JP4501496B2 - Biological treatment method for organic wastewater - Google Patents

Biological treatment method for organic wastewater Download PDF

Info

Publication number
JP4501496B2
JP4501496B2 JP2004099967A JP2004099967A JP4501496B2 JP 4501496 B2 JP4501496 B2 JP 4501496B2 JP 2004099967 A JP2004099967 A JP 2004099967A JP 2004099967 A JP2004099967 A JP 2004099967A JP 4501496 B2 JP4501496 B2 JP 4501496B2
Authority
JP
Japan
Prior art keywords
biological treatment
sludge
tank
anaerobic
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004099967A
Other languages
Japanese (ja)
Other versions
JP2005279551A (en
Inventor
繁樹 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004099967A priority Critical patent/JP4501496B2/en
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to KR1020117026711A priority patent/KR101162474B1/en
Priority to AU2005209522A priority patent/AU2005209522B2/en
Priority to EP20120152091 priority patent/EP2447222A3/en
Priority to EP05719056A priority patent/EP1712525A4/en
Priority to KR20067016491A priority patent/KR101170571B1/en
Priority to KR1020117026716A priority patent/KR101215912B1/en
Priority to KR1020117026709A priority patent/KR101190400B1/en
Priority to PCT/JP2005/000891 priority patent/WO2005073134A1/en
Priority to CN2005800038510A priority patent/CN1914122B/en
Priority to EP20120152096 priority patent/EP2447223A3/en
Priority to CN2008101316311A priority patent/CN101328001B/en
Priority to KR1020117026714A priority patent/KR20110139312A/en
Priority to CN2008101757973A priority patent/CN101456645B/en
Priority to TW100137146A priority patent/TW201204646A/en
Priority to TW100137147A priority patent/TW201204647A/en
Priority to TW100137145A priority patent/TW201204645A/en
Priority to TW94103098A priority patent/TW200528403A/en
Priority to TW100137149A priority patent/TW201204648A/en
Publication of JP2005279551A publication Critical patent/JP2005279551A/en
Priority to US11/485,429 priority patent/US7332084B2/en
Publication of JP4501496B2 publication Critical patent/JP4501496B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、生活排水、下水、食品工場やパルプ工場をはじめとした広い濃度範囲の有機性排水の処理に利用することができる有機性排水の生物処理方法に関するものであり、特に、処理水質を悪化させることなく、処理効率を向上させ、かつ、余剰汚泥発生量の低減が可能な有機性排水の生物処理方法に関する。   The present invention relates to a biological treatment method for organic wastewater that can be used for treatment of organic wastewater in a wide concentration range including domestic wastewater, sewage, food factories and pulp factories. The present invention relates to a biological treatment method for organic wastewater that can improve the treatment efficiency and reduce the amount of excess sludge generation without deteriorating.

有機性排水を生物処理する場合に用いられる活性汚泥法は、処理水質が良好で、メンテナンスが容易であるなどの利点から、下水処理や産業廃水処理等に広く用いられている。しかしながら、活性汚泥法におけるBOD容積負荷は0.5〜0.8kg/m/d程度であるため、広い敷地面積が必要となる。また、分解したBODの20%が菌体、即ち汚泥へと変換されるため、大量の余剰汚泥処理も問題となる。 The activated sludge method used when biologically treating organic wastewater is widely used for sewage treatment, industrial wastewater treatment, and the like because of its advantages such as good treated water quality and easy maintenance. However, since the BOD volumetric load in the activated sludge method is about 0.5 to 0.8 kg / m 3 / d, a large site area is required. Moreover, since 20% of the decomposed BOD is converted into microbial cells, that is, sludge, a large amount of excess sludge treatment also becomes a problem.

有機性排水の高負荷処理に関しては、担体を添加した流動床法が知られている。この方法を用いた場合、3kg/m/d以上のBOD容積負荷で運転することが可能となる。しかしながら、この方法では発生汚泥量は分解したBODの30%程度で、通常の活性汚泥法より高くなることが欠点となっている。 For high load treatment of organic waste water, a fluidized bed method with a carrier added is known. When this method is used, it is possible to operate with a BOD volume load of 3 kg / m 3 / d or more. However, this method has a disadvantage that the amount of generated sludge is about 30% of the decomposed BOD, which is higher than the normal activated sludge method.

特開昭55−20649号公報では、有機性排水をまず第一処理槽で細菌処理して、排水に含まれる有機物を酸化分解し、非凝集性の細菌の菌体に変換した後、第二処理槽で固着性原生動物に捕食除去させることにより、余剰汚泥の減量化が可能になるとしている。更に、この方法では高負荷運転が可能となり、活性汚泥法の処理効率も向上する。   In Japanese Patent Application Laid-Open No. 55-20649, organic wastewater is first treated with bacteria in a first treatment tank, and organic matter contained in the wastewater is oxidatively decomposed and converted into non-aggregating bacterial cells. It is said that the amount of excess sludge can be reduced by precipitating and removing the sticking protozoa in the treatment tank. Furthermore, this method enables high-load operation and improves the treatment efficiency of the activated sludge method.

このように細菌の高位に位置する原生動物や後生動物の捕食を利用した廃水処理方法は、多数考案されており、例えば、特開2000−210692号公報では、特開昭55−20649号公報の処理方法で問題となる原水の水質変動による処理性能悪化の対策を提案している。具体的な方法としては、「被処理水のBOD変動を平均濃度の中央値から50%以内に調整する」、「第一処理槽内及び第一処理水の水質を経時的に測定する」、「第一処理水の水質悪化時には微生物製剤又は種汚泥を第一処理槽に添加する」等の方法を挙げている。   Many wastewater treatment methods using protozoa and metazoan predation located at a high level of bacteria have been devised. For example, Japanese Patent Laid-Open No. 2000-210692 discloses Japanese Patent Laid-Open No. 55-20649. Proposals are made for countermeasures against deterioration in treatment performance due to fluctuations in the quality of raw water, which is a problem in the treatment method. As a specific method, “adjust BOD fluctuation of treated water within 50% from the median average concentration”, “measure water quality in first treatment tank and first treated water over time”, The method includes “adding a microbial preparation or seed sludge to the first treatment tank when the quality of the first treated water is deteriorated”.

特公昭60−23832号公報では、細菌、酵母、放線菌、藻類、カビ類や廃水処理の初沈汚泥や余剰汚泥を原生動物や後生動物に捕食させる際に、超音波処理又は機械撹拌により、上記の餌のフロックサイズを動物の口より小さくさせる方法を提案している。   In Japanese Patent Publication No. 60-23832, when protozoa and metazoans prey on bacteria, yeast, actinomycetes, algae, molds and wastewater treatment primary sediment sludge and surplus sludge, ultrasonic treatment or mechanical stirring, A method for reducing the above-mentioned flock size of the food from the mouth of the animal is proposed.

また、流動床と活性汚泥法の多段処理に関する技術が特許第3410699号公報に提案されており、この方法では、前段の生物処理を担体流動床式とし、後段の生物処理を多段活性汚泥処理とすることにより、余剰汚泥発生量を更に低減するとされている。この方法では後段の活性汚泥処理をBOD汚泥負荷0.1kg−BOD/kg−MLSS/dの低負荷で運転することにより、汚泥を自己酸化させ、汚泥引き抜き量を大幅に低減できるとしている。
特開昭55−20649号公報 特開2000−210692号公報 特公昭60−23832号公報 特許第3410699号公報
In addition, a technique related to multistage treatment of a fluidized bed and an activated sludge method is proposed in Japanese Patent No. 3410699. In this method, the biological treatment in the former stage is a carrier fluidized bed type, and the biological treatment in the latter stage is a multistage activated sludge treatment. By doing so, it is said that the amount of surplus sludge generation is further reduced. In this method, the activated sludge treatment at the latter stage is operated at a low load of BOD sludge load 0.1 kg-BOD / kg-MLSS / d, so that the sludge is self-oxidized and the amount of sludge extraction can be greatly reduced.
Japanese Patent Laid-Open No. 55-20649 JP 2000-210692 A Japanese Patent Publication No. 60-23832 Japanese Patent No. 3410699

上述のような微小動物の捕食作用を利用した多段活性汚泥法は、有機性排水処理に既に実用化されており、対象とする排水によっては処理効率の向上、発生汚泥量の減量化は可能である。   The multi-stage activated sludge method using the predatory action of micro animals as described above has already been put into practical use for organic wastewater treatment, and depending on the target wastewater, it is possible to improve treatment efficiency and reduce the amount of generated sludge. is there.

しかしながら、汚泥減量効果は処理条件や排水の水質によっては異なるものの、単槽式活性汚泥法で発生する汚泥量を半減させる程度であり、また、安定した汚泥減量を長期にわたり維持できないのが現状である。これは、細菌主体の汚泥を捕食するための後段の微小動物槽において、汚泥の多くが捕食されず残存したり、捕食に関与する微小動物を高濃度で維持できないことが原因である。その上、捕食を行う微小動物は細菌に比べ高等な生物であるため、寿命が長く(自己分解速度が遅く)、このことが更に汚泥を減量化させるのを困難にしている。   However, although the sludge reduction effect varies depending on the treatment conditions and the water quality of the wastewater, it is only enough to halve the amount of sludge generated by the single tank activated sludge method, and it is not possible to maintain a stable sludge reduction over a long period of time. is there. This is due to the fact that most of the sludge remains without being predated in the subsequent microanimal tank for precipitating bacteria-based sludge, or the microanimals involved in predation cannot be maintained at a high concentration. In addition, predatory micro-animals are higher organisms than bacteria and thus have a long life (slow self-degradation rate), which makes it more difficult to reduce sludge.

従って、本発明は、微小動物の捕食作用を利用した多段活性汚泥法において、安定した処理水質を維持した上でより一層の処理効率の向上と余剰汚泥発生量の低減を図る有機性排水の生物処理方法を提供することを目的とする。   Therefore, the present invention is an organic wastewater organism that aims to further improve the treatment efficiency and reduce the amount of surplus sludge while maintaining a stable treated water quality in the multistage activated sludge method utilizing the predatory action of minute animals. An object is to provide a processing method.

本発明の有機性排水の生物処理方法の第1の態様は、有機性排水を第一生物処理工程に導入して非凝集性細菌により生物処理し、該第一生物処理工程からの非凝集性細菌を含む処理水を第二生物処理工程に導入して活性汚泥処理する生物処理方法において、前記第一生物処理工程において、pH6以上、BOD容積負荷1kg/m/d以上、HRT(原水滞留時間)24h以下の条件で非凝集性細菌による生物処理を行い、該第二生物処理工程の汚泥、又は該第二生物処理工程の汚泥を固液分離して得られた汚泥の少なくとも一部を嫌気処理工程に導入して嫌気処理し、該嫌気処理工程の処理物を固液分離し、分離液を前記第一生物処理工程に返送すると共に、分離汚泥を前記第二生物処理工程に返送することを特徴とする。 The first aspect of the organic wastewater biological treatment method of the present invention is the organic wastewater introduced into the first biological treatment step, biologically treated with non-aggregating bacteria, and non-aggregable from the first biological treatment step. In the biological treatment method for treating activated sludge by introducing treated water containing bacteria into the second biological treatment step, in the first biological treatment step, a BOD volume load of 1 kg / m 3 / d or more, HRT (raw water retention) Time) performing biological treatment with non-aggregating bacteria under a condition of 24 hours or less, and at least a part of the sludge obtained by solid-liquid separation of the sludge of the second biological treatment step or the sludge of the second biological treatment step Introducing into the anaerobic treatment process, anaerobic treatment, solid-liquid separation of the processed product of the anaerobic treatment process, returning the separated liquid to the first biological treatment process and returning the separated sludge to the second biological treatment process It is characterized by that.

本発明の有機性排水の生物処理方法の第2の態様は、有機性排水を第一生物処理工程に導入して非凝集性細菌により生物処理し、該第一生物処理工程からの非凝集性細菌を含む処理水を第二生物処理工程に導入して活性汚泥処理する生物処理方法において、前記第一生物処理工程において、pH6以上、BOD容積負荷1kg/m/d以上、HRT(原水滞留時間)24h以下の条件で非凝集性細菌による生物処理を行い、該第二生物処理工程の汚泥、又は該第二生物処理工程の汚泥を固液分離して得られた汚泥の少なくとも一部を好気処理工程に導入してpH5〜5.5の条件で好気性消化し、該好気処理工程の処理物の少なくとも一部を嫌気処理工程に導入して嫌気処理し、該嫌気処理工程の処理物を固液分離し、分離液を前記第一生物処理工程に返送すると共に、分離汚泥を前記第二生物処理工程に返送することを特徴とする。 According to a second aspect of the organic wastewater biological treatment method of the present invention, the organic wastewater is introduced into the first biological treatment step and biologically treated with non-aggregating bacteria, and the non-aggregable nature from the first biological treatment step. In the biological treatment method for treating activated sludge by introducing treated water containing bacteria into the second biological treatment step, in the first biological treatment step, a BOD volume load of 1 kg / m 3 / d or more, HRT (raw water retention) Time) performing biological treatment with non-aggregating bacteria under a condition of 24 hours or less, and at least a part of the sludge obtained by solid-liquid separation of the sludge of the second biological treatment step or the sludge of the second biological treatment step Introduced into the aerobic treatment step and digested aerobically under the condition of pH 5 to 5.5 , introduced at least a part of the processed product of the aerobic treatment step into the anaerobic treatment step, anaerobic treatment, The treated product is solid-liquid separated, and the separated liquid is It sends back the object processing step, characterized by returning the separated sludge as in the second biological treatment Engineering.

本発明の第1の態様では、有機物除去を行う第一生物処理工程(分散菌槽)からの分散菌の捕食を行う第二生物処理工程(微小動物槽)からの汚泥を、嫌気条件下で嫌気性細菌の働きにより可溶化、有機酸化、変性させて再度、分散菌化及び/又は微小動物への捕食に供することにより、処理効率の向上と余剰汚泥発生量の低減を図る。   In the first aspect of the present invention, the sludge from the second biological treatment process (microanimal tank) that preys on the dispersal bacteria from the first biological treatment process (dispersion bacteria tank) that removes organic substances is subjected to anaerobic conditions. By solubilization, organic oxidation, and denaturation by the action of anaerobic bacteria, it is again used for dispersal bacteria and / or predation on micro-animals, thereby improving processing efficiency and reducing the amount of excess sludge generated.

本発明の第2の態様では、この嫌気処理工程に先立ち好気処理工程を経由することで、汚泥中に占める微小動物割合が高くなり、後段の嫌気処理工程での汚泥の可溶化が容易となる。   In the second aspect of the present invention, by passing through the aerobic treatment step prior to the anaerobic treatment step, the proportion of minute animals occupying in the sludge increases, and solubilization of the sludge in the subsequent anaerobic treatment step is facilitated. Become.

本発明の有機性排水の生物処理方法によれば、微小動物の捕食作用を利用した多段活性汚泥法において、安定した処理水質を維持した上でより一層の処理効率の向上と余剰汚泥発生量の低減を図ることができる。   According to the organic wastewater biological treatment method of the present invention, in the multistage activated sludge method utilizing the predatory action of micro-animals, while maintaining a stable treated water quality, further improvement in treatment efficiency and surplus sludge generation amount Reduction can be achieved.

以下に図面を参照して本発明の有機性排水の生物処理方法の実施の形態を詳細に説明する。   Embodiments of a biological treatment method for organic wastewater according to the present invention will be described below in detail with reference to the drawings.

図1,2,4は参考例に係る有機性排水の生物処理方法を示す系統図であり、図3は本発明の第1の態様に係る有機性排水の生物処理方法の実施の形態を示す系統図であり、図5は本発明の第2の態様に係る有機性排水の生物処理方法の実施の形態を示す系統図である。図1〜5において、同一機能を奏する部材には同一符号を付してある。   1, 2 and 4 are system diagrams showing a biological treatment method for organic wastewater according to a reference example, and FIG. 3 shows an embodiment of the biological treatment method for organic wastewater according to the first aspect of the present invention. FIG. 5 is a system diagram showing an embodiment of the organic wastewater biological treatment method according to the second aspect of the present invention. 1 to 5, members having the same function are denoted by the same reference numerals.

図1の方法では、原水(有機性排水)は、まず第一生物処理槽(分散菌槽)1に導入され、非凝集性細菌により、BOD(有機成分)の70%以上、望ましくは80%以上、更に望ましくは90%以上が酸化分解される。この第一生物処理槽1のpHは6以上、望ましくはpH6〜8とする。また、第一生物処理槽1へのBOD容積負荷は1kg/m/d以上、例えば1〜20kg/m/d、HRT(原水滞留時間)は24h以下、例えば0.5〜24hとすることで、非凝集性細菌が優占化した処理水を得ることができ、また、HRTを短くすることでBOD濃度の低い排水を高負荷で処理することができ、好ましい。また、担体を添加することにより、高負荷、滞留時間の短縮が可能になる。 In the method of FIG. 1, raw water (organic wastewater) is first introduced into a first biological treatment tank (dispersed bacteria tank) 1 and is 70% or more, preferably 80% of BOD (organic component) due to non-aggregating bacteria. More preferably, 90% or more is oxidatively decomposed. The pH of the first biological treatment tank 1 is 6 or more, preferably pH 6-8. Moreover, the BOD volumetric load to the 1st biological treatment tank 1 shall be 1 kg / m < 3 > / d or more, for example, 1-20 kg / m < 3 > / d, HRT (raw water residence time) shall be 24 h or less, for example, 0.5-24 h. Thus, it is possible to obtain treated water in which non-aggregating bacteria predominate, and by shortening the HRT, wastewater having a low BOD concentration can be treated with a high load, which is preferable. Further, by adding a carrier, it becomes possible to reduce a high load and a residence time.

第一生物処理槽1の処理水は、pH6以上、望ましくはpH6〜8の範囲に制御された第二生物処理槽(微小動物槽)2に導入され、ここで、残存している有機成分の酸化分解、非凝集性細菌の自己分解及び微小動物による捕食による汚泥の減量化が行われる。   The treated water in the first biological treatment tank 1 is introduced into a second biological treatment tank (micro animal tank) 2 that is controlled to have a pH of 6 or more, preferably in the range of pH 6-8, where the remaining organic components are removed. Sludge is reduced by oxidative degradation, self-degradation of non-aggregating bacteria and predation by micro animals.

この第二生物処理槽2では細菌に比べ増殖速度の遅い微小動物の働きと細菌の自己分解を利用するため、微小動物と細菌が系内に留まるような運転条件及び処理装置を用いなければならない。そこで第二生物処理槽2には汚泥返送を行う活性汚泥法又は膜分離式活性汚泥法を用いることが望ましい。更に望ましくは曝気槽内に担体を添加することで微小動物の槽内保持量を高めることができる。   Since the second biological treatment tank 2 utilizes the action of micro-animals that have a slower growth rate than bacteria and the self-degradation of bacteria, operating conditions and treatment equipment that allow micro-animals and bacteria to remain in the system must be used. . Therefore, it is desirable to use an activated sludge method or a membrane-separated activated sludge method for returning the sludge to the second biological treatment tank 2. More desirably, the amount of micro-animal retained in the tank can be increased by adding a carrier to the aeration tank.

また、図2に示す如く、図1の方法において、第二生物処理槽2を多段化し、2槽以上の生物処理槽2A,2Bを直列に設け、前段処理槽2AでpH5〜6、望ましくはpH5〜5.5の条件で処理を行い、後段処理槽2BでpH6以上、好ましくはpH6〜8の条件で処理を行うようにしても良く、このような多段処理により、前段処理槽2Aで汚泥の捕食を効果的に行い、後段処理槽2Bで汚泥の固液分離性の向上、処理水水質の向上を図ることができる。図2の方法は、図1において、第二生物処理槽2を多段化した点のみが異なり、その他は同様の構成とされている。なお、第二生物処理槽2での汚泥発生量を減らすため、図2のように仕切を作らず、図1のような単槽で第二生物処理槽2のpHを6以下に設定しても良いが、この場合には、処理水を放流する前には中和が必要となる。   In addition, as shown in FIG. 2, in the method of FIG. 1, the second biological treatment tank 2 is multi-staged, and two or more biological treatment tanks 2A and 2B are provided in series. The treatment may be performed under the condition of pH 5 to 5.5, and the treatment may be performed under the condition of pH 6 or more, preferably pH 6 to 8 in the post-treatment tank 2B. By such multi-stage treatment, sludge is produced in the pre-treatment tank 2A. In this way, it is possible to improve the solid-liquid separation property of the sludge and the quality of the treated water in the post-treatment tank 2B. The method shown in FIG. 2 is different from that shown in FIG. 1 only in that the second biological treatment tank 2 is multistaged, and the other configuration is the same. In order to reduce the amount of sludge generated in the second biological treatment tank 2, the partition is not made as shown in FIG. 2, and the pH of the second biological treatment tank 2 is set to 6 or less in a single tank as shown in FIG. In this case, however, neutralization is required before the treated water is discharged.

第二生物処理槽2の処理水は沈殿槽3で固液分離され、分離水は処理水として系外へ排出される。また、分離汚泥の一部は余剰汚泥として系外へ排出され、一部は第二生物処理槽2に返送され、残部は嫌気性消化槽4に送給される。分離汚泥の第二生物処理槽2と嫌気性消化槽4への汚泥返送比率は、以下の嫌気性消化槽4での汚泥滞留時間を維持できれば良く、発生汚泥量にあわせて任意に変化させることができる。   The treated water in the second biological treatment tank 2 is solid-liquid separated in the precipitation tank 3, and the separated water is discharged out of the system as treated water. A part of the separated sludge is discharged out of the system as surplus sludge, a part is returned to the second biological treatment tank 2, and the remaining part is fed to the anaerobic digestion tank 4. The sludge return ratio of the separated sludge to the second biological treatment tank 2 and the anaerobic digestion tank 4 is only required to maintain the sludge residence time in the following anaerobic digestion tank 4, and can be arbitrarily changed according to the amount of generated sludge. Can do.

即ち、本発明の第1態様では、微小動物が分散菌の捕食を行っている第二生物処理槽2内の汚泥又はこれを固液分離して得られる汚泥の少なくとも一部を嫌気性消化槽4に導入して、嫌気条件にて、汚泥の可溶化、低級有機酸や低級アルコールへの有機酸化、ないし変性を行う。従って、嫌気性消化槽4へは、沈殿槽3の分離汚泥ではなく、第二生物処理槽2から引き抜いた汚泥を導入しても良い。   That is, in the first aspect of the present invention, at least a part of the sludge in the second biological treatment tank 2 where the microanimals prey on the dispersal bacteria or the sludge obtained by solid-liquid separation of the sludge is anaerobic digester. Introduced into No. 4, sludge solubilization, organic oxidation to lower organic acids and lower alcohols, or modification under anaerobic conditions. Therefore, sludge extracted from the second biological treatment tank 2 may be introduced into the anaerobic digestion tank 4 instead of the separated sludge in the sedimentation tank 3.

第二生物処理槽2内汚泥は微小動物の占める割合が高く、少なくともSSの10%以上、運転条件によっては30%以上を占めている。微小動物は細菌に比べ嫌気条件下で容易に死滅し、可溶化され、酸生成細菌により有機酸化されるため、嫌気性消化槽4での汚泥滞留時間(SRT)は0.5日以上、例えば0.5〜5日で十分である。また、嫌気性消化槽4で生成した有機酸やアルコールがメタン生成細菌の働きにより、メタンに変換されるのを防ぐため、嫌気性消化槽4ではpHを6.0以下、望ましくは5.5以下、例えば5〜5.5にするか、温度を30℃以下、望ましくは25℃以下、例えば20〜25℃に設定することが望ましい。ただし、有機酸やアルコールに変換した有機物をメタンに変換し、エネルギーとして回収又は処分する場合は、嫌気性消化槽4をpH6.0以上、又は温度30℃以上としても良い。この嫌気性消化槽4における嫌気性消化により、第二生物処理槽2中の微小動物や捕食されずに残存していた細菌は、有機酸やアルコールへと変換される。また、その他のSS分である微小動物の糞や死骸、細菌など、第二生物処理槽2で減量されない成分も、この嫌気性消化槽4で変性ないし細分化され、また嫌気性細菌の菌体へ変換されるため、微小動物により捕食可能なものとなる。   The sludge in the second biological treatment tank 2 has a high proportion of micro-animals, and at least 10% or more of SS and 30% or more depending on the operating conditions. Microanimals easily die under anaerobic conditions compared to bacteria, solubilized, and organically oxidized by acid-producing bacteria, so that the sludge residence time (SRT) in the anaerobic digester 4 is 0.5 days or more, for example, 0.5-5 days is sufficient. In addition, in order to prevent the organic acid and alcohol generated in the anaerobic digestion tank 4 from being converted to methane by the action of the methanogenic bacteria, the pH in the anaerobic digestion tank 4 is 6.0 or less, preferably 5.5. Hereinafter, it is desirable to set it to, for example, 5 to 5.5, or to set the temperature to 30 ° C. or lower, desirably 25 ° C. or lower, for example 20 to 25 ° C. However, when the organic substance converted into the organic acid or alcohol is converted into methane and recovered or disposed as energy, the anaerobic digester 4 may have a pH of 6.0 or higher or a temperature of 30 ° C. or higher. By the anaerobic digestion in the anaerobic digestion tank 4, the minute animals in the second biological treatment tank 2 and the bacteria remaining without being predated are converted into organic acids and alcohols. In addition, components that are not reduced in the second biological treatment tank 2, such as micro animal feces, carcasses, and bacteria, which are other SS components, are denatured or subdivided in the anaerobic digestion tank 4, and the cells of the anaerobic bacteria are also present. Therefore, it becomes predatory by micro animals.

図1,2では、この嫌気性消化槽4の処理物をそのまま第一生物処理槽1及び/又は第二生物処理槽2に返送する。   In FIG. 1, 2, the processed material of this anaerobic digestion tank 4 is returned to the 1st biological treatment tank 1 and / or the 2nd biological treatment tank 2 as it is.

この嫌気性消化槽4の処理物は、図3に示す如く、濃縮機又は脱水機等の固液分離装置5で固液分離し、有機酸やアルコールを含む分離水(嫌気処理水)を第一生物処理槽1に返送して再度分散菌に変換し、固形分(汚泥)を第二生物処理槽2に返送して微小動物に捕食させるようにすることにより汚泥の更なる減量化が可能となる。この場合、余剰汚泥の引抜きは沈殿槽3から行っても良いが、嫌気性消化槽4の後段の固液分離装置5から行っても良い。また、この固液分離装置5で固液分離された固形分をすべて第二生物処理槽2に返送せず、再度嫌気性消化槽4に戻すことにより、嫌気性消化槽4において、高濃度嫌気性消化が可能となり、SRTを長くし、可溶化を促進することができる。また、濃縮機のような固液分離装置を設けずに、嫌気性消化槽4内に浸漬膜を設けるか、或いは担体を添加することで、固液分離又は高濃度消化を行うこともできる。   As shown in FIG. 3, the processed product in the anaerobic digestion tank 4 is subjected to solid-liquid separation by a solid-liquid separation device 5 such as a concentrator or a dehydrator, and separated water containing an organic acid or alcohol (anaerobic treated water) is first added. It is possible to reduce sludge further by returning it to the biological treatment tank 1 and converting it again into dispersal bacteria, and returning the solid content (sludge) to the second biological treatment tank 2 so that it can be eaten by micro animals. It becomes. In this case, extraction of excess sludge may be performed from the sedimentation tank 3, or may be performed from the solid-liquid separation device 5 subsequent to the anaerobic digestion tank 4. In addition, in the anaerobic digestion tank 4, the high-concentration anaerobic condition is obtained by not returning all the solid content separated by the solid-liquid separation device 5 to the second biological treatment tank 2 but returning it to the anaerobic digestion tank 4 again. Sexual digestion is possible, SRT can be lengthened, and solubilization can be promoted. Moreover, solid-liquid separation or high-concentration digestion can also be performed by providing an immersion membrane in the anaerobic digestion tank 4 or adding a carrier without providing a solid-liquid separation device such as a concentrator.

図4に示す方法は、嫌気性消化槽4の前段に好気性消化槽6を設けた点が図1に示す方法と異なり、第一生物処理槽1、第二生物処理槽2、沈殿槽3及び嫌気性消化槽4における処理は同様に行われる。   The method shown in FIG. 4 is different from the method shown in FIG. 1 in that an aerobic digester 6 is provided in front of the anaerobic digester 4, and the first biological treatment tank 1, the second biological treatment tank 2, and the precipitation tank 3. And the process in the anaerobic digester 4 is performed similarly.

即ち、本発明の第2態様では、第二生物処理槽2内の汚泥又はこれを固液分離して得られる汚泥の少なくとも一部を好気性消化槽6に導入して、pH5〜5.5の条件で好気性消化を行い、処理汚泥及び処理水の少なくとも一部を嫌気性消化槽4に送給して嫌気条件下で可溶化、有機酸化ないし変性させる。この場合においても、分離汚泥の好気性消化槽6及び第二生物処理槽2への返送汚泥比率は、以下に示す好気性消化槽6での汚泥滞留時間を維持できれば、発生汚泥量にあわせて任意に変化させることができる。 That is, in the second aspect of the present invention, by introducing at least a portion of the sludge obtained by solid-liquid separation sludge or this second biological treatment tank 2 to the aerobic digestion tank 6, p H5~5. The aerobic digestion is performed under the condition 5 and at least a part of the treated sludge and the treated water is supplied to the anaerobic digestion tank 4 so as to be solubilized, organically oxidized or denatured under the anaerobic condition. Even in this case, the ratio of the sludge returned to the aerobic digester 6 and the second biological treatment tank 2 can be adjusted to the amount of generated sludge if the sludge retention time in the aerobic digester 6 shown below can be maintained. It can be changed arbitrarily.

図4において、好気性消化槽6は、汚泥減量効果だけではなく、この好気性消化槽6を経由することで、汚泥に占める微小動物割合が更に高くなり、後段の嫌気性消化槽4での汚泥の可溶化が容易となる点で優れる。好気性消化槽6の汚泥滞留時間は12時間以上、望ましくは24時間以上、例えば24〜240時間であるが、固液分離装置を設けて汚泥返送を行う好気処理法又は担体を添加した流動床又は膜分離式好気処理法とすることで汚泥滞留時間を更に高めることが可能となる。好気性消化槽6からの汚泥の一部を嫌気性消化槽4を経由せずに直接第二生物処理槽2に返送しても良く、これにより第二生物処理槽2の微小動物の補充にも役立つ。   In FIG. 4, the aerobic digestion tank 6 not only has a sludge reduction effect, but also passes through this aerobic digestion tank 6, so that the proportion of minute animals occupying the sludge is further increased. It is excellent in that sludge can be solubilized easily. The sludge residence time in the aerobic digestion tank 6 is 12 hours or more, desirably 24 hours or more, for example, 24 to 240 hours. However, the aerobic treatment method in which the sludge is returned by providing a solid-liquid separation device or the flow added with the carrier By using a bed or membrane separation type aerobic treatment method, the sludge residence time can be further increased. A part of the sludge from the aerobic digestion tank 6 may be returned directly to the second biological treatment tank 2 without going through the anaerobic digestion tank 4, thereby replenishing the minute animals in the second biological treatment tank 2. Also useful.

図5に示す方法は、図4の方法において、図3に示す如く、嫌気性消化槽4の後段に固液分離装置5を設けた点が異なり、図3におけると同様に嫌気性消化槽4の処理物の固液分離、分離水及び分離汚泥の返送が行われる。ここで、固液分離装置5の分離汚泥は、更に好気性消化槽6に返送しても良い。   The method shown in FIG. 5 differs from the method shown in FIG. 4 in that a solid-liquid separation device 5 is provided after the anaerobic digester 4 as shown in FIG. Solid-liquid separation of the treated product, separation water and separation sludge are returned. Here, the separated sludge of the solid-liquid separator 5 may be further returned to the aerobic digester 6.

図3,5の方法は本発明の実施の形態の一例を示すものであり、本発明はその要旨を超えない限り、何ら図示の方法に限定されるものではない。   The method of FIGS. 3 and 5 shows an example of an embodiment of the present invention, and the present invention is not limited to the illustrated method unless it exceeds the gist of the present invention.

例えば、第一生物処理槽は、高負荷処理のために、後段の沈殿槽の分離汚泥の一部を返送する他、担体を添加した流動床方式としたり、2槽以上の生物処理槽を直列に設けて多段処理を行っても良い。特に、担体の添加により、BOD容積負荷5kg/m/d以上の高負荷処理も可能となり、好ましい。この場合、添加する担体の形状は球状、ペレット状、中空筒状、糸状等任意であり、大きさも0.1〜10mm程度の径で良い。また、担体の材料は天然素材、無機素材、高分子素材等任意であり、ゲル状物質を用いても良い。また、第二生物処理槽2では、細菌に比べ増殖速度の遅い微小動物の働きと細菌の自己分解を利用するため、微小動物と細菌が系内に留まるような運転条件及び処理装置を採用することが重要であり、このために、第二生物処理槽は、図3,5に示すように、汚泥の返送を行う汚泥返送式生物処理を行う他、槽内に分離膜を浸漬して膜分離式活性汚泥処理を行うことも望ましい。更に望ましくは、曝気槽内に担体を添加することで微小動物の槽内保持量を高めることができる。この場合の担体としては、第一生物処理槽に添加する担体として前述したものと同様のものを用いることができる。 For example, the first biological treatment tank is a fluidized bed system with a carrier added in addition to returning a part of the separated sludge from the subsequent sedimentation tank for high load treatment, or two or more biological treatment tanks in series. It is also possible to perform multi-stage processing by providing them. In particular, the addition of a carrier is preferable because a high load treatment with a BOD volume load of 5 kg / m 3 / d or more is possible. In this case, the shape of the carrier to be added is arbitrary such as a spherical shape, a pellet shape, a hollow cylindrical shape, and a thread shape, and the size may be about 0.1 to 10 mm. The material of the carrier is arbitrary such as a natural material, an inorganic material, or a polymer material, and a gel material may be used. Further, in the second biological treatment tank 2, in order to utilize the action of the microanimal whose growth rate is slower than that of the bacterium and the self-degradation of the bacterium, the operating conditions and the treatment apparatus are adopted so that the tiny animal and the bacterium stay in the system. For this reason, as shown in FIGS. 3 and 5, the second biological treatment tank performs sludge return biological treatment for returning sludge and immerses a separation membrane in the tank. It is also desirable to perform a separate activated sludge treatment. More desirably, the amount of micro-animal retained in the tank can be increased by adding a carrier to the aeration tank. As the carrier in this case, the same carrier as described above as the carrier added to the first biological treatment tank can be used.

ところで、排水処理では、生物処理由来の汚泥以外にも最初沈殿池や加圧浮上槽などからも汚泥が発生する。これらを嫌気処理した場合、生物処理由来の汚泥に比べ、分解しやすいため50%以上の可溶化、有機酸への変換が可能である。また、可溶化しない成分も細分化されており、微小動物による捕食が可能である。従って、本発明においては、第二生物処理槽の汚泥が導入される嫌気処理工程(嫌気性消化槽)に初沈汚泥や加圧浮上汚泥を加え、可溶化しないSS分を微小動物に捕食させることで工場全体から排出される余剰汚泥量を低減することも可能となる。   By the way, in the wastewater treatment, sludge is generated from the initial sedimentation basin, the pressurized flotation tank and the like in addition to the sludge derived from the biological treatment. When these are anaerobically treated, they are more easily decomposed than sludge derived from biological treatment, so that they can be solubilized by 50% or more and converted into organic acids. In addition, components that are not solubilized are also subdivided and can be preyed on by minute animals. Therefore, in the present invention, initial sedimentation sludge and pressurized floating sludge are added to the anaerobic treatment process (anaerobic digestion tank) in which the sludge of the second biological treatment tank is introduced, and the minute animal is preyed on the SS component that is not solubilized. This makes it possible to reduce the amount of excess sludge discharged from the entire factory.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

参考例1
図1に示す如く、容量が3.6Lの第一生物処理槽(活性汚泥槽(汚泥返送なし))1と容量が15Lの第二生物処理槽(活性汚泥槽)2及び沈殿槽3と、容量が1Lの嫌気性消化槽4を連結させた実験装置を用いて、本発明による有機性排水(BOD630mg/L)の処理を行った。第一生物処理槽1のpHは6.8、第二生物処理槽2のpHは6.8、嫌気性消化槽4のpHは6.0にそれぞれ調整した。第一生物処理槽1に対する溶解性BOD容積負荷は3.85kg−BOD/m/dでHRT4h、第二生物処理槽2への溶解性BOD汚泥負荷は0.022kg−BOD/kg−MLSS/dでHRT17h、全体でのBOD容積負荷は0.75kg−BOD/m/dでHRT21hの条件で運転した。
Reference example 1
As shown in FIG. 1, a first biological treatment tank (activated sludge tank (no sludge return)) 1 having a capacity of 3.6 L, a second biological treatment tank (active sludge tank) 2 and a sedimentation tank 3 having a capacity of 15 L, Using an experimental apparatus connected with an anaerobic digester 4 having a capacity of 1 L, the organic waste water (BOD 630 mg / L) according to the present invention was treated. The pH of the first biological treatment tank 1 was adjusted to 6.8, the pH of the second biological treatment tank 2 was adjusted to 6.8, and the pH of the anaerobic digestion tank 4 was adjusted to 6.0. The soluble BOD volumetric load on the first biological treatment tank 1 is 3.85 kg-BOD / m 3 / d and HRT4h, and the soluble BOD sludge load on the second biological treatment tank 2 is 0.022 kg-BOD / kg-MLSS / It was operated under the conditions of HRT17h for d, and BRT volume load of 0.75 kg-BOD / m 3 / d for HRT21h.

第一,第二生物処理槽1,2内のSSは5000mg/Lであり、沈殿槽3からの引抜き汚泥は10000mg/Lに濃縮された。この濃縮汚泥を250ml/dの割合で引抜き、嫌気性消化槽4に添加した。また、250ml/dを余剰汚泥として系外へ排出し、残りすべての汚泥を第二生物処理槽2に返送した。嫌気性消化槽4のHRT及びSRTは4日に設定し、嫌気性消化槽4の処理汚泥は第二生物処理槽2に返送した。   The SS in the first and second biological treatment tanks 1 and 2 was 5000 mg / L, and the drawn sludge from the settling tank 3 was concentrated to 10,000 mg / L. This concentrated sludge was extracted at a rate of 250 ml / d and added to the anaerobic digester 4. Moreover, 250 ml / d was discharged out of the system as surplus sludge, and all the remaining sludge was returned to the second biological treatment tank 2. The HRT and SRT of the anaerobic digestion tank 4 were set on the 4th, and the treated sludge of the anaerobic digestion tank 4 was returned to the second biological treatment tank 2.

この条件で4ヶ月間連続運転したところ、嫌気性消化槽4の処理水中の溶解性BOD濃度は4000mg−BOD/Lで酢酸が55%、プロピオン酸が40%を占めていた。第二生物処理槽2から引き抜いた汚泥量から算出した汚泥転換率は0.12kg−MLSS/kg−BODとなった。   When continuously operated for 4 months under these conditions, the soluble BOD concentration in the treated water of the anaerobic digester 4 was 4000 mg-BOD / L, and acetic acid accounted for 55% and propionic acid accounted for 40%. The sludge conversion rate calculated from the amount of sludge extracted from the second biological treatment tank 2 was 0.12 kg-MLSS / kg-BOD.

参考例2
図2に示す如く、第二生物処理槽2を容量5Lの前段処理槽2Aと、容量10Lの後段処理槽2Bとの二段活性汚泥槽(5L+10L)としたこと以外は参考例1と同様の実験装置を用いて参考例1と同様に有機性排水(BOD630mg/L)の処理を行った。なお、前段処理槽のpHは5.0、後段処理槽のpHは6.8に調整した。その他の条件は、参考例1におけると同様である。
Reference example 2
As shown in FIG. 2, the second biological treatment tank 2 is the same as in Reference Example 1 except that the second-stage activated sludge tank (5L + 10L) is composed of a front-stage treatment tank 2A having a capacity of 5L and a rear-stage treatment tank 2B having a capacity of 10L. The organic waste water (BOD 630 mg / L) was treated in the same manner as in Reference Example 1 using an experimental apparatus. In addition, pH of the front-stage treatment tank was adjusted to 5.0, and pH of the rear-stage treatment tank was adjusted to 6.8. Other conditions are the same as in Reference Example 1.

第一,第二生物処理槽1,2内のSSは5000mg/Lであり、沈殿槽3からの引抜き汚泥は10000mg/Lに濃縮された。この濃縮汚泥の内250ml/dを引抜き、嫌気性消化槽4に添加した。また、208ml/dを余剰汚泥として系外へ排出し、残りすべての汚泥を第二生物処理槽2に返送した。嫌気性消化槽4のHRT及びSRTは4日に設定し、嫌気性消化槽4の処理汚泥は第二生物処理槽2に返送した。   The SS in the first and second biological treatment tanks 1 and 2 was 5000 mg / L, and the drawn sludge from the settling tank 3 was concentrated to 10,000 mg / L. Of this concentrated sludge, 250 ml / d was withdrawn and added to the anaerobic digester 4. Moreover, 208 ml / d was discharged out of the system as surplus sludge, and all the remaining sludge was returned to the second biological treatment tank 2. The HRT and SRT of the anaerobic digestion tank 4 were set on the 4th, and the treated sludge of the anaerobic digestion tank 4 was returned to the second biological treatment tank 2.

この条件で4ヶ月間連続運転したところ、嫌気性消化槽4の処理水中の溶解性BOD濃度は6500mg−BOD/Lで酢酸が55%、プロピオン酸が35%を占めていた。第二生物処理槽2から引き抜いた汚泥量から算出した汚泥転換率は0.10kg−MLSS/kg−BODとなった。   When continuously operated for 4 months under these conditions, the soluble BOD concentration in the treated water of the anaerobic digester 4 was 6500 mg-BOD / L, and acetic acid accounted for 55% and propionic acid accounted for 35%. The sludge conversion rate calculated from the amount of sludge extracted from the second biological treatment tank 2 was 0.10 kg-MLSS / kg-BOD.

参考
図4に示す如く、嫌気性消化槽4の前段に容量2Lの好気性消化槽6を設けたこと以外は参考例1と同様の実験装置を用いて参考例1と同様に有機性排水(BOD630mg/L)の処理を行った。なお、好気性処理槽のpHは5.0に調整した。その他の条件は参考例1におけると同様である。
Reference example 3
As shown in FIG. 4, organic waste water (BOD 630 mg) was used in the same manner as in Reference Example 1 using the same experimental apparatus as in Reference Example 1 except that an aerobic digester 6 having a capacity of 2 L was provided in front of the anaerobic digester 4. / L). The pH of the aerobic treatment tank was adjusted to 5.0. Other conditions are the same as in Reference Example 1.

第一,第二生物処理槽1,2内のSSは5000mg/Lであり、沈殿槽3からの引抜き汚泥は10000mg/Lに濃縮された。この濃縮汚泥の250ml/dを好気性消化槽6に添加し、同量を好気性消化槽6から引き抜き嫌気性消化槽4に添加し、残りすべての濃縮汚泥を第二生物処理槽2に返送した。好気性消化槽6のHRT及びSRTは8日とした。また、嫌気性消化槽4のHRT及びSRTは4日とし、嫌気性消化槽4の処理汚泥は第二生物処理槽2に返送した。   The SS in the first and second biological treatment tanks 1 and 2 was 5000 mg / L, and the drawn sludge from the settling tank 3 was concentrated to 10,000 mg / L. 250 ml / d of this concentrated sludge is added to the aerobic digester 6, the same amount is extracted from the aerobic digester 6, added to the anaerobic digester 4, and all the remaining concentrated sludge is returned to the second biological treatment tank 2. did. The HRT and SRT of the aerobic digester 6 were 8 days. The HRT and SRT of the anaerobic digestion tank 4 were set to 4 days, and the treated sludge of the anaerobic digestion tank 4 was returned to the second biological treatment tank 2.

この条件で4ヶ月間連続運転したところ、嫌気性消化槽4の処理水中の溶解性BOD濃度は6500mg−BOD/Lで酢酸が55%、プロピオン酸が35%を占めていた。第二生物処理槽2から引き抜いた汚泥量(185ml/d)から算出した汚泥転換率は0.09kg−MLSS/kg−BODとなった。   When continuously operated for 4 months under these conditions, the soluble BOD concentration in the treated water of the anaerobic digester 4 was 6500 mg-BOD / L, and acetic acid accounted for 55% and propionic acid accounted for 35%. The sludge conversion rate calculated from the amount of sludge extracted from the second biological treatment tank 2 (185 ml / d) was 0.09 kg-MLSS / kg-BOD.

実施
図3に示す如く、嫌気性消化槽4の後段に固液分離装置5を設けた以外は参考例1と同様の実験装置を用いて参考例1と同様に有機性排水(BOD630mg/L)の処理を行った。各槽のpH条件、負荷条件等は参考例1におけると同様である。
Example 1
As shown in FIG. 3, the organic waste water (BOD 630 mg / L) of the organic waste water (BOD 630 mg / L) was used in the same manner as in Reference Example 1 using the same experimental apparatus as in Reference Example 1 except that a solid-liquid separation device 5 was provided at the subsequent stage of the anaerobic digester 4. Processed. The pH conditions and load conditions of each tank are the same as in Reference Example 1.

第一,第二生物処理槽1,2内のSSは5000mg/Lであり、沈殿槽3からの引抜き汚泥は10000mg/Lに濃縮された。この濃縮汚泥の250ml/dを嫌気性消化槽4に添加し、残りすべての濃縮汚泥を第二生物処理槽2に返送することで、第一,第二生物処理槽1,2から汚泥を引き抜かずに槽内SSを一定に保つことができた。嫌気性消化槽4のHRTは4日とし、嫌気性消化槽4の処理物は固液分離装置5で固液分離し、処理水は第一生物処理槽1に、分離汚泥の半量は第二生物処理槽2に、1/4量は嫌気性消化槽4に返送し、1/4量は余剰汚泥として引き抜いた。   The SS in the first and second biological treatment tanks 1 and 2 was 5000 mg / L, and the drawn sludge from the settling tank 3 was concentrated to 10,000 mg / L. By adding 250 ml / d of this concentrated sludge to the anaerobic digestion tank 4 and returning all the remaining concentrated sludge to the second biological treatment tank 2, the sludge is extracted from the first and second biological treatment tanks 1 and 2. The SS in the tank could be kept constant. The HRT of the anaerobic digestion tank 4 is 4 days, the treated product of the anaerobic digestion tank 4 is solid-liquid separated by the solid-liquid separation device 5, the treated water is in the first biological treatment tank 1, and half of the separated sludge is second. A quarter amount was returned to the anaerobic digestion tank 4 to the biological treatment tank 2, and a quarter amount was extracted as excess sludge.

この条件で4ヶ月間連続運転したところ、嫌気性消化槽4の処理水中の溶解性BOD濃度は4000mg−BOD/Lで酢酸が55%、プロピオン酸が40%を占めていた。嫌気性消化槽4から引き抜いた汚泥量から算出した汚泥転換率は0.10kg−MLSS/kg−BODとなった。   When continuously operated for 4 months under these conditions, the soluble BOD concentration in the treated water of the anaerobic digester 4 was 4000 mg-BOD / L, and acetic acid accounted for 55% and propionic acid accounted for 40%. The sludge conversion rate calculated from the amount of sludge extracted from the anaerobic digester 4 was 0.10 kg-MLSS / kg-BOD.

実施例2
図5に示す如く、嫌気性消化槽4の前段に容量2Lの好気性消化槽6を設けたこと以外は実施と同様の実験装置を用いて実施と同様に有機性排水(BOD630mg/L)の処理を行った。なお、好気性消化槽6のpHは5.0に調整した。その他の条件は実施におけるものと同様である。
Example 2
As shown in FIG. 5, similarly organic waste water as in Example 1 using the same experimental apparatus except that in front of the anaerobic digestion tank 4 provided with aerobic digester 6 capacity 2L to Example 1 (BOD630mg / L). The pH of the aerobic digester 6 was adjusted to 5.0. Other conditions are the same as those in the first embodiment .

第一,第二生物処理槽1,2内のSSは5000mg/Lであり、沈殿槽3からの引抜き汚泥は10000mg/Lに濃縮された。この濃縮汚泥の250ml/dの割合を好気性消化槽6に添加し、同量を好気性消化槽6から引き抜き嫌気性消化槽4に添加し、残りすべての濃縮汚泥を第二生物処理槽2に返送することで、第一,第二生物処理槽1,2から汚泥を引き抜かずに槽内SSを一定に保つことができた。好気性消化槽6のHRT及びSRTは8日とした。また、嫌気性消化槽4のHRTは4日とし、嫌気性消化槽4の処理汚泥は固液分離装置5で固液分離し、処理水は第一生物処理槽1に、固形分の半量は第二生物処理槽2に、残りの3/8量は嫌気性消化槽4に返送し、残りの1/8量は余剰汚泥として引き抜いた。   The SS in the first and second biological treatment tanks 1 and 2 was 5000 mg / L, and the drawn sludge from the settling tank 3 was concentrated to 10,000 mg / L. 250 ml / d of this concentrated sludge is added to the aerobic digester 6, the same amount is extracted from the aerobic digester 6 and added to the anaerobic digester 4, and all the remaining concentrated sludge is added to the second biological treatment tank 2. By returning to the tank, the SS in the tank could be kept constant without extracting sludge from the first and second biological treatment tanks 1 and 2. The HRT and SRT of the aerobic digester 6 were 8 days. The HRT of the anaerobic digestion tank 4 is 4 days, the treated sludge of the anaerobic digestion tank 4 is solid-liquid separated by the solid-liquid separator 5, the treated water is supplied to the first biological treatment tank 1, and half of the solid content is The remaining 3/8 amount was returned to the second biological treatment tank 2 to the anaerobic digestion tank 4, and the remaining 1/8 amount was extracted as excess sludge.

この条件で4ヶ月間連続運転したところ、嫌気性処理槽4の処理水中の溶解性BOD濃度は6500mg−BOD/Lで酢酸が55%、プロピオン酸が35%を占めていた。嫌気性消化槽4から引き抜いた汚泥量から算出した汚泥転換率は0.07kg−MLSS/kg−BODとなった。   When operated continuously for 4 months under these conditions, the soluble BOD concentration in the treated water in the anaerobic treatment tank 4 was 6500 mg-BOD / L, and acetic acid accounted for 55% and propionic acid accounted for 35%. The sludge conversion rate calculated from the amount of sludge extracted from the anaerobic digester 4 was 0.07 kg-MLSS / kg-BOD.

比較例1
図6に示す如く、容量15Lの生物処理槽(活性汚泥槽)2’と沈殿槽3とからなる実験装置を用いて、有機性排水(BOD630mg/L)の処理を行った。生物処理槽2’の溶解性BOD容積負荷は0.76kg−BOD/m/dで、HRT20h、pH6.8の条件で4ヶ月間連続運転したところ、処理水は良好だったものの、汚泥転換率は0.40kg−MLSS/kg−BODとなった。
Comparative Example 1
As shown in FIG. 6, the organic waste water (BOD 630 mg / L) was treated using an experimental apparatus composed of a biological treatment tank (activated sludge tank) 2 ′ having a capacity of 15 L and a sedimentation tank 3. Biological treatment tank 2 ′ has a soluble BOD volumetric load of 0.76 kg-BOD / m 3 / d and was continuously operated for 4 months under the conditions of HRT20h and pH 6.8. The rate was 0.40 kg-MLSS / kg-BOD.

比較例2
図7に示す如く、嫌気性消化槽4を省略した以外は参考例1と同様の実験装置を用いて、参考例1と同様に有機性排水(BOD630mg/L)の処理を行った。各槽のpH条件、負荷条件等は参考例1におけると同様である。
Comparative Example 2
As shown in FIG. 7, the organic waste water (BOD 630 mg / L) was treated in the same manner as in Reference Example 1 using the same experimental apparatus as in Reference Example 1 except that the anaerobic digester 4 was omitted. The pH conditions and load conditions of each tank are the same as in Reference Example 1.

この条件で4ヶ月間連続運転したところ、処理水は良好だったものの、第二生物処理槽2から引き抜いた汚泥量から算出した汚泥転換率は0.20kg−MLSS/kg−BODとなった。また、第二生物処理槽2のVSSに占める微小動物割合は約25%(w/w)であった。   When continuously operating for 4 months under these conditions, the treated water was good, but the sludge conversion rate calculated from the amount of sludge extracted from the second biological treatment tank 2 was 0.20 kg-MLSS / kg-BOD. In addition, the proportion of micro animals in the VSS of the second biological treatment tank 2 was about 25% (w / w).

参考例1,実施例1,2及び比較例1,2における投入BODに対する余剰汚泥発生量(汚泥転換率)を図8に示す。また、実施例1,2と比較例1,2の実験開始4ヶ月後の運転状況を表1に示す。 Reference Example 1, the excess sludge generation quantity versus charged BOD in the real施例1 and 2 and Comparative Examples 1 and 2 (sludge conversion ratio) shown in FIG. 8. Also, the operating conditions after the start of the experiment 4 months Comparative Examples 1 and 2 with the actual施例1 and 2 are shown in Table 1.

Figure 0004501496
Figure 0004501496

以上の結果から次のことが分かる。   The following can be understood from the above results.

比較例1は従来の活性汚泥法、比較例2は従来の二段生物処理法による処理を実施したものである。従来の活性汚泥法(比較例1)では汚泥転換率は0.40kg−MLSS/kg−BODとなっていたが、比較例2の様に多段生物処理を導入することで汚泥転換率は0.20kg−MLSS/kg−BODとなり、汚泥発生量を1/2に低減することができた。この汚泥減量効果はこれまでに報告されている二段生物処理法と同程度のものである。   Comparative Example 1 is a conventional activated sludge method, and Comparative Example 2 is a conventional two-stage biological treatment method. In the conventional activated sludge method (Comparative Example 1), the sludge conversion rate was 0.40 kg-MLSS / kg-BOD, but by introducing multistage biological treatment as in Comparative Example 2, the sludge conversion rate was 0. It became 20 kg-MLSS / kg-BOD, and the sludge generation amount could be reduced to ½. This sludge reduction effect is similar to the two-stage biological treatment methods reported so far.

一方、本発明のように嫌気性消化工程を導入し、特に汚泥減量効果が顕著だった実施例2では、汚泥転換率がそれぞれ、0.07kg−MLSS/kg−BODとなっており、従来法に比べ、発生汚泥量を1/6に低減することができた。実施例2で汚泥減量が顕著な原因は、pH5に設定した好気性消化槽での微小動物の捕食により、汚泥VSSに占める微小動物割合が第二生物処理槽2では32%(w/w)であるのに対し、この好気性消化槽では最大で60%にまで達していたことにある。高微小動物割合の汚泥の可溶化は容易で実施例2の嫌気性消化槽4での可溶化率は65%にまで達しており、可溶化率が最大で40%(嫌気性消化槽4に投入する汚泥VSSの微小動物割合:30%(w/w))にまでしか達しなかった参考例1,実施例1に比べ、高い汚泥減量効果に繋がった。更に嫌気性消化汚泥を固液分離し、溶解性COD成分を再度、第一生物処理槽1で分散菌に変換することで、実施例2では、従来法の1/6の汚泥減量効果を達成することができた。 On the other hand, in Example 2 where the anaerobic digestion process was introduced as in the present invention and the sludge reduction effect was particularly remarkable, the sludge conversion rate was 0.07 kg-MLSS / kg-BOD, respectively, and the conventional method The amount of generated sludge could be reduced to 1/6. In Example 2, sludge weight loss is markedly caused by microanimal predation in the aerobic digestion tank set to pH 5 so that the proportion of fine animals in the sludge VSS is 32% (w / w) in the second biological treatment tank 2. On the other hand, this aerobic digester reached 60% at the maximum. It is easy to solubilize sludge of a high minute animal ratio, the solubilization rate in the anaerobic digester 4 of Example 2 reaches 65%, and the maximum solubilization rate is 40% (in the anaerobic digester 4). animalcule ratio of input to the sludge VSS: 30% (w / w )) did not reach only up to reference example 1, compared with example 1 led to a higher sludge reduction effect. Furthermore, the anaerobic digested sludge is separated into solid and liquid, and the soluble COD component is converted again to the dispersal bacteria in the first biological treatment tank 1, so that in Example 2, 1/6 of the sludge reduction effect of the conventional method is achieved. We were able to.

本発明の有機性排水の生物処理方法は、生活排水、下水、食品工場やパルプ工場をはじめとした広い濃度範囲の有機性排水の処理に利用することができる。   The organic wastewater biological treatment method of the present invention can be used to treat organic wastewater in a wide concentration range including domestic wastewater, sewage, food factories and pulp factories.

参考例に係る有機性排水の生物処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the biological treatment method of the organic waste_water | drain which concerns on a reference example. 参考例に係る有機性排水の生物処理方法の他の実施の形態を示す系統図である。It is a systematic diagram which shows other embodiment of the biological treatment method of the organic waste_water | drain which concerns on a reference example. 本発明の第1の態様に係る有機性排水の生物処理方法の別の実施の形態を示す系統図である。It is a systematic diagram which shows another embodiment of the biological treatment method of the organic waste_water | drain which concerns on the 1st aspect of this invention. 参考例に係る有機性排水の生物処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the biological treatment method of the organic waste_water | drain which concerns on a reference example. 本発明の第2の態様に係る有機性排水の生物処理方法の他の実施の形態を示す系統図である。It is a systematic diagram which shows other embodiment of the biological treatment method of the organic waste_water | drain which concerns on the 2nd aspect of this invention. 比較例1で用いた実験装置を示す系統図である。4 is a system diagram showing an experimental apparatus used in Comparative Example 1. FIG. 比較例2で用いた実験装置を示す系統図である。10 is a system diagram showing an experimental apparatus used in Comparative Example 2. FIG. 参考例1,実施例1,2及び比較例1,2における投入BOD量と余剰汚泥発生量との関係を示すグラフである。Reference Example 1 is a graph showing the relationship between the charged BOD volume and excess sludge generation amount in the real施例1 and 2 and Comparative Examples 1 and 2.

1 第一生物処理槽
2 第二生物処理槽
3 沈殿槽
4 嫌気性消化槽
5 固液分離装置
6 好気性消化槽
DESCRIPTION OF SYMBOLS 1 1st biological treatment tank 2 2nd biological treatment tank 3 Precipitation tank 4 Anaerobic digestion tank 5 Solid-liquid separator 6 Aerobic digestion tank

Claims (4)

有機性排水を第一生物処理工程に導入して非凝集性細菌により生物処理し、該第一生物処理工程からの非凝集性細菌を含む処理水を第二生物処理工程に導入して活性汚泥処理する生物処理方法において、
前記第一生物処理工程において、pH6以上、BOD容積負荷1kg/m/d以上、HRT(原水滞留時間)24h以下の条件で非凝集性細菌による生物処理を行い、
該第二生物処理工程の汚泥、又は該第二生物処理工程の汚泥を固液分離して得られた汚泥の少なくとも一部を嫌気処理工程に導入して嫌気処理し、該嫌気処理工程の処理物を固液分離し、分離液を前記第一生物処理工程に返送すると共に、分離汚泥を前記第二生物処理工程に返送することを特徴とする有機性排水の生物処理方法。
Organic wastewater is introduced into the first biological treatment process and biologically treated with non-aggregating bacteria, and treated water containing non-aggregable bacteria from the first biological treatment process is introduced into the second biological treatment process to activate activated sludge. In the biological treatment method to be treated,
In the first biological treatment step, biological treatment with non-aggregating bacteria is performed under conditions of pH 6 or more, BOD volumetric load 1 kg / m 3 / d or more, HRT (raw water retention time) 24 h or less,
Introducing at least a part of the sludge of the second biological treatment step or the sludge obtained by solid-liquid separation of the sludge of the second biological treatment step into the anaerobic treatment step, and treating the anaerobic treatment step A method for biological treatment of organic wastewater, comprising separating a solid into a liquid, returning the separated liquid to the first biological treatment step, and returning separated sludge to the second biological treatment step.
請求項1において、前記第二生物処理工程のpHを6以上とすることを特徴とする有機性排水の生物処理方法。   In Claim 1, pH of said 2nd biological treatment process shall be 6 or more, The biological treatment method of the organic waste water characterized by the above-mentioned. 請求項1において、前記第二生物処理工程を2段以上の多段処理とし、pH5.5以下の生物処理後に、pH6以上の生物処理を行うことを特徴とする有機性排水の生物処理方法。   2. The biological treatment method for organic wastewater according to claim 1, wherein the second biological treatment step is a multistage treatment of two or more stages, and biological treatment of pH 6 or more is performed after biological treatment of pH 5.5 or less. 有機性排水を第一生物処理工程に導入して非凝集性細菌により生物処理し、該第一生物処理工程からの非凝集性細菌を含む処理水を第二生物処理工程に導入して活性汚泥処理する生物処理方法において、
前記第一生物処理工程において、pH6以上、BOD容積負荷1kg/m/d以上、HRT(原水滞留時間)24h以下の条件で非凝集性細菌による生物処理を行い、
該第二生物処理工程の汚泥、又は該第二生物処理工程の汚泥を固液分離して得られた汚泥の少なくとも一部を好気処理工程に導入してpH5〜5.5の条件で好気性消化し、該好気処理工程の処理物の少なくとも一部を嫌気処理工程に導入して嫌気処理し、該嫌気処理工程の処理物を固液分離し、分離液を前記第一生物処理工程に返送すると共に、分離汚泥を前記第二生物処理工程に返送することを特徴とする有機性排水の生物処理方法。
Organic wastewater is introduced into the first biological treatment process and biologically treated with non-aggregating bacteria, and treated water containing non-aggregable bacteria from the first biological treatment process is introduced into the second biological treatment process to activate activated sludge. In the biological treatment method to be treated,
In the first biological treatment step, biological treatment with non-aggregating bacteria is performed under conditions of pH 6 or more, BOD volumetric load 1 kg / m 3 / d or more, HRT (raw water retention time) 24 h or less,
The sludge of the second biological treatment process or at least a part of the sludge obtained by solid-liquid separation of the sludge of the second biological treatment process is introduced into the aerobic treatment process and is favorably used at a pH of 5 to 5.5. Aerobic digestion , anaerobic treatment step of introducing at least a part of the treatment product of the aerobic treatment step, solid-liquid separation of the treatment product of the anaerobic treatment step, and separation liquid into the first biological treatment step biological treatment method of organic waste water, characterized in that sends back, returning the separated sludge as in the second biological treatment Engineering in.
JP2004099967A 2004-02-02 2004-03-30 Biological treatment method for organic wastewater Expired - Fee Related JP4501496B2 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
JP2004099967A JP4501496B2 (en) 2004-03-30 2004-03-30 Biological treatment method for organic wastewater
KR1020117026714A KR20110139312A (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
EP20120152091 EP2447222A3 (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
EP05719056A EP1712525A4 (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
KR20067016491A KR101170571B1 (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
KR1020117026716A KR101215912B1 (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
KR1020117026709A KR101190400B1 (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
PCT/JP2005/000891 WO2005073134A1 (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
CN2005800038510A CN1914122B (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water
EP20120152096 EP2447223A3 (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
KR1020117026711A KR101162474B1 (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
CN2008101316311A CN101328001B (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus thereof
CN2008101757973A CN101456645B (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
AU2005209522A AU2005209522B2 (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
TW100137147A TW201204647A (en) 2004-02-02 2005-02-01 Process for biological treatment of organic waste water and apparatus therefor
TW100137145A TW201204645A (en) 2004-02-02 2005-02-01 Process for biological treatment of organic waste water and apparatus therefor
TW100137146A TW201204646A (en) 2004-02-02 2005-02-01 Process for biological treatment of organic waste water and apparatus therefor
TW94103098A TW200528403A (en) 2004-02-02 2005-02-01 Process for biological treatment of organic waste water and apparatus therefor
TW100137149A TW201204648A (en) 2004-02-02 2005-02-01 Process for biological treatment of organic waste water and apparatus therefor
US11/485,429 US7332084B2 (en) 2004-02-02 2006-07-13 Process for biological treatment of organic wastewater and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004099967A JP4501496B2 (en) 2004-03-30 2004-03-30 Biological treatment method for organic wastewater

Publications (2)

Publication Number Publication Date
JP2005279551A JP2005279551A (en) 2005-10-13
JP4501496B2 true JP4501496B2 (en) 2010-07-14

Family

ID=35178502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099967A Expired - Fee Related JP4501496B2 (en) 2004-02-02 2004-03-30 Biological treatment method for organic wastewater

Country Status (1)

Country Link
JP (1) JP4501496B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492268B2 (en) * 2004-09-16 2010-06-30 栗田工業株式会社 Biological treatment equipment
JP4892917B2 (en) * 2005-10-12 2012-03-07 栗田工業株式会社 Biological treatment method and apparatus for organic wastewater
JP2007260604A (en) * 2006-03-29 2007-10-11 Sumitomo Heavy Industries Environment Co Ltd Method for producing organic acid, organic acid production device and waste water treatment equipment
AU2006342924A1 (en) * 2006-04-28 2007-11-08 Kurita Water Industries Ltd. Method and apparatus for biologically treating organic discharged water
BR112012013332B1 (en) * 2009-12-01 2019-10-29 Li Dayong method and apparatus for biological sewage treatment
JP5772337B2 (en) * 2010-07-21 2015-09-02 栗田工業株式会社 Biological treatment method and apparatus for organic wastewater
JP5746853B2 (en) * 2010-12-10 2015-07-08 オルガノ株式会社 Waste water treatment apparatus and waste water treatment method
CA3097400A1 (en) 2018-04-20 2019-10-24 Advanced Biological Services, Inc. Systems and methods for treating wastewater and providing class a sludge
JP7105165B2 (en) * 2018-10-11 2022-07-22 オルガノ株式会社 Water treatment device and water treatment method
CN111204944B (en) * 2020-01-20 2022-02-01 南京市市政设计研究院有限责任公司 Sludge culture system and process thereof
JP7181251B2 (en) * 2020-05-19 2022-11-30 水ing株式会社 Organic wastewater treatment method and organic wastewater treatment apparatus
JP7181250B2 (en) * 2020-05-19 2022-11-30 水ing株式会社 Organic wastewater treatment method and organic wastewater treatment apparatus
CN114890640A (en) * 2022-04-20 2022-08-12 钟林华 Sludge reduction equipment

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50120164A (en) * 1974-03-11 1975-09-20
JPS5520649A (en) * 1978-07-29 1980-02-14 Agency Of Ind Science & Technol Biological treatment method of waste water
JPS55167098A (en) * 1979-06-15 1980-12-26 Nippon Kokan Kk <Nkk> Pretreatment of sludge
JPS5662595A (en) * 1979-10-26 1981-05-28 Susumu Hashimoto Treating method of sludge
JPS61138599A (en) * 1984-12-10 1986-06-26 Oji Paper Co Ltd Recovery of methane and methane fermentation tank
JPS621496A (en) * 1985-06-26 1987-01-07 Agency Of Ind Science & Technol Two-stage microbiological treatment of organic dirty waste water
JPH09253684A (en) * 1996-03-25 1997-09-30 Ebara Corp Treatment method for organic waste water
JP2000042584A (en) * 1998-07-31 2000-02-15 Kurita Water Ind Ltd High load biological treatment and device therefor
JP2000246280A (en) * 1999-03-03 2000-09-12 Kurita Water Ind Ltd Treatment apparatus of organic waste water
JP2001293496A (en) * 2000-04-17 2001-10-23 Kurata Yoko Sludge volume reducing method and device for the same
JP2001314885A (en) * 2000-05-10 2001-11-13 Kurita Water Ind Ltd High load biological treatment method
JP2001327998A (en) * 2000-05-24 2001-11-27 Kurita Water Ind Ltd Organic sludge digesting method
JP2002186988A (en) * 2000-12-19 2002-07-02 Mitsubishi Kakoki Kaisha Ltd Wastewater treatment device and method for treating wastewater
JP3360076B2 (en) * 1997-08-07 2002-12-24 独立行政法人産業技術総合研究所 Organic wastewater treatment method
JP2003033780A (en) * 2001-07-25 2003-02-04 Mitsubishi Kakoki Kaisha Ltd Method for wastewater treatment
JP3410699B2 (en) * 1999-11-19 2003-05-26 株式会社クラレ Wastewater treatment method
JP2003326292A (en) * 2002-05-10 2003-11-18 Mitsubishi Kakoki Kaisha Ltd Waste water treatment method
JP2004008843A (en) * 2002-06-04 2004-01-15 Mitsubishi Kakoki Kaisha Ltd Method for treating organic waste water
JP2004141802A (en) * 2002-10-25 2004-05-20 Mitsubishi Heavy Ind Ltd Equipment and method for sludge treatment
JP2005211879A (en) * 2004-02-02 2005-08-11 Kurita Water Ind Ltd Biological treatment method for organic waste water

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50120164A (en) * 1974-03-11 1975-09-20
JPS5520649A (en) * 1978-07-29 1980-02-14 Agency Of Ind Science & Technol Biological treatment method of waste water
JPS55167098A (en) * 1979-06-15 1980-12-26 Nippon Kokan Kk <Nkk> Pretreatment of sludge
JPS5662595A (en) * 1979-10-26 1981-05-28 Susumu Hashimoto Treating method of sludge
JPS61138599A (en) * 1984-12-10 1986-06-26 Oji Paper Co Ltd Recovery of methane and methane fermentation tank
JPS621496A (en) * 1985-06-26 1987-01-07 Agency Of Ind Science & Technol Two-stage microbiological treatment of organic dirty waste water
JPH09253684A (en) * 1996-03-25 1997-09-30 Ebara Corp Treatment method for organic waste water
JP3360076B2 (en) * 1997-08-07 2002-12-24 独立行政法人産業技術総合研究所 Organic wastewater treatment method
JP2000042584A (en) * 1998-07-31 2000-02-15 Kurita Water Ind Ltd High load biological treatment and device therefor
JP2000246280A (en) * 1999-03-03 2000-09-12 Kurita Water Ind Ltd Treatment apparatus of organic waste water
JP3410699B2 (en) * 1999-11-19 2003-05-26 株式会社クラレ Wastewater treatment method
JP2001293496A (en) * 2000-04-17 2001-10-23 Kurata Yoko Sludge volume reducing method and device for the same
JP2001314885A (en) * 2000-05-10 2001-11-13 Kurita Water Ind Ltd High load biological treatment method
JP2001327998A (en) * 2000-05-24 2001-11-27 Kurita Water Ind Ltd Organic sludge digesting method
JP2002186988A (en) * 2000-12-19 2002-07-02 Mitsubishi Kakoki Kaisha Ltd Wastewater treatment device and method for treating wastewater
JP2003033780A (en) * 2001-07-25 2003-02-04 Mitsubishi Kakoki Kaisha Ltd Method for wastewater treatment
JP2003326292A (en) * 2002-05-10 2003-11-18 Mitsubishi Kakoki Kaisha Ltd Waste water treatment method
JP2004008843A (en) * 2002-06-04 2004-01-15 Mitsubishi Kakoki Kaisha Ltd Method for treating organic waste water
JP2004141802A (en) * 2002-10-25 2004-05-20 Mitsubishi Heavy Ind Ltd Equipment and method for sludge treatment
JP2005211879A (en) * 2004-02-02 2005-08-11 Kurita Water Ind Ltd Biological treatment method for organic waste water

Also Published As

Publication number Publication date
JP2005279551A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
KR101170571B1 (en) Process for biological treatment of organic waste water and apparatus therefor
JP4474930B2 (en) Biological treatment method for organic wastewater
KR20060136451A (en) Process for biological treatment of organic waste water and apparatus therefor
JP4892917B2 (en) Biological treatment method and apparatus for organic wastewater
JP4501496B2 (en) Biological treatment method for organic wastewater
JP2009202115A (en) Method and apparatus for biologically treating organic wastewater
WO2007125598A1 (en) Method and apparatus for biologically treating organic discharged water
JP2006247566A (en) Biological treatment method for organic waste water
JP5862597B2 (en) Biological treatment method and apparatus for organic wastewater
JP2006247565A (en) Biological treatment method for organic waste water
JP4655535B2 (en) Wastewater biological treatment method
JP4572587B2 (en) Biological treatment method for organic wastewater
JP2006247494A (en) Biological treatment method and apparatus of organic wastewater
JP4967225B2 (en) Biological treatment method for organic wastewater
JP5170069B2 (en) Biological treatment method for organic wastewater
JP4581551B2 (en) Biological treatment method for organic wastewater
JP2015199049A (en) Method and apparatus for biological treatment of organic waste water
JP5103796B2 (en) Biological treatment accelerator for wastewater and biological treatment method for wastewater using the same
JP2012115754A (en) Method and apparatus for biologically treating organic wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees