体を流動可能に充填した流動床式生物処理槽などでもよい。また、可溶化処理工程では、アルカリ可溶化装置が配置されているが、好熱細菌による生物学的可溶化、酸やオゾン法などの化学的可溶化、超音波法や機械的破砕法などの物理的可溶化又はそれらを組合せた方法による夫々の装置が用いられる。
【0023】
また、嫌気性消化処理工程では、嫌気性消化槽による単一槽が用いられているが、酸発酵槽と嫌気性消化槽とを組み合わせた二槽での処理装置や上向流嫌気性処理装置などを用いてもよく、また、固液分離工程では、沈殿槽が用いられているが、遠心分離装置、濾過膜分離装置又は濾過装置などを用いてもよい。更に、アンモニアストリッピング工程では、棚段塔を用いているが、曝気槽又は充填塔など適宜に用いることができる。更に、沈殿槽などで固液分離された濃縮汚泥と可溶化処理槽で可溶化処理された汚泥とを熱交換する熱交換器や可溶化処理槽にスチームを吹き込むなどの被可溶化処理液の加熱手段を付設してもよい。
【0024】
次に図1の構成の排水処理装置により有機性排水を処理する処理方法について以下詳述する。
原水は原水供給流路20から調整槽1に供給されて一旦貯留され、必要によりpHなどが調整されたのち、排水供給量を調整されて調整原水供給流路21から活性汚泥処理槽2に供給され、散気手段7から供給される空気などの酸素含有気体で曝気されることにより、浮遊する好気性微生物である汚泥の生物学的作用で、原水中の有機物が効率的に酸化分解される。なお、活性汚泥処理槽2における処理温度としては、10〜45℃が好ましい。
【0025】
活性汚泥処理槽2での好気性生物処理工程により処理された汚泥を含有する混合液は、混合液排出流路22から沈殿槽3に導入され、静置することにより汚泥が自然沈降して分離され、清浄化された処理水は、処理水排出流路23から系外に排出される。また、沈殿槽3での固液分離工程で沈降分離された汚泥は、沈殿槽3の汚泥抜出し流路24から抜き出され、一部は汚泥返送流路25から活性汚泥処理槽2に返送される。また、残部の分離汚泥の少なくとも一部は、汚泥供給流路27から可溶化処理装置4に供給され、更に残部の分離汚泥の一部は余剰汚泥として、汚泥排出流路26から系外に排出され、図示しない汚泥処理装置などで処理される。なお、余剰汚泥の排出を行わなくてもよい場合もある。
【0026】
可溶化処理装置4に供給された汚泥は、図示しないアルカリ溶液貯留槽からアルカリ供給流路29を介して水酸化ナトリウム溶液が添加され、pH8.0〜12.0、好ましくは、pH10.0〜11.0に調整され、温度30〜75℃、好ましくは40〜65℃、滞留時間10〜100時間で攪拌されることにより、汚泥を構成する微生物が効率的に死滅・分解して低分子化した有機物となって可溶化される。可溶化処理工程でアルカリ性とするアルカリとしては、水酸化ナトリウム溶液以外に、炭酸ナトリウム又は水酸化カリウムなどの水溶液を用いることができる。
【0027】
また、可溶化された可溶化処理液は、可溶化処理液供給流路28からアンモニアストリッピング塔5に供給され、下部のキャリアガス供給流路30から供給される空気やスチームなどのキャリアガスと向流接触して、可溶化処理液中のアンモニアがキャリアガスに伴われてアンモニア排出流路31から大気中に揮散除去されるが、ガス中のアンモニア濃度が高い場合には、必要により酸化燃焼処理、吸着除去処理などにより清浄化処理されたのち、大気中に放出される。なお、ストリッピング工程における液のpHは、pH8.0〜12.0が好ましく、更に好ましくは、pH10.0〜11.0であり、pH8.0よりも低いpHでは、アンモニアの揮散除去が十分に行われず、pH12.0よりも高いと、薬品使用量が多くなるわりにはアンモニアのストリッピング除去効果の向上が少ないないと共に、後段の嫌気性処理工程に供給するために、酸による中和工程が必要となるなどの問題がある。
【0028】
アンモニアストリッピング塔5でアンモニアを除去された可溶化処理液は、脱アンモニア処理液供給流路32から嫌気性消化槽6に供給され、温度25〜75℃、好ましくは45〜60℃、滞留時間24時間〜2週間で処理されることにより、有機物が分解され、メタンを主体とした消化ガスが生成する。生成したメタンを主体とする消化ガスは、生成ガス排出流路33から系外に排出され、必要により脱硫処理をされたのちガスホルダなどで貯留され、燃料ガスなどとして有効利用される。
【0029】
嫌気性消化槽6での嫌気性消化処理工程で発生した消化汚泥は、汚泥循環流路34から活性汚泥処理槽2に循環供給され、原水中の有機物と共に、浮遊する好気性微生物である汚泥の生物学的作用で効率的に酸化分解されることにより、発生汚泥の減容化を図ることができ、余剰汚泥としての発生量をゼロ又は少なくとも減容化することができる。
【0030】
【実施例】
食品工場から排出される有機性排水を活性汚泥処理し、発生した汚泥を攪拌機で攪拌しながらアルカリ溶液を添加して可溶化処理し、可溶化処理液を嫌気性で消化処理した比較例1と図1の構成の装置において、発生した汚泥を攪拌機で攪拌しながらアルカリ溶液を添加して可溶化処理し、空気をキャリアガスとして可溶化処理液からアンモニアをストリッピングして除去し、アンモニアが除去された可溶化処理液を嫌気性で消化処理した実施例1についてテストした結果、消化率は比較例1では約50%、実施例1では70〜90%であり、また、メタンガス発生量は、比較例1では、0.3m3/kg・投入汚泥、実施例1では、0.4m3/kg・投入汚泥であった。従って、実施例における汚泥処理効率が高くなることが判明した。
【0031】
【発明の効果】
本発明は、余剰汚泥発生量のゼロ化又は少なくとも減容化を図ることができる排水処理方法において、運転経費や設備費などが低廉化でき、また、余剰汚泥を効率的に分解してメタンガスを主体としたガスを回収し、燃料などとして有効利用を可能とする排水処理方法である。
【図面の簡単な説明】
【図1】本発明の一実施の形態の有機性排水処理方法を適用する排水処理装置の系統図
【符号の説明】
1:調整槽
2:好気性生物処理工程(活性汚泥処理槽)
3:固液分離工程(沈殿槽)
4:可溶化処理工程(可溶化処理装置)
5:アンモニアストリッピング工程(ストリッピング塔)
6:嫌気性消化処理工程(嫌気性消化槽)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wastewater treatment method for biologically treating organic wastewater, and more specifically, reduces the amount of excess sludge generated in the step of aerobically treating organic wastewater, decomposes sludge, and efficiently processes methane gas. The present invention relates to a method for treating organic wastewater which can be collected and used effectively.
[0002]
[Prior art]
BACKGROUND ART Conventionally, as an apparatus for treating organic wastewater (hereinafter sometimes referred to as raw water) such as sewage, food wastewater, kitchen wastewater or septic tank sludge, an activated sludge treatment apparatus, a fixed-bed biological treatment apparatus or a fluidized-bed treatment apparatus is used. An aerobic treatment device such as the above is used.
[0003]
In the activated sludge treatment apparatus, wastewater is supplied to a treatment tank in which sludge, which is an aerobic microorganism, is floated, and aerated with air, thereby oxidatively decomposing organic substances in raw water by the biological action of sludge. In the case of a fixed-bed type biological treatment device, a fixed bed of a biological holding carrier made of synthetic resin or the like is provided in the treatment tank, and microorganisms adhere to and grow on the surface of the carrier by aeration with air. It is a device that oxidatively decomposes organic matter in raw water by the biological action of attached microorganisms.Furthermore, a fluidized bed type treatment device is made of synthetic resin particles that can flow into a liquid in an aerobic biological treatment tank. This is a device that oxidizes and decomposes organic matter in raw water by the biological action of microorganisms that have adhered and proliferated on the surface of the fluidized biological holding carrier by supplying raw water and aerating with air by filling the raw water with the biological support. is there.
[0004]
In any of the above biological treatment apparatuses, a large amount of microorganisms that have proliferated are generated as sludge as biological substances are biologically decomposed. The generated sludge is separated and concentrated in a sedimentation tank, etc., and a part of it is circulated to the biological treatment process, but the remainder is discharged out of the system as excess sludge.The excess sludge is concentrated, dewatered, and then incinerated or landfilled. Has been disposed of. It is said that the surplus sludge amount is 20 to 50% of the organic matter amount (BOD) in the raw water introduced into the biological treatment step.
[0005]
In the conventional method of disposing of excess sludge, in the method of concentrating and dewatering sludge and then incineration or landfill disposal, even after concentration and dewatering of sludge, the water content is as high as 70 to 80 wt%, and the bulk is large. In the case of requesting a waste disposal company to dispose of the waste, the collection cost is high, and currently the wastewater treatment accounts for much of the cost.
[0006]
Further, in the landfill disposal, the remaining years of the industrial waste landfill are decreasing, and the collection cost is increasing year by year. In addition, in the case of incineration, fuel consumption is high due to high water content, fuel costs are high, and furthermore, it is necessary to treat exhaust gas and incineration ash. It is a situation that is becoming more common.
[0007]
In view of the above circumstances, various methods for reducing the volume of generated sludge as much as possible have been disclosed. However, similarly to the present invention, the sludge is solubilized, and the treated solubilized solution is subjected to an anaerobic treatment step. Devices for reducing the volume of sludge are disclosed in JP-A-2-21299, JP-A-9-001179, JP-A-2001-157900, and the like. A method of performing anaerobic treatment of the solubilized solution by treating the solubilized solution is disclosed in Japanese Patent No. 2659895 and Japanese Patent Application Laid-Open No. 6-099199.
[0008]
The method disclosed in JP-A-2-21299 is a method in which organic sludge is solubilized in an appropriate solubilization treatment step, and then subjected to anaerobic digestion treatment in a predetermined pH range and treatment days. The method disclosed in Japanese Patent Application Laid-Open No. 9-001179 is a method of subjecting sedimented and separated sludge to solubilization under high-temperature conditions and anaerobic treatment of separated water and a solubilized solution. In the method disclosed in the above, an organic sludge is digested anaerobically, the anaerobic digested sludge after the treatment is solid-liquid separated, the sludge is concentrated, and the concentrated sludge is appropriately modified (solubilizing step). And returns to the anaerobic treatment step.
[0009]
Further, the method disclosed in Japanese Patent No. 2659895 makes the sludge alkaline, solubilizes it by hot alkali treatment in a predetermined temperature range, and makes the solubilized solution anaerobic in a predetermined pH range and a predetermined temperature range. In the digestion treatment, the method disclosed in Japanese Patent Application Laid-Open No. 6-099199 makes the excess sludge alkaline, solubilizes it by hot alkali treatment within a predetermined temperature range, and uses an anaerobic treatment solution. This is a digestion method.
[0010]
[Problems to be solved by the invention]
In the method of volume reduction by anaerobic digestion, the organic matter in sludge is decomposed into methane gas or carbon dioxide gas by the biological action of anaerobic microorganisms, and methane gas is effective for fuel etc. Although it is a preferable method because it has an advantage that it can be used, in the above-mentioned various devices and methods, since the operation of removing ammonia in the sludge subjected to the aerobic biological treatment is not performed, the solubilized treatment may be performed. There is a problem that the activity of anaerobic microorganisms in the anaerobic digestion step is inhibited by the influence of ammonia ions in the solubilized solution, and the digestion cannot be performed efficiently.
[0011]
In addition, it is said that the higher the ammonia concentration, the greater the inhibition of activity against anaerobic microorganisms, methane bacteria, and it is said that methane fermentation becomes substantially impossible at 2000 mg / L or more. Further, even if the sludge is simply made alkaline and mechanically stirred, ammonia cannot be efficiently volatilized and removed, so that the above problem cannot be solved.
[0012]
The present invention has been made in view of the problems in the conventional sludge disposal and volume reduction treatment, and has been implemented in a wastewater treatment method capable of reducing the amount of excess sludge generated or at least reducing the volume. Purpose of providing an organic wastewater treatment method that can reduce expenses and equipment costs, and efficiently decompose excess sludge to recover gas mainly composed of methane gas and make it possible to use it effectively as fuel. It was made in.
[0013]
[Means for Solving the Problems]
The gist of the present invention to achieve the above object is a method for treating organic wastewater, which comprises the following steps in the invention described in claim 1.
A) an aerobic biological treatment step of aerobic biological treatment of organic wastewater; b) a solid-liquid separation step of solid-liquid separation of sludge in the mixture biologically treated in the aerobic biological treatment step; c) A sludge return step of returning at least a part of the sludge separated in the solid-liquid separation step to the aerobic biological treatment step as return sludge; and d) a solubilization treatment of solubilizing at least a part of the remaining separated sludge. E) an ammonia stripping step of stripping the ammonia in the solubilization solution subjected to the solubilization treatment in the solubilization treatment step with a carrier gas; and f) an ammonia stripping step in which the ammonia is removed in the ammonia stripping step. An anaerobic digestion treatment step of anaerobically digesting the solubilized liquid; and g) returning the digested sludge subjected to the anaerobic digestion treatment in the anaerobic digestion treatment step to the aerobic biological treatment step. Of sludge returning step.
[0014]
By providing the above step, since the solubilized solution supplied to the anaerobic digestion treatment step contains almost no ammonia, the activity of the anaerobic microorganisms in the anaerobic digestion step is affected by the ammonia ions. The digestion treatment can be performed efficiently without being hindered, and the amount of excess sludge generated can be reduced to zero or at least reduced. Further, the generated methane gas can be effectively used as fuel or the like, and operation costs and equipment costs can be reduced.
[0015]
In the above, in the aerobic biological treatment step, in addition to a normal activated sludge treatment tank, a fixed-bed treatment tank or a biological holding carrier in which a biological holding carrier such as a synthetic resin or a fibrous material is fixed and filled is flowably filled. A fluidized bed biological treatment tank may be used. In the anaerobic digestion treatment step, there is a single tank treatment using an anaerobic digestion tank, a two-tank treatment apparatus combining an acid fermentation tank and an anaerobic digestion tank, or an upward anaerobic treatment apparatus. .
[0016]
In the solid-liquid separation step, a sedimentation tank, a filtration device, a filtration membrane separation device, a centrifuge, or the like can be used. Furthermore, in the solubilization step, biological solubilization by thermophilic bacteria, chemical solubilization such as alkali method and ozone method, physical solubilization such as ultrasonic method and mechanical crushing method, or a method of combining them It can be used as appropriate.
[0017]
In the ammonia stripping step, steam, air, etc. can be used as a carrier gas, and an aeration tank, a tray tower or a packed tower can be used as appropriate, but the tray tower is taken into account in consideration of the stripping effect and the influence of sludge. Preferably, it is used. Note that, depending on the solubilization method in the solubilization treatment step, it is necessary to adjust the pH by adding an alkali before supplying the solubilization treatment solution to the stripping step or during the stripping step, and after the stripping step. It is necessary to adjust the pH before supplying the solubilized solution to the anaerobic digestion process.
[0018]
In the anaerobic digestion tank in the anaerobic digestion treatment step, the treatment is performed at a temperature of 25 to 75 ° C, preferably 38 to 60 ° C, and a residence time of 24 hours to 2 weeks. When the temperature is lower than 25 ° C., there is a problem that the biological anaerobic digestion treatment does not easily proceed, and when the temperature is higher than 75 ° C., there is a problem that the anaerobic microorganisms hardly survive.
[0019]
Further, in the above, a sludge concentration step of concentrating excess sludge may be provided, and the solubilization treatment step may be configured as a solubilization treatment step of solubilizing at least a part of the concentrated sludge. By supplying to the anaerobic digestion treatment step through the treatment step, the solubilization treatment is performed quickly, and also in the anaerobic biological treatment, more suitable water content and organic matter concentration can be obtained, and the treatment capacity can be reduced. Therefore, the methane gas can be obtained efficiently and the solubilization of the sludge can be performed efficiently.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram of a wastewater treatment apparatus to which an organic wastewater treatment method according to one embodiment of the present invention is applied.
[0021]
In the figure, 1 is an adjusting tank for adjusting the amount of supply and pH value of organic wastewater (raw water) such as sewage, food wastewater, kitchen wastewater or septic tank sludge, and 2 is provided with an air diffusion means 7 at the bottom. The activated sludge treatment tank, which is an aerobic biological treatment step for aerobically and biologically treating organic matter in the raw water by aerating the supplied raw water with an oxygen-containing gas such as air, is subjected to biological treatment. A sedimentation tank, which is a solid-liquid separation step for sedimenting and separating the sludge in the mixed liquid, and an alkali solubilization apparatus, which is a solubilization treatment step for solubilizing at least a part of the sludge settled and separated, 5 Is a tray-type stripping tower in an ammonia stripping step of stripping ammonia in a solubilized solution with a carrier gas, and 6 is a stripped solubilized solution. Anaerobic digester is anaerobic digestion treatment step of digestion with temper.
[0022]
Further, in the above-described embodiment, a normal activated sludge treatment apparatus is used for the aerobic biological treatment step, but a fixed-bed treatment tank in which a biological holding carrier such as synthetic resin or fibrous material is fixed and filled. Alternatively, a fluidized bed biological treatment tank filled with a biological holding carrier so as to be able to flow may be used. In the solubilization process, an alkali solubilizer is installed. However, biological solubilization by thermophilic bacteria, chemical solubilization such as acid and ozone methods, ultrasonic method and mechanical crushing method, etc. Respective devices by physical solubilization or a combination thereof are used.
[0023]
In the anaerobic digestion treatment step, a single tank with an anaerobic digestion tank is used. However, a two-tank treatment apparatus combining an acid fermentation tank and an anaerobic digestion tank or an upward anaerobic digestion apparatus In the solid-liquid separation step, a sedimentation tank is used, but a centrifugal separator, a filtration membrane separator, a filtration device, or the like may be used. Further, in the ammonia stripping step, a plate tower is used, but an aeration tank or a packed tower can be appropriately used. Furthermore, a heat exchanger for exchanging heat between the concentrated sludge solid-liquid separated in a sedimentation tank and the sludge solubilized in the solubilization treatment tank, or steam of the solubilization treatment tank by blowing steam into the solubilization treatment tank. A heating means may be additionally provided.
[0024]
Next, a treatment method for treating organic wastewater with the wastewater treatment apparatus having the configuration shown in FIG. 1 will be described in detail below.
Raw water is supplied from the raw water supply flow path 20 to the regulating tank 1 and temporarily stored therein. After pH and the like are adjusted as necessary, the amount of wastewater supplied is adjusted and supplied to the activated sludge treatment tank 2 from the regulated raw water supply flow path 21. Then, by aeration with an oxygen-containing gas such as air supplied from the air diffuser 7, organic matter in raw water is efficiently oxidatively decomposed by the biological action of sludge, which is a floating aerobic microorganism. . The treatment temperature in the activated sludge treatment tank 2 is preferably from 10 to 45 ° C.
[0025]
The mixed liquid containing the sludge treated in the aerobic biological treatment step in the activated sludge treatment tank 2 is introduced into the sedimentation tank 3 from the mixed liquid discharge flow path 22, where the sludge is spontaneously settled and separated by standing. The purified treated water is discharged from the treated water discharge channel 23 to the outside of the system. The sludge settled and separated in the solid-liquid separation step in the sedimentation tank 3 is withdrawn from the sludge discharge channel 24 of the sedimentation tank 3, and partly returned to the activated sludge treatment tank 2 from the sludge return channel 25. You. Further, at least a part of the remaining separated sludge is supplied to the solubilization treatment device 4 from the sludge supply passage 27, and a part of the remaining separated sludge is discharged outside the system from the sludge discharge passage 26 as surplus sludge. Then, it is treated by a sludge treatment device not shown. In some cases, it may not be necessary to discharge excess sludge.
[0026]
To the sludge supplied to the solubilization treatment device 4, a sodium hydroxide solution is added from an alkali solution storage tank (not shown) via an alkali supply flow path 29, and the pH is 8.0 to 12.0, preferably the pH is 10.0 to 10.0. The mixture is adjusted to 11.0 and stirred at a temperature of 30 to 75 ° C., preferably 40 to 65 ° C., and a residence time of 10 to 100 hours, so that the microorganisms constituting the sludge are efficiently killed and decomposed to reduce the molecular weight. And solubilized. As the alkali to be made alkaline in the solubilization treatment step, an aqueous solution such as sodium carbonate or potassium hydroxide can be used in addition to the sodium hydroxide solution.
[0027]
Further, the solubilized treatment liquid is supplied from the solubilization treatment liquid supply passage 28 to the ammonia stripping tower 5, and mixed with carrier gas such as air or steam supplied from the lower carrier gas supply passage 30. Ammonia in the solubilization treatment liquid is volatilized and removed from the ammonia discharge flow path 31 into the atmosphere by the carrier gas together with the carrier gas due to the countercurrent contact. After being purified by treatment, adsorption removal treatment, etc., it is released into the atmosphere. The pH of the solution in the stripping step is preferably from pH 8.0 to 12.0, more preferably from pH 10.0 to 11.0. At a pH lower than pH 8.0, volatilization and removal of ammonia is sufficient. If the pH is higher than 12.0, the effect of stripping and removing ammonia is not improved even though the amount of chemicals used is large, and a neutralization step with an acid is required to supply the anaerobic treatment step in the subsequent step. Is required.
[0028]
The solubilized solution from which ammonia has been removed in the ammonia stripping tower 5 is supplied to the anaerobic digestion tank 6 from the deammonified solution supply channel 32, and has a temperature of 25 to 75 ° C, preferably 45 to 60 ° C, and a residence time. By treating for 24 hours to 2 weeks, organic matter is decomposed and a digestive gas mainly composed of methane is generated. The generated digestive gas mainly composed of methane is discharged out of the system from the generated gas discharge channel 33, and after being subjected to desulfurization treatment as required, is stored in a gas holder or the like, and is effectively used as fuel gas or the like.
[0029]
The digested sludge generated in the anaerobic digestion treatment step in the anaerobic digestion tank 6 is circulated and supplied from the sludge circulation channel 34 to the activated sludge treatment tank 2, and together with the organic matter in the raw water, the sludge, which is a floating aerobic microorganism, is removed. By being efficiently oxidatively decomposed by the biological action, the volume of the generated sludge can be reduced, and the amount of excess sludge generated can be reduced to zero or at least.
[0030]
【Example】
Organic wastewater discharged from a food factory was treated with activated sludge, and the generated sludge was solubilized by adding an alkaline solution while stirring with a stirrer. In the apparatus having the structure shown in FIG. 1, the generated sludge is solubilized by adding an alkali solution while stirring with a stirrer, and ammonia is stripped off from the solubilized solution using air as a carrier gas to remove ammonia. As a result of a test on Example 1 in which the solubilized solution was digested anaerobically, the digestibility was about 50% in Comparative Example 1, 70 to 90% in Example 1, and the amount of methane gas generated was In Comparative Example 1, the input sludge was 0.3 m3 / kg. In Example 1, it was 0.4 m3 / kg. Therefore, it was found that the sludge treatment efficiency in the example was increased.
[0031]
【The invention's effect】
The present invention provides a wastewater treatment method capable of reducing the amount of surplus sludge generation to zero or at least reducing the amount of operation and equipment costs, and efficiently decomposing surplus sludge to produce methane gas. This is a wastewater treatment method that recovers mainly gas and enables effective use as fuel.
[Brief description of the drawings]
FIG. 1 is a system diagram of a wastewater treatment apparatus to which an organic wastewater treatment method according to an embodiment of the present invention is applied.
1: Conditioning tank 2: Aerobic biological treatment process (activated sludge treatment tank)
3: Solid-liquid separation step (sedimentation tank)
4: solubilization process (solubilization device)
5: Ammonia stripping step (stripping tower)
6: Anaerobic digestion process (anaerobic digestion tank)

Claims (1)

下記工程を設けたことを特徴とする有機性排水の処理方法。
イ)有機性排水を好気性で生物処理する好気性生物処理工程と、
ロ)前記好気性生物処理工程で生物処理された混合液中の汚泥を固液分離する固液分離工程と、
ハ)前記固液分離工程で分離された汚泥の少なくとも一部を返送汚泥として前記好気性生物処理工程に返送する汚泥返送工程と、
ニ)残部の分離汚泥の少なくとも一部を可溶化処理する可溶化処理工程と、
ホ)前記可溶化処理工程で可溶化処理された可溶化処理液中のアンモニアをキャリアガスでストリッピングするアンモニアストリッピング工程と、
ヘ)前記アンモニアストリッピング工程でアンモニアを除去された可溶化処理液を嫌気性で消化処理する嫌気性消化処理工程と、
ト)前記嫌気性消化処理工程で嫌気性消化処理された消化汚泥を前記好気性生物処理工程に返送する消化汚泥返送工程
A method for treating organic wastewater, comprising the following steps:
A) an aerobic biological treatment step for aerobic biological treatment of organic wastewater;
B) a solid-liquid separation step of solid-liquid separation of sludge in the mixed liquid biologically treated in the aerobic biological treatment step;
C) a sludge return step of returning at least a part of the sludge separated in the solid-liquid separation step to the aerobic biological treatment step as return sludge;
D) a solubilization step of solubilizing at least a part of the remaining separated sludge;
E) an ammonia stripping step of stripping the ammonia in the solubilized solution that has been solubilized in the solubilization process with a carrier gas;
F) an anaerobic digestion step of anaerobically digesting the solubilized solution from which ammonia has been removed in the ammonia stripping step;
G) a digested sludge return step of returning the digested sludge subjected to the anaerobic digestion treatment in the anaerobic digestion treatment step to the aerobic biological treatment step
JP2002162529A 2002-06-04 2002-06-04 Method for treating organic waste water Pending JP2004008843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002162529A JP2004008843A (en) 2002-06-04 2002-06-04 Method for treating organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002162529A JP2004008843A (en) 2002-06-04 2002-06-04 Method for treating organic waste water

Publications (1)

Publication Number Publication Date
JP2004008843A true JP2004008843A (en) 2004-01-15

Family

ID=30431246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002162529A Pending JP2004008843A (en) 2002-06-04 2002-06-04 Method for treating organic waste water

Country Status (1)

Country Link
JP (1) JP2004008843A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279551A (en) * 2004-03-30 2005-10-13 Kurita Water Ind Ltd Biological treatment method for organic waste water
JP2006159045A (en) * 2004-12-06 2006-06-22 Japan Sewage Works Agency Anaerobic digestion method of organic waste
BE1018196A3 (en) * 2008-06-25 2010-07-06 Thenergo Nv METHOD AND DEVICE FOR HANDLING AMMONIUM WASTE WATER.
EP2279153A1 (en) * 2008-04-25 2011-02-02 Pellon Group Oy Method for treating and/or pretreating liquid manure or biogas plant reject for the elimination of harmful substances, particularly nitrogen, phosphorus, and odor molecules
JP2011098249A (en) * 2009-11-03 2011-05-19 Techno Plan:Kk Sludge solubilizing apparatus and method therefor
KR101162474B1 (en) * 2004-02-02 2012-07-03 쿠리타 고교 가부시키가이샤 Process for biological treatment of organic waste water and apparatus therefor
CN103395950A (en) * 2013-08-18 2013-11-20 武汉宝捷能环境工程技术有限公司 V-shape air-stripping technology for removing nitrogen and phosphorus of large and medium-sized sewage processing
WO2016047786A1 (en) * 2014-09-25 2016-03-31 日本プライスマネジメント株式会社 Solubilization device
JP2017124351A (en) * 2016-01-12 2017-07-20 日立造船株式会社 Recovery method of phosphorus, and phosphorus recovery facility
JP2018153780A (en) * 2017-03-21 2018-10-04 株式会社東芝 Sludge treatment system and sludge treatment method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101162474B1 (en) * 2004-02-02 2012-07-03 쿠리타 고교 가부시키가이샤 Process for biological treatment of organic waste water and apparatus therefor
KR101215912B1 (en) * 2004-02-02 2012-12-31 쿠리타 고교 가부시키가이샤 Process for biological treatment of organic waste water and apparatus therefor
KR101190400B1 (en) 2004-02-02 2012-10-12 쿠리타 고교 가부시키가이샤 Process for biological treatment of organic waste water and apparatus therefor
JP4501496B2 (en) * 2004-03-30 2010-07-14 栗田工業株式会社 Biological treatment method for organic wastewater
JP2005279551A (en) * 2004-03-30 2005-10-13 Kurita Water Ind Ltd Biological treatment method for organic waste water
JP4596897B2 (en) * 2004-12-06 2010-12-15 日本下水道事業団 Anaerobic digestion of organic waste
JP2006159045A (en) * 2004-12-06 2006-06-22 Japan Sewage Works Agency Anaerobic digestion method of organic waste
EP2279153A1 (en) * 2008-04-25 2011-02-02 Pellon Group Oy Method for treating and/or pretreating liquid manure or biogas plant reject for the elimination of harmful substances, particularly nitrogen, phosphorus, and odor molecules
EP2279153A4 (en) * 2008-04-25 2014-05-14 Pellon Group Oy Method for treating and/or pretreating liquid manure or biogas plant reject for the elimination of harmful substances, particularly nitrogen, phosphorus, and odor molecules
US9527759B2 (en) 2008-04-25 2016-12-27 Pellon Group Oy Method for treating and/or pretreating liquid manure or biogas plant reject for the elimination of harmful substances, particularly nitrogen, phosphorus, and odor molecules
NL2003086C2 (en) * 2008-06-25 2011-02-23 Thenergo Nv Sa METHOD AND DEVICE FOR HANDLING AMMONIUM WASTE WATER.
BE1018196A3 (en) * 2008-06-25 2010-07-06 Thenergo Nv METHOD AND DEVICE FOR HANDLING AMMONIUM WASTE WATER.
JP2011098249A (en) * 2009-11-03 2011-05-19 Techno Plan:Kk Sludge solubilizing apparatus and method therefor
CN103395950A (en) * 2013-08-18 2013-11-20 武汉宝捷能环境工程技术有限公司 V-shape air-stripping technology for removing nitrogen and phosphorus of large and medium-sized sewage processing
WO2016047786A1 (en) * 2014-09-25 2016-03-31 日本プライスマネジメント株式会社 Solubilization device
JP2017124351A (en) * 2016-01-12 2017-07-20 日立造船株式会社 Recovery method of phosphorus, and phosphorus recovery facility
JP2018153780A (en) * 2017-03-21 2018-10-04 株式会社東芝 Sludge treatment system and sludge treatment method
JP7134595B2 (en) 2017-03-21 2022-09-12 株式会社東芝 Sludge treatment system and sludge treatment method

Similar Documents

Publication Publication Date Title
US5015384A (en) Anaerobic digestion process
JP4412538B2 (en) Organic waste treatment methods
JP2003033780A (en) Method for wastewater treatment
JP2004008843A (en) Method for treating organic waste water
JPH10235315A (en) Treatment of fluid organic waste
JP2006218344A (en) Method and apparatus for treating water containing fats and fatty oils, and method and apparatus for treating organic waste material
JP2004041953A (en) Method and equipment for treating organic waste water
JP2003340408A (en) Treatment system and treatment method for methane fermentation
JP2007044572A (en) Method and system for treating organic waste
JP2004230273A (en) Method for treating organic waste
JP2002177979A (en) Waste water treatment equipment
JP2004041902A (en) Sludge treatment equipment and sludge treatment method
JP2002219482A (en) Wastewater treatment equipment
JP2004089858A (en) Organic waste processing method and apparatus
JP2007021367A (en) Method and apparatus for treating organic sludge
JP2002233890A (en) Oil-containing wastewater treatment system
WO1992020628A1 (en) Anaerobic digestion process
JP2003071411A (en) Method for treating organic wastes
JP2003326292A (en) Waste water treatment method
JP2009195783A (en) Organic wastewater treatment method
JP3969144B2 (en) Biological treatment method and biological treatment apparatus
JP2002224686A (en) Anaerobic treatment method and equipment for starch particle-containing liquid
JP2003340483A (en) Method for treating organic waste water
JP3906323B2 (en) Treatment method for highly concentrated waste liquid
JP2002186988A (en) Wastewater treatment device and method for treating wastewater