JP2001314885A - High load biological treatment method - Google Patents

High load biological treatment method

Info

Publication number
JP2001314885A
JP2001314885A JP2000142329A JP2000142329A JP2001314885A JP 2001314885 A JP2001314885 A JP 2001314885A JP 2000142329 A JP2000142329 A JP 2000142329A JP 2000142329 A JP2000142329 A JP 2000142329A JP 2001314885 A JP2001314885 A JP 2001314885A
Authority
JP
Japan
Prior art keywords
bod
load
reaction
sludge
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000142329A
Other languages
Japanese (ja)
Other versions
JP3399443B2 (en
Inventor
Tomoaki Tanaka
倫明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000142329A priority Critical patent/JP3399443B2/en
Publication of JP2001314885A publication Critical patent/JP2001314885A/en
Application granted granted Critical
Publication of JP3399443B2 publication Critical patent/JP3399443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high load biological treatment method capable of treating a liquid to be treated without filling a high load reaction tank with a carrier to prevent the reduction of an effective volume to enable high load treatment and capable of removing organic matter stably and efficiently, capable of forming sludge good in solid-liquid separability. SOLUTION: The liquid 11 to be treated is introduced into a first aeration tank 1 to be brought into contact with microorganisms under an aerobic condition to decompose organic matter with high BOD load and further introduced into a second aeration tank 2 to decompose organic matter with high BOD load so that a soluble BOD removing ratio becomes 50% or more and a soluble BOD concentration becomes 50-10,000 mg/L. Thereafter, the liquid to be treated is introduced into a third aeration tank 3 filled with a carrier 21 not only to decompose organic matter with low BOD load but also to flucculate sludge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は好気性下に有機物を
除去するための高負荷生物処理方法に関するものであ
る。
The present invention relates to a high-load biological treatment method for removing organic substances under aerobic conditions.

【0002】[0002]

【従来の技術】BOD成分を生物分解するための活性汚
泥法は、被処理液を活性汚泥と混合、曝気してBOD成
分を好気的に分解し、固液分離により処理水を得るとと
もに汚泥を返送する方法であり、装置および操作が簡単
で、現在最も広く用いられている処理方法である。しか
し、BOD容積負荷が1.5kg/m3/d以上となる
高負荷での処理は難しく、大きな反応槽に対し、広い設
置スペースが必要であるという問題がある。完全混合反
応槽に代表される低溶解性BOD濃度の反応槽において
単に高負荷処理を行うと、糸状性細菌が優占となってバ
ルキングを起こし、固液分離工程での固液分離が困難と
なり、処理液にSSが流出する。これを防止するために
は前段に高負荷の反応槽を設置することが有効とされて
いる。
2. Description of the Related Art In an activated sludge method for biodegrading a BOD component, a liquid to be treated is mixed with activated sludge and aerated to aerobically decompose the BOD component to obtain treated water by solid-liquid separation and to obtain sludge. This method is simple and easy to use, and is the most widely used processing method at present. However, it is difficult to perform treatment under a high load in which the BOD volume load is 1.5 kg / m 3 / d or more, and there is a problem that a large installation space is required for a large reaction tank. If a high-load treatment is simply performed in a reaction vessel having a low solubility BOD concentration represented by a complete mixing reaction vessel, filamentous bacteria will dominate and cause bulking, making solid-liquid separation in the solid-liquid separation process difficult. Then, SS flows out into the processing solution. In order to prevent this, it is effective to install a high-load reaction tank in the preceding stage.

【0003】そこで、高BOD負荷で処理を行って、少
ない反応槽容積で、安定して効率よくBOD除去を行う
ことができるとともに、固液分離性の良好な汚泥を形成
することができる高負荷生物処理方法が提案されている
(例えば特開2000−42584号)。図3は特開2
000−42584号に記載されている高負荷生物処理
装置の系統図である。
[0003] Therefore, by performing treatment with a high BOD load, it is possible to stably and efficiently remove BOD with a small reaction tank volume, and to form a sludge with good solid-liquid separation properties. A biological treatment method has been proposed (for example, JP-A-2000-42584). FIG.
1 is a system diagram of a high-load biological treatment device described in 000-42584.

【0004】図3において、第1および第2反応槽3
1、32はそれぞれ散気装置34、35を備え、それぞ
れ送気路36、37に連絡し、好気性処理を行うように
構成されている。第1反応槽31には被処理液路41お
よび返送汚泥路42が連絡している。第1および第2反
応槽31、32および固液分離槽33はライン43、4
4で連絡している。固液分離槽33には上部に処理液路
45が連絡し、下部に汚泥路46が連絡し、汚泥路46
は返送汚泥路42および排汚泥路47に分岐している。
In FIG. 3, first and second reaction tanks 3 are provided.
Numerals 1 and 32 are provided with air diffusers 34 and 35, respectively, and are configured to communicate with air supply paths 36 and 37, respectively, to perform aerobic treatment. A liquid passage 41 to be treated and a sludge return line 42 are in communication with the first reaction tank 31. The first and second reaction tanks 31, 32 and the solid-liquid separation tank 33 are connected to lines 43, 4
Contact 4 A treatment liquid passage 45 communicates with the solid-liquid separation tank 33 at the upper part, and a sludge passage 46 communicates with the lower part.
Is branched into a return sludge passage 42 and a waste sludge passage 47.

【0005】第1および第2反応槽31、32にはそれ
ぞれ粒状担体51、52が充填され、また担体分離用ス
クリーン53、54が設けられている。担体充填率は第
1反応槽31が低充填率、第2反応槽32が高充填率と
なっている。第1反応槽31の後段に第2反応槽32が
直列に設置され、BODの大部分は第1反応槽31で分
解される。これにより第1反応槽31はBOD負荷が高
く、第2反応槽32はBOD負荷が低い。
The first and second reaction tanks 31 and 32 are filled with granular carriers 51 and 52, respectively, and are provided with screens 53 and 54 for separating carriers. Regarding the carrier filling rate, the first reaction tank 31 has a low filling rate, and the second reaction tank 32 has a high filling rate. A second reaction tank 32 is installed in series at a stage subsequent to the first reaction tank 31, and most of the BOD is decomposed in the first reaction tank 31. Thus, the first reaction tank 31 has a high BOD load, and the second reaction tank 32 has a low BOD load.

【0006】上記の装置による従来の処理方法は、まず
第1反応工程として第1反応槽31に被処理液路41お
よび返送汚泥路42からそれぞれ被処理液および返送汚
泥を導入して槽内の活性汚泥と混合し、送気路36から
空気を送って散気装置34から曝気し、担体51に微生
物を付着させて好気性生物反応によりBODの分解を行
う。
In the conventional treatment method using the above-described apparatus, first, as a first reaction step, a liquid to be treated and returned sludge are introduced into a first reaction tank 31 from a liquid passage 41 and a return sludge passage 42, respectively. It mixes with the activated sludge, sends air from the air supply passage 36 to aerate from the air diffuser 34, attaches microorganisms to the carrier 51, and decomposes BOD by an aerobic biological reaction.

【0007】担体51を添加率が5〜30%、好ましく
は10〜20%となるように充填することにより、種々
の微生物が担体に保持されて処理が安定化する。ここで
BOD負荷が2〜100kg/m3/d、好ましくは1
0〜50kg/m3/dとなるような高濃度BOD負荷
により微生物は増殖し、効率よくBODは除去される。
増殖する微生物の大部分は担体51に保持されないで浮
遊する。スクリーン53により担体51を分離して混合
液を第2反応槽32に送り、第2反応工程を行う。
[0007] By filling the carrier 51 with an addition rate of 5 to 30%, preferably 10 to 20%, various microorganisms are held on the carrier and the treatment is stabilized. Here, the BOD load is 2 to 100 kg / m 3 / d, preferably 1
Microorganisms proliferate under high-concentration BOD loading of 0 to 50 kg / m 3 / d, and BOD is efficiently removed.
Most of the growing microorganisms float without being held by the carrier 51. The carrier 51 is separated by the screen 53 and the mixed solution is sent to the second reaction tank 32 to perform the second reaction step.

【0008】第2反応工程では、第1反応槽31の混合
液はライン43から第2反応槽32に導入して槽内の活
性汚泥と混合し、送気路37から空気を送って散気装置
35から曝気して、担体52に微生物を付着させ、好気
性生物反応によりBODの分解を行うとともに、活性汚
泥をフロック化する。第2反応槽32におけるBOD負
荷は0.1kg/m3/d以上2kg/m3/d未満、好
ましくは0.5〜1kg/m3/dであり、微生物の付
着した担体52の存在下に曝気を行うことにより、BO
D除去されるとともに、第1反応槽31から導入される
分散性の汚泥はフロック化する。過剰に付着した汚泥は
剥離して汚泥フロックとなる。スクリーン54により担
体52を分離して混合液を固液分離槽33に送り固液分
離工程を行う。
In the second reaction step, the liquid mixture in the first reaction tank 31 is introduced into the second reaction tank 32 through a line 43 and mixed with the activated sludge in the tank. Aeration is performed from the device 35 to attach microorganisms to the carrier 52, decompose BOD by an aerobic biological reaction, and floc the activated sludge. BOD load 0.1 kg / m 3 / d or more 2 kg / m 3 / under d in the second reaction vessel 32, preferably 0.5~1kg / m 3 / d, the presence of the support 52 adhering microorganisms Aeration of the BO
D is removed and the dispersible sludge introduced from the first reaction tank 31 is flocculated. Excess sludge is separated and becomes sludge floc. The carrier 52 is separated by the screen 54 and the mixed liquid is sent to the solid-liquid separation tank 33 to perform a solid-liquid separation step.

【0009】固液分離工程は、第2反応槽32の混合液
をライン44から固液分離槽33に導入して固液分離
し、分離液を処理液として処理液路45から取り出し、
汚泥は汚泥路46から取り出し、一部は返送汚泥として
返送汚泥路42から返送し、残部は余剰汚泥として排汚
泥路47から取り出す。
In the solid-liquid separation step, the mixed liquid in the second reaction tank 32 is introduced into the solid-liquid separation tank 33 from the line 44 to be separated into solid and liquid, and the separated liquid is taken out from the processing liquid passage 45 as a processing liquid.
The sludge is taken out from the sludge passage 46, a part is returned from the returned sludge passage 42 as returned sludge, and the remaining portion is taken out from the waste sludge passage 47 as surplus sludge.

【0010】上記の従来の処理方法では、第1反応槽3
1に低充填率で担体51を充填して高BOD負荷で曝気
し、第2反応槽32に高充填率で担体52を充填し、低
BOD負荷で曝気することにより高負荷で処理を行っ
て、少ない反応槽容積で、安定して効率よくBOD除去
を行うことができるとともに、固液分離性の良好な汚泥
を形成することができる。
In the above conventional processing method, the first reaction tank 3
1 is filled with the carrier 51 at a low filling rate and aerated at a high BOD load, and the second reaction tank 32 is filled with the carrier 52 at a high filling rate and aerated at a low BOD load to perform processing at a high load. In addition, BOD can be stably and efficiently removed with a small reaction tank volume, and sludge having good solid-liquid separation properties can be formed.

【0011】しかし、高BOD負荷で処理を行う第1反
応槽に担体を充填しているため、高負荷反応槽の有効容
積が担体に消費されて減少する。一方、第1反応槽に担
体を充填しないで単に高負荷で処理を行うと、糸状性細
菌の防止効果が不安定で、特に水質の変動に対してバル
キング防止効果を維持することが難しい。
[0011] However, since the first reaction vessel for processing under a high BOD load is filled with the carrier, the effective volume of the high-load reaction vessel is consumed by the carrier and decreases. On the other hand, if the treatment is simply performed under a high load without filling the first reaction tank with the carrier, the effect of preventing filamentous bacteria is unstable, and it is difficult to maintain the effect of preventing bulking, especially against fluctuations in water quality.

【0012】[0012]

【発明が解決しようとする課題】本発明の課題は、高負
荷反応槽に担体を充填しないで処理することができ、こ
れにより有効容積の減少を防止して高負荷で処理するこ
とができ、しかも安定して効率よく有機物の除去を行う
ことができるとともに、固液分離性の良好な汚泥を形成
することができる高負荷生物処理方法を提案することで
ある。
SUMMARY OF THE INVENTION An object of the present invention is to enable high-load reaction tanks to be processed without being filled with a carrier, thereby preventing a reduction in effective volume and performing high-load processing. Moreover, an object of the present invention is to propose a high-load biological treatment method capable of stably and efficiently removing organic substances and forming sludge having good solid-liquid separation properties.

【0013】[0013]

【課題を解決するための手段】本発明は次の高負荷生物
処理方法である。 (1) 反応槽に有機性排液を導入し、好気性下に微生
物と接触させ、溶解性BOD除去率が50%以上、かつ
溶解性BOD濃度が50〜10000mg/Lとなるよ
うに有機物の分解を高BOD負荷で行う第1の反応工程
と、微生物保持担体を充填した反応槽に第1の反応工程
の流出液を導入し、担体に微生物を付着させて好気性下
に有機物の分解を低BOD負荷で行うとともに、汚泥を
フロック化する第2の反応工程と、第2の反応工程の流
出液を固液分離する固液分離工程とを含む高負荷生物処
理方法。 (2) 第1の反応工程のBOD負荷が汚泥負荷として
2〜40kg−BOD/kg−VSS/dであり、第2
の反応工程のBOD負荷が汚泥負荷として0.01〜
0.5kg−BOD/kg−VSS/dである上記
(1)記載の高負荷生物処理方法。 (3) 第1の反応工程を、直列に接続した2個以上の
反応槽で行う上記(1)または(2)記載の高負荷生物
処理方法。 (4) 第1の反応槽に導入する有機性排液の窒素濃度
が、有機性排液の溶解性BOD濃度の1/10以下であ
る上記(1)ないし(3)のいずれかに記載の高負荷生
物処理方法。
The present invention is the following high-load biological treatment method. (1) An organic wastewater is introduced into a reaction tank and brought into contact with microorganisms under aerobic conditions, and the organic matter is removed so that the soluble BOD removal rate is 50% or more and the soluble BOD concentration is 50 to 10,000 mg / L. A first reaction step in which decomposition is performed at a high BOD load, and an effluent of the first reaction step is introduced into a reaction tank filled with a microorganism-holding carrier, and microorganisms are attached to the carrier to decompose organic substances under aerobic conditions. A high-load biological treatment method which is performed at a low BOD load and includes a second reaction step of flocking sludge, and a solid-liquid separation step of solid-liquid separation of an effluent of the second reaction step. (2) The BOD load in the first reaction step is 2 to 40 kg-BOD / kg-VSS / d as the sludge load,
BOD load in the reaction step of
The high-load biological treatment method according to the above (1), which is 0.5 kg-BOD / kg-VSS / d. (3) The high-load biological treatment method according to (1) or (2), wherein the first reaction step is performed in two or more reaction vessels connected in series. (4) The method according to any one of (1) to (3) above, wherein the nitrogen concentration of the organic effluent introduced into the first reaction tank is 1/10 or less of the soluble BOD concentration of the organic effluent. High load biological treatment method.

【0014】本発明において処理の対象となる有機性排
液(以下、被処理液という場合がある)は、通常の好気
性生物処理法により処理される有機物を含有する排液で
あるが、難生物分解性の有機物または無機物が含有され
ていてもよく、またアンモニア性窒素または有機性窒素
等が含有されていてもよい。このような有機性排液とし
ては、下水、し尿、食品工場排水、化学工場排水その他
の産業排液などがあげられる。
In the present invention, the organic effluent to be treated (hereinafter sometimes referred to as a liquid to be treated) is an effluent containing an organic substance to be treated by a usual aerobic biological treatment method, but is difficult. A biodegradable organic or inorganic substance may be contained, and ammonia nitrogen or organic nitrogen may be contained. Such organic effluents include sewage, night soil, food factory effluent, chemical factory effluent, and other industrial effluents.

【0015】有機性排液の溶解性BOD濃度は200〜
20000mg/L、好ましくは500〜10000m
g/L、さらに好ましくは1000〜5000mg/L
であるのが望ましい。また有機性排液の窒素濃度(T−
N)は溶解性BOD濃度の1/10以下、好ましくは1
/20以下であるのが望ましい。窒素濃度が溶解性BO
D濃度の1/10以下にある場合、微生物による硝化脱
窒反応から生じる窒素ガスの発生量が少なくなるので、
固液分離工程における窒素ガスによる汚泥浮上に起因す
る固液分離不良は防止される。すなわち、被処理液に含
まれる窒素は有機物分解の過程で微生物に取り込まれ消
費される。一般には、BOD100に対して5程度の窒
素が取り込まれる。この結果、第2の反応工程の反応槽
において硝化菌の増殖が制限され、第2の反応工程の反
応槽に添加した微生物担持担体が硝化菌ではなくフロッ
ク化に寄与する原生動物や難分解性有機物の分解に寄与
する微生物などの保持に有効に利用される。逆に、BO
Dに対して窒素が過剰に含まれている場合、例えば溶解
性BOD濃度の1/10を超える場合は、硝化菌の増殖
により硝酸態、亜硝酸態窒素が増加し、固液分離槽にお
いて脱窒反応で生成した窒素ガスによる汚泥浮上の問題
を生じる恐れがある。固液分離槽において窒素ガスによ
る汚泥浮上が生じる場合には、別途窒素除去手段を併設
する必要が生じる。
The soluble BOD concentration of the organic effluent is 200 to
20000 mg / L, preferably 500 to 10000 m
g / L, more preferably 1000-5000 mg / L
It is desirable that Also, the nitrogen concentration (T-
N) is 1/10 or less of the soluble BOD concentration, preferably 1
/ 20 or less is desirable. Nitrogen concentration is soluble BO
When the concentration is less than 1/10 of the D concentration, the amount of nitrogen gas generated from the nitrification and denitrification reaction by the microorganisms is reduced.
Poor solid-liquid separation caused by sludge floating due to nitrogen gas in the solid-liquid separation step is prevented. That is, the nitrogen contained in the liquid to be treated is taken up by the microorganisms and consumed in the process of decomposing the organic matter. Generally, about 5 nitrogen is taken into BOD100. As a result, the growth of nitrifying bacteria is restricted in the reaction tank of the second reaction step, and the microorganism-carrying carrier added to the reaction tank of the second reaction step is not a nitrifying bacterium but a protozoan or a hardly degradable substance that contributes to flocking. It is effectively used for retaining microorganisms that contribute to the decomposition of organic matter. Conversely, BO
When nitrogen is excessively contained relative to D, for example, when the concentration exceeds 1/10 of the soluble BOD concentration, nitrate and nitrite nitrogen increase due to the growth of nitrifying bacteria, and denitrification occurs in the solid-liquid separation tank. There is a possibility that sludge floating problem may occur due to nitrogen gas generated by the nitrogen reaction. If sludge floating due to nitrogen gas occurs in the solid-liquid separation tank, it is necessary to additionally provide nitrogen removing means.

【0016】本発明において第1および第2の反応工程
の反応槽、曝気手段および固液分離手段は基本的には従
来のものと同じ構成のものが使用でき、本発明ではこの
ような従来の装置において、第1の反応工程の反応槽に
は微生物保持担体を充填せず、第2の反応工程の反応槽
に微生物保持担体を充填し、処理を行うことができる。
In the present invention, the reaction tank, the aeration means and the solid-liquid separation means of the first and second reaction steps can be basically of the same construction as the conventional one. In the apparatus, the reaction vessel in the first reaction step is not filled with the microorganism-holding carrier, and the reaction vessel in the second reaction step is filled with the microorganism-holding carrier to perform the treatment.

【0017】第1の反応工程の反応槽は被処理液を導入
し、曝気手段で曝気して好気性下に微生物と接触させ、
有機物を分解する。第1の反応工程の反応槽では主とし
て溶解性BODを高BOD負荷で分解する。曝気手段と
しては散気管のような通常の散気装置でもよいが、可能
な限り酸素溶解効率を高めるものが好ましく、機械的に
気泡を細断して分散させるもの、下降管に液とともに空
気を送り込んで微細化するもの、純酸素もしくは酸素濃
度を高めた空気を送りこむもの、または加圧溶解するも
のなどを使用することもできる。第1の反応工程の反応
槽は液を循環して酸素溶解効率を高めるのが好ましい。
In the reaction tank of the first reaction step, the liquid to be treated is introduced, aerated by aeration means and brought into contact with microorganisms under aerobic conditions,
Decompose organic matter. In the reaction tank of the first reaction step, soluble BOD is mainly decomposed at a high BOD load. As the aeration means, a normal air diffuser such as an air diffuser may be used.However, it is preferable to increase the oxygen dissolving efficiency as much as possible. It is also possible to use a material that is sent to be refined, a device that sends pure oxygen or air with an increased oxygen concentration, or a material that is dissolved under pressure. It is preferable that the reaction tank in the first reaction step circulates the liquid to increase the oxygen dissolving efficiency.

【0018】第1の反応工程の反応槽では溶解性BOD
除去率が50%以上、好ましくは70〜95%、かつ溶
解性BOD濃度が50〜10000mg/L、好ましく
は100〜1000mg/Lとなるように有機物の分解
を高BOD負荷で行う。上記溶解性BOD除去率は負荷
の除去率であり、次の数式〔1〕から求められる値であ
る。
In the reaction tank of the first reaction step, soluble BOD
Organic substances are decomposed at a high BOD load so that the removal rate is 50% or more, preferably 70 to 95%, and the soluble BOD concentration is 50 to 10000 mg / L, preferably 100 to 1000 mg / L. The soluble BOD removal rate is a load removal rate, and is a value obtained from the following equation [1].

【0019】[0019]

【数1】 溶解性BOD除去率(%) ={(C1×Q+C3×RQ−C2×(Q+RQ))/(C1×Q)}×100 …〔1〕 〔式中、C1は被処理液の溶解性BOD濃度(kg/
3)、C2は第1の反応工程の処理液の溶解性BOD濃
度(kg/m3)、C3は最終処理液の溶解性BOD濃度
(kg/m3)、Qは被処理液量(m3/d)、RQは返
送汚泥量(m3/d)を示す。〕 なお溶解性BOD濃度は、下水試験方法(社団法人日本
下水道協会、1997)に定められた溶解性物質に対し
て測定されるBOD濃度である。
[Number 1] Solubility BOD removal rate (%) = {(C 1 × Q + C 3 × RQ-C 2 × (Q + RQ)) / (C 1 × Q)} × 100 ... (1) wherein, C 1 Is the soluble BOD concentration (kg /
m 3 ), C 2 is the soluble BOD concentration (kg / m 3 ) of the treatment liquid in the first reaction step, C 3 is the soluble BOD concentration (kg / m 3 ) of the final treatment liquid, and Q is the liquid to be treated. The amount (m 3 / d) and RQ indicate the amount of returned sludge (m 3 / d). The soluble BOD concentration is a BOD concentration measured for a soluble substance specified in a sewage test method (Japan Sewage Works Association, 1997).

【0020】第1の反応工程の流出液(第1の反応工程
の処理液)の溶解性BOD濃度が前記範囲にある場合、
高い負荷で反応させることにより、例えば多段式エジェ
クターのような酸素溶解効率を高めた散気装置を用いて
酸素を供給しながら高い負荷で反応させることにより、
反応槽に微生物担持担体を添加しなくても、高BOD濃
度に適した微生物の増殖速度が糸状性細菌の増殖速度を
上回り、高い分解活性を得ることができる。
When the soluble BOD concentration of the effluent of the first reaction step (the processing solution of the first reaction step) is within the above range,
By reacting at a high load, for example, by reacting at a high load while supplying oxygen using a diffuser with increased oxygen dissolving efficiency such as a multi-stage ejector,
Even without adding a microorganism-carrying carrier to the reaction tank, the growth rate of microorganisms suitable for a high BOD concentration exceeds the growth rate of filamentous bacteria, and high decomposition activity can be obtained.

【0021】第1の反応工程では、高負荷処理により糸
状性細菌の優占を抑えながら溶解性BODの50%以
上、好ましくは70〜95%を除去し、溶解性BOD濃
度が50〜10000mg/L、好ましくは100〜1
000mg/Lの流出液を得る。上記のような溶解性B
OD除去率および溶解性BOD濃度の流出液が得られる
ように第1の反応を行うことにより、第1の反応工程に
おいて高負荷処理に適した菌相を維持することができ、
しかも第2の反応工程においても糸状性細菌の優占を防
止することができる。そして第2の反応工程の反応槽内
に添加された微生物担持担体に保持された微生物によ
り、有機物が分解されるとともにフロック化が進み、有
機物濃度、SS濃度ともに低い良好な処理水を得ること
ができる。
In the first reaction step, 50% or more, preferably 70% to 95%, of the soluble BOD is removed while suppressing the dominance of filamentous bacteria by high-load treatment, and the soluble BOD concentration is 50 to 10000 mg / day. L, preferably 100-1
An effluent of 000 mg / L is obtained. Solubility B as described above
By performing the first reaction so as to obtain an effluent having an OD removal rate and a soluble BOD concentration, it is possible to maintain a bacterial flora suitable for high-load treatment in the first reaction step,
In addition, dominance of filamentous bacteria can be prevented in the second reaction step. The organic matter is decomposed by the microorganisms held in the microorganism-carrying carrier added in the reaction tank of the second reaction step, and flocculation proceeds, so that good treated water having a low organic matter concentration and a low SS concentration can be obtained. it can.

【0022】上記のような溶解性BOD除去率および溶
解性BOD濃度の流出液が得られるように第1の反応を
行うには、予め負荷条件を変えて溶解性BOD負荷の5
0%以上が除去でき、かつ溶解性BOD濃度が50〜1
0000mg/Lとなる汚泥負荷条件を求めることによ
り行うことができる。第1の反応工程で上記のような溶
解性BOD除去率および溶解性BOD濃度の流出液が得
られる負荷は被処理液の水温、有機物量、BOD濃度な
どにより異なるが、汚泥負荷として2〜40kg−BO
D/kg−VSS/d、好ましくは3〜10kg−BO
D/kg−VSS/dとするのが望ましい。
In order to carry out the first reaction so as to obtain an effluent having the above-described soluble BOD removal rate and soluble BOD concentration, the loading conditions are changed in advance to reduce the soluble BOD load by 5%.
0% or more can be removed and the soluble BOD concentration is 50-1
It can be performed by obtaining a sludge load condition of 0000 mg / L. The load at which the effluent having the above-described soluble BOD removal rate and soluble BOD concentration is obtained in the first reaction step varies depending on the water temperature of the liquid to be treated, the amount of organic substances, the BOD concentration, and the like. -BO
D / kg-VSS / d, preferably 3 to 10 kg-BO
D / kg−VSS / d is desirable.

【0023】第1の反応工程は1個の反応槽で行っても
よいが、複数の反応槽で行うのが好ましい。複数の反応
槽を設ける場合、反応槽は並列的に設けてもよく、また
直列的(段階的)に設けてもよいが、直列的に設けるの
が好ましい。第1の反応工程を複数の反応槽で行うこと
により、特に直列に設けられた複数の反応槽で行うこと
により、被処理液の水質が変動する場合にも容易に安定
して第1の反応工程を行うことができる。第1の反応工
程を複数、例えば直列に設けた2個の反応槽で行う場
合、溶解性BOD除去率、溶解性BOD濃度および汚泥
負荷は2個の反応槽全体で上記範囲となるようにすれば
よく、好ましくは1番目の反応槽をより高負荷とするこ
とにより糸状性細菌が優占することによるバルキングを
防止するとともに、2番目の反応槽の負荷をやや低めと
し、溶解性BODの除去率および第1の反応工程からの
流出液の溶解性BOD濃度が確実に上記範囲となるよう
十分に反応を行うことが望ましい。
The first reaction step may be performed in one reaction tank, but is preferably performed in a plurality of reaction tanks. When a plurality of reaction vessels are provided, the reaction vessels may be provided in parallel or in series (stepwise), but are preferably provided in series. By performing the first reaction step in a plurality of reaction tanks, particularly in a plurality of reaction tanks provided in series, the first reaction step can be easily and stably performed even when the water quality of the liquid to be treated fluctuates. Steps can be performed. When the first reaction step is performed in a plurality of, for example, two reaction tanks provided in series, the soluble BOD removal rate, the soluble BOD concentration, and the sludge load are set so as to be within the above ranges for the entire two reaction tanks. It is preferable to prevent the bulking due to the dominance of filamentous bacteria by increasing the load of the first reaction tank, and to reduce the load of the second reaction tank slightly to remove soluble BOD. It is desirable to carry out the reaction sufficiently to ensure that the rate and the soluble BOD concentration of the effluent from the first reaction step are within the above ranges.

【0024】第2の反応工程の反応槽では、溶解性BO
Dが50%以上除去され、かつ溶解性BOD濃度が50
〜10000mg/Lの第1の反応工程の流出液を導入
して第2の反応を行う。一般には第1の反応工程の反応
槽の混合液をそのまま微生物保持担体の充填された第2
の反応工程の反応槽に導入して低BOD負荷で反応を行
う。第2の反応工程の負荷は汚泥負荷として0.01〜
0.5kg−BOD/kg−VSS/d、好ましくは
0.05〜0.3kg−BOD/kg−VSS/dであ
るのが望ましい。このような負荷となるように、第2の
反応工程の反応槽の容積を大きくし、滞留時間を長くす
ることができる。
In the reaction tank of the second reaction step, soluble BO
D is removed by 50% or more, and the soluble BOD concentration is 50%.
A second reaction is carried out by introducing an effluent of the first reaction step of 〜1010000 mg / L. In general, the mixed solution in the reaction tank of the first reaction step is directly used as the second mixture filled with the microorganism holding carrier.
And the reaction is carried out with a low BOD load. The load of the second reaction step is 0.01 to
It is desirably 0.5 kg-BOD / kg-VSS / d, preferably 0.05 to 0.3 kg-BOD / kg-VSS / d. To achieve such a load, the volume of the reaction tank in the second reaction step can be increased, and the residence time can be increased.

【0025】第1の反応工程の反応槽と第2の反応工程
の反応槽の容積比は、第1の反応工程の反応槽に対し、
第2の反応工程の反応槽の容積が3〜100倍、好まし
くは5〜50倍、滞留時間HRTは第1の反応工程の反
応槽が0.1〜1200hr、好ましくは0.2〜24
hr、第2の反応工程の反応槽が0.5〜24000h
r、好ましくは1〜1200hrとすることができる。
The volume ratio of the reaction tank in the first reaction step to the reaction tank in the second reaction step is smaller than the reaction tank in the first reaction step.
The volume of the reaction vessel in the second reaction step is 3 to 100 times, preferably 5 to 50 times, and the residence time HRT is 0.1 to 1200 hours, preferably 0.2 to 24 hours in the reaction vessel in the first reaction step.
hr, the reaction tank in the second reaction step is 0.5 to 24000 h
r, preferably 1 to 1200 hr.

【0026】第2の反応工程の反応槽に充填する微生物
保持担体(以下、単に担体という場合がある)は表面お
よび/または内部に微生物を保持できるものであればそ
の材質、構造、形状、大きさ等は限定されないが、材質
としては高分子樹脂、無機物などが使用できる。また構
造的には多孔質のものが好ましく、孔径は0.5〜20
mm、好ましくは1〜5mmが好適である。形状として
は反応槽内に固定できる形状のものでもよいが、粒状で
流動できるものが好ましい。この場合粒子の形状は球
形、立方形、不定形など任意であり、粒径は流動可能な
範囲であればよいが、3〜30mm、好ましくは5〜2
0mm、比重0.5〜3.0、好ましくは0.8〜1.
2のものが好適である。
The microorganism holding carrier (hereinafter, may be simply referred to as a carrier) to be filled in the reaction tank in the second reaction step has a material, a structure, a shape, and a size as long as the microorganism can be held on the surface and / or inside. The material is not limited, but a polymer resin, an inorganic material, or the like can be used as the material. In addition, a porous structure is preferable, and the pore size is 0.5 to 20.
mm, preferably 1 to 5 mm. The shape may be a shape that can be fixed in the reaction tank, but a shape that can flow in a granular form is preferable. In this case, the shape of the particles is arbitrary such as spherical, cubic, amorphous, etc., and the particle size may be within a flowable range, but is 3 to 30 mm, preferably 5 to 2 mm.
0 mm, specific gravity 0.5-3.0, preferably 0.8-1.
Two are preferred.

【0027】第2の反応工程の反応槽における担体の充
填率は20〜90%、好ましくは30〜60%であるの
が望ましい。上記充填率は、第2の反応工程の反応槽容
積に対する微生物付着前の担体の見かけ容積の割合を示
す。第2の反応工程の反応槽は上記の担体を充填し、曝
気手段で曝気することにより担体に微生物を付着させ
る。曝気手段としては担体による閉塞が起こりにくく、
担体を流動させるのに適したものが好ましく、例えば担
体粒径より小さい穴径の散気管などが採用できる。
The packing ratio of the carrier in the reaction tank in the second reaction step is desirably 20 to 90%, preferably 30 to 60%. The above-mentioned filling rate indicates the ratio of the apparent volume of the carrier before microorganism attachment to the volume of the reaction tank in the second reaction step. The reaction vessel in the second reaction step is filled with the above-mentioned carrier, and aerated by aeration means to adhere microorganisms to the carrier. As aeration means, blockage by the carrier is unlikely to occur,
A material suitable for flowing the carrier is preferable, and for example, an air diffuser having a hole diameter smaller than the particle size of the carrier can be employed.

【0028】第2の反応工程は1個の反応槽で行っても
よく、複数の反応槽で行ってもよい。複数の反応槽を設
ける場合、担体はすべての反応槽に充填するのが好まし
いが、充填しない反応槽があってもよい。複数の反応槽
を設ける場合、反応槽は並列的に設けてもよく、また直
列的(段階的)に設けてもよいが、直列的に設けるのが
好ましい。第2の反応工程を複数の反応槽で行う場合、
第1の反応工程の処理液に含まれる分散性の汚泥のショ
ートパスを防止して汚泥を確実にフロック化させ、SS
濃度の低い良好な処理水を得る効果があり、好ましい。
第2の反応槽は、担体を分離して混合液を取り出せるよ
うに、スクリーン等の担体分離手段を設けるのが好まし
い。また第1および第2の工程の間に中間的な工程また
は他の工程が介在していてもよい。
The second reaction step may be performed in one reaction tank, or may be performed in a plurality of reaction tanks. When a plurality of reaction tanks are provided, it is preferable that the carrier is filled in all the reaction tanks, but there may be a reaction tank that is not filled. When a plurality of reaction vessels are provided, the reaction vessels may be provided in parallel or in series (stepwise), but are preferably provided in series. When performing the second reaction step in a plurality of reaction vessels,
The short path of the dispersible sludge contained in the processing solution of the first reaction step is prevented, and the sludge is surely flocculated.
This has the effect of obtaining good treated water having a low concentration, and is thus preferable.
The second reaction tank is preferably provided with a carrier separation means such as a screen so that the carrier can be separated and the mixed solution can be taken out. An intermediate step or another step may be interposed between the first and second steps.

【0029】固液分離工程の固液分離手段としては、沈
澱分離槽、加圧浮上槽、膜分離装置等の公知の固液分離
手段を用いることができ、必要に応じて分離汚泥の一部
または全量を反応槽に返送するように構成する。通常は
第1の反応工程の反応槽に返送するが、第2の反応工程
の反応槽に返送してもよくまた両方の槽に返送してもよ
い。被処理液のBOD濃度が非常に高い場合には返送を
行わなくてもよい場合もある。
As the solid-liquid separation means in the solid-liquid separation step, known solid-liquid separation means such as a sedimentation separation tank, a pressurized flotation tank, and a membrane separation device can be used. Alternatively, the whole amount is returned to the reaction tank. Usually, it is returned to the reaction tank in the first reaction step, but it may be returned to the reaction tank in the second reaction step or to both tanks. When the BOD concentration of the liquid to be treated is extremely high, the return may not be required in some cases.

【0030】上記の処理装置による処理は、第1の反応
工程として被処理液を反応槽に導入して高BOD負荷で
曝気し、溶解性BOD除去率および溶解性BOD濃度が
前記範囲となるように有機物の分解を行う。第1の反応
工程の反応槽には担体を添加しないので、担体による有
効容積の消費が起こらず、このため汚泥負荷2kg−B
OD/kg−VSS/d以上、さらには3kg−BOD
/kg−VSS/d以上の高負荷で処理することができ
る。
In the treatment by the above treatment apparatus, the liquid to be treated is introduced into the reaction tank as the first reaction step and aerated at a high BOD load so that the soluble BOD removal rate and the soluble BOD concentration fall within the above ranges. To decompose organic matter. Since no carrier is added to the reaction tank in the first reaction step, no effective volume is consumed by the carrier, and therefore, the sludge load is 2 kg-B.
OD / kg-VSS / d or more, 3kg-BOD
/ Kg-VSS / d or more.

【0031】第2の反応工程は第1の反応工程の反応槽
の混合液を反応槽に導入して低BOD負荷で曝気し、微
生物を付着させた担体が共存した状態で好気性下にBO
Dを除去するとともに、汚泥をフロック化する。第2の
反応工程の反応槽は第1の反応工程の反応槽とは逆にB
OD負荷をある程度低くし、かつ担体を添加することに
より、小さい反応槽容積で微生物のフロック化を行うこ
とができる。フロック化の過程は多くの種類の微生物が
関与し、明らかでない部分が多いが、菌体を捕食する原
生動物や増殖速度の小さい細菌が混在し、多様な種が維
持されることが必要とされ、そのために必要な汚泥滞留
時間SRTは4〜10日程度と言われている。担体を添
加することにより上記のSRTを必要とするこれら微生
物を系内に十分量維持することが可能となり、小さい反
応槽容積でフロック化が可能となる。
In the second reaction step, the mixed solution in the reaction tank in the first reaction step is introduced into the reaction tank and aerated at a low BOD load, and the BO is aerobically aerated under the presence of a carrier with microorganisms attached thereto.
D is removed and sludge is flocculated. The reaction tank of the second reaction step is opposite to the reaction tank of the first reaction step, B
By lowering the OD load to some extent and adding a carrier, it is possible to flocculate microorganisms in a small reactor volume. The process of flocking involves many types of microorganisms, and there are many parts that are not clear.However, it is necessary that protozoa that prey on the cells and bacteria with a low growth rate coexist, and that various species be maintained. It is said that the sludge retention time SRT required for that is about 4 to 10 days. By adding a carrier, it becomes possible to maintain a sufficient amount of these microorganisms requiring the above-mentioned SRT in the system, and flocking can be achieved with a small reactor volume.

【0032】ここでBOD負荷を低く設定する理由は、
第2の反応工程の反応槽内のBOD濃度を低く維持する
ことにより、担体内部の微生物まで酸素供給を可能とす
るためである。担体内部の微生物まで酸素供給が可能で
あれば、担体を大量に添加することにより必要SRTの
長い微生物を多く反応槽内に保持することができるので
好ましい。担体内部の酸素供給を好適に保つために適当
な汚泥負荷は前記範囲であり、大量の担体の内部への酸
素供給を容易にするためには、担体は粒状のものが好ま
しい。
Here, the reason for setting the BOD load low is as follows.
This is because oxygen can be supplied to microorganisms inside the carrier by keeping the BOD concentration in the reaction tank in the second reaction step low. It is preferable that oxygen can be supplied to the microorganisms inside the carrier, because a large amount of the microorganisms can be retained in the reaction tank by adding a large amount of the carrier. The appropriate sludge load for keeping the oxygen supply inside the carrier suitable is within the above range, and the carrier is preferably granular in order to facilitate the supply of oxygen to the inside of a large amount of the carrier.

【0033】このような微生物の付着した担体の存在下
に曝気を行うことにより、BODが除去されるととも
に、第1の反応工程の反応槽から導入される分散性の汚
泥はフロック化する。過剰に付着した汚泥は剥離して浮
遊フロックとなり、混合液として固液分離工程に送られ
る。また、第2の反応工程の反応槽には第1の反応工程
の反応槽で未分解の溶解性BOD、すなわち比較的難分
解性の溶解性BOD成分が常に供給されるため、担体に
は比較的難分解性の有機物を分解する微生物が集積さ
れ、処理水CODを低減することができる。
By performing aeration in the presence of such a carrier to which microorganisms are attached, BOD is removed and dispersible sludge introduced from the reaction tank in the first reaction step is flocculated. The sludge that has excessively adhered is separated into floating flocs and sent to the solid-liquid separation step as a mixed solution. In addition, since the soluble BOD that has not been decomposed in the reaction tank of the first reaction step, that is, the relatively hardly decomposable soluble BOD component is always supplied to the reaction tank of the second reaction step, Microorganisms that decompose organic substances that are hard to decompose are accumulated, and the COD of treated water can be reduced.

【0034】固液分離工程では第2の反応工程の反応槽
の混合液を固液分離し、分離液を処理液として取り出
し、分離汚泥は必要により一部または全部を第1および
/または第2の反応工程の反応槽に返送し、余剰汚泥が
発生する場合はこれを脱水系に送る。
In the solid-liquid separation step, the mixed liquid in the reaction tank in the second reaction step is separated into solid and liquid, the separated liquid is taken out as a processing liquid, and part or all of the separated sludge is optionally subjected to the first and / or second separation. The excess sludge is returned to the reaction tank in the above reaction step, and is sent to a dehydration system if excess sludge is generated.

【0035】本発明の方法では上記のようにして処理す
ることにより、全反応槽に対して容積負荷が1.5kg
−BOD/m3/d以上、具体的には1.5〜4kg−
BOD/m3/d、汚泥負荷で0.5〜1kg−BOD
/kg−VSS/d程度の高負荷で有機性排液を好気性
生物処理することができ、しかも安定して効率よく有機
物の除去を行うことができるとともに、固液分離性の良
好な汚泥を形成することができる。
In the method of the present invention, by treating as described above, a volume load of 1.5 kg
-BOD / m 3 / d or more, specifically 1.5 to 4 kg-
BOD / m 3 / d, 0.5 to 1 kg-BOD with sludge load
Aerobic biological treatment of organic wastewater at a high load of about / kg-VSS / d, and can efficiently and stably remove organic substances, and also has good solid-liquid separation sludge. Can be formed.

【0036】[0036]

【発明の効果】本発明によれば、前段の反応槽において
溶解性BOD除去率および溶解性BOD濃度が特定の範
囲となるように有機物の分解を高BOD負荷で行い、後
段の微生物保持担体を充填した反応槽において有機物の
分解を低BOD負荷で行うとともに、汚泥をフロック化
するようにしたので、高BOD負荷で処理を行う前段の
反応槽に担体を充填しなくても糸状性菌の優占を確実に
防止し、高負荷処理に適した菌相を維持することがで
き、このため高負荷反応槽の有効容積の減少を防止して
高負荷で処理することができ、しかも安定して効率よく
有機物の除去を行うことができるとともに、固液分離性
の良好な汚泥を形成することができる。
According to the present invention, the decomposition of organic substances is carried out under a high BOD load so that the soluble BOD removal rate and the soluble BOD concentration are in specific ranges in the reaction tank in the former stage, and the microorganism holding carrier in the latter stage is used. Organic substances are decomposed at a low BOD load in the filled reaction tank and sludge is flocculated. Therefore, even if the reaction tank at the preceding stage, which is treated at a high BOD load, is not filled with a carrier, excellent excretion of filamentous fungi can be achieved. Occupation can be reliably prevented, and a bacterial flora suitable for high-load processing can be maintained. Therefore, a reduction in the effective volume of the high-load reaction tank can be prevented and high-load processing can be performed. Organic substances can be efficiently removed, and sludge having good solid-liquid separation properties can be formed.

【0037】[0037]

【発明の実施の形態】以下、本発明の実施の形態を図面
により説明する。図1は実施形態の処理装置の系統図で
あり、第1の反応工程の反応槽として2個の曝気槽を設
けた場合の例を示している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of the processing apparatus according to the embodiment, and shows an example in which two aeration tanks are provided as reaction tanks in a first reaction step.

【0038】図1において、第1、第2および第3曝気
槽1、2、3はそれぞれ散気装置5、6、7を備え、そ
れぞれ送気路8、9、10に連絡し、好気性処理を行う
ように構成されている。第1曝気槽1には被処理液路1
1および返送汚泥路12が連絡している。第1、第2お
よび第3曝気槽1、2、3および固液分離槽4はライン
15、16、17で連絡している。固液分離槽4には上
部に処理液路18が連絡し、下部に汚泥路19が連絡
し、汚泥路19は返送汚泥路12および排汚泥路20に
分岐している。
In FIG. 1, the first, second, and third aeration tanks 1, 2, and 3 are provided with air diffusers 5, 6, and 7, respectively, and communicate with air supply paths 8, 9, and 10, respectively, to be aerobic. It is configured to perform processing. The first aeration tank 1 has a liquid passage 1 to be treated.
1 and the return sludge passage 12 are in communication. The first, second and third aeration tanks 1, 2, 3 and the solid-liquid separation tank 4 are connected by lines 15, 16, 17. The upper part of the solid-liquid separation tank 4 is connected to a processing liquid passage 18, the lower part is connected to a sludge passage 19, and the sludge passage 19 is branched into a return sludge passage 12 and a waste sludge passage 20.

【0039】第3曝気槽3には粒状担体21が充填さ
れ、また担体分離用スクリーン22が設けられている。
第1および第2曝気槽1、2には担体は充填されない。
第1および第2曝気槽1、2は直列に配置され、これら
が第1の反応工程の反応槽を構成している。第2曝気槽
2の後段に第3曝気槽3が直列に設置され、BODの大
部分は第1および第2曝気槽1、2で分解される。これ
により第1および第2曝気槽1はBOD負荷が高く、第
3曝気槽3はBOD負荷が低い。
The third aeration tank 3 is filled with a granular carrier 21 and a carrier separating screen 22 is provided.
The first and second aeration tanks 1 and 2 are not filled with a carrier.
The first and second aeration tanks 1 and 2 are arranged in series, and these constitute a reaction tank in the first reaction step. A third aeration tank 3 is installed in series at a stage subsequent to the second aeration tank 2, and most of the BOD is decomposed in the first and second aeration tanks 1 and 2. Thereby, the first and second aeration tanks 1 have a high BOD load, and the third aeration tank 3 has a low BOD load.

【0040】上記の装置による処理方法は、まず第1の
反応工程として第1曝気槽1に被処理液路11および返
送汚泥路12からそれぞれ被処理液および返送汚泥を導
入して槽内の活性汚泥と混合し、送気路8から空気を送
って散気装置5から曝気し、好気性生物反応により有機
物の分解を行う。第1曝気槽1の混合液(槽内液)を第
2曝気槽2に送り、槽内の活性汚泥と混合し、送気路9
から空気を送って散気装置6から曝気し、好気性生物反
応により有機物の分解を行う。
In the treatment method using the above-described apparatus, first, as the first reaction step, the liquid to be treated and the returned sludge are introduced into the first aeration tank 1 from the liquid passage 11 and the return sludge passage 12, respectively. It mixes with sludge, sends air from the air supply path 8 and aerates from the air diffuser 5, and decomposes organic matter by an aerobic biological reaction. The mixed liquid (liquid in the tank) of the first aeration tank 1 is sent to the second aeration tank 2 and mixed with the activated sludge in the tank, and the air is supplied to the air supply passage 9.
From the air diffuser 6 to decompose organic substances by an aerobic biological reaction.

【0041】第1および第2曝気槽1、2では高BOD
負荷で処理を行い、主として溶解性BODの分解を行
い、第2曝気槽2の流出液が、溶解性BOD除去率が5
0%以上、好ましくは70〜95%、かつ溶解性BOD
濃度が50〜10000mg/L、好ましくは100〜
1000mg/Lとなるように有機物の分解を行う。第
1曝気槽1におけるBOD除去率およびBOD濃度は上
記範囲に入っていても入っていなくてもよいが、入って
いるのが好ましい。負荷が比較的高く、第1曝気槽1に
おけるBOD除去率が低下して上記範囲に入っていない
場合でも、第2曝気槽2と合せて上記範囲に入っていれ
ば、第2の反応工程への負荷は十分に低くなる。逆に負
荷が低く第2曝気槽2におけるBOD濃度が低下しすぎ
て上記範囲に入らない場合には、第1曝気槽1において
はBOD濃度を上記範囲内となるように維持しやすく、
BOD除去率は上昇するので第1曝気槽1のみで上記範
囲を満たすことが容易となる。従って、第1曝気槽1で
の糸状性菌の優占を確実に防止し、高負荷処理に適した
菌相を維持することができる。第1の反応工程を第1お
よび第2曝気槽1、2の2個の曝気槽で行うことによ
り、被処理液の水質が変動する場合にも容易に安定して
第1の反応を行うことができる。
In the first and second aeration tanks 1 and 2, high BOD
The treatment is performed under load, and the decomposition of the soluble BOD is mainly performed, and the effluent of the second aeration tank 2 has a soluble BOD removal rate of 5%.
0% or more, preferably 70-95%, and soluble BOD
The concentration is 50 to 10000 mg / L, preferably 100 to
Organic substances are decomposed so as to have a concentration of 1000 mg / L. The BOD removal rate and the BOD concentration in the first aeration tank 1 may or may not fall within the above ranges, but are preferably contained. Even when the load is relatively high and the BOD removal rate in the first aeration tank 1 falls and does not fall within the above range, if it falls within the above range together with the second aeration tank 2, the process proceeds to the second reaction step. Will be sufficiently low. Conversely, when the load is low and the BOD concentration in the second aeration tank 2 is too low to fall within the above range, the BOD concentration in the first aeration tank 1 is easily maintained to be within the above range,
Since the BOD removal rate increases, it is easy to satisfy the above range only with the first aeration tank 1. Therefore, the dominance of filamentous bacteria in the first aeration tank 1 can be reliably prevented, and a bacterial flora suitable for high-load treatment can be maintained. By performing the first reaction step in the two aeration tanks of the first and second aeration tanks 1 and 2, the first reaction can be easily and stably performed even when the water quality of the liquid to be treated fluctuates. Can be.

【0042】第1および第2曝気槽1、2のBOD負荷
は、合計の汚泥負荷として2〜40kg−BOD/kg
−VSS/d、好ましくは3〜10kg−BOD/kg
−VSS/dとするのが望ましい。高濃度BOD負荷に
より微生物は増殖し、効率よくBODは除去される。第
2曝気槽2の混合液を第3曝気槽3に送り、第2の反応
工程を行う。
The BOD load of the first and second aeration tanks 1 and 2 is 2 to 40 kg-BOD / kg as a total sludge load.
-VSS / d, preferably 3 to 10 kg-BOD / kg
-VSS / d is desirable. The microorganisms grow by the high concentration BOD loading, and the BOD is efficiently removed. The mixed solution in the second aeration tank 2 is sent to the third aeration tank 3, and the second reaction step is performed.

【0043】第2の反応工程では、第2曝気槽2の混合
液はライン16から第3曝気槽3に導入して槽内の活性
汚泥と混合し、送気路10から空気を送って散気装置7
から曝気して、担体21に微生物を付着させ、好気性生
物反応によりBODの分解を行うとともに、活性汚泥を
フロック化する。第3曝気槽3におけるBOD負荷は汚
泥負荷として0.01〜0.5kg−BOD/kg−V
SS/d、好ましくは0.05〜0.3kg−BOD/
kg−VSS/dとするのが望ましい。微生物の付着し
た担体21の存在下に曝気を行うことにより、BODが
除去されるとともに、第2曝気槽2から導入される分散
性の汚泥はフロック化する。過剰に付着した汚泥は剥離
して汚泥フロックとなる。スクリーン22により担体2
1を分離して混合液を固液分離槽4に送り固液分離工程
を行う。
In the second reaction step, the mixed solution in the second aeration tank 2 is introduced into the third aeration tank 3 from the line 16 and mixed with the activated sludge in the tank, and is dispersed by sending air from the air supply passage 10. Air device 7
Then, microorganisms are attached to the carrier 21 to decompose the BOD by an aerobic biological reaction and to flocculate the activated sludge. The BOD load in the third aeration tank 3 is 0.01 to 0.5 kg-BOD / kg-V as sludge load.
SS / d, preferably 0.05-0.3 kg-BOD /
It is desirable to be kg-VSS / d. By performing aeration in the presence of the carrier 21 to which the microorganisms are attached, the BOD is removed, and the dispersible sludge introduced from the second aeration tank 2 is flocculated. Excess sludge is separated and becomes sludge floc. Carrier 2 by screen 22
1 and the mixed solution is sent to the solid-liquid separation tank 4 to perform a solid-liquid separation step.

【0044】固液分離工程は、第3曝気槽3の混合液を
ライン17から固液分離槽4に導入して固液分離し、分
離液を処理液として処理液路18から取り出し、汚泥は
汚泥路19から取り出し、一部は返送汚泥として返送汚
泥路12から返送し、残部は余剰汚泥として排汚泥路2
0から取り出す。
In the solid-liquid separation step, the mixed liquid in the third aeration tank 3 is introduced into the solid-liquid separation tank 4 from the line 17 to be separated into solid and liquid, and the separated liquid is taken out from the treatment liquid passage 18 as a treatment liquid. The sludge is taken out from the sludge passage 19, a part of the sludge is returned as return sludge from the return sludge passage 12, and the rest is returned as sludge.
Take from 0.

【0045】上記の処理方法では、第1および第2曝気
槽1、2で特定の溶解性BOD除去率およびBOD濃度
が得られるように高BOD負荷で曝気し、第3曝気槽3
に高充填率で担体21を充填し、低BOD負荷で曝気す
ることにより、装置全体としては高負荷で処理を行っ
て、少ない曝気槽容積で、安定して効率よくBODの除
去を行うことができるとともに、固液分離性の良好な汚
泥を形成することができる。この場合、第1および第2
曝気槽1、2には担体を添加しないので、担体による有
効容積の消費が起こらず、このため担体を添加する場合
に比べてより高負荷で処理することができる。
In the above-described treatment method, the first and second aeration tanks 1 and 2 are aerated at a high BOD load so as to obtain a specific soluble BOD removal rate and a specific BOD concentration.
By filling the carrier 21 at a high filling rate and aerating with a low BOD load, the entire apparatus can be processed with a high load, and the BOD can be removed stably and efficiently with a small aeration tank volume. It is possible to form sludge having good solid-liquid separation properties. In this case, the first and second
Since no carrier is added to the aeration tanks 1 and 2, the effective volume is not consumed by the carrier, so that the treatment can be performed with a higher load than when the carrier is added.

【0046】[0046]

【実施例】以下、本発明を実施例および比較例により説
明する。
The present invention will be described below with reference to examples and comparative examples.

【0047】実施例1 図1の装置により、溶解性BOD濃度2150mg/
L、窒素濃度約100mg/Lの化学工場排水を処理し
た。返送汚泥は原水と同量を第1曝気槽に返送した。表
1に試験条件、表2に汚泥濃度と汚泥負荷、表3に通水
初期の溶解性BOD濃度とBOD除去率を示す。図2に
SVIの経日変化を示す。表4に試験期間中の平均水質
を示す。
Example 1 A soluble BOD concentration of 2150 mg /
L, a chemical factory effluent having a nitrogen concentration of about 100 mg / L was treated. The returned sludge was returned to the first aeration tank in the same amount as the raw water. Table 1 shows the test conditions, Table 2 shows the sludge concentration and sludge load, and Table 3 shows the soluble BOD concentration and the BOD removal rate at the beginning of water passage. FIG. 2 shows the daily change of SVI. Table 4 shows the average water quality during the test period.

【0048】実施例2 第2曝気槽を省略し、第1の反応工程を第1曝気槽だけ
で行うようにし、汚泥負荷を6.5kg−BOD/kg
−VSS/dに変更した以外は実施例1と同じ方法で処
理した。その結果、第1曝気槽流出液の溶解性BOD濃
度は220mg/Lとなった。
Example 2 The second aeration tank was omitted, the first reaction step was performed only in the first aeration tank, and the sludge load was 6.5 kg-BOD / kg.
Processing was performed in the same manner as in Example 1 except that the voltage was changed to -VSS / d. As a result, the soluble BOD concentration of the effluent of the first aeration tank was 220 mg / L.

【0049】比較例1 第1曝気槽の汚泥負荷を3.2kg−BOD/kg−V
SS/dに変更した以外は実施例2と同じ方法で処理し
た。その結果、第1曝気槽流出液の溶解性BOD濃度は
42.5mg/L(BOD除去率97%)となった。こ
の比較例は溶解性BOD濃度が本発明の条件を満たして
いない。
Comparative Example 1 The sludge load of the first aeration tank was 3.2 kg-BOD / kg-V
Processing was carried out in the same manner as in Example 2 except that SS / d was changed. As a result, the soluble BOD concentration of the effluent of the first aeration tank was 42.5 mg / L (BOD removal rate 97%). In this comparative example, the soluble BOD concentration did not satisfy the conditions of the present invention.

【0050】比較例2 第1曝気槽の汚泥負荷を43.0kg−BOD/kg−
VSS/dに変更した以外は実施例2と同じ方法で処理
した。その結果、第1曝気槽流出液の溶解性BOD濃度
は832mg/L(BOD除去率24%)となった。こ
の比較例は溶解性BOD除去率が本発明の条件を満たし
ていない。
Comparative Example 2 The sludge load of the first aeration tank was 43.0 kg-BOD / kg-
Processing was carried out in the same manner as in Example 2 except that VSS / d was changed. As a result, the soluble BOD concentration of the effluent of the first aeration tank was 832 mg / L (BOD removal rate 24%). In this comparative example, the soluble BOD removal rate did not satisfy the conditions of the present invention.

【0051】[0051]

【表1】 *1 第1の反応工程の反応槽 *2 第2の反応工程の反応槽[Table 1] * 1 Reaction tank of the first reaction step * 2 Reaction tank of the second reaction step

【0052】[0052]

【表2】 *1 単位はkg−BOD/kg−VSS/d[Table 2] * 1 Unit is kg-BOD / kg-VSS / d

【0053】[0053]

【表3】 *1 第1曝気槽流出液 *2 第2曝気槽流出液 *3 第3曝気槽流出液[Table 3] * 1 First aeration tank effluent * 2 Second aeration tank effluent * 3 Third aeration tank effluent

【0054】[0054]

【表4】 [Table 4]

【0055】図2の結果からわかるように、実施例1お
よび2では試験期間を通してSVIはぼぼ100以下で
あり、安定した沈降性を維持することができた。一方、
比較例1および2ではいずれも糸状性細菌によるバルキ
ングが発生し、実質的に処理不可能となった。表4から
わかるように、実施例1および実施例2は良好な処理水
質が得られている。原水中の窒素もほとんど除去されて
おり、浮上などの問題は生じなかった。
As can be seen from the results shown in FIG. 2, in Examples 1 and 2, the SVI was about 100 or less throughout the test period, and stable sedimentation could be maintained. on the other hand,
In Comparative Examples 1 and 2, bulking by filamentous bacteria occurred, and the treatment was substantially impossible. As can be seen from Table 4, in Examples 1 and 2, good treated water quality was obtained. Most of the nitrogen in the raw water was also removed, and no problems such as floating occurred.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態の高負荷生物処理装置の系統図であ
る。
FIG. 1 is a system diagram of a high-load biological treatment device according to an embodiment.

【図2】実施例の結果を示すグラフである。FIG. 2 is a graph showing the results of Examples.

【図3】従来の高負荷生物処理装置の系統図である。FIG. 3 is a system diagram of a conventional high-load biological treatment device.

【符号の説明】[Explanation of symbols]

1 第1曝気槽 2 第2曝気槽 3 第3曝気槽 4、33 固液分離槽 5、6、7、34、35 散気装置 8、9、10、36、37 送気路 11、41 被処理液路 12、42 返送汚泥路 15、16、17、43、44 ライン 18、 45 処理液路 19、46 汚泥路 20、47 排汚泥路 31 第1反応槽 32 第2反応槽 21、51、52 担体 22、53、54 スクリーン DESCRIPTION OF SYMBOLS 1 1st aeration tank 2 2nd aeration tank 3 3rd aeration tank 4,33 Solid-liquid separation tank 5,6,7,34,35 Aeration device 8,9,10,36,37 Air supply path 11,41 Cover Treatment liquid passage 12, 42 Return sludge passage 15, 16, 17, 43, 44 Line 18, 45 Treatment liquid passage 19, 46 Sludge passage 20, 47 Waste sludge passage 31 First reaction tank 32 Second reaction tank 21, 51, 52 carrier 22, 53, 54 screen

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 反応槽に有機性排液を導入し、好気性下
に微生物と接触させ、溶解性BOD除去率が50%以
上、かつ溶解性BOD濃度が50〜10000mg/L
となるように有機物の分解を高BOD負荷で行う第1の
反応工程と、 微生物保持担体を充填した反応槽に第1の反応工程の流
出液を導入し、担体に微生物を付着させて好気性下に有
機物の分解を低BOD負荷で行うとともに、汚泥をフロ
ック化する第2の反応工程と、 第2の反応工程の流出液を固液分離する固液分離工程と
を含む高負荷生物処理方法。
An organic effluent is introduced into a reaction tank, and is brought into contact with microorganisms under aerobic conditions. The soluble BOD removal rate is 50% or more, and the soluble BOD concentration is 50 to 10,000 mg / L.
A first reaction step in which organic substances are decomposed at a high BOD load so that the effluent of the first reaction step is introduced into a reaction tank filled with a microorganism-retaining carrier, and the microorganisms are attached to the carrier to be aerobic. A high-load biological treatment method including a second reaction step for decomposing organic matter with a low BOD load and flocculating sludge, and a solid-liquid separation step for solid-liquid separation of the effluent of the second reaction step .
【請求項2】 第1の反応工程のBOD負荷が汚泥負荷
として2〜40kg−BOD/kg−VSS/dであ
り、第2の反応工程のBOD負荷が汚泥負荷として0.
01〜0.5kg−BOD/kg−VSS/dである請
求項1記載の高負荷生物処理方法。
2. The BOD load in the first reaction step is 2 to 40 kg-BOD / kg-VSS / d as a sludge load, and the BOD load in the second reaction step is 0.1 to 2 kg as a sludge load.
The high-load biological treatment method according to claim 1, wherein the amount is from 0.01 to 0.5 kg-BOD / kg-VSS / d.
【請求項3】 第1の反応工程を、直列に接続した2個
以上の反応槽で行う請求項1または2記載の高負荷生物
処理方法。
3. The high-load biological treatment method according to claim 1, wherein the first reaction step is performed in two or more reaction vessels connected in series.
【請求項4】 第1の反応槽に導入する有機性排液の窒
素濃度が、有機性排液の溶解性BOD濃度の1/10以
下である請求項1ないし3のいずれかに記載の高負荷生
物処理方法。
4. The method according to claim 1, wherein the nitrogen concentration of the organic effluent introduced into the first reaction tank is 1/10 or less of the soluble BOD concentration of the organic effluent. Load biological treatment method.
JP2000142329A 2000-05-10 2000-05-10 High-load biological treatment method Expired - Fee Related JP3399443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000142329A JP3399443B2 (en) 2000-05-10 2000-05-10 High-load biological treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000142329A JP3399443B2 (en) 2000-05-10 2000-05-10 High-load biological treatment method

Publications (2)

Publication Number Publication Date
JP2001314885A true JP2001314885A (en) 2001-11-13
JP3399443B2 JP3399443B2 (en) 2003-04-21

Family

ID=18649318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000142329A Expired - Fee Related JP3399443B2 (en) 2000-05-10 2000-05-10 High-load biological treatment method

Country Status (1)

Country Link
JP (1) JP3399443B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279551A (en) * 2004-03-30 2005-10-13 Kurita Water Ind Ltd Biological treatment method for organic waste water
JP2006051415A (en) * 2004-08-10 2006-02-23 Kurita Water Ind Ltd Process for biological treatment of organic waste water
JP2006051414A (en) * 2004-08-10 2006-02-23 Kurita Water Ind Ltd Process for biological treatment of organic waste water
JP2006082024A (en) * 2004-09-16 2006-03-30 Kurita Water Ind Ltd Biological treatment apparatus
JP2006167550A (en) * 2004-12-14 2006-06-29 Kurita Water Ind Ltd Biological treatment apparatus
JP2007105580A (en) * 2005-10-12 2007-04-26 Kurita Water Ind Ltd Method and apparatus for biologically treating organic drainage
CN1323038C (en) * 2005-12-09 2007-06-27 宁波德安城市生态技术集团有限公司 Biological reactor for treating sewage
JP2007160233A (en) * 2005-12-14 2007-06-28 Kurita Water Ind Ltd Organic matter-containing wastewater treatment apparatus and method
JP2009050764A (en) * 2007-08-24 2009-03-12 Kurita Water Ind Ltd Membrane separation type wastewater treatment method and apparatus
JPWO2007088860A1 (en) * 2006-02-03 2009-06-25 栗田工業株式会社 Biological treatment method of organic wastewater
JP2011224544A (en) * 2010-03-31 2011-11-10 Kurita Water Ind Ltd Method and device for biologically treating organic wastewater
EP2447223A3 (en) * 2004-02-02 2012-07-18 Kurita Water Industries Ltd. Process for biological treatment of organic waste water and apparatus therefor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2447223A3 (en) * 2004-02-02 2012-07-18 Kurita Water Industries Ltd. Process for biological treatment of organic waste water and apparatus therefor
JP2005279551A (en) * 2004-03-30 2005-10-13 Kurita Water Ind Ltd Biological treatment method for organic waste water
JP4501496B2 (en) * 2004-03-30 2010-07-14 栗田工業株式会社 Biological treatment method for organic wastewater
JP2006051415A (en) * 2004-08-10 2006-02-23 Kurita Water Ind Ltd Process for biological treatment of organic waste water
JP2006051414A (en) * 2004-08-10 2006-02-23 Kurita Water Ind Ltd Process for biological treatment of organic waste water
JP4581551B2 (en) * 2004-08-10 2010-11-17 栗田工業株式会社 Biological treatment method for organic wastewater
JP4492268B2 (en) * 2004-09-16 2010-06-30 栗田工業株式会社 Biological treatment equipment
JP2006082024A (en) * 2004-09-16 2006-03-30 Kurita Water Ind Ltd Biological treatment apparatus
JP4529670B2 (en) * 2004-12-14 2010-08-25 栗田工業株式会社 Biological treatment equipment
JP2006167550A (en) * 2004-12-14 2006-06-29 Kurita Water Ind Ltd Biological treatment apparatus
JP2007105580A (en) * 2005-10-12 2007-04-26 Kurita Water Ind Ltd Method and apparatus for biologically treating organic drainage
CN1323038C (en) * 2005-12-09 2007-06-27 宁波德安城市生态技术集团有限公司 Biological reactor for treating sewage
JP2007160233A (en) * 2005-12-14 2007-06-28 Kurita Water Ind Ltd Organic matter-containing wastewater treatment apparatus and method
JPWO2007088860A1 (en) * 2006-02-03 2009-06-25 栗田工業株式会社 Biological treatment method of organic wastewater
JP4821773B2 (en) * 2006-02-03 2011-11-24 栗田工業株式会社 Biological treatment method of organic wastewater
JP2009050764A (en) * 2007-08-24 2009-03-12 Kurita Water Ind Ltd Membrane separation type wastewater treatment method and apparatus
JP2011224544A (en) * 2010-03-31 2011-11-10 Kurita Water Ind Ltd Method and device for biologically treating organic wastewater

Also Published As

Publication number Publication date
JP3399443B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
AU2001280766B2 (en) Method and apparatus for treating wastewater using membrane filters
US4415454A (en) Nitrification treatment of wastewater
US5833856A (en) Process for biologically removing phosphorus and nitrogen from wastewater by controlling carbohydrate content therein
EP1806325B1 (en) Method of treating nitrogen-containing liquid
US6423229B1 (en) Bioreactor systems for biological nutrient removal
AU2001280766A1 (en) Method and apparatus for treating wastewater using membrane filters
JP4224951B2 (en) Denitrification method
EP0987224A2 (en) Method and apparatus for removing phosphorus and nitrogen from wastewater
JP4207254B2 (en) High load biological treatment method and apparatus
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
JP3399443B2 (en) High-load biological treatment method
US6007720A (en) Process for treatment of organic wastewater
US6261456B1 (en) Waste water treatment method and waste water treatment equipment capable of treating waste water containing fuluorine, nitrogen and organic matter
JP3136902B2 (en) Wastewater treatment method
US20130098815A1 (en) Sewage treatment apparatus
JP3478241B2 (en) Biological treatment equipment
JPH10296283A (en) Carrier separating method for biological reaction tank using carrier combinedly
WO2002028780A2 (en) Apparatus and method for wastewater treatment with enhanced solids reduction (esr)
Cheng et al. Enhanced biodegradation of organic nitrogenous compounds in resin manufacturing wastewater by anoxic denitrification and oxic nitrification process
JP2000024687A (en) Treatment of waste nitric acid
KR20020075046A (en) The treating method of high concentration organic waste water
WO2021165980A1 (en) A multi-zone attached growth batch bio-reactor & method of biological treatment of domestic wastewater
JPH1085783A (en) Denitrification method and apparatus for drainage containing nitric acid type nitrogen
JP2673488B2 (en) Method and apparatus for treating organic wastewater
KR200332092Y1 (en) System for wastewater treatment using partition type anoxic basin and membrane basin

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3399443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140221

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees