JP4474930B2 - Biological treatment method for organic wastewater - Google Patents

Biological treatment method for organic wastewater Download PDF

Info

Publication number
JP4474930B2
JP4474930B2 JP2004025702A JP2004025702A JP4474930B2 JP 4474930 B2 JP4474930 B2 JP 4474930B2 JP 2004025702 A JP2004025702 A JP 2004025702A JP 2004025702 A JP2004025702 A JP 2004025702A JP 4474930 B2 JP4474930 B2 JP 4474930B2
Authority
JP
Japan
Prior art keywords
biological treatment
sludge
bod
tank
organic wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004025702A
Other languages
Japanese (ja)
Other versions
JP2005211879A (en
Inventor
繁樹 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004025702A priority Critical patent/JP4474930B2/en
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to KR20067016491A priority patent/KR101170571B1/en
Priority to EP20120152096 priority patent/EP2447223A3/en
Priority to KR1020117026714A priority patent/KR20110139312A/en
Priority to PCT/JP2005/000891 priority patent/WO2005073134A1/en
Priority to KR1020117026709A priority patent/KR101190400B1/en
Priority to EP20120152091 priority patent/EP2447222A3/en
Priority to AU2005209522A priority patent/AU2005209522B2/en
Priority to KR1020117026711A priority patent/KR101162474B1/en
Priority to KR1020117026716A priority patent/KR101215912B1/en
Priority to CN2005800038510A priority patent/CN1914122B/en
Priority to CN2008101316311A priority patent/CN101328001B/en
Priority to EP05719056A priority patent/EP1712525A4/en
Priority to CN2008101757973A priority patent/CN101456645B/en
Priority to TW100137145A priority patent/TW201204645A/en
Priority to TW94103098A priority patent/TW200528403A/en
Priority to TW100137146A priority patent/TW201204646A/en
Priority to TW100137149A priority patent/TW201204648A/en
Priority to TW100137147A priority patent/TW201204647A/en
Publication of JP2005211879A publication Critical patent/JP2005211879A/en
Priority to US11/485,429 priority patent/US7332084B2/en
Publication of JP4474930B2 publication Critical patent/JP4474930B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Activated Sludge Processes (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、生活排水、下水、食品工場やパルプ工場をはじめとした広い濃度範囲の有機性排水の処理に利用することができる有機性排水の生物処理方法に関するものであり、特に、処理水質を悪化させることなく、処理効率を向上させ、かつ、余剰汚泥発生量の低減が可能な有機性排水の生物処理方法に関する。   The present invention relates to a biological treatment method for organic wastewater that can be used for treatment of organic wastewater in a wide concentration range including domestic wastewater, sewage, food factories and pulp factories. The present invention relates to a biological treatment method for organic wastewater that can improve the treatment efficiency and reduce the amount of excess sludge generation without deteriorating.

有機性排水を生物処理する場合に用いられる活性汚泥法は、処理水質が良好で、メンテナンスが容易であるなどの利点から、下水処理や産業廃水処理等に広く用いられている。しかしながら、活性汚泥法におけるBOD容積負荷は0.5〜0.8kg/m/d程度であるため、広い敷地面積が必要となる。また、分解したBODの20%が菌体、即ち汚泥へと変換されるため、大量の余剰汚泥処理も問題となる。 The activated sludge method used when biologically treating organic wastewater is widely used for sewage treatment, industrial wastewater treatment, and the like because of its advantages such as good treated water quality and easy maintenance. However, since the BOD volumetric load in the activated sludge method is about 0.5 to 0.8 kg / m 3 / d, a large site area is required. Moreover, since 20% of the decomposed BOD is converted into microbial cells, that is, sludge, a large amount of excess sludge treatment also becomes a problem.

有機性排水の高負荷処理に関しては、担体を添加した流動床法が知られている。この方法を用いた場合、3kg/m/d以上のBOD容積負荷で運転することが可能となる。しかしながら、この方法では発生汚泥量は分解したBODの30%程度で、通常の活性汚泥法より高くなることが欠点となっている。 For high load treatment of organic waste water, a fluidized bed method with a carrier added is known. When this method is used, it is possible to operate with a BOD volume load of 3 kg / m 3 / d or more. However, this method has a disadvantage that the amount of generated sludge is about 30% of the decomposed BOD, which is higher than the normal activated sludge method.

特公昭56−48235号公報では、有機性排水をまず第一処理槽で細菌処理して、排水に含まれる有機物を酸化分解し、非凝集性の細菌の菌体に変換した後、第二処理槽で固着性原生動物に捕食除去させることにより、余剰汚泥の減量化が可能になるとしている。また、特公昭62−54073号公報においても同様の2段生物処理が記載されている。これらの方法では、高負荷運転も可能となり、活性汚泥処理効率も向上する。   In Japanese Examined Patent Publication No. 56-48235, organic wastewater is first treated with bacteria in a first treatment tank, and organic matter contained in the wastewater is oxidatively decomposed and converted into non-aggregating bacterial cells, followed by second treatment. It is said that the amount of excess sludge can be reduced by precipitating and removing the sticking protozoa in the tank. Japanese Patent Publication No. 62-54073 also describes a similar two-stage biological treatment. In these methods, high-load operation is possible and the activated sludge treatment efficiency is improved.

特許第3360076号公報には、このような2段生物処理法において、原生動物を含む活性汚泥を生物処理槽から引き抜いて、反応処理槽で殺菌及び可溶化処理して生物処理層へ戻すことにより、余剰汚泥発生量を更に低減する方法が記載されている。   In Japanese Patent No. 3360076, in such a two-stage biological treatment method, activated sludge containing protozoa is extracted from the biological treatment tank, sterilized and solubilized in the reaction treatment tank, and returned to the biological treatment layer. A method for further reducing the amount of excess sludge generation is described.

また、特許第3410699号公報には、前段の生物処理を担体流動床式とし、後段の生物処理を多段活性汚泥処理とすることにより、余剰汚泥発生量を更に低減する方法が記載されている。この方法では後段の活性汚泥処理をBOD汚泥負荷0.1kg−BOD/kg−MLSS/dの低負荷で運転することにより、汚泥を自己酸化させ、汚泥引き抜き量を大幅に低減できるとしている。
特公昭56−48235号公報 特公昭62−54073号公報 特許第3360076号公報 特許第3410699号公報
Japanese Patent No. 3410699 discloses a method of further reducing the amount of surplus sludge generated by using a carrier fluidized bed as the first biological treatment and a multistage activated sludge treatment as the second biological treatment. In this method, the activated sludge treatment at the latter stage is operated at a low load of BOD sludge load 0.1 kg-BOD / kg-MLSS / d, so that the sludge is self-oxidized and the amount of sludge extraction can be greatly reduced.
Japanese Patent Publication No. 56-48235 Japanese Examined Patent Publication No. 62-54073 Japanese Patent No. 3360076 Japanese Patent No. 3410699

上述のような微小生物の捕食作用を利用した多段活性汚泥法は、有機性排水処理に既に実用化されており、対象とする排水によっては処理効率の向上、発生汚泥量の減量化は可能である。   The multi-stage activated sludge method using the predation action of micro-organisms as described above has already been put to practical use in organic wastewater treatment. Depending on the target wastewater, it is possible to improve treatment efficiency and reduce the amount of generated sludge. is there.

しかしながら、汚泥減量効果は処理条件や排水の水質によっては異なるものの、単槽式活性汚泥法で発生する汚泥量を半減させる程度である。これは、細菌主体の汚泥を捕食するための後段の微小生物槽において、汚泥の多くが捕食されず残存したり、捕食に関与する微小生物を高濃度で維持できないことが原因である。   However, although the sludge reduction effect varies depending on the treatment conditions and the water quality of the wastewater, it is about a half of the amount of sludge generated by the single tank activated sludge method. This is due to the fact that most of the sludge remains without being predated and the microbes involved in the predation cannot be maintained at a high concentration in the subsequent microbiological tank for preying the bacteria-based sludge.

従って、本発明は、微小生物の捕食作用を利用した多段活性汚泥法において、安定した処理水質を維持した上でより一層の処理効率の向上と余剰汚泥発生量の低減を図る有機性排水の生物処理方法を提供することを目的とする。   Therefore, the present invention is a multi-stage activated sludge process that uses the predation action of micro-organisms, and maintains organic wastewater quality and further improves the treatment efficiency and reduces the amount of excess sludge generated. An object is to provide a processing method.

本発明の有機性排水の生物処理方法の第1態様は、有機性排水中のBODを、pH6以上の条件下にBOD容積負荷1〜20kg/m/dかつHRT(原水滞留時間)0.5〜24hで高負荷処理して分散菌体に変換する第1の生物処理工程と、変換された分散菌体を、溶解性BOD汚泥負荷0.01〜0.5kg−BOD/kg−MLSS/dで、フロック化すると共に微小生物を共存させる第2の生物処理工程とを有する有機性排水の生物処理方法において、該第2の生物処理工程をpH5〜5.5の条件下に行うことを特徴とする。 In the first aspect of the biological treatment method for organic wastewater according to the present invention, the BOD in the organic wastewater is reduced to a BOD volumetric load of 1 to 20 kg / m 3 / d and HRT (raw water retention time) 0. The first biological treatment step for high load treatment at 5 to 24 h to convert to dispersed cells, and the converted dispersed cells to a soluble BOD sludge load of 0.01 to 0.5 kg-BOD / kg-MLSS / in d, the biological treatment method of the organic wastewater and a second biological treatment process coexist microbes as well as flocculated, to carry out the second biological treatment process under the conditions of pH 5 to 5.5 Features.

有機性排水の好気性処理を、従来の単槽式活性汚泥法により、pH6以下の酸性域で行うと菌類が多量に発生し、バルキングの原因となる。しかしながら、本発明の方法のように、BODを分散菌体に変換する第1の生物処理工程をpH6〜8の中性域で行い、汚泥減量のための第2の生物処理工程をpH5〜5.5の酸性域で行うことにより、発生汚泥量の大幅な減量が可能になる。これは、微小生物が共存する第2の生物処理工程をpH5〜5.5とすることで、BOD処理を行う第1の生物処理工程からの非凝集汚泥の効率的な捕食が可能となり、一方で、捕食に関与する大部分の微小生物の増殖はpH5〜8の範囲であればpHによる影響を受けないため、第2の生物処理工程において、VSSに占める微小生物の割合を20%以上の高濃度に高めることができることによる。 When aerobic treatment of organic wastewater is carried out in an acidic region of pH 6 or less by the conventional single tank activated sludge method, a large amount of fungi are generated, which causes bulking. However, as in the method of the present invention performs a first biological treatment step of converting the BOD to dispersed bacteria in the neutral region of pH 6-8, pH 5 to the second biological treatment process for sludge reduction 5 .5 , it is possible to significantly reduce the amount of generated sludge. This is because, by setting the second biological treatment process in which micro-organisms coexist to pH 5 to 5.5 , efficient predation of non-aggregated sludge from the first biological treatment process in which BOD treatment is performed, In the second biological treatment process, the proportion of the microbes living in VSS is 20% or more because the growth of most microbes involved in predation is not affected by the pH in the range of pH 5-8. This is because it can be increased to a high concentration.

このように、本発明によれば、BOD処理のための第1の生物処理工程と汚泥減量のための第2の生物処理工程とで各々の機能に応じて環境条件を適応化させることにより、両者の機能を最大限に発揮させ、これにより、処理効率の向上と余剰汚泥発生量の低減を図ることができる。 Thus, according to the present invention, by first adapt the environmental conditions in accordance with the respective functions in the extent the second biological treatment Engineering for biological treatment process and sludge reduction for BOD treatment Thus, the functions of both can be maximized, thereby improving the processing efficiency and reducing the amount of excess sludge generated.

本発明では、前記第1の態様において、第2の生物処理工程を2段以上の多段処理とし、第2の生物処理工程において、pH5〜5.5の生物処理後にpH6以上の生物処理を行うようにしても良い。 In the present invention, in the first aspect, the second biological treatment step is a multistage treatment having two or more stages, and in the second biological treatment step, the biological treatment at pH 6 or higher is performed after the biological treatment at pH 5 to 5.5. You may do it.

、第2の生物処理工程は、生物処理槽の後段に固液分離手段を設け、固液分離された汚泥を該生物処理槽に返送する汚泥返送式生物処理工程、生物処理槽内に担体を添加した流動床式生物処理工程、膜分離式生物処理工程のいずれであっても良く、また、第1の生物処理工程を、生物処理槽内に担体を添加した流動床式生物処理、又は2段以上の多段処理により行っても良い。 Also, the second biological treatment process is provided with a solid-liquid separation means downstream of the biological treatment tank, the solid-liquid separated sludge sludge return-type biological treatment process to return to the organism treatment tank, the biological treatment tank Either a fluidized bed biological treatment process to which a carrier is added or a membrane separation biological treatment process, and the first biological treatment process is a fluidized bed biological treatment in which a carrier is added to a biological treatment tank, Alternatively, it may be performed by multistage processing of two or more stages.

本発明の有機性排水の生物処理方法によれば、微小生物の捕食作用を利用した多段活性汚泥法において、安定した処理水質を維持した上でより一層の処理効率の向上と余剰汚泥発生量の低減を図ることができる。   According to the organic wastewater biological treatment method of the present invention, in the multi-stage activated sludge method utilizing the predation action of micro-organisms, the treatment efficiency can be further improved and the amount of excess sludge generated while maintaining stable treated water quality. Reduction can be achieved.

以下に図面を参照して本発明の有機性排水の生物処理方法の実施の形態を詳細に説明する。   Embodiments of a biological treatment method for organic wastewater according to the present invention will be described below in detail with reference to the drawings.

図1は本発明の有機性排水の生物処理方法の実施の形態を示す系統図であるFigure 1 is a system diagram showing an embodiment of the biological treatment process of organic waste water of the present invention.

図1の方法では、原水(有機性排水)は、まず第一生物処理槽(分散菌槽)1に導入され、非凝集性細菌により、BOD(有機成分)の70%以上、望ましくは80%以上、更に望ましくは90%以上が酸化分解される。この第一生物処理槽1のpHは6以上、望ましくはpH6〜8とする。また、第一生物処理槽1へのBOD容積負荷は1〜20kg/m/d、HRT(原水滞留時間)は0.5〜24hとすることで、非凝集性細菌が優占化した処理水を得ることができ、また、HRTを短くすることでBOD濃度の低い排水を高負荷で処理することができる。また、担体を添加することにより、高負荷、滞留時間の短縮が可能になる。 In the method of FIG. 1, raw water (organic wastewater) is first introduced into a first biological treatment tank (dispersed bacteria tank) 1 and is 70% or more, preferably 80% of BOD (organic component) due to non-aggregating bacteria. More preferably, 90% or more is oxidatively decomposed. The pH of the first biological treatment tank 1 is 6 or more, preferably pH 6-8. Moreover, the BOD volumetric load to the 1st biological treatment tank 1 is 1-20 kg / m < 3 > / d, HRT (raw water residence time) is 0 . With 5~24H, non-flocculent bacteria can obtain treated water having excellent Uranaika, also Ru can be treated at high load with low-drained BOD concentration by shortening the HRT. Further, by adding a carrier, it becomes possible to reduce a high load and a residence time.

第一生物処理槽1の処理水は、pH5〜5.5の範囲に制御された第二生物処理槽(微小生物槽)2に導入され、ここで、残存している有機成分の酸化分解、非凝集性細菌の自己分解及び微小生物による捕食による汚泥の減量化が行われる。 The first biological treatment tank 1 in the treated water, the second biological treatment tank, which is controlled in the range of p H5~5.5 is introduced into (microbes tank) 2, where, oxidative decomposition of the organic components remaining The sludge is reduced by self-degradation of non-aggregating bacteria and predation by micro-organisms.

図1の方法において、第二生物処理槽2を多段化し、2槽以上の生物処理槽を直列に設け、前段側の生物処理槽でpH5〜5.5の条件で処理を行い、後段側の生物処理槽でpH6以上、好ましくはpH6〜8の条件で処理を行うようにしても良く、このような多段処理により、前段側の生物処理槽で汚泥の捕食を効果的に行い、後段側の生物処理槽で汚泥の固液分離性の向上、処理水水質の向上を図ることができる。 In the method of FIG. 1, the second biological treatment tank 2 multi-staged, provided two tanks or more biological treatment tanks in series, it performs the processing under the condition of p H5~5.5 at the preceding stage of the biological treatment tank, the second-stage The biological treatment tank may be treated at a pH of 6 or more, preferably pH 6-8, and by such multi-stage treatment, sludge predation is effectively performed in the biological treatment tank on the front side, and the rear stage side. The biological treatment tank can improve the solid-liquid separation of sludge and improve the quality of treated water.

第二生物処理槽2の処理水は沈殿槽3で固液分離され、分離水は処理水として系外へ排出される。また、分離汚泥の一部は余剰汚泥として系外へ排出され、残部は第一生物処理槽1及び第二生物処理槽2に返送される。なお、この汚泥返送は、各生物処理槽における汚泥量の維持のために行われるものであり、例えば、第一生物処理槽1及び/又は第二生物処理槽2を、後述のような担体を添加した流動床式とした場合、汚泥返送は不要である場合もある。また、第一生物処理槽1のBOD容積負荷が低い場合は、汚泥返送は第二生物処理槽2のみとしてもよい The treated water in the second biological treatment tank 2 is solid-liquid separated in the precipitation tank 3, and the separated water is discharged out of the system as treated water. A part of the separated sludge is discharged out of the system as surplus sludge, and the remaining part is returned to the first biological treatment tank 1 and the second biological treatment tank 2. In addition, this sludge return is performed in order to maintain the amount of sludge in each biological treatment tank. For example, the first biological treatment tank 1 and / or the second biological treatment tank 2 is loaded with a carrier as described below. In the case of an added fluidized bed type, sludge return may not be necessary. Moreover, when the BOD volumetric load of the 1st biological treatment tank 1 is low, sludge return is good also as the 2nd biological treatment tank 2 only .

、第二生物処理槽2に導入される第一生物処理槽1の処理水中に有機物が多量に残存した場合、その酸化分解は第二生物処理槽2で行われることになる。微小生物が多量に存在する第二生物処理槽2で細菌による有機物の酸化分解が起こると、微小生物の捕食から逃れるための対策として、捕食されにくい形態で増殖することが知られており、このように増殖した細菌群は微小生物により捕食されず、これらの分解は自己消化のみに頼ることとなり、汚泥発生量低減の効果が下がってしまう。また、本発明の方法では、第二生物処理槽2を酸性域に設定しており、有機物が多量に残存した場合、その有機物を利用して菌類などが増殖してしまいバルキングの原因にもなる。そこで先にも述べたように第一生物処理槽1では、有機物の大部分、即ち、原水BODの70%以上、望ましくは80%以上、より望ましくは90%以上を分解し、菌体へと変換しておく必要がある。よって、第二生物処理槽2への溶解性BODによる汚泥負荷で表すと0.5kg−BOD/kg−MLSS/d以下、例えば0.01〜0.1kg−BOD/kg−MLSS/dで運転する。 Na us, if organic material into the first treated water of the biological treatment tank 1 is introduced into the second biological treatment tank 2 has a large amount of residual, the oxidative decomposition will be performed in the second biological treatment tank 2. It is known that when oxidative degradation of organic matter by bacteria occurs in the second biological treatment tank 2 in which a large amount of micro organisms are present, it proliferates in a form that is difficult to prey, as a countermeasure to escape from predation of micro organisms. The bacterial group thus grown is not preyed on by the micro-organisms, and their decomposition depends only on self-digestion, and the effect of reducing the amount of sludge generated decreases. In the method of the present invention, the second biological treatment tank 2 is set in an acidic region, and when a large amount of organic matter remains, fungi and the like grow using the organic matter and cause bulking. . Therefore, as described above, in the first biological treatment tank 1, most of the organic matter, that is, 70% or more of the raw water BOD, desirably 80% or more, more desirably 90% or more, is decomposed into cells. It needs to be converted. Therefore, when expressed by the sludge load due to the soluble BOD in the second biological treatment tank 2, it is operated at 0.5 kg-BOD / kg-MLSS / d or less, for example, 0.01 to 0.1 kg-BOD / kg-MLSS / d. you.

1の方法は本発明の実施の形態の一例を示すものであり、本発明はその要旨を超えない限り、何ら図示の方法に限定されるものではない。 The method of FIG. 1 shows an example of an embodiment of the present invention, and the present invention is not limited to the illustrated method unless it exceeds the gist.

例えば、第一生物処理槽は、高負荷処理のために、後段の沈殿槽の分離汚泥の一部を返送する他、担体を添加した流動床方式としたり、2槽以上の生物処理槽を直列に設けて多段処理を行っても良い。特に、担体の添加により、BOD容積負荷5kg/m/d以上の高負荷処理も可能となり、好ましい。この場合、添加する担体の形状は球状、ペレット状、中空筒状、糸状等任意であり、大きさも0.1〜10mm程度の径で良い。また、担体の材料は天然素材、無機素材、高分子素材等任意であり、ゲル状物質を用いても良い。また、第二生物処理槽2では、細菌に比べ増殖速度の遅い微小生物の働きと細菌の自己分解を利用するため、微小生物と細菌が系内に留まるような運転条件及び処理装置を採用することが重要であり、このために、第二生物処理槽は、図1に示すように、汚泥の返送を行う汚泥返送式生物処理を行う他、後述の実施例におけるように、槽内に分離膜を浸漬して膜分離式活性汚泥処理を行うことも望ましい。更に望ましくは、曝気槽内に担体を添加することで微小生物の槽内保持量を高めることができる。この場合の担体としては、第一生物処理槽に添加する担体として前述したものと同様のものを用いることができる。 For example, the first biological treatment tank is a fluidized bed system with a carrier added in addition to returning a part of the separated sludge from the subsequent sedimentation tank for high load treatment, or two or more biological treatment tanks in series. It is also possible to perform multi-stage processing by providing them. In particular, the addition of a carrier is preferable because a high load treatment with a BOD volume load of 5 kg / m 3 / d or more is possible. In this case, the shape of the carrier to be added is arbitrary such as a spherical shape, a pellet shape, a hollow cylindrical shape, and a thread shape, and the size may be about 0.1 to 10 mm. The material of the carrier is arbitrary such as a natural material, an inorganic material, or a polymer material, and a gel material may be used. Further, in the second biological treatment tank 2, in order to utilize the action of micro-organisms whose growth rate is slower than that of bacteria and the self-degradation of bacteria, operating conditions and processing devices are adopted so that the micro-organisms and bacteria stay in the system. For this reason, as shown in FIG. 1 , the second biological treatment tank is separated into the tank as shown in FIG. 1 in addition to performing sludge return biological treatment for returning sludge. It is also desirable to perform membrane separation activated sludge treatment by immersing the membrane. More desirably, the amount of micro-organisms retained in the tank can be increased by adding a carrier to the aeration tank. As the carrier in this case, the same carrier as described above as the carrier added to the first biological treatment tank can be used.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1
3に示す如く、第一生物処理槽11として容量が3.6Lの活性汚泥槽(汚泥返送なし)と、第二生物処理槽12として容量が15Lの浸漬膜式活性汚泥槽を連結させた実験装置を用いて、本発明による有機性排水(BOD630mg/L)の処理を行った。第一生物処理槽11のpHは6.8、第二生物処理槽12のpHは5.0にそれぞれ調整した。実験開始4ヶ月後の結果を表1に示す。また、投入BODに対する余剰汚泥発生量(汚泥転換率)を図に示す。
Example 1
As shown in FIG. 3, an activated sludge tank with a capacity of 3.6 L (no sludge return) is connected as the first biological treatment tank 11 and an immersion membrane activated sludge tank with a capacity of 15 L is connected as the second biological treatment tank 12. The organic waste water (BOD 630 mg / L) according to the present invention was treated using an experimental apparatus. The pH of the first biological treatment tank 11 was adjusted to 6.8, and the pH of the second biological treatment tank 12 was adjusted to 5.0. Table 1 shows the results 4 months after the start of the experiment. Also shows the excess sludge generation quantity versus charged BOD and (sludge conversion ratio) in Fig.

本実施例では、第一生物処理槽11に対する溶解性BOD容積負荷は3.5kg−BOD/m/d、HRTは4h、第二生物処理槽12の溶解性BOD汚泥負荷は0.022kg−BOD/kg−MLSS/d、HRTは17h、全体でのBOD容積負荷0.75kg−BOD/m/d、HRTは21hの条件で運転したところ、汚泥転換率は0.1kg−MLSS/kg−BODとなったが、処理水BODは検出限界以下であった In this example, the soluble BOD volumetric load on the first biological treatment tank 11 is 3.5 kg-BOD / m 3 / d, HRT is 4 h, and the soluble BOD sludge load on the second biological treatment tank 12 is 0.022 kg- BOD / kg-MLSS / d, HRT was 17h, BOD volumetric load was 0.75kg-BOD / m 3 / d, HRT was operated under the conditions of 21h. Sludge conversion rate was 0.1kg-MLSS / kg Although it became -BOD, the treated water BOD was below the detection limit .

較例1
実施例1において、第一生物処理槽を省略し、第二生物処理槽の容量15Lの浸漬膜式活性汚泥槽のみからなる実験装置を用いて有機性排水(BOD630mg/L)の処理を行った。実験開始4ヶ月後の結果を表1に示す。また、投入BODに対する余剰汚泥発生量(汚泥転換率)を図に示す。
Ratio Comparative Examples 1
In Example 1, the first biological treatment tank was omitted, and the organic wastewater (BOD 630 mg / L) was treated using an experimental apparatus consisting only of a submerged membrane activated sludge tank with a capacity of 15 L of the second biological treatment tank. . Table 1 shows the results 4 months after the start of the experiment. Also shows the excess sludge generation quantity versus charged BOD and (sludge conversion ratio) in Fig.

本比較例では、溶解性BOD容積負荷0.76kg−BOD/m/d、HRTは20hの条件で運転したところ、表1にあるように処理水水質は良好であったものの、汚泥転換率は0.40kg−MLSS/kg−BODとなった。 In this comparative example, when the soluble BOD volumetric load was 0.76 kg-BOD / m 3 / d and the HRT was operated under the conditions of 20 h, the treated water quality was good as shown in Table 1, but the sludge conversion rate Was 0.40 kg-MLSS / kg-BOD.

比較例2
実施例1において、第一生物処理槽も第二生物処理槽もいずれもpH6.8に調整したこと以外は、同様にして有機性排水(BOD630mg/L)の処理を行った。実験開始4ヶ月後の結果を表1に示す。また、投入BODに対する余剰汚泥発生量(汚泥転換率)を図に示す。
Comparative Example 2
In Example 1, treatment of organic waste water (BOD 630 mg / L) was performed in the same manner except that both the first biological treatment tank and the second biological treatment tank were adjusted to pH 6.8. Table 1 shows the results 4 months after the start of the experiment. Also shows the excess sludge generation quantity versus charged BOD and (sludge conversion ratio) in Fig.

本比較例では、第一生物処理槽11に対する溶解性BOD容積負荷3.85kg−BOD/m/d、HRTは4h、第二生物処理槽12の溶解性BOD汚泥負荷0.022kg−BOD/kg−MLSS/d、HRTは17h、全体でのBOD容積負荷0.75kg−BOD/m/d、HRTは21hの条件で運転したところ、表1にあるように処理水水質は良好であったが、汚泥転換率は0.2kg−MLSS/kg−BODとなった。 In this comparative example, the soluble BOD volumetric load 3.85 kg-BOD / m 3 / d for the first biological treatment tank 11, the HRT is 4 h, the soluble BOD sludge load of the second biological treatment tank 12 is 0.022 kg-BOD / kg-MLSS / d, HRT was 17h, overall BOD volumetric load was 0.75kg-BOD / m 3 / d, and HRT was operated for 21h. As shown in Table 1, the quality of the treated water was good. However, the sludge conversion rate was 0.2 kg-MLSS / kg-BOD.

Figure 0004474930
Figure 0004474930

実施例1及び比較例1,2の結果から次のことが分かる。 The following can be seen from the results of Example 1及 beauty Comparative Examples 1 and 2.

比較例1は従来の活性汚泥法、比較例2は酸性域での生物処理工程を入れていない多段生物処理法による処理を実施したものである。従来の活性汚泥法(比較例1)では汚泥転換率は0.40kg−MLSS/kg−BODとなっていたが、比較例2のように多段生物処理を導入することで汚泥転換率は0.20kg−MLSS/kg−BODとなり、汚泥発生量を1/2に低減することができた。この汚泥減量効果はこれまでに報告されている多段生物処理法と同程度のものである。   Comparative Example 1 is a conventional activated sludge method, and Comparative Example 2 is a multi-stage biological treatment method that does not include a biological treatment step in an acidic region. In the conventional activated sludge method (Comparative Example 1), the sludge conversion rate was 0.40 kg-MLSS / kg-BOD, but by introducing multistage biological treatment as in Comparative Example 2, the sludge conversion rate was 0. It became 20 kg-MLSS / kg-BOD, and the sludge generation amount could be reduced to ½. This sludge reduction effect is similar to the multistage biological treatment methods reported so far.

一方、本発明のように酸性域での生物処理工程を導入した実施例1では、汚泥転換率が0.10kg−MLSS/kg−BODとなっており、従来法に比べ、発生汚泥量を1/4に、また、従来の多段生物処理法に比べて1/2に低減することができた。 On the other hand, in Example 1 were introduced biological treatment process in an acidic region as in the present invention, the sludge conversion rate 0. Has a 1 0k g-MLSS / kg- BOD, compared with the conventional method, the generation amount of sludge to 1/4, also, could be reduced to 1/2 as compared with the conventional multi-stage biological treatment process.

本発明の有機性排水の生物処理方法は、生活排水、下水、食品工場やパルプ工場をはじめとした広い濃度範囲の有機性排水の処理に利用することができる。   The biological treatment method for organic wastewater of the present invention can be used for treatment of organic wastewater in a wide concentration range including domestic wastewater, sewage, food factories and pulp factories.

本発明の第1の態様に係る有機性排水の生物処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the biological treatment method of the organic waste_water | drain which concerns on the 1st aspect of this invention. 余剰汚泥処理工程の他の実施の形態を示す系統図である。It is a systematic diagram which shows other embodiment of a surplus sludge process. 施例1で用いた実験装置を示す系統図である Is a system diagram showing an experimental apparatus used in the actual Example 1. 実施例1及び比較例1,2における投入BOD量と余剰汚泥発生量との関係を示すグラフである。Is a graph showing the relationship between the charged BOD volume and excess sludge generation amount in Example 1及 beauty Comparative Examples 1 and 2.

1,11 第一生物処理槽
2,12 第二生物処理槽
3 沈殿
1,11 First biological treatment tank 2,12 Second biological treatment tank 3 Precipitation tank

Claims (4)

有機性排水中のBODを、pH6以上の条件下にBOD容積負荷1〜20kg/m/dかつHRT(原水滞留時間)0.5〜24hで高負荷処理して分散菌体に変換する第1の生物処理工程と、
変換された分散菌体を、溶解性BOD汚泥負荷0.01〜0.5kg−BOD/kg−MLSS/dで、フロック化すると共に微小生物を共存させる第2の生物処理工程とを有する有機性排水の生物処理方法において、
該第2の生物処理工程をpH5〜5.5の条件下に行うことを特徴とする有機性排水の生物処理方法。
The BOD in the organic wastewater is converted to dispersed cells by high-load treatment at a BOD volumetric load of 1 to 20 kg / m 3 / d and HRT (raw water retention time) of 0.5 to 24 h under the condition of pH 6 or higher . 1 biological treatment process;
Organic having a second biological treatment process in which microbes are coexisted while fluctuating the converted dispersed cells with a soluble BOD sludge load of 0.01 to 0.5 kg-BOD / kg-MLSS / d In the biological treatment method of wastewater,
A method for biological treatment of organic wastewater, characterized in that the second biological treatment step is carried out under conditions of pH 5 to 5.5 .
請求項1において、前記第2の生物処理工程を2段以上の多段処理とし、該第2の生物処理工程において、pH5〜5.5の生物処理後にpH6以上の生物処理を行うことを特徴とする有機性排水の生物処理方法。 In claim 1, the second biological treatment process is a two-stage or more multistage process, in the second biological treatment process, and characterized by performing a pH6 or more biological treatment after the biological treatment of pH 5 to 5.5 Biological treatment method for organic wastewater. 請求項1又は2において、前記第2の生物処理工程が、生物処理槽の後段に固液分離手段を設け、固液分離された汚泥を該生物処理槽に返送する汚泥返送式生物処理工程、生物処理槽内に担体を添加した流動床式生物処理工程、又は膜分離式生物処理工程であることを特徴とする有機性排水の生物処理方法。   In Claim 1 or 2, the said 2nd biological treatment process provides a solid-liquid separation means in the latter part of a biological treatment tank, and returns the sludge solid-liquid separated to this biological treatment tank, The sludge return type biological treatment process, A biological treatment method for organic wastewater, which is a fluidized bed biological treatment step in which a carrier is added to a biological treatment tank or a membrane separation biological treatment step. 請求項1ないし3のいずれか1項において、前記第1の生物処理工程を、生物処理槽内に担体を添加した流動床式生物処理、又は2段以上の多段処理により行うことを特徴とする有機性排水の生物処理方法。   The first biological treatment step according to any one of claims 1 to 3, wherein the first biological treatment step is performed by a fluidized bed biological treatment in which a carrier is added to a biological treatment tank or a multistage treatment of two or more stages. Biological treatment method for organic wastewater.
JP2004025702A 2004-02-02 2004-02-02 Biological treatment method for organic wastewater Expired - Fee Related JP4474930B2 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
JP2004025702A JP4474930B2 (en) 2004-02-02 2004-02-02 Biological treatment method for organic wastewater
EP05719056A EP1712525A4 (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
KR1020117026714A KR20110139312A (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
PCT/JP2005/000891 WO2005073134A1 (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
KR1020117026709A KR101190400B1 (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
EP20120152091 EP2447222A3 (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
AU2005209522A AU2005209522B2 (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
KR1020117026711A KR101162474B1 (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
KR1020117026716A KR101215912B1 (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
CN2005800038510A CN1914122B (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water
KR20067016491A KR101170571B1 (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
CN2008101316311A CN101328001B (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus thereof
CN2008101757973A CN101456645B (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
EP20120152096 EP2447223A3 (en) 2004-02-02 2005-01-25 Process for biological treatment of organic waste water and apparatus therefor
TW94103098A TW200528403A (en) 2004-02-02 2005-02-01 Process for biological treatment of organic waste water and apparatus therefor
TW100137146A TW201204646A (en) 2004-02-02 2005-02-01 Process for biological treatment of organic waste water and apparatus therefor
TW100137145A TW201204645A (en) 2004-02-02 2005-02-01 Process for biological treatment of organic waste water and apparatus therefor
TW100137149A TW201204648A (en) 2004-02-02 2005-02-01 Process for biological treatment of organic waste water and apparatus therefor
TW100137147A TW201204647A (en) 2004-02-02 2005-02-01 Process for biological treatment of organic waste water and apparatus therefor
US11/485,429 US7332084B2 (en) 2004-02-02 2006-07-13 Process for biological treatment of organic wastewater and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004025702A JP4474930B2 (en) 2004-02-02 2004-02-02 Biological treatment method for organic wastewater

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009268609A Division JP5170069B2 (en) 2009-11-26 2009-11-26 Biological treatment method for organic wastewater

Publications (2)

Publication Number Publication Date
JP2005211879A JP2005211879A (en) 2005-08-11
JP4474930B2 true JP4474930B2 (en) 2010-06-09

Family

ID=34908014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004025702A Expired - Fee Related JP4474930B2 (en) 2004-02-02 2004-02-02 Biological treatment method for organic wastewater

Country Status (2)

Country Link
JP (1) JP4474930B2 (en)
CN (3) CN1914122B (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501496B2 (en) * 2004-03-30 2010-07-14 栗田工業株式会社 Biological treatment method for organic wastewater
JP4492268B2 (en) * 2004-09-16 2010-06-30 栗田工業株式会社 Biological treatment equipment
JP4892917B2 (en) * 2005-10-12 2012-03-07 栗田工業株式会社 Biological treatment method and apparatus for organic wastewater
BRPI0706720B1 (en) * 2006-01-25 2017-12-12 Kuraray Co., Ltd. WASTEWATER TREATMENT METHOD
CN101374772B (en) * 2006-02-03 2011-09-07 栗田工业株式会社 Method of biologically treating organic waste water
JP2007296499A (en) * 2006-05-08 2007-11-15 Japan Organo Co Ltd Waste water treatment method
JP5103796B2 (en) * 2006-06-09 2012-12-19 栗田工業株式会社 Biological treatment accelerator for wastewater and biological treatment method for wastewater using the same
JP4872757B2 (en) * 2007-03-30 2012-02-08 栗田工業株式会社 Multistage biological treatment apparatus and multistage biological treatment method
JP5092797B2 (en) * 2008-02-28 2012-12-05 栗田工業株式会社 Biological treatment method and apparatus for organic wastewater
JP5935236B2 (en) * 2010-03-31 2016-06-15 栗田工業株式会社 Biological treatment method and apparatus for organic wastewater
EP2560922A4 (en) * 2010-04-21 2015-10-07 Evoqua Water Technologies Pte Ltd Methods and systems for treating wastewater
US9359236B2 (en) 2010-08-18 2016-06-07 Evoqua Water Technologies Llc Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle
JP5746853B2 (en) * 2010-12-10 2015-07-08 オルガノ株式会社 Waste water treatment apparatus and waste water treatment method
JP5767854B2 (en) * 2011-05-16 2015-08-19 日鉄住金環境株式会社 Organic wastewater treatment method
WO2013103124A1 (en) * 2012-01-06 2013-07-11 栗田工業株式会社 Biological treatment method and device for organic wastewater
JP2013202579A (en) * 2012-03-29 2013-10-07 Nippon Steel & Sumikin Eco-Tech Corp Biological treatment method for organic wastewater
JP5895663B2 (en) * 2012-03-30 2016-03-30 栗田工業株式会社 Biological treatment method for organic wastewater
WO2015045094A1 (en) * 2013-09-27 2015-04-02 栗田工業株式会社 Organic wastewater biological treatment method
JP6512559B2 (en) * 2014-07-29 2019-05-15 日之出産業株式会社 Biological treatment method and biological treatment apparatus
CN105198094B (en) * 2015-10-22 2017-06-20 黄河三角洲京博化工研究院有限公司 A kind of method of intensive treatment industry phenol wastewater high
JP6622093B2 (en) * 2016-01-12 2019-12-18 オルガノ株式会社 Granule formation method and waste water treatment method
TWI582050B (en) * 2016-07-01 2017-05-11 Yan-Xing Wu Sludge no row (sewage) recovery of biological, physical degradation of regeneration methods
CN109231711B (en) * 2018-11-06 2021-05-18 江苏澳洋生态园林股份有限公司 Black and odorous river sewage treatment system and method
JP7255342B2 (en) * 2019-04-24 2023-04-11 王子ホールディングス株式会社 Water treatment device and water treatment method
JP7181250B2 (en) * 2020-05-19 2022-11-30 水ing株式会社 Organic wastewater treatment method and organic wastewater treatment apparatus
JP7181251B2 (en) * 2020-05-19 2022-11-30 水ing株式会社 Organic wastewater treatment method and organic wastewater treatment apparatus
CN113185015A (en) * 2021-05-14 2021-07-30 咸阳师范学院 Method and equipment for treating sewage containing heavy metal ions

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3507388A1 (en) * 1985-03-02 1986-09-04 Böhnke, Botho, Prof. Dr.-Ing., 5100 Aachen Process for purifying waste water
GB9323870D0 (en) * 1993-11-19 1994-01-05 Ea Tech Ltd Methods and apparatus for using micro-organisms to treat organic material found in waste water
JP3360076B2 (en) * 1997-08-07 2002-12-24 独立行政法人産業技術総合研究所 Organic wastewater treatment method
CN1271691A (en) * 1999-04-28 2000-11-01 辽宁中绿环境工程有限公司 Two-stage aerobic biological process for treating sewage
CN1413926A (en) * 2001-10-24 2003-04-30 杨造燕 Sewage treatment process and its system

Also Published As

Publication number Publication date
JP2005211879A (en) 2005-08-11
CN101456645A (en) 2009-06-17
CN1914122A (en) 2007-02-14
CN101456645B (en) 2013-07-10
CN101328001B (en) 2012-12-12
CN1914122B (en) 2012-09-05
CN101328001A (en) 2008-12-24

Similar Documents

Publication Publication Date Title
JP4474930B2 (en) Biological treatment method for organic wastewater
KR101215912B1 (en) Process for biological treatment of organic waste water and apparatus therefor
KR20060136451A (en) Process for biological treatment of organic waste water and apparatus therefor
JP5092797B2 (en) Biological treatment method and apparatus for organic wastewater
JP4892917B2 (en) Biological treatment method and apparatus for organic wastewater
MOHSENI et al. Biological treatment of dairy wastewater by sequencing batch reactor
JP4501496B2 (en) Biological treatment method for organic wastewater
JP5862597B2 (en) Biological treatment method and apparatus for organic wastewater
JP4572587B2 (en) Biological treatment method for organic wastewater
JP5170069B2 (en) Biological treatment method for organic wastewater
JP2006247494A (en) Biological treatment method and apparatus of organic wastewater
JP4417087B2 (en) Sludge reduction method and apparatus using humus
JP4967225B2 (en) Biological treatment method for organic wastewater
WO2015045094A1 (en) Organic wastewater biological treatment method
JP5948651B2 (en) Surplus sludge generation suppression method and organic wastewater treatment method
CN204689821U (en) A kind of containing zinc waste disposal plant
JP2004188356A (en) Treatment method of organic waste water
JP3836718B2 (en) Organic wastewater treatment method and treatment apparatus
JP2002136988A (en) Method and apparatus for treating organic wastewater
KR19980068749U (en) Active slotting method by hexagonal structure number

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

R150 Certificate of patent or registration of utility model

Ref document number: 4474930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees