JPWO2007088860A1 - Biological treatment method of organic wastewater - Google Patents
Biological treatment method of organic wastewater Download PDFInfo
- Publication number
- JPWO2007088860A1 JPWO2007088860A1 JP2007534930A JP2007534930A JPWO2007088860A1 JP WO2007088860 A1 JPWO2007088860 A1 JP WO2007088860A1 JP 2007534930 A JP2007534930 A JP 2007534930A JP 2007534930 A JP2007534930 A JP 2007534930A JP WO2007088860 A1 JPWO2007088860 A1 JP WO2007088860A1
- Authority
- JP
- Japan
- Prior art keywords
- micro
- tank
- sludge
- biological treatment
- aeration tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 65
- 239000002351 wastewater Substances 0.000 title claims abstract description 56
- 244000005700 microbiome Species 0.000 claims abstract description 203
- 239000010802 sludge Substances 0.000 claims abstract description 180
- 238000005273 aeration Methods 0.000 claims abstract description 136
- 241000894006 Bacteria Species 0.000 claims abstract description 84
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 82
- 239000007788 liquid Substances 0.000 claims abstract description 41
- 230000002906 microbiologic effect Effects 0.000 claims abstract description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 61
- 229910052760 oxygen Inorganic materials 0.000 claims description 61
- 239000001301 oxygen Substances 0.000 claims description 61
- 239000005416 organic matter Substances 0.000 claims description 21
- 239000000126 substance Substances 0.000 claims description 21
- 230000036284 oxygen consumption Effects 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 10
- 206010021143 Hypoxia Diseases 0.000 claims description 9
- 239000010815 organic waste Substances 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 7
- 238000003672 processing method Methods 0.000 claims 1
- 238000004062 sedimentation Methods 0.000 abstract description 36
- 230000009467 reduction Effects 0.000 abstract description 11
- 230000009471 action Effects 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 6
- 238000003860 storage Methods 0.000 abstract description 3
- 241000131077 Lucanidae Species 0.000 abstract description 2
- 238000012545 processing Methods 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 235000015097 nutrients Nutrition 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 230000001580 bacterial effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 230000000717 retained effect Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000011049 filling Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 150000003904 phospholipids Chemical class 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000005189 flocculation Methods 0.000 description 3
- 230000016615 flocculation Effects 0.000 description 3
- 239000010865 sewage Substances 0.000 description 3
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 241000254173 Coleoptera Species 0.000 description 2
- 241000254171 Curculionidae Species 0.000 description 2
- 102000002322 Egg Proteins Human genes 0.000 description 2
- 108010000912 Egg Proteins Proteins 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 229930182558 Sterol Natural products 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 235000013405 beer Nutrition 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 210000003278 egg shell Anatomy 0.000 description 2
- 210000003608 fece Anatomy 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 235000021588 free fatty acids Nutrition 0.000 description 2
- 239000010842 industrial wastewater Substances 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 235000015170 shellfish Nutrition 0.000 description 2
- 235000012046 side dish Nutrition 0.000 description 2
- 150000003432 sterols Chemical class 0.000 description 2
- 235000003702 sterols Nutrition 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 241000233866 Fungi Species 0.000 description 1
- 241000131091 Lucanus cervus Species 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 241000223785 Paramecium Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000700141 Rotifera Species 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 241000902900 cellular organisms Species 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 244000144992 flock Species 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000022542 predatory behavior Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/006—Regulation methods for biological treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1205—Particular type of activated sludge processes
- C02F3/1221—Particular type of activated sludge processes comprising treatment of the recirculated sludge
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/32—Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2203/00—Apparatus and plants for the biological treatment of water, waste water or sewage
- C02F2203/004—Apparatus and plants for the biological treatment of water, waste water or sewage comprising a selector reactor for promoting floc-forming or other bacteria
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/08—Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/22—O2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Botany (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Activated Sludge Processes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
微小生物の捕食作用による汚泥減量効果を安定的に得ることができ、良好な水質の処理水が得られる有機性廃水の生物処理方法を提供する。有機性廃水を曝気槽21に導入し、高負荷で生物処理して分散性の細菌を生成させる。分散性の細菌を含み曝気槽21から流出する生物処理液は、微小生物保持槽31に導入する。曝気槽21のDO濃度を制御する、または微小生物保持槽31の溶解性BOD汚泥負荷を0.025kg−BOD/kg−VSS/日以上0.05kg−BOD/kg−VSS/日以下として運転することで、ヒルガタワムシ等の微小生物を生息させ、微小生物の捕食作用を利用して余剰汚泥の発生量を低減するとともに、沈降性のよい汚泥フロックを生成させる。【選択図】図1Provided is a biological treatment method for organic wastewater that can stably obtain a sludge reduction effect due to the predatory action of micro-organisms and obtain treated water with good water quality. Organic wastewater is introduced into the aeration tank 21 and biologically treated with a high load to produce dispersible bacteria. The biological treatment liquid containing dispersible bacteria and flowing out from the aeration tank 21 is introduced into the micro-organism holding tank 31. The DO concentration in the aeration tank 21 is controlled, or the soluble BOD sludge load in the microbiological storage tank 31 is operated as 0.025 kg-BOD / kg-VSS / day or more and 0.05 kg-BOD / kg-VSS / day or less. In this way, micro organisms such as stag beetles are inhabited, and the amount of excess sludge generated is reduced by utilizing the predatory action of the micro organisms, and sludge flocs with good sedimentation are generated. [Selection] Figure 1
Description
本発明は、有機性廃水を活性汚泥等により処理する有機性廃水の生物処理方法に関し、特に、有機性廃水の生物処理により発生する余剰汚泥を生物的に減量する有機性廃水の生物処理方法に関する。 The present invention relates to a biological treatment method for organic wastewater that treats organic wastewater with activated sludge and the like, and particularly relates to a biological treatment method for organic wastewater that biologically reduces excess sludge generated by biological treatment of organic wastewater. .
有機物を含む有機性廃水を生物処理する生物処理法の中でも活性汚泥法は、良好な水質の処理水が得られ、メンテナンスが容易であるといった利点を有するため、下水や産業廃水等の各種有機性廃水の処理方法として広く用いられている。しかし、活性汚泥処理を行う生物処理槽に対するBOD(生物化学的酸素消費量で表される有機物)の容積負荷は0.5〜0.8kg/m3/日程度と低い。このため、高負荷に対応するためには曝気槽を大きくする必要があり、広い設置面積が必要になるという問題がある。Among the biological treatment methods that biologically treat organic wastewater containing organic matter, the activated sludge method has the advantage that treated water with good water quality is obtained and maintenance is easy, so various organic properties such as sewage and industrial wastewater are available. Widely used as a wastewater treatment method. However, the volumetric load of BOD (organic matter represented by biochemical oxygen consumption) to the biological treatment tank for performing activated sludge treatment is as low as about 0.5 to 0.8 kg / m 3 / day. For this reason, in order to cope with a high load, it is necessary to enlarge the aeration tank, and there is a problem that a large installation area is required.
これに対し、高負荷運転が可能な生物処理法として流動床法が知られている。流動床法では、曝気槽に担体を添加して生物処理を行うことにより曝気槽に保持される汚泥濃度を高めるため、BOD容積負荷が3kg/m3/日以上の高負荷運転が可能となる。On the other hand, a fluidized bed method is known as a biological treatment method capable of high load operation. In the fluidized bed method, the concentration of sludge retained in the aeration tank is increased by adding a carrier to the aeration tank and performing biological treatment, so that a high load operation with a BOD volumetric load of 3 kg / m 3 / day or more is possible. .
ところで、廃水を生物処理する際、細菌に資化されるBODの大部分は細菌の呼吸基質として利用され二酸化炭素と水とに分解されるが、一部は細菌の増殖に用いられる。例えば、活性汚泥法では細菌に取り込まれたBODの20〜40%程度が菌体合成に用いられる。すなわち、活性汚泥処理されたBODの20〜40%程度は細菌に変換され、BODを基質として増殖した細菌が余剰汚泥として排出されるという問題がある。特に、流動床法では通常の活性汚泥法より多くの余剰汚泥が発生し、具体的には生物分解されたBODの約30〜40%の余剰汚泥が発生する。 By the way, when the wastewater is biologically treated, most of the BOD assimilated to the bacteria is used as a bacterial respiration substrate and decomposed into carbon dioxide and water, but a part is used for the growth of the bacteria. For example, in the activated sludge method, about 20 to 40% of BOD taken up by bacteria is used for cell synthesis. That is, there is a problem that about 20 to 40% of the BOD treated with activated sludge is converted into bacteria, and the bacteria grown using the BOD as a substrate are discharged as excess sludge. In particular, in the fluidized bed method, more surplus sludge is generated than in the normal activated sludge method, specifically, about 30 to 40% of surplus sludge is generated from the biodegraded BOD.
そこで、第1段目の生物処理槽(以下、特に「曝気槽」と称する場合がある)の後段に、固着性原生動物を保持する第2段目の生物処理槽(以下、特に「微小生物保持槽」と称する場合がある)を設ける有機性廃水の生物処理方法が知られている(例えば特許文献1)。特許文献1に開示された方法では、第1段生物処理槽に高いBOD負荷をかけることで原生動物の増殖を抑制して細菌の凝集を防止し、分散性の細菌を含み第1段生物処理槽から流出する生物処理液を第2段生物処理槽に導入する。第2段生物処理槽には、分散性の細菌を捕食する原生動物が保持されているため、分散性の細菌が原生動物に捕食されることにより、余剰汚泥が減量されるとともに生物群集のフロック化が進行する。このため、第2段生物処理槽では、沈降性のよい微生物集合体(汚泥フロック)が形成され、第2段生物処理槽からの流出水を固液分離することにより、清澄な処理水が得られる。 Therefore, a second-stage biological treatment tank (hereinafter referred to as “micro-organisms”) that holds the adherent protozoa is provided at the subsequent stage of the first-stage biological treatment tank (hereinafter, sometimes referred to as “aeration tank” in particular). There is known a biological treatment method for organic wastewater provided with a “retaining tank” (for example, Patent Document 1). In the method disclosed in Patent Document 1, by applying a high BOD load to the first-stage biological treatment tank, the growth of protozoa is suppressed to prevent bacterial aggregation, and the first-stage biological treatment includes dispersible bacteria. The biological treatment liquid flowing out from the tank is introduced into the second stage biological treatment tank. Since the second stage biological treatment tank holds protozoa that prey on dispersible bacteria, preserving the dispersible bacteria by the protozoa reduces the amount of excess sludge and flocs of the biological community Progresses. For this reason, in the second stage biological treatment tank, a microbial assembly (sludge floc) with good sedimentation is formed, and the effluent from the second stage biological treatment tank is solid-liquid separated to obtain clear treated water. It is done.
このように、高負荷で運転される第1段生物処理槽と、固着性原生動物を保持する第2段生物処理槽とを組み合わせることにより、高負荷運転及び余剰汚泥の減量ができ、清澄な処理水を得ることもできる。このため、第1段生物処理槽及び第2段生物処理槽を用いた生物処理法について、種々の改良法が提案されている。例えば特許文献2には、第1段生物処理槽と第2段生物処理槽との間に餌微細化槽を設けた生物処理装置が開示されている。特許文献2に開示された装置では、餌微細化槽で超音波処理等を行うことにより、フロック化した細菌を分散させて後段の第2段生物処理槽に保持される原生動物による細菌の捕食を促進する。 Thus, by combining the first-stage biological treatment tank operated at high load and the second-stage biological treatment tank holding the sticking protozoa, high load operation and reduction of excess sludge can be achieved. Treated water can also be obtained. For this reason, various improved methods have been proposed for the biological treatment method using the first-stage biological treatment tank and the second-stage biological treatment tank. For example, Patent Document 2 discloses a biological treatment apparatus in which a feed refinement tank is provided between a first-stage biological treatment tank and a second-stage biological treatment tank. In the apparatus disclosed in Patent Document 2, predation of bacteria by protozoa that is dispersed in flocked bacteria and held in the second-stage biological treatment tank in the subsequent stage by performing ultrasonic treatment or the like in a feed refinement tank Promote.
また、流動床法と活性汚泥法とを組み合わせ、余剰汚泥の減量を図る方法が提案されている(特許文献3)。特許文献3に開示された方法では、前段側曝気槽において流動床法で生物処理を行った後、後段側生物処理槽でBOD汚泥負荷を0.1〜0.6kg−BOD/kg−VSS/日として活性汚泥法による処理を行う。この方法では、前段側の生物処理槽に担体を添加することで、高負荷処理を可能とする一方、後段側の生物処理槽でのBOD汚泥負荷を低くすることで活性汚泥の自己消化を促進し、余剰汚泥の発生量を低減する。
特許文献3に記載された方法では、活性汚泥の自己消化を利用して汚泥を減量するものの、活性汚泥の自己消化を促進するために溶解性BOD汚泥負荷を低くすると汚泥の沈降性が低下して処理水水質が悪化する問題がある。 In the method described in Patent Document 3, sludge is reduced by utilizing self-digestion of activated sludge, but if the soluble BOD sludge load is lowered in order to promote self-digestion of activated sludge, the sedimentation property of sludge decreases. Therefore, there is a problem that the quality of treated water deteriorates.
一方、特許文献1及び特許文献2に開示された方法では、細菌を吸い込んで捕食する濾過捕食型の微小生物による細菌の捕食作用を利用して汚泥を減量する。この方法では、汚泥を減容化する第2段生物処理槽で微小生物の捕食作用による汚泥減容と細菌のフロック化が同時に促進されるため、汚泥の沈降性を悪化させることを防いで汚泥を減量できる。 On the other hand, in the methods disclosed in Patent Document 1 and Patent Document 2, sludge is reduced by utilizing the predatory action of bacteria by a filtration predation type micro-organism that sucks and eats bacteria. In this method, sludge volume reduction and bacteria flocculation are promoted at the same time in the second-stage biological treatment tank that reduces sludge volume, thereby preventing sludge sedimentation from worsening. Can lose weight.
しかし、特許文献1及び特許文献2に開示された方法では、第1段生物処理槽と第2段生物処理槽での処理条件の調整が難しい。特に、第1段生物処理槽での処理条件を適正な範囲に制御できない場合、汚泥減量効果が得られないだけでなく、処理水水質の悪化を招く場合もある。例えば、第2段生物処理槽に保持される生物相は第1段生物処理槽での溶解性BODの除去率によって異なり、第1段生物処理槽での処理条件によっては微小生物保持槽に一定量の微小生物を維持できなくなる場合がある。あるいは、細菌が微小生物の口径より大きい場合、微小生物による捕食が進まず汚泥減量効果が低くなる場合がある。 However, in the methods disclosed in Patent Document 1 and Patent Document 2, it is difficult to adjust the processing conditions in the first-stage biological treatment tank and the second-stage biological treatment tank. In particular, when the treatment conditions in the first-stage biological treatment tank cannot be controlled within an appropriate range, not only the sludge reduction effect can be obtained but also the quality of the treated water may be deteriorated. For example, the biota retained in the second-stage biological treatment tank varies depending on the removal rate of soluble BOD in the first-stage biological treatment tank, and is constant in the micro-organism retention tank depending on the treatment conditions in the first-stage biological treatment tank. The amount of micro-organisms may not be maintained. Alternatively, when bacteria are larger than the diameter of the micro-organism, predation by the micro-organism does not proceed and the sludge reduction effect may be reduced.
本発明は上記課題に鑑みてなされ、良好な水質の処理水を得ることができ、さらに微小生物の捕食作用による汚泥減量効果を安定的に得ることができる有機性廃水の生物処理方法を提供することを目的とする。 This invention is made in view of the said subject, and provides the biological treatment method of the organic wastewater which can obtain the treated water of favorable water quality, and also can obtain stably the sludge reduction effect by the predation action of a micro organism. For the purpose.
本発明者らは、高負荷処理工程の曝気槽の溶存酸素(DO)濃度を制御することにより曝気槽において分散性の細菌を増殖させることができ、微小生物保持槽に所定量の微小生物を保持するために必要な餌が安定的に供給できることを見出した。また、本発明者らは、微小生物保持槽の溶解性BOD汚泥負荷がある範囲内になるように制御することで、微小生物保持槽に所定量の微小生物が保持されやすくなることを知見した。 The present inventors can grow dispersible bacteria in the aeration tank by controlling the concentration of dissolved oxygen (DO) in the aeration tank in the high load treatment process, and a predetermined amount of micro organisms can be added to the micro organism holding tank. It was found that the food necessary for holding can be stably supplied. In addition, the present inventors have found that a predetermined amount of micro organisms can be easily held in the micro organism holding tank by controlling so that the soluble BOD sludge load of the micro organism holding tank is within a certain range. .
本発明は、かかる知見に基づいて完成され、生物処理槽を複数段に分割し、前段側の生物処理槽(曝気槽)のDO濃度を制御するか、後段側の生物処理槽(微小生物保持槽)の溶解性BOD汚泥負荷を制御することにより、微小生物保持槽内に微小生物を安定的に増殖させて余剰汚泥を減量する。より具体的には、本発明は以下を提供する。 The present invention has been completed based on such knowledge, and the biological treatment tank is divided into a plurality of stages, and the DO concentration of the biological treatment tank (aeration tank) on the front stage is controlled, or the biological treatment tank on the rear stage (microorganism holding) By controlling the soluble BOD sludge load in the tank), the micro-organisms are stably grown in the micro-organism holding tank to reduce the excess sludge. More specifically, the present invention provides the following.
(1) 有機物を含む有機性廃水を曝気槽に導入して好気的条件下で生物処理する高負荷処理工程と、 前記高負荷処理工程から流出する生物処理液を微小生物保持槽に導入して生物処理する低負荷処理工程と、を含み、 前記高負荷処理工程の前記曝気槽の酸素濃度、および前記低負荷処理工程の前記微小生物保持槽に対する溶解性BOD汚泥負荷のいずれか一方または両方を制御し、 前記高負荷処理工程において前記有機物を基質として分散性の細菌を生成させ、前記低負荷処理工程において前記微小生物保持槽に生息させた微小生物により前記分散性の細菌を捕食させる有機性排水の生物処理方法。 (1) Introducing organic wastewater containing organic matter into an aeration tank and biologically treating it under aerobic conditions, and introducing a biological treatment liquid flowing out from the high load treatment process into a micro-organism holding tank A low-load treatment step for biological treatment, and either or both of the oxygen concentration of the aeration tank in the high-load treatment step and the soluble BOD sludge load on the micro-organism holding tank in the low-load treatment step An organic substance that generates dispersible bacteria using the organic substance as a substrate in the high-load treatment step, and that prey on the dispersible bacteria by the micro-organisms that inhabit the micro-organism holding tank in the low-load treatment step. Biological treatment method for effluent.
前記低負荷処理工程において、前記微小生物保持槽に対する溶解性BOD汚泥負荷を0.025kg−BOD/kg−VSS/日以上0.05kg−BOD/kg−VSS/日以下とする(1)に記載の有機性廃水の生物処理方法。 In the low load treatment step, the soluble BOD sludge load on the micro organism holding tank is set to 0.025 kg-BOD / kg-VSS / day or more and 0.05 kg-BOD / kg-VSS / day or less (1). Biological treatment method for organic wastewater.
(3) 前記高負荷処理工程において、前記曝気槽の溶存酸素濃度を0.5mg/L以下として生物処理を行う(1)または(2)に記載の有機性廃水の生物処理方法。 (3) The biological treatment method for organic wastewater according to (1) or (2), wherein in the high-load treatment step, biological treatment is performed with a dissolved oxygen concentration in the aeration tank of 0.5 mg / L or less.
(4) 前記高負荷処理工程において、前記曝気槽に対する前記有機性廃水の流入量および前記有機性廃水に含まれる前記有機物の濃度を測定して前記高負荷処理工程で分解すべきCODcr量を求め、前記分解すべきCODcr量に基づいて酸素供給量を制御する(1)から(3)のいずれかに記載の有機性廃水の生物処理方法。 (4) In the high load treatment step, the amount of the organic wastewater flowing into the aeration tank and the concentration of the organic matter contained in the organic wastewater are measured to obtain the amount of CODcr to be decomposed in the high load treatment step The biological treatment method for organic wastewater according to any one of (1) to (3), wherein an oxygen supply amount is controlled based on the amount of CODcr to be decomposed.
(5) 前記高負荷処理工程において、酸素供給量を制御することにより前記曝気槽の槽内液の溶存酸素濃度が0mg/Lとなる酸素欠乏期間を設ける(1)から(4)のいずれかに記載の有機性廃水の生物処理方法。 (5) In any one of (1) to (4), in the high load treatment step, an oxygen deficiency period in which the dissolved oxygen concentration of the liquid in the aeration tank is 0 mg / L is provided by controlling an oxygen supply amount Biological treatment method of organic wastewater as described in 1.
(6) 前記高負荷処理工程において、前記曝気槽の槽内液の溶存酸素濃度が0mg/Lを超える有酸素期間に対する前記酸素欠乏期間の比が、0.25以上1以下となるように酸素供給量を制御する(5)に記載の有機性廃水の生物処理方法。 (6) In the high load treatment step, the oxygen depletion period is in a ratio of 0.25 or more and 1 or less to an aerobic period in which the dissolved oxygen concentration of the liquid in the aeration tank exceeds 0 mg / L. The biological treatment method for organic wastewater according to (5), wherein the supply amount is controlled.
(7) 前記高負荷処理工程において、酸素消費速度と酸素供給速度との差が10%以下になるように酸素供給量を制御する(1)から(6)のいずれかに記載の有機性廃水の生物処理方法。 (7) The organic wastewater according to any one of (1) to (6), wherein the oxygen supply amount is controlled so that a difference between an oxygen consumption rate and an oxygen supply rate is 10% or less in the high load treatment step. Biological treatment method.
(8) 前記微小生物保持槽に、前記微小生物を汚泥MLVSSの5%以上の濃度で生息させる(1)から(7)のいずれかに記載の有機性廃水の生物処理方法。 (8) The biological treatment method for organic wastewater according to any one of (1) to (7), wherein the fine organisms are allowed to inhabit in the fine organism holding tank at a concentration of 5% or more of the sludge MLVSS.
(9) 前記曝気槽をバイパスさせた前記有機性廃水を前記微小生物槽に直接流入させる(1)から(8)のいずれかに記載の有機性廃水の生物処理方法。 (9) The biological treatment method for organic wastewater according to any one of (1) to (8), wherein the organic wastewater bypassing the aeration tank is directly flowed into the microbiological tank.
本発明では、曝気槽で処理され高負荷処理工程から流出する流出液(生物処理液)には有機性廃水に含まれる有機物を基質として増殖した細菌が含まれる。本発明では、かかる生物処理液を微小生物保持槽に導入し、微小生物による細菌の捕食と細菌の自己消化により汚泥発生量を減らす。このため微小生物保持槽は、所定量の微小生物が保持され、かつ、細菌が凝集するのに適した条件で運転する。 In the present invention, the effluent (biological treatment liquid) that is processed in the aeration tank and flows out from the high-load treatment step includes bacteria that have grown using organic substances contained in organic wastewater as substrates. In the present invention, such a biological treatment liquid is introduced into a micro organism holding tank, and sludge generation is reduced by predation of bacteria by micro organisms and self-digestion of bacteria. For this reason, the micro organism holding tank is operated under conditions suitable for holding a predetermined amount of micro organisms and allowing bacteria to aggregate.
微小生物保持槽に所定量の微小生物を保持するためには、高負荷で運転される前段側の生物処理槽である曝気槽のDO濃度、および低負荷で運転される後段側の生物処理槽である微小生物保持槽の溶解性BOD負荷のいずれか一方、または両方を制御する。 In order to hold a predetermined amount of micro-organisms in the micro-organism holding tank, the DO concentration of the aeration tank, which is the pre-stage biological treatment tank operated at high load, and the latter-stage bio-treatment tank operated at low load Control either or both of the soluble BOD loadings of the microbiological holding tank.
曝気槽のDO濃度を制御する場合は、分散性の細菌が優占するようにDO濃度を制御する。曝気槽の槽内液のDO濃度は、曝気槽に供給する酸素の供給量を調整することにより制御できる。曝気槽内に分散性の細菌を優占させるための酸素供給量の制御方法としては、曝気槽にDO計を設け、DO計の値が0.5mg/L以下、好ましくは0.1mg/L以下、さらに好ましくは0.05mg/L以下となるように酸素供給量を調整する方法が挙げられる。 When controlling the DO concentration in the aeration tank, the DO concentration is controlled so that dispersible bacteria dominate. The DO concentration of the liquid in the aeration tank can be controlled by adjusting the amount of oxygen supplied to the aeration tank. As a method of controlling the oxygen supply amount for predominating dispersible bacteria in the aeration tank, a DO meter is provided in the aeration tank, and the value of the DO meter is 0.5 mg / L or less, preferably 0.1 mg / L. Hereinafter, a method of adjusting the oxygen supply amount so as to be more preferably 0.05 mg / L or less can be mentioned.
また、曝気槽に供給した酸素は主として有機物分解に用いられ消費されるため、曝気槽に流入する有機性廃水の流入量と有機物濃度とを測定することから、曝気槽への酸素供給量を設定してもよい。すなわち、有機性廃水の流入量と有機物濃度を求めることにより、曝気槽に供給される有機物が求められ、曝気槽に持ち込まれるCODcr(化学的酸素消費量で表される有機物)量を把握できる。曝気槽では主に溶解性のCODcrの70〜90%が分散性の細菌へと変換されるため、曝気槽に流入させる原水(有機性廃水)に含まれる溶解性CODcrの70〜90%が菌体に変換された場合の菌体のCODcr分を引いたCODcrを酸化分解するために必要な量の酸素を曝気槽に供給すれば、曝気槽のDO濃度を0.5mg/L以下に保って分散性の細菌を優占させることができる。すなわち、菌体の収率と対象廃水の溶解性CODcrの分解性をあらかじめ求めておけば、原水である有機性廃水の有機物濃度が変化しても曝気槽に供給する酸素の最適量がわかる。なお、有機性廃水に含まれる有機物濃度はCODcrとして求めてもよいが、BOD、または全有機物量(TOC)として求めることは排除されない。 In addition, since oxygen supplied to the aeration tank is mainly used for organic matter decomposition and consumed, the amount of organic wastewater flowing into the aeration tank and the concentration of organic matter are measured, so the oxygen supply amount to the aeration tank is set. May be. That is, by obtaining the inflow amount of organic waste water and the concentration of organic matter, the amount of organic matter supplied to the aeration tank is obtained, and the amount of CODcr (organic matter expressed by chemical oxygen consumption) brought into the aeration tank can be grasped. Since 70 to 90% of soluble CODcr is mainly converted into dispersible bacteria in the aeration tank, 70 to 90% of soluble CODcr contained in the raw water (organic waste water) flowing into the aeration tank is a fungus. If the amount of oxygen required to oxidatively decompose CODcr obtained by subtracting the CODcr content of the bacterial cells when converted into the body is supplied to the aeration tank, the DO concentration in the aeration tank is kept at 0.5 mg / L or less. Dispersed bacteria can predominate. That is, if the yield of bacterial cells and the decomposability of the soluble CODcr of the target wastewater are obtained in advance, the optimum amount of oxygen to be supplied to the aeration tank can be determined even if the organic matter concentration of the organic wastewater that is the raw water changes. In addition, although the organic substance density | concentration contained in organic wastewater may be calculated | required as CODcr, calculating | requiring as BOD or total amount of organic substances (TOC) is not excluded.
あるいは、酸素供給を一時的に停止する等して曝気槽の槽内液のDO濃度を実質的にゼロにする期間(酸素欠乏期間)を設けてもよい。酸素欠乏期間を設けることにより、長さが5μmを超えて微小生物に捕食され難い形態となる細菌の生育を抑制できる。酸素欠乏期間は、曝気槽に対する酸素供給を間欠的に行う(間欠曝気)、または酸素供給量を一時的に減少させるといった手段により設定できる。特に、有機性廃水の有機物濃度の変動が大きい場合(例えば変動幅が50〜150%、またはそれ以上であるような場合)、DOを一定の値に保つことが困難となるので、酸素欠乏期間を設けることにより微小生物に捕食され難い細菌の生育を抑制することが好ましい。 Or you may provide the period (oxygen deficiency period) which makes DO concentration of the liquid in the tank of an aeration tank substantially zero, such as temporarily stopping oxygen supply. By providing the oxygen-deficient period, it is possible to suppress the growth of bacteria whose length exceeds 5 μm and is in a form that is difficult to be preyed on by micro-organisms. The oxygen deficiency period can be set by means of intermittently supplying oxygen to the aeration tank (intermittent aeration) or temporarily reducing the oxygen supply amount. In particular, when the organic substance concentration fluctuation in organic wastewater is large (for example, when the fluctuation range is 50 to 150% or more), it is difficult to keep DO at a constant value, so the oxygen deficiency period It is preferable to suppress the growth of bacteria that are difficult to be preyed on by micro-organisms.
酸素欠乏期間は、曝気槽が好気的条件にある有酸素期間(DO濃度が0mg/Lを超える期間)に対して0.25〜1倍の長さになるように設定することが好ましい。酸素欠乏期間は、1〜60分間とすることが好ましく、特に2分以内とすることが好ましい。また、酸素欠乏期間と有酸素期間とは数分刻みの間隔で交互に設定することが好ましく、例えば2〜10分間隔程度の間隔とするとよい。ただし、30分、あるいは1時間といった時間間隔とすることは排除されない。 The oxygen deficiency period is preferably set to be 0.25 to 1 times longer than the aerobic period (period in which the DO concentration exceeds 0 mg / L) in which the aeration tank is in an aerobic condition. The oxygen deficiency period is preferably 1 to 60 minutes, and particularly preferably within 2 minutes. The oxygen deficiency period and the aerobic period are preferably set alternately at intervals of several minutes, for example, at intervals of about 2 to 10 minutes. However, a time interval of 30 minutes or 1 hour is not excluded.
また、より厳密にDO濃度を制御するためには、曝気槽での酸素消費速度と酸素供給速度との差を10%以下、好ましくは5%以下となるように酸素供給量を制御してもよい。酸素消費速度は、曝気槽の槽内液のDO濃度が2mg/L以上となるように一時的に酸素を過剰に供給した後、酸素供給量を一時的に停止または減少させることから算出すればよい。すなわち、酸素過剰供給時と酸素供給抑制時とのDO濃度の減少速度を求めることから酸素消費速度を算出できる。酸素消費速度は有機性廃水の性状や処理条件の変化等により変動することから、1時間に1度以上、具体的には20〜40分間隔で算出することが好ましい。 In order to more precisely control the DO concentration, the oxygen supply amount may be controlled so that the difference between the oxygen consumption rate and the oxygen supply rate in the aeration tank is 10% or less, preferably 5% or less. Good. The oxygen consumption rate is calculated by temporarily stopping or reducing the oxygen supply amount after temporarily supplying excessive oxygen so that the DO concentration of the liquid in the aeration tank becomes 2 mg / L or more. Good. That is, the oxygen consumption rate can be calculated from the decrease rate of the DO concentration when oxygen is excessively supplied and when oxygen supply is suppressed. Since the oxygen consumption rate varies depending on the properties of organic wastewater, changes in processing conditions, and the like, it is preferable to calculate the oxygen consumption rate at least once per hour, specifically at intervals of 20 to 40 minutes.
一方、微小生物保持槽の溶解性BOD汚泥負荷を制御する理由は次による。微小生物保持槽に有機物が多く供給されると、有機物を基質として増殖する細菌が微小生物による捕食を避ける形態で増殖し、充分な汚泥減量効果が得られず、細菌が糸状で増殖した場合はバルキング現象を招く恐れもある。また、フロックを解体する微小生物が増え、処理水の水質が悪化する恐れもある。一方で、微小生物保持槽に対する有機物供給量が不足すると微小生物保持槽に微小生物が所定量保持されなくなり、汚泥減量効果が低下するだけでなく、細菌の自己消化により汚泥が微細化して汚泥の沈降性が低下する結果、処理水水質の悪化を招く恐れがある。 On the other hand, the reason for controlling the soluble BOD sludge load in the micro organism holding tank is as follows. If a large amount of organic matter is supplied to the micro organism holding tank, bacteria that grow using the organic matter as a substrate will proliferate in a form that avoids predation by micro organisms, and sufficient sludge reduction effect cannot be obtained, and if bacteria grow in filamentous form, There is also a risk of causing a bulking phenomenon. In addition, the number of micro-organisms that disassemble flocs increases, and the quality of treated water may deteriorate. On the other hand, if the amount of organic matter supplied to the micro-organism holding tank is insufficient, a predetermined amount of micro-organisms will not be retained in the micro-organism holding tank, and the sludge reduction effect will not be reduced. As a result of the decrease in sedimentation, the quality of treated water may be deteriorated.
こうした問題を防ぐため、本発明では微小生物を保持する微小生物保持槽に対する溶解性BOD汚泥負荷を制御し、特に0.05kg−BOD/kg−VSS/日以下、特に0.025〜0.05kg−BOD/kg−VSS/日の範囲とするように制御する。本発明では、微小生物保持槽の溶解性BOD汚泥負荷を制御するとともに、上述したように曝気槽のDO濃度を制御してもよい。 In order to prevent such a problem, in the present invention, the soluble BOD sludge load on the micro organism holding tank holding micro organisms is controlled, in particular 0.05 kg-BOD / kg-VSS / day or less, particularly 0.025 to 0.05 kg. -Control to be in the range of BOD / kg-VSS / day. In this invention, while controlling the soluble BOD sludge load of a micro organism holding tank, you may control DO density | concentration of an aeration tank as mentioned above.
また、微小生物保持槽の生物処理の方式として、微小生物保持槽の後段に沈殿池等の固液分離装置を設け分離した汚泥を返送する活性汚泥法、微小生物保持槽内に分離膜を設ける膜分離式活性汚泥法等を用いることができる。また、微小生物と細菌を保持するのに適した担体を微小生物保持槽に添加してもよい。担体としては、種々の流動性の充填材を使用でき、材質、形状は特に限定されない。担体の充填率は槽あたり嵩容積で10〜50%程度とすることが好ましい。 In addition, as a biological treatment system of the micro organism holding tank, an activated sludge method for returning the separated sludge by providing a solid-liquid separation device such as a sedimentation basin after the micro organism holding tank, and a separation membrane in the micro organism holding tank A membrane separation activated sludge method or the like can be used. Moreover, you may add the support | carrier suitable for hold | maintaining a micro organism and bacteria to a micro organism holding tank. As the carrier, various fluid fillers can be used, and the material and shape are not particularly limited. The filling rate of the carrier is preferably about 10 to 50% in bulk volume per tank.
加えて、微小生物は細菌に比して増殖速度が遅いため、微小生物保持槽のSRT(汚泥の平均滞留時間)を10日以上とすることが好ましい。ただし、SRTを長くしすぎると微小生物保持槽に微小生物が過剰に保持され、微小生物の糞等も多く蓄積することになるため、SRTは40日以下、特に10日以上30日以下とするとよい。なお、SRTは数式1により求められる。 In addition, since micro-organisms have a slower growth rate than bacteria, the SRT (average sludge residence time) of the micro-organism holding tank is preferably 10 days or longer. However, if the SRT is too long, the micro organisms will be retained excessively in the micro organism holding tank, and a lot of micro organisms such as feces will accumulate. Therefore, if the SRT is 40 days or less, particularly 10 days or more and 30 days or less. Good. In addition, SRT is calculated | required by Numerical formula 1.
(数1)
SRT(日)=槽内汚泥量÷引抜き汚泥量(Equation 1)
SRT (day) = amount of sludge in tank ÷ amount of extracted sludge
ここで槽内汚泥量とは、生物処理槽内の微生物(汚泥)の現存量であり、数式2により求められる。また、引抜き汚泥量とは、生物処理槽から排出される微生物(汚泥)の量であり、数式3より求められる。 Here, the amount of sludge in the tank is the existing amount of microorganisms (sludge) in the biological treatment tank, and is obtained from Equation 2. The amount of extracted sludge is the amount of microorganisms (sludge) discharged from the biological treatment tank, and is obtained from Equation 3.
(数2)
槽内汚泥量=不溶解性固形物(SS)濃度(mg/L)×槽容積(L)(Equation 2)
Amount of sludge in tank = concentration of insoluble solid (SS) (mg / L) x tank volume (L)
(数3)
引抜き汚泥量=不溶解性固形物(SS)濃度(mg/L)×汚泥引抜き量(L/日)(Equation 3)
Extracted sludge amount = insoluble solid (SS) concentration (mg / L) x sludge extracted amount (L / day)
また、微小生物保持槽に所定量の微小生物を生息させておくため、生物処理液に含まれる固形物のCOD量の0.1重量%以上、特に5〜20重量%程度の分散性の細菌が微小生物保持槽に持ち込まれるようにしておくことが好ましい。さらに、微小生物保持槽に微小生物の栄養剤となる物質を添加してもよい。栄養剤としては脂質を含む物質が特に好ましく、脂質としては、リン脂質、遊離脂肪酸、及びステロール等が挙げられ、特にリゾリン脂質、レシチン等のリン脂質を含む物質を好適に使用できる。具体的には米糠、ビール絞り粕、油の絞り粕、甜菜粕、貝殻粉、卵殻、野菜エキス、魚肉エキス、各種アミノ酸、及び各種ビタミン等を栄養剤として使用できる。添加量は槽容積あたり0.01mg/L/日以上、特に0.1〜10mg/L/日が好ましい。 Further, in order to allow a predetermined amount of micro organisms to live in the micro organism holding tank, dispersible bacteria of 0.1% by weight or more, particularly about 5 to 20% by weight of the COD amount of the solid matter contained in the biological treatment liquid. Is preferably brought into the micro-organism holding tank. Furthermore, you may add the substance used as a nutrient of a micro organism to a micro organism holding tank. Substances containing lipids are particularly preferred as nutrients, and examples of lipids include phospholipids, free fatty acids, and sterols. Particularly, substances containing phospholipids such as lysophospholipids and lecithin can be suitably used. Specifically, rice bran, beer pomace, oil pomace, side dish, shellfish powder, eggshell, vegetable extract, fish extract, various amino acids, various vitamins, and the like can be used as nutrients. The addition amount is preferably 0.01 mg / L / day or more, particularly 0.1 to 10 mg / L / day per tank volume.
微小生物保持槽には微小生物をMLVSSの5%以上の濃度で生息させることが好ましい。なお、本明細書において「微小生物」とは細菌を捕食する水生の原生動物及び後生動物を総称するものとし、原生動物としてゾウリムシ及びツリガネムシ、後生動物としてワムシ及びセンチュウ等が挙げられる。微小生物としては特に濾過捕食型の摂食行動を示す微小生物を優占させることが好ましく、具体的には微小生物保持槽に対する溶解性BOD汚泥負荷を上記のように制御することによりツリガネムシやヒルガタワムシを優占させることが好ましい。また、MLVSS(Mixed Liquor Volatile Suspended Solid)とは、600℃で燃焼する汚泥(有機物)濃度を意味するものである。 It is preferable that the micro organisms inhabit the micro organism holding tank at a concentration of 5% or more of MLVSS. In the present specification, the term “microorganism” is a generic term for aquatic protozoa and metazoans that prey on bacteria, and protozoa include Paramecium and weevil, and metazoans include rotifers and nematodes. In particular, it is preferable to dominate micro organisms exhibiting predatory behavior of filtration and predation as micro organisms. Specifically, by controlling the soluble BOD sludge load on the micro organism holding tank as described above, the weevil and stag beetle are controlled. Is preferred. Moreover, MLVSS (Mixed Liquid Volatile Suspended Solid) means the concentration of sludge (organic matter) combusted at 600 ° C.
本発明によれば、曝気槽のDO濃度を制御することにより、濾過捕食型の原生動物等の微小生物に捕食され易い分散性の細菌を優占化させ、微小生物保持槽に保持される微小生物の量を安定させることができる。本発明では、曝気槽において高い負荷で生物処理を行う一方、原生動物等の微小生物を保持する微小生物保持槽に対する溶解性BOD汚泥負荷を低くすることにより、汚泥減量に寄与する微小生物保持槽の微小生物の量を安定させることができる。このため、本発明によれば余剰汚泥の発生量を安定的に低減でき、SS濃度の低い処理水を得ることができる。 According to the present invention, by controlling the DO concentration in the aeration tank, the dispersible bacteria that are easily preyed on by micro-organisms such as filtered predatory protozoa are prevalent, and the micro-organism retained in the micro-organism holding tank The amount of organisms can be stabilized. In the present invention, the biological treatment is performed at a high load in the aeration tank, while the soluble BOD sludge load on the microbiology holding tank holding the microbiology such as protozoa is reduced, thereby contributing to sludge reduction. The amount of micro-organisms can be stabilized. For this reason, according to this invention, the generation amount of excess sludge can be reduced stably and the treated water with low SS density | concentration can be obtained.
以下、本発明について図面を用いて詳細に説明する。以下、同一部材には同一符号を付し、説明を省略又は簡略化する。図1は、本発明を実施するために用いられる有機性廃水の生物処理装置(以下、単に「処理装置」という)11の模式図である。処理装置11は、曝気槽21と、微小生物保持槽31と、固液分離手段としての沈殿池41を備え、汚泥減量をさらに促進するため、沈殿池41で処理水と分離された汚泥フロックを生物処理する汚泥処理槽51をさらに備える。 Hereinafter, the present invention will be described in detail with reference to the drawings. Hereinafter, the same members are denoted by the same reference numerals, and description thereof is omitted or simplified. FIG. 1 is a schematic diagram of an organic wastewater biological treatment apparatus (hereinafter simply referred to as “treatment apparatus”) 11 used for carrying out the present invention. The processing apparatus 11 includes an aeration tank 21, a micro organism holding tank 31, and a sedimentation basin 41 as a solid-liquid separation means. In order to further promote sludge reduction, sludge floc separated from treated water in the sedimentation basin 41 is used. A sludge treatment tank 51 for biological treatment is further provided.
曝気槽21及び微小生物保持槽31は第1接続管35で、微小生物保持槽31及び沈殿池41は第2接続管45で互いに直列に接続されている。また沈殿池41及び微小生物保持槽31は汚泥返送路65で接続され、沈殿池41で分離された汚泥の一部が返送汚泥として微小生物保持槽31に返送されるように構成されている。汚泥返送路65からは、汚泥排出路56および処理汚泥路57が分岐しており、沈殿池41で分離された汚泥の一部は処理汚泥路57から汚泥処理槽51に送られてさらに減量され、余剰分が汚泥排出路56から系外へ排出される。 The aeration tank 21 and the micro organism holding tank 31 are connected to each other in series by a first connection pipe 35, and the micro organism holding tank 31 and the sedimentation tank 41 are connected to each other in series by a second connection pipe 45. The sedimentation basin 41 and the micro-organism holding tank 31 are connected by a sludge return path 65 so that a part of the sludge separated in the sedimentation tank 41 is returned to the micro-organism holding tank 31 as return sludge. From the sludge return path 65, a sludge discharge path 56 and a treated sludge path 57 are branched, and a part of the sludge separated in the sedimentation basin 41 is sent from the treated sludge path 57 to the sludge treatment tank 51 and further reduced. The surplus is discharged from the sludge discharge channel 56 to the outside of the system.
この処理装置11では、まず、下水や産業廃水等の有機性廃水を被処理水として原水路25から曝気槽21に導入する。曝気槽21では有機性廃水を槽内に保持された活性汚泥と混合し、有機性廃水に含まれる有機物を生物分解する高負荷処理工程を実施する。曝気槽21では、槽内液のDO濃度が所定範囲内に収まるよう、気体供給手段(本実施形態では散気管)22からの酸素供給量を制御しながら生物処理を行い、分散性細菌を優占化させる。酸素供給量の制御については詳述したとおりであるが、DO計23により計測された槽内液のDO濃度が0.5mg/L以下となるようにするとよい。 In this processing apparatus 11, first, organic wastewater such as sewage and industrial wastewater is introduced into the aeration tank 21 from the raw water channel 25 as treated water. In the aeration tank 21, the organic wastewater is mixed with the activated sludge retained in the tank, and a high load treatment process for biodegrading the organic matter contained in the organic wastewater is performed. In the aeration tank 21, biological treatment is performed while controlling the oxygen supply amount from the gas supply means (aeration pipe in this embodiment) 22 so that the DO concentration of the liquid in the tank is within a predetermined range, and the dispersible bacteria are favored. Fortune-telling. Although the control of the oxygen supply amount is as described in detail, it is preferable that the DO concentration of the liquid in the tank measured by the DO meter 23 is 0.5 mg / L or less.
曝気槽21は、酸素供給量を制御することにより、菌体に対する分散性細菌の割合が50%以上、特に80〜100%とする。濾過捕食型微小生物に捕食されやすい分散性細菌を曝気槽21内で優占化させるためには、曝気槽21のDO濃度を調整することに加え、曝気槽21のHRT(水理学的滞留時間)を短く設定することが好ましい。具体的には、曝気槽21に流入した有機性廃水に含まれる溶解性有機物の70〜90%程度を除去できるHRTを最適値とし、HRTがこの最適値の0.75〜1.5倍以内に収まるよう、制御することが好ましい。HRTの最適値は有機性廃水の種類等により異なるため、机上試験等によってあらかじめHRTの最適値を求めておくとよい。一般的には、曝気槽21のHRTは24時間以下とすることが好ましく、特に、2〜8時間とすることが好ましい。 The aeration tank 21 controls the oxygen supply amount so that the ratio of dispersible bacteria to the cells is 50% or more, particularly 80 to 100%. In order to dominate dispersible bacteria precipitated by the filtered predation type micro-organism in the aeration tank 21, in addition to adjusting the DO concentration of the aeration tank 21, the HRT (hydraulic residence time of the aeration tank 21) ) Is preferably set short. Specifically, the HRT that can remove about 70 to 90% of the soluble organic matter contained in the organic wastewater that has flowed into the aeration tank 21 is an optimum value, and the HRT is within 0.75 to 1.5 times the optimum value. It is preferable to control so as to be within the range. Since the optimum value of HRT varies depending on the type of organic waste water, etc., it is preferable to obtain the optimum value of HRT in advance by a desktop test or the like. Generally, the HRT of the aeration tank 21 is preferably 24 hours or less, and particularly preferably 2 to 8 hours.
HRTを一定の範囲内に維持する方法としては、曝気槽21に流入させる有機性廃水量が減少したときに、処理水を曝気槽に返送して曝気槽21に入る水の量を一定にする方法や、曝気槽21への廃水流入量の変動に合わせて曝気槽21の水位を変動させる方法等が挙げられる。なお、HRTとは被処理水が生物処理槽(曝気槽21)に流入してから流出するまでの時間を指し、生物処理槽(曝気槽21)の容積(L)を被処理水(有機性廃水)の流量(L/時間)で除すことにより求められる。 As a method of maintaining the HRT within a certain range, when the amount of organic waste water flowing into the aeration tank 21 decreases, the amount of water entering the aeration tank 21 is returned by returning the treated water to the aeration tank 21. Examples thereof include a method and a method of changing the water level of the aeration tank 21 in accordance with the fluctuation of the amount of wastewater flowing into the aeration tank 21. HRT refers to the time from when the treated water flows into the biological treatment tank (aeration tank 21) until it flows out, and the volume (L) of the biological treatment tank (aeration tank 21) is defined as the treated water (organic). It is calculated by dividing by the flow rate (L / hour) of the waste water).
また、曝気槽21では、微小生物保持槽31での生物処理(低負荷処理)に比して高い有機物負荷での生物処理(高負荷処理)を行うようにし、具体的には溶解性BOD容積負荷1kg−BOD/m3/日以上、好ましくは3kg−BOD/m3/日以上20kg−BOD/m3/日以下の高負荷で運転するとよい。BOD容積負荷を高くすると、細菌のフロック化および糸状性細菌の優占化を防ぐことによって分散性細菌が優占化しやすくなるためであり、曝気槽21の容積も小さくできる。The aeration tank 21 performs biological treatment (high load treatment) with a higher organic load than the biological treatment (low load treatment) in the microorganism holding tank 31, and more specifically, the soluble BOD volume. The operation may be performed at a high load of 1 kg-BOD / m 3 / day or more, preferably 3 kg-BOD / m 3 / day or more and 20 kg-BOD / m 3 / day or less. This is because when the BOD volume load is increased, dispersive bacteria are likely to dominate by preventing flocculation of bacteria and dominance of filamentous bacteria, and the volume of the aeration tank 21 can be reduced.
曝気槽21における生物処理の方式としては、浮遊式、流動床式等の任意の方式を採用することができる。曝気槽21は2段以上に分割して多段式としてもよく、曝気槽21後段の微小生物保持槽31から返送された汚泥を導入するようにしてもよい。また、曝気槽21には担体を添加してもよい。 As a biological treatment system in the aeration tank 21, an arbitrary system such as a floating system or a fluidized bed system can be employed. The aeration tank 21 may be divided into two or more stages and may be a multistage type, or the sludge returned from the micro-organism holding tank 31 subsequent to the aeration tank 21 may be introduced. Further, a carrier may be added to the aeration tank 21.
担体としては種々の流動性の充填材を用いることができ、材質に特に限定はない。担体材質の具体例としては、灰、砂、活性炭、及びセラミック等の無機物、並びに、合成樹脂、及びセルロース(セルロースの誘導体を含む)等の有機物が挙げられる。合成樹脂としては、ポリウレタン、ポリエチレン、ポリプロピレン、ポリスチレン、及びポリビニルアルコール等があり、これらの合成樹脂に発泡剤等を適宜混合して発泡させた発泡体は網構造を備えた多孔性であり好適に用いることができる。また、ゲル状物質を素材とする担体を用いてもよい。 As the carrier, various fluid fillers can be used, and the material is not particularly limited. Specific examples of the carrier material include inorganic substances such as ash, sand, activated carbon, and ceramic, and synthetic substances and organic substances such as cellulose (including cellulose derivatives). Examples of synthetic resins include polyurethane, polyethylene, polypropylene, polystyrene, and polyvinyl alcohol. A foam obtained by appropriately mixing a foaming agent with these synthetic resins and foaming is suitably porous with a network structure. Can be used. Moreover, you may use the support | carrier which uses a gel-like substance as a raw material.
担体の形状も限定されず、粒状、筒状、ハニカム形、糸状、及び波形等が例示でき、粒状の担体形状としては球、ペレット、矩形等がある。担体の大きさは0.1〜10mm程度のものを好適に使用できる。分散性の細菌の生成を促進するためには、担体の充填率は通常より小さくすることが好ましく、具体的には曝気槽21当たり嵩容積で10%以下、特に5%以下とすることが好ましい。 The shape of the carrier is not limited, and examples thereof include a granular shape, a cylindrical shape, a honeycomb shape, a thread shape, and a corrugated shape. Examples of the granular carrier shape include a sphere, a pellet, and a rectangle. A carrier having a size of about 0.1 to 10 mm can be preferably used. In order to promote the production of dispersible bacteria, the filling rate of the carrier is preferably smaller than usual. Specifically, the bulk volume per aeration tank 21 is preferably 10% or less, particularly preferably 5% or less. .
曝気槽21では、有機性廃水に含まれる溶解性BODの70%以上、好ましくは80%以上、さらに好ましくは90%以上を分解するようにし、pHは6以上8以下とすることが好ましい。ただし、油分を多く(例えば100mg/L以上)含む有機性廃水を処理する場合、pHは8を超えてもよい。 In the aeration tank 21, 70% or more, preferably 80% or more, more preferably 90% or more of the soluble BOD contained in the organic waste water is decomposed, and the pH is preferably 6 or more and 8 or less. However, the pH may exceed 8 when treating organic wastewater containing a large amount of oil (for example, 100 mg / L or more).
曝気槽21では、被処理水として導入された有機性廃水に含まれる溶解性BODの大部分(例えば70%以上)を生物分解する高負荷処理工程を行う。曝気槽21は、酸素供給量の制御によりDO濃度を調整して運転されるため分散性の細菌が優占し、凝集していない細菌が含まれる懸濁液(生物処理液)が曝気槽21から流出する。生物処理液は第1接続管35を介して微小生物保持槽31に導入される。 In the aeration tank 21, a high-load treatment process for biodegrading most of the soluble BOD (for example, 70% or more) contained in the organic wastewater introduced as the treated water is performed. Since the aeration tank 21 is operated by adjusting the DO concentration by controlling the oxygen supply amount, a dispersive bacterium predominates, and a suspension (biological treatment liquid) containing unaggregated bacteria is present in the aeration tank 21. Spill from. The biological treatment liquid is introduced into the micro organism holding tank 31 via the first connection pipe 35.
微小生物保持槽31では、気体供給手段32から酸素含有ガスを供給して好気的条件で生物処理する低負荷処理工程を行う。微小生物保持槽31の槽内液のpHは4〜8程度とすることが好ましい。微小生物保持槽31では、微小生物による細菌の捕食と細菌の自己消化により汚泥発生量を減らすとともに、分散性の細菌のフロック化を促進する。このため微小生物保持槽31は、所定量の微小生物が保持され、かつ、細菌が凝集するのに適した条件で運転するとよい。 In the micro-organism holding tank 31, a low-load treatment process is performed in which oxygen-containing gas is supplied from the gas supply means 32 and biological treatment is performed under aerobic conditions. It is preferable that the pH of the liquid in the micro organism holding tank 31 is about 4 to 8. In the micro organism holding tank 31, the amount of sludge generated is reduced by predation of bacteria by the micro organisms and self-digestion of the bacteria, and the flocculation of dispersible bacteria is promoted. For this reason, the micro organism holding tank 31 is preferably operated under conditions suitable for holding a predetermined amount of micro organisms and allowing bacteria to aggregate.
特に、本発明では曝気槽21で優占化させた分散性細菌を含む生物処理液を供給することにより微小生物保持槽31には微小生物を汚泥MLVSSの5%以上の濃度で生息させることができる。 In particular, in the present invention, by supplying a biological treatment liquid containing dispersible bacteria predominated in the aeration tank 21, it is possible to inhabit the micro-organism holding tank 31 with micro-organisms at a concentration of 5% or more of the sludge MLVSS. it can.
微小生物保持槽31は、微小生物保持槽31に対する溶解性BOD汚泥負荷は0.05kg−BOD/kg−VSS/日以下、特に0.025〜0.05kg−BOD/kg−VSS/日の範囲として運転するとよい。これは、微小生物保持槽31で微小生物に捕食され難い糸状等の形態の細菌が増殖することを防止し、濾過捕食型の微小生物を優占的に生息させるためである。また、細菌に比して増殖速度が遅い微小生物を微小生物保持槽31に滞留させるため、SRTを24時間以上、特に10日以上とするとよい。ただし、SRTを長くしすぎると微小生物保持槽31に微小生物が過剰に保持され、微小生物の糞等も多く蓄積することになるため、SRTは40日以下、特に10日以上30日以下とするとよい。 The microbiological storage tank 31 has a soluble BOD sludge load with respect to the microbiological storage tank 31 of 0.05 kg-BOD / kg-VSS / day or less, particularly in the range of 0.025-0.05 kg-BOD / kg-VSS / day. It is good to drive as. This is in order to prevent bacteria in the form of filaments and the like that are difficult to be preyed on by the micro-organisms in the micro-organism holding tank 31, and to preferentially inhabit the microbes of the filter predation type. Moreover, in order to retain the micro organisms whose growth rate is slower than that of the bacteria in the micro organism holding tank 31, the SRT is preferably set to 24 hours or more, particularly 10 days or more. However, if the SRT is too long, the micro organisms are excessively held in the micro organism holding tank 31 and a lot of micro organisms such as feces accumulate, so the SRT is 40 days or less, particularly 10 days or more and 30 days or less. Good.
さらに、微小生物保持槽31に生息させる微小生物の餌を確保するため、生物処理液に含まれる固形物のCODcr(化学的酸素消費量で表される有機物)量の0.1重量%以上、特に5〜20重量%程度の溶解性CODcrが微小生物保持槽に持ち込まれるようにしておくことが好ましい。さらに、微小生物保持槽31に微小生物の栄養剤となる物質を添加してもよい。栄養剤としては脂質を含む物質が特に好ましく、脂質としては、リン脂質、遊離脂肪酸、及びステロール等が挙げられ、特にリゾリン脂質、レシチン等のリン脂質を含む物質を好適に使用できる。具体的には、米糠、ビール絞り粕、油の絞り粕、甜菜粕、貝殻粉、卵殻、野菜エキス、魚肉エキス、各種アミノ酸、及び各種ビタミン等を栄養剤として使用できる。添加量は槽容積あたり0.01mg/L/日以上、特に0.1〜10mg/L日が好ましい。 Furthermore, in order to secure the food of micro organisms that inhabit the micro organism holding tank 31, 0.1% by weight or more of the amount of solid CODcr (organic matter expressed by chemical oxygen consumption) contained in the biological treatment liquid, In particular, it is preferable that about 5 to 20% by weight of soluble CODcr is brought into the micro organism holding tank. Furthermore, you may add the substance used as a nutrient of a micro organism to the micro organism holding tank 31. FIG. Substances containing lipids are particularly preferred as nutrients, and examples of lipids include phospholipids, free fatty acids, and sterols. Particularly, substances containing phospholipids such as lysophospholipids and lecithin can be suitably used. Specifically, rice bran, beer pomace, oil pomace, side dish, shellfish powder, eggshell, vegetable extract, fish extract, various amino acids, various vitamins, and the like can be used as nutrients. The addition amount is preferably 0.01 mg / L / day or more, particularly preferably 0.1 to 10 mg / L day per tank volume.
なお、微小生物保持槽31の生物処理の方式としては、本実施形態のように微小生物保持槽31の後段に沈殿池41等の固液分離手段を設け分離した汚泥を返送する活性汚泥法以外にも微小生物保持槽内に分離膜を設ける膜分離式活性汚泥法等を用いることができる。さらに、微小生物保持槽内に微小生物を保持するのに適した担体を微小生物保持槽31に添加することもできる。担体は特に限定されず、上述した担体を使用でき、充填率は槽あたり嵩容積で10〜40%程度とすることが好ましい。 The biological treatment system of the micro organism holding tank 31 is other than the activated sludge method in which solid-liquid separation means such as a sedimentation basin 41 is provided at the subsequent stage of the micro organism holding tank 31 and the separated sludge is returned as in this embodiment. In addition, a membrane separation activated sludge method or the like in which a separation membrane is provided in a micro organism holding tank can be used. Furthermore, a carrier suitable for holding a micro organism in the micro organism holding tank can be added to the micro organism holding tank 31. A support | carrier is not specifically limited, The support | carrier mentioned above can be used, and it is preferable that a filling rate shall be about 10 to 40% by bulk volume per tank.
微小生物保持槽31では、曝気槽21から流出した生物処理液に含まれる分散性の細菌は、微小生物による捕食や自己消化により減少する。この結果、微小生物保持槽31では余剰汚泥となる細菌が消費されて汚泥が減量されるとともに、細菌が凝集してフロック化した汚泥フロックが生成される。 In the micro-organism holding tank 31, the dispersible bacteria contained in the biological treatment liquid that has flowed out of the aeration tank 21 are reduced by predation and self-digestion by the micro-organisms. As a result, in the micro-organism holding tank 31, bacteria that become surplus sludge are consumed and the sludge is reduced, and sludge flocs are formed by agglomeration of the bacteria and flocking.
汚泥フロックを含む液は、微小生物保持槽31から流出し第2接続管45から沈殿池41に導入され、処理水と分離される。処理水は沈殿池41出口側に接続された処理水路55から取り出され、分離された汚泥の一部は汚泥返送路65から微小生物保持槽31に返送される。本実施形態に係る処理装置11では、沈殿池41で分離された汚泥の一部を処理汚泥路57から汚泥処理槽51へ送り、生物的に汚泥を減量する。また、沈殿池41で分離された汚泥の一部を曝気槽21へ返送してもよい。 The liquid containing the sludge floc flows out from the micro organism holding tank 31 and is introduced into the sedimentation basin 41 through the second connection pipe 45 and separated from the treated water. The treated water is taken out from the treated water passage 55 connected to the outlet side of the sedimentation basin 41, and a part of the separated sludge is returned from the sludge return passage 65 to the micro organism holding tank 31. In the processing apparatus 11 which concerns on this embodiment, a part of sludge isolate | separated by the sedimentation basin 41 is sent to the sludge processing tank 51 from the process sludge path 57, and sludge is reduced biologically. A part of the sludge separated in the sedimentation basin 41 may be returned to the aeration tank 21.
汚泥処理槽51は、微小生物保持槽31と同様の構成とすればよい。具体的には、汚泥処理槽51では散気管等の気体供給手段52から空気等の酸素含有気体を供給し、微小生物を生育させて微小生物の捕食作用を利用して汚泥発生量をさらに減量する。汚泥処理槽51には、微小生物保持槽31と同様に担体を添加してもよく、微小生物の増殖を促進するために栄養剤を添加してもよい。 The sludge treatment tank 51 may have the same configuration as the microorganism holding tank 31. Specifically, in the sludge treatment tank 51, an oxygen-containing gas such as air is supplied from a gas supply means 52 such as an air diffuser, the micro organisms are grown, and the amount of sludge generated is further reduced by utilizing the predation action of the micro organisms. To do. A carrier may be added to the sludge treatment tank 51 in the same manner as the microorganism holding tank 31, and a nutrient may be added to promote the growth of microorganisms.
汚泥処理槽51で処理されきれなかった汚泥フロック、または/および沈殿池41から引き抜かれる汚泥のうち、微小生物保持槽31に返送される部分と汚泥処理槽51に送られる部分を除いた残りの汚泥フロックは、汚泥排出路56から系外へ排出すればよい。 Of the sludge floc that could not be processed in the sludge treatment tank 51 and / or the sludge drawn out from the sedimentation basin 41, the remaining parts except for the part returned to the micro-organism holding tank 31 and the part sent to the sludge treatment tank 51 The sludge flock may be discharged out of the system from the sludge discharge path 56.
本発明は、曝気槽21に対する酸素供給量を制御することにより、曝気槽21での分散性の細菌の増殖を促進するものであり、上記実施形態は適宜、変形することができる。例えば、図2に示すように原水路25に流量計26を設けた処理装置12を用い、曝気槽21に流入する有機性廃水の流入量と有機性廃水の有機物濃度に基づいて曝気槽21で必要とされる酸素量を求めて酸素供給量を制御してもよい。 The present invention promotes the growth of dispersible bacteria in the aeration tank 21 by controlling the amount of oxygen supplied to the aeration tank 21, and the above embodiment can be modified as appropriate. For example, as shown in FIG. 2, using the treatment device 12 provided with a flow meter 26 in the raw water channel 25, the aeration tank 21 uses the amount of organic wastewater flowing into the aeration tank 21 and the organic matter concentration of the organic wastewater. The oxygen supply amount may be controlled by obtaining the required oxygen amount.
また、微小生物保持槽31のいずれか一方または両方に担体を添加することができる。各槽に添加する担体の好ましい種類や充填率は上述した通りである。図3に、曝気槽21に担体58を添加した処理装置13の模式図を示す。また、微小生物保持槽31での微小生物の増殖を促進するために栄養剤等を添加するようにしてもよい。さらに、汚泥処理槽51は、オゾンの吹込み等により化学的に汚泥を減量するものとしてもよく、機械的破砕等により物理的に汚泥減量を行うものとすることもできる。 A carrier can be added to either one or both of the micro organism holding tanks 31. Preferred types and filling rates of carriers added to each tank are as described above. In FIG. 3, the schematic diagram of the processing apparatus 13 which added the support | carrier 58 to the aeration tank 21 is shown. Further, a nutrient or the like may be added in order to promote the growth of micro organisms in the micro organism holding tank 31. Furthermore, the sludge treatment tank 51 may be configured to chemically reduce sludge by blowing ozone or the like, or may be configured to physically reduce sludge by mechanical crushing or the like.
次に、図4および図5を参照して、微小生物保持槽31の溶解性BOD汚泥負荷を制御することにより、微小生物量を安定化させる方法について説明する。図4の処理装置14は、曝気槽21と、微小生物保持槽31と、固液分離手段としての沈殿池41を備える。この処理装置14では、曝気槽21のDO濃度を制御する代わりに、微小生物保持槽31に対する溶解性BOD汚泥負荷を制御することにより、微小生物保持槽31の微小生物保持量を安定化させるため、曝気槽21のDO濃度の制御は特に行わないものとして曝気槽21にはDO計を設けていない。しかし、上述したとおり曝気槽21において分散性の細菌の生成を促進するため、曝気槽21の溶存酸素濃度は高過ぎないようにし、処理装置14においても曝気槽21のDOは0.5mg/L以下とすることが好ましい。 Next, with reference to FIG. 4 and FIG. 5, the method of stabilizing the amount of micro-organisms by controlling the soluble BOD sludge load of the micro-organism holding tank 31 will be described. The processing apparatus 14 of FIG. 4 includes an aeration tank 21, a micro organism holding tank 31, and a sedimentation tank 41 as a solid-liquid separation unit. In this processing apparatus 14, instead of controlling the DO concentration in the aeration tank 21, by controlling the soluble BOD sludge load on the microorganism holding tank 31, the microorganism holding capacity in the microorganism holding tank 31 is stabilized. The DO concentration is not provided in the aeration tank 21 as the DO concentration in the aeration tank 21 is not particularly controlled. However, in order to promote the generation of dispersible bacteria in the aeration tank 21 as described above, the dissolved oxygen concentration in the aeration tank 21 should not be too high, and the DO in the aeration tank 21 in the processing apparatus 14 is 0.5 mg / L. The following is preferable.
処理装置14では、微小生物保持槽31の溶解性BOD汚泥負荷が所定の範囲内となるように制御し、具体的には溶解性BOD汚泥負荷0.05kg−BOD/kg−VSS/日以下とする。また、微小生物保持槽31は、pH5〜8で、気体供給手段32から酸素含有ガスを供給して好気的条件で運転することが好ましい。処理装置14では、微小生物保持槽31は増殖速度の遅い微小生物を増殖させるために、SRTは12時間以上40日以下、好ましくは30日以下、さらに好ましくは10〜30日程度で運転するとよい。微小生物保持槽31には、後段の沈殿池41で液分から分離された固形分(汚泥)の一部を返送汚泥として循環させることが好ましい。あるいは、微小生物保持槽31に分離膜を設けることにより、槽内汚泥を保持する膜分離方式としてもよい。また、担体を充填することにより、微小生物保持槽31を流動床方式としてもよい。この場合、微小生物保持槽31に充填する担体は特に限定されず、上述した担体を使用できる。 In the processing apparatus 14, it controls so that the soluble BOD sludge load of the micro organism holding tank 31 may be in a predetermined range, specifically, the soluble BOD sludge load is 0.05 kg-BOD / kg-VSS / day or less. To do. Moreover, it is preferable that the micro-organism holding tank 31 is operated at an aerobic condition by supplying an oxygen-containing gas from the gas supply means 32 at a pH of 5 to 8. In the processing apparatus 14, the micro-organism holding tank 31 is operated for 12 hours or more and 40 days or less, preferably 30 days or less, more preferably about 10 to 30 days in order to grow micro-organisms with a slow growth rate. . In the micro-organism holding tank 31, it is preferable to circulate a part of the solid content (sludge) separated from the liquid in the subsequent sedimentation basin 41 as return sludge. Or it is good also as a membrane separation system which hold | maintains sludge in a tank by providing a separation membrane in the micro-organism holding tank 31. Moreover, the micro organism holding tank 31 may be a fluidized bed type by filling the carrier. In this case, the carrier filled in the micro organism holding tank 31 is not particularly limited, and the above-described carrier can be used.
曝気槽21からは主として分散性の細菌を含む生物処理液が流出し、微小生物保持槽31に流入する。微小生物保持槽31には、微小生物が保持され、曝気槽21から流出した生物処理液に含まれる分散性の細菌は微小生物による捕食や自己消化により減少する。また、微小生物保持槽31では生物処理液に含まれる残存有機物を基質として細菌も増殖するが、微小生物保持槽31に対する溶解性BOD汚泥負荷は低いため、細菌の増殖は微小生物保持槽31に保持される微小生物数を維持するために必要な餌として消費される程度に留まる。 A biological treatment liquid mainly containing dispersible bacteria flows out from the aeration tank 21 and flows into the micro-organism holding tank 31. The micro-organism holding tank 31 holds micro-organisms, and dispersible bacteria contained in the biological treatment liquid flowing out from the aeration tank 21 are reduced by predation and self-digestion by the micro-organisms. Further, in the micro organism holding tank 31, bacteria also grow using the remaining organic substances contained in the biological treatment liquid as a substrate. However, since the soluble BOD sludge load on the micro organism holding tank 31 is low, the growth of bacteria in the micro organism holding tank 31. It remains to the extent that it is consumed as a bait necessary to maintain the number of micro-organisms retained.
この結果、微小生物保持槽31には所定量の微小生物が保持され、余剰汚泥となる細菌が消費されて汚泥が減量されるとともに、細菌が凝集してフロック化した汚泥フロックが生成される。汚泥フロックは、SVI(汚泥1gあたりの沈降体積ml)が150以下程度であり、沈殿池41で容易に液体と分離される。 As a result, a predetermined amount of micro-organisms is held in the micro-organism holding tank 31, and bacteria that become surplus sludge are consumed to reduce sludge, and sludge flocs are formed by agglomeration of flocs and aggregation of bacteria. The sludge floc has an SVI (sedimentation volume ml per gram of sludge) of about 150 or less, and is easily separated from the liquid in the sedimentation basin 41.
汚泥フロックを含む液は、微小生物保持槽31から流出し第2接続管45から沈殿池41に導入され、処理水と分離される。処理水は沈殿池41出口側に接続された処理水路55から取り出され、分離された汚泥の少なくとも一部は汚泥返送路65から微小生物保持槽31に返送される。沈殿池41で分離された汚泥の一部は、汚泥返送路65から分岐させた汚泥排出路56から余剰汚泥として系外へ排出してもよい。また、返送汚泥の一部は曝気槽21に返送するようにしてもよく、余剰汚泥を導入して汚泥を生物的、化学的、または物理的方法により減量する汚泥処理槽(図示せず)を処理装置14内に設け、余剰汚泥発生量をさらに減らしてもよい。 The liquid containing the sludge floc flows out from the micro organism holding tank 31 and is introduced into the sedimentation basin 41 through the second connection pipe 45 and separated from the treated water. The treated water is taken out from the treated water passage 55 connected to the outlet side of the sedimentation basin 41, and at least a part of the separated sludge is returned to the micro-organism holding tank 31 from the sludge return passage 65. Part of the sludge separated in the sedimentation basin 41 may be discharged out of the system as excess sludge from the sludge discharge path 56 branched from the sludge return path 65. Further, a part of the returned sludge may be returned to the aeration tank 21. A sludge treatment tank (not shown) for introducing excess sludge and reducing the sludge by a biological, chemical, or physical method is provided. You may provide in the processing apparatus 14, and may further reduce the excess sludge generation amount.
本発明は、高負荷での生物処理を行うことにより生成された分散性の細菌を含む生物処理液を微小生物保持槽31に導入し、溶解性BOD汚泥負荷を所定範囲とすることで微小生物による捕食作用を介した汚泥のフロック化及び減量を図るものであり、上記実施形態は適宜、変形することができる。例えば、曝気槽21および微小生物保持槽31のいずれか一方または両方に担体を添加することができる。各槽に添加する担体の好ましい種類や充填率は上述した通りである。また、微小生物保持槽31での微小生物の増殖を促進するために栄養剤等を添加するようにしてもよい。 The present invention introduces a biological treatment liquid containing dispersible bacteria generated by performing biological treatment under a high load into the microbiological holding tank 31, and sets the soluble BOD sludge load within a predetermined range to produce microbiologicals. The sludge is flocculated and reduced in weight through the predatory action of the above, and the above embodiment can be modified as appropriate. For example, a carrier can be added to one or both of the aeration tank 21 and the microorganism holding tank 31. Preferred types and filling rates of carriers added to each tank are as described above. Further, a nutrient or the like may be added in order to promote the growth of micro organisms in the micro organism holding tank 31.
さらに、図5に示すように原水路25を分岐させ、原水の一部を微小生物保持槽31に直接流入させてもよい。このように原水の一部を、曝気槽21を経由させずに微小生物保持槽31に供給する装置構成とすることにより、曝気槽21に導入された原水に含まれる溶解性BODの分解率を考慮して微小生物保持槽31にバイパスさせる原水量を調整できる。このため、図5に示す処理装置15では微小生物保持槽31の運転条件を、微小生物の保持及びフロック化に適するよう調整することが容易となる。 Furthermore, as shown in FIG. 5, the raw water channel 25 may be branched, and a part of the raw water may be directly flowed into the micro organism holding tank 31. Thus, by setting it as the apparatus structure which supplies a part of raw | natural water to the micro-organism holding tank 31 not via the aeration tank 21, the decomposition rate of the soluble BOD contained in the raw water introduced into the aeration tank 21 is increased. The amount of raw water to be bypassed to the micro organism holding tank 31 can be adjusted in consideration. For this reason, in the processing apparatus 15 shown in FIG. 5, it becomes easy to adjust the operating conditions of the micro organism holding tank 31 so as to be suitable for holding micro organisms and flocking.
[実施例1]
以下、実施例に基づき本発明をさらに詳しく説明する。実施例1として、図1に示す処理装置11を用い、人工廃水(CODcr濃度1,200mg/L、溶解性BOD濃度600mg/L、溶解性CODcr濃度1,100mg/L)を被処理水として実験した。曝気槽21は容量3.6Lで、pH7.0、HRT4時間、返送汚泥なしで運転した。曝気槽21では、被処理水に含まれる溶解性CODcrの80%、全CODcr濃度は30%低下するため、曝気槽21で分解する全CODcr量に基づいて酸素供給量を制御し、槽内液のDO濃度を0.01mg/Lにした。[Example 1]
Hereinafter, the present invention will be described in more detail based on examples. As Example 1, artificial wastewater (COD cr concentration 1,200 mg / L, soluble BOD concentration 600 mg / L, soluble CODcr concentration 1,100 mg / L) was used as the water to be treated using the treatment device 11 shown in FIG. Experimented. The aeration tank 21 had a capacity of 3.6 L, pH 7.0, HRT 4 hours, and was operated without returning sludge. In the aeration tank 21, since 80% of the soluble CODcr contained in the water to be treated and the total CODcr concentration are reduced by 30%, the oxygen supply amount is controlled based on the total CODcr amount decomposed in the aeration tank 21, and the liquid in the tank The DO concentration was 0.01 mg / L.
微小生物保持槽31は、容量15Lで、MLVSS濃度3,900mg/L、pH7、溶解性BOD汚泥負荷0.044kg−BOD/kg−VSS/日、HRT17時間で運転した。微小生物保持槽31に対しては、槽内液のDOが2〜3mg/Lとなるように酸素を供給した。微小生物保持槽31には、汚泥返送路55を介して沈殿池41で分離された汚泥フロックの一部を返送した。実施例1では汚泥処理槽51は使用せず、沈殿池41で分離された汚泥フロックのうち、微小生物保持槽31に返送する分を除いた残部を余剰汚泥として汚泥排出路55から系外へ排出した。 The micro-organism holding tank 31 was operated with a capacity of 15 L, an MLVSS concentration of 3,900 mg / L, pH 7, a soluble BOD sludge load of 0.044 kg-BOD / kg-VSS / day, and an HRT of 17 hours. Oxygen was supplied to the micro-organism holding tank 31 so that the DO in the tank was 2 to 3 mg / L. A part of the sludge floc separated in the sedimentation basin 41 was returned to the micro-organism holding tank 31 through the sludge return path 55. In the first embodiment, the sludge treatment tank 51 is not used, and the remaining part of the sludge floc separated in the sedimentation basin 41 excluding the part returned to the micro-organism holding tank 31 is taken as surplus sludge from the sludge discharge passage 55 to the outside of the system. Discharged.
上記条件で処理を行った結果、曝気槽21では、菌体SSに対して長さが1〜5μm程度の分散状態の細菌が占める割合が80%程度となり、分散性細菌を優占的に増殖させることができた。また、微小生物保持槽31にはツリガネムシが100,000〜130,000個/mlの濃度(MLVSSの10〜13%)で優占的に生息し、被処理水に含まれるBODの汚泥転換率は0.15kg−MLSS/kg−BOD、沈殿池41から取り出された処理水のSS濃度は20mg/L以下程度で推移した。 As a result of the treatment under the above conditions, in the aeration tank 21, the proportion of the dispersed bacteria having a length of about 1 to 5 μm with respect to the bacterial cell SS is about 80%, and the dispersive bacteria are proliferated preferentially. I was able to. In addition, the living organism 31 is predominantly inhabited at a concentration of 100,000 to 130,000 pieces / ml (10 to 13% of MLVSS), and the conversion rate of BOD sludge contained in the treated water Was 0.15 kg-MLSS / kg-BOD, and the SS concentration of treated water taken out from the sedimentation basin 41 was kept at about 20 mg / L or less.
[実施例2]
曝気槽21に対する酸素供給を間欠的に行った以外は実施例1と同じ条件で試験を行った。すなわち、実施例1では、曝気槽21に対する酸素供給は連続的に行ったのに対し実施例2では、曝気槽21に対する酸素供給を間欠的に行って、曝気槽21の槽内液のDOが2mg/Lの有酸素期間を1分間、槽内液のDOが0mg/Lの酸素欠乏期間を1分間、DOが0〜2mg/Lの間の期間(移行期間と称する)を2分間とした。[Example 2]
The test was performed under the same conditions as in Example 1 except that the oxygen supply to the aeration tank 21 was intermittently performed. That is, in Example 1, the oxygen supply to the aeration tank 21 was continuously performed, whereas in Example 2, the oxygen supply to the aeration tank 21 was intermittently performed, and the DO in the liquid in the aeration tank 21 was reduced. The aerobic period of 2 mg / L was 1 minute, the oxygen depletion period of 0 mg / L of DO in the tank was 1 minute, and the period of DO between 0 and 2 mg / L (referred to as the transition period) was 2 minutes .
その結果、曝気槽21では、菌体SSに対して長さが1〜5μm程度の分散状態の細菌が占める割合が70%程度となり、分散性細菌を優占的に増殖させることができた。また、微小生物保持槽31にはツリガネムシが100,000個/ml程度の濃度で優占的に生息し、被処理水に含まれるBODの汚泥転換率は0.20kg−MLSS/kg−BOD、沈殿池41から取り出された処理水のSS濃度は20mg/L以下程度で推移した。 As a result, in the aeration tank 21, the proportion of the dispersed bacteria having a length of about 1 to 5 μm with respect to the bacterial cells SS was about 70%, and the dispersible bacteria could be proliferated predominately. In addition, worms predominately in the micro organism holding tank 31 at a concentration of about 100,000 / ml, and the sludge conversion rate of BOD contained in the treated water is 0.20 kg-MLSS / kg-BOD, The SS concentration of treated water taken out from the sedimentation basin 41 changed at about 20 mg / L or less.
[実施例3]
曝気槽21における酸素消費速度を算出することから、曝気槽21出の生物処理に要する酸素必要量を求めて酸素供給量を制御した以外は実施例1と同じ条件で試験を行った。具体的には、一時間に一度、曝気槽21への酸素供給量を増やして曝気槽21の槽内液のDO濃度を一時的に(2分間)2mg/Lを超えるようにした後、酸素供給量を一時的に減少(または停止)させて槽内液のDO濃度の減少速度から酸素消費速度を求めた。図6に、実施例3における酸素供給量の制御パターンを示す。本実施例では、このようにして求めた酸素消費速度に基づき、曝気槽21のDO濃度が0.01mg/Lとなるように酸素供給速度を制御した。[Example 3]
Since the oxygen consumption rate in the aeration tank 21 was calculated, the test was performed under the same conditions as in Example 1 except that the required oxygen amount required for biological treatment from the aeration tank 21 was determined and the oxygen supply amount was controlled. Specifically, once the oxygen supply amount to the aeration tank 21 is increased once in an hour so that the DO concentration of the liquid in the aeration tank 21 temporarily exceeds 2 mg / L (for 2 minutes), oxygen The supply rate was temporarily reduced (or stopped), and the oxygen consumption rate was determined from the rate of decrease in the DO concentration of the liquid in the tank. FIG. 6 shows an oxygen supply amount control pattern in the third embodiment. In this example, based on the oxygen consumption rate thus obtained, the oxygen supply rate was controlled so that the DO concentration in the aeration tank 21 was 0.01 mg / L.
その結果、曝気槽21では、菌体SSに対して長さが1〜5μm程度の分散状態の細菌が占める割合が90%程度となり、分散性細菌を優占的に増殖させることができた。また、微小生物保持槽31にはツリガネムシが100,000〜130,000個/ml程度の濃度で優占的に生息し、被処理水に含まれるBODの汚泥転換率は0.15kg−MLSS/kg−BOD、沈殿池41から取り出された処理水のSS濃度は20mg/L以下程度で推移した。 As a result, in the aeration tank 21, the proportion of the dispersed bacteria having a length of about 1 to 5 μm with respect to the bacterial cell SS was about 90%, and the dispersible bacteria could be proliferated preferentially. In addition, worms predominately live in the micro-organism holding tank 31 at a concentration of about 100,000 to 130,000 / ml, and the sludge conversion rate of BOD contained in the treated water is 0.15 kg-MLSS / The SS concentration of the treated water taken out from the kg-BOD and the sedimentation basin 41 changed at about 20 mg / L or less.
[参考例1]
参考例1では、曝気槽21でのDO濃度制御について検討した。具体的には曝気槽21の槽内液のDO濃度を、微小生物保持槽31と同様の値、すなわち2〜3mg/Lとした以外は、実施例1と同じ条件で試験を行った結果、曝気槽21では、長さが10〜50μm程度の糸状細菌が直径1〜5μm程度の分散状態の細菌より多く繁殖した優占状態となり、微小生物による捕食が困難となった。この結果、微小生物保持槽31の微小生物濃度は低下して10,000〜20,000個/mlの濃度(MLVSSの1〜2%)となり、被処理水に含まれるBODの汚泥転換率は0.30kg−MLSS/kg−BOD、沈殿池41から取り出された処理水のSS濃度は30mg/L程度となった。[Reference Example 1]
In Reference Example 1, the DO concentration control in the aeration tank 21 was examined. Specifically, the DO concentration of the liquid in the tank of the aeration tank 21 was the same value as that of the microorganism holding tank 31, that is, 2 to 3 mg / L. In the aeration tank 21, filamentous bacteria having a length of about 10 to 50 μm grew more dominant than dispersed bacteria having a diameter of about 1 to 5 μm, and predation by micro-organisms became difficult. As a result, the concentration of micro-organisms in the micro-organism holding tank 31 is reduced to a concentration of 10,000 to 20,000 / ml (1-2% of MLVSS), and the sludge conversion rate of BOD contained in the treated water is The SS concentration of the treated water taken out from 0.30 kg-MLSS / kg-BOD and sedimentation basin 41 was about 30 mg / L.
[実施例4]
曝気槽21に、5mm角のスポンジ担体58を曝気槽21に対する嵩容積比5%で充填することにより、曝気槽21を流動床式とした図3の処理装置13を用いて試験を行った。実施例4では、曝気槽21に担体58を充填した以外は実施例1と同じ条件とし、酸素供給量を制御して曝気槽21内のDO濃度は0.01mg/Lとなるように制御した。その結果、曝気槽21では、菌体SSに対して長さが1〜5μm程度の分散状態の細菌が占める割合が80%程度となり、分散性細菌を優占的に増殖させることができた。また、微小生物保持槽槽31にはツリガネムシが100,000〜130,000個/mlの濃度で優占的に生息し、被処理水に含まれるBODの汚泥転換率は0.15kg−MLSS/kg−BOD、沈殿池41から取り出された処理水のSS濃度は20mg/L以下程度で推移した。[Example 4]
The aeration tank 21 was filled with a 5 mm square sponge carrier 58 at a bulk volume ratio of 5% with respect to the aeration tank 21, and the test was performed using the processing apparatus 13 of FIG. In Example 4, the conditions were the same as in Example 1 except that the aeration tank 21 was filled with the carrier 58, and the oxygen concentration was controlled to control the DO concentration in the aeration tank 21 to be 0.01 mg / L. . As a result, in the aeration tank 21, the proportion of dispersed bacteria having a length of about 1 to 5 μm with respect to the bacterial cell SS was about 80%, and the dispersible bacteria could be predominately grown. In addition, worms predominately live in the micro-organism holding tank 31 at a concentration of 100,000 to 130,000 / ml, and the sludge conversion rate of BOD contained in the treated water is 0.15 kg-MLSS / The SS concentration of treated water taken out from the kg-BOD and sedimentation basin 41 changed at about 20 mg / L or less.
実施例4においては、試験開始から1ヶ月経過後に曝気槽21に流入させる有機性廃水の流量を半減させ、曝気槽21に対するBOD容積負荷を半減させるとともに、処理水返送路42を介して沈殿池41で汚泥フロックから分離された処理水を曝気槽21に戻した。処理水の返送量は、有機性廃水の減少分と同量にした。このように被処理水流量を減少させた処理を12時間継続した後、被処理水流量を元に戻し、処理水の返送を止める処理を12時間継続することを繰り返した。この間、被処理水流量減少時に処理水を返送することによって曝気槽21のHRTをほぼ一定に維持できた。この間、曝気槽21では分散性細菌の優占状態が維持され、汚泥転換率も上述した値に維持でき、微小生物保持槽槽31におけるツリガネムシの濃度も100,000〜130,000個/ml程度の値を維持できた。 In Example 4, the flow rate of the organic waste water that flows into the aeration tank 21 after one month from the start of the test is halved, the BOD volumetric load on the aeration tank 21 is halved, and the sedimentation basin is passed through the treated water return path 42. In 41, the treated water separated from the sludge floc was returned to the aeration tank 21. The amount of treated water returned was the same as the decrease in organic wastewater. Thus, after continuing the process which reduced the to-be-processed water flow rate for 12 hours, it returned to the to-be-processed water flow rate, and repeated repeating the process to stop the return of treated water for 12 hours. During this time, the HRT of the aeration tank 21 was maintained substantially constant by returning the treated water when the treated water flow rate decreased. During this time, the dominant state of the dispersible bacteria is maintained in the aeration tank 21, the sludge conversion rate can be maintained at the above-mentioned value, and the concentration of the worm beetles in the microorganism holding tank 31 is about 100,000 to 130,000 / ml. Value was maintained.
[参考例2]
参考例2では、実施例4において被処理水流量を減少させた際に処理水の返送を行わなかった以外は実施例4と同じ条件で試験を行った。参考例1で、被処理水流量を12時間減少させ、次の12時間流量を元に戻す処理を繰り返す試験を3日間継続した結果、曝気槽21に優占的に存在していた分散状態の細菌に変わり、長さが20〜1,000μm程度の糸状の細菌が優占化した。また、微小生物保持槽槽31ではツリガネムシが12,000個/mL程度まで減少し、汚泥転換率が0.40kg−MLSS/kg−BODまで上昇した。また、沈殿池41から取り出された処理水のSS濃度は40mg/L程度となった。[Reference Example 2]
In Reference Example 2, the test was performed under the same conditions as in Example 4 except that the treated water was not returned when the treated water flow rate was reduced in Example 4. In Reference Example 1, as a result of continuing the test of repeating the process of reducing the treated water flow rate for 12 hours and returning the flow rate for the next 12 hours for 3 days, the dispersion state that predominately existed in the aeration tank 21 Instead of bacteria, filamentous bacteria having a length of about 20 to 1,000 μm became dominant. Moreover, in the micro organism holding tank 31, the beetle decreased to about 12,000 pieces / mL, and the sludge conversion rate increased to 0.40 kg-MLSS / kg-BOD. Moreover, the SS concentration of the treated water taken out from the sedimentation basin 41 was about 40 mg / L.
実施例1〜4、および参考例1、2の結果を表1に示す。 The results of Examples 1 to 4 and Reference Examples 1 and 2 are shown in Table 1.
このように本発明によれば、曝気槽21において分散性の細菌を優占化させ、曝気槽21後段に設けた微小生物保持槽31において微小生物の捕食作用を利用して余剰汚泥の発生量を減らすことができた。 As described above, according to the present invention, dispersible bacteria are dominant in the aeration tank 21, and the amount of surplus sludge generated using the predatory action of the micro-organisms in the micro-organism holding tank 31 provided downstream of the aeration tank 21. Could be reduced.
[参考例3]
次に、微小生物保持槽31に対する溶解性BOD汚泥負荷を制御する参考例3について説明する。参考例3では、図5に示す処理装置15を用い、人工廃水(CODcr濃度1,000mg/L、溶解性BOD濃度640mg/L)を被処理水として実験した。曝気槽21は容量3.6Lで、pH7、HRT4時間、DO濃度を約1.0mg/Lとして返送汚泥なしで運転した。微小生物保持槽31は容量15Lで、pH7、MLVSS3,700mg/L、HRT17時間で運転した。曝気槽21での溶解性BODの分解率は約95%とし、原水の一部をバイパス路26から微小生物保持槽31へ直接導入することにより、微小生物保持槽31の槽内の汚泥量に対する溶解性BOD汚泥負荷0.03kg−BOD/kg−VSS/日とした。参考例3では、曝気槽21及び微小生物保持槽31を合わせた生物処理槽全体での、溶解性BOD容積負荷は0.75kg/m3/日、HRT21時間とした。[Reference Example 3]
Next, Reference Example 3 for controlling the soluble BOD sludge load on the micro-organism holding tank 31 will be described. In Reference Example 3, an experiment was conducted using artificial waste water (COD cr concentration of 1,000 mg / L, soluble BOD concentration of 640 mg / L) as the water to be treated, using the treatment device 15 shown in FIG. The aeration tank 21 was operated with a capacity of 3.6 L, pH 7, HRT 4 hours, DO concentration of about 1.0 mg / L and no return sludge. The micro-organism holding tank 31 has a capacity of 15 L and was operated at pH 7, MLVSS 3,700 mg / L, and HRT 17 hours. The decomposition rate of the soluble BOD in the aeration tank 21 is about 95%, and a part of the raw water is directly introduced from the bypass 26 to the micro-organism holding tank 31, so that the amount of sludge in the micro-organism holding tank 31 is reduced. The soluble BOD sludge load was 0.03 kg-BOD / kg-VSS / day. In Reference Example 3, the soluble BOD volumetric load in the entire biological treatment tank including the aeration tank 21 and the microbiological holding tank 31 was 0.75 kg / m 3 / day, and HRT was 21 hours.
上記条件で処理を行った結果、微小生物保持槽31にはヒルガタワムシが50,000個/mlの濃度(MLVSSの15%)で優占的に生息し、被処理水に含まれるBODの汚泥転換率は0.20kg−MLSS/kg−BODとなった。また、沈殿池41から取り出された処理水のSS濃度は10mg/L程度で推移した。 As a result of the treatment under the above conditions, stag beetles predominately live at a concentration of 50,000 / ml (15% of MLVSS) in the micro organism holding tank 31 and convert BOD sludge contained in the treated water. The rate was 0.20 kg-MLSS / kg-BOD. Moreover, the SS concentration of the treated water taken out from the sedimentation basin 41 changed at about 10 mg / L.
[参考例4]
微小生物保持槽31への原水の直接導入を停止し、微小生物保持槽31に対する溶解性BOD汚泥負荷を0.01kg−BOD/kg−VSS/日とした以外は参考例3と同じ条件で試験を行った。その結果、微小生物保持槽31における微小生物の生息数は、1,000個/mL(MLVSSの1%)以下となり、微小生物の捕食作用による汚泥減量及びフロック化が進行しなかった。このため、参考例4では被処理水に含まれるBODの汚泥転換率はBODとして0.30kg−MLSS/kg−BOD、処理水のSS濃度は30mg/Lとなった。[Reference Example 4]
Tested under the same conditions as in Reference Example 3 except that the direct introduction of raw water into the micro-organism holding tank 31 was stopped and the soluble BOD sludge load on the micro-organism holding tank 31 was changed to 0.01 kg-BOD / kg-VSS / day. Went. As a result, the number of micro-organisms in the micro-organism holding tank 31 was 1,000 / mL (1% of MLVSS) or less, and sludge reduction and flocking due to the predation of micro-organisms did not proceed. For this reason, in Reference Example 4, the sludge conversion rate of BOD contained in the water to be treated was 0.30 kg-MLSS / kg-BOD as BOD, and the SS concentration of treated water was 30 mg / L.
[参考例5]
微小生物保持槽31への原水流入量を増やし、微小生物保持槽31に対する溶解性BOD汚泥負荷を0.1kg−BOD/kg−VSS/日とした以外は参考例3と同じ条件で試験を行った。その結果、微小生物保持槽31において細菌が糸状で増殖し、微小生物に捕食され難くなり、微小生物の生息数は、1,000個/mL以下となった。このため、微小生物の捕食作用による汚泥減量及びフロック化が進行せず、参考例5では被処理水に含まれるBODの汚泥転換率はBODとして0.40kg−MLSS/kg−BODとなった。参考例5では、処理水のSS濃度は10mg/Lであったが、糸状性細菌の増殖により、汚泥の圧密性は低下し、SVIは220となった。[Reference Example 5]
The test was performed under the same conditions as in Reference Example 3 except that the amount of raw water inflow into the micro-organism holding tank 31 was increased and the soluble BOD sludge load for the micro-organism holding tank 31 was set to 0.1 kg-BOD / kg-VSS / day. It was. As a result, bacteria grew in the form of filaments in the micro-organism holding tank 31 and became difficult to be preyed on by the micro-organisms, and the number of micro-organisms became 1,000 or less / mL. For this reason, sludge reduction and flocification due to the predatory action of micro-organisms did not proceed, and in Reference Example 5, the sludge conversion rate of BOD contained in the water to be treated was 0.40 kg-MLSS / kg-BOD as BOD. In Reference Example 5, the SS concentration of treated water was 10 mg / L, but due to the growth of filamentous bacteria, the compactness of the sludge decreased and the SVI was 220.
[参考例6]
微小生物保持槽31への原水流入量を増やし、微小生物保持槽31に対する溶解性BOD汚泥負荷を0.08kg−BOD/kg−VSS/日とした以外は参考例3と同じ条件で試験を行った。その結果、微小生物保持槽31における微小生物の生息数も30,000個/mL(MLVSSの7%)となった。このため、被処理水に含まれるBODの汚泥転換率はBODとして0.20kg−MLSS/kg−BODとなった。しかし、優占した微小生物は、フロックを齧るようにして摂食するフロック捕食型のハオリワムシであったため、フロックが齧られ、処理水のSS濃度は120mg/Lとなった。[Reference Example 6]
The test was performed under the same conditions as in Reference Example 3 except that the amount of raw water inflow into the micro-organism holding tank 31 was increased and the soluble BOD sludge load on the micro-organism holding tank 31 was set to 0.08 kg-BOD / kg-VSS / day. It was. As a result, the number of micro organisms in the micro organism holding tank 31 was also 30,000 / mL (7% of MLVSS). For this reason, the sludge conversion rate of BOD contained in to-be-processed water became 0.20kg-MLSS / kg-BOD as BOD. However, the dominant micro-organism was a floc predatory type worm that feeds like flocs, so flocs were swollen and the SS concentration of treated water was 120 mg / L.
参考例3〜6の結果を表2に示す。 The results of Reference Examples 3 to 6 are shown in Table 2.
表2に示すように、微小生物保持槽31での溶解性BOD汚泥負荷を制御することにより、微小生物の捕食作用を利用して余剰汚泥の発生量を減らすことができた。また、微小生物保持槽31において細菌のフロック化を促進し、沈降性の良好な汚泥フロックを生成することができたため良好な水質の処理水が得られた。 As shown in Table 2, by controlling the soluble BOD sludge load in the micro-organism holding tank 31, it was possible to reduce the amount of surplus sludge generated using the predation action of micro-organisms. Moreover, since the flocification of bacteria was accelerated | stimulated in the micro-organism holding tank 31, and the sludge floc with favorable sedimentation was able to be produced | generated, the treated water of favorable water quality was obtained.
[参考例7]
参考例7として、微小生物保持槽31に対する溶解性BOD汚泥負荷を変動させた場合の微小生物保持槽31における微小生物の生息数を調べた。結果を図7に示す。[Reference Example 7]
As Reference Example 7, the number of micro organisms in the micro organism holding tank 31 when the soluble BOD sludge load on the micro organism holding tank 31 was varied was examined. The results are shown in FIG.
図7に示すように、微小生物保持槽31に対する溶解性BOD汚泥負荷を0.05kg−BOD/kg−VSS/日程度以下とすることで、分散性細菌を吸い込んで捕食する濾過捕食型の微小生物を優占化させることができた。このため、微小生物保持槽31に対する溶解性BOD汚泥負荷を0.05kg−BOD/kg−VSS/日以下とすることで、汚泥フロックの崩壊を防止して良好な水質の処理水を得られることが示された。 As shown in FIG. 7, a filtration predation type micro inhaling and precipitating dispersible bacteria by setting the soluble BOD sludge load to the micro organism holding tank 31 to about 0.05 kg-BOD / kg-VSS / day or less. We were able to dominate the creatures. For this reason, disintegration of sludge floc can be prevented and treated water with good water quality can be obtained by setting the soluble BOD sludge load to the micro organism holding tank 31 to 0.05 kg-BOD / kg-VSS / day or less. It has been shown.
本発明は、下水等の有機性廃水の生物処理に用いることができる。 The present invention can be used for biological treatment of organic wastewater such as sewage.
Claims (9)
前記高負荷理工程から流出する生物処理液を微小生物保持槽に導入して生物処理する低負荷処理工程と、を含み、
前記高負荷処理工程の前記曝気槽の酸素濃度、および前記低負荷処理工程の前記微小生物保持槽に対する溶解性BOD汚泥負荷のいずれか一方または両方を制御し、
前記高負荷処理工程において前記有機物を基質として分散性の細菌を生成させ、前記低負荷処理工程において前記微小生物保持槽に生息させた微小生物により前記分散性の細菌を捕食させる有機性排水の生物処理方法。A high-load treatment process in which organic wastewater containing organic matter is introduced into an aeration tank and biologically treated under aerobic conditions;
A low-load treatment step of introducing a biological treatment liquid flowing out from the high-load treatment step into a micro-organism holding tank and biologically treating it,
Controlling one or both of the oxygen concentration of the aeration tank in the high load treatment step and the soluble BOD sludge load on the microorganism holding tank in the low load treatment step;
Organic wastewater organisms that produce dispersible bacteria using the organic matter as a substrate in the high-load treatment step, and that prey on the dispersible bacteria by micro-organisms that inhabit the micro-organism holding tank in the low-load treatment step Processing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007534930A JP4821773B2 (en) | 2006-02-03 | 2007-01-30 | Biological treatment method of organic wastewater |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006027042 | 2006-02-03 | ||
JP2006027041 | 2006-02-03 | ||
JP2006027042 | 2006-02-03 | ||
JP2006027041 | 2006-02-03 | ||
JP2007534930A JP4821773B2 (en) | 2006-02-03 | 2007-01-30 | Biological treatment method of organic wastewater |
PCT/JP2007/051517 WO2007088860A1 (en) | 2006-02-03 | 2007-01-30 | Method of biologically treating organic waste water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2007088860A1 true JPWO2007088860A1 (en) | 2009-06-25 |
JP4821773B2 JP4821773B2 (en) | 2011-11-24 |
Family
ID=38327431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007534930A Active JP4821773B2 (en) | 2006-02-03 | 2007-01-30 | Biological treatment method of organic wastewater |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP4821773B2 (en) |
KR (1) | KR101233545B1 (en) |
CN (1) | CN101374772B (en) |
TW (1) | TWI422537B (en) |
WO (1) | WO2007088860A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007260664A (en) * | 2006-02-28 | 2007-10-11 | Toray Ind Inc | Method for treating organic waste water, membrane separation activated sludge treatment apparatus for treating organic waste water, and method for producing filter-feed animalcule agent |
JP4872757B2 (en) * | 2007-03-30 | 2012-02-08 | 栗田工業株式会社 | Multistage biological treatment apparatus and multistage biological treatment method |
CN102008890B (en) * | 2010-10-28 | 2013-09-25 | 南昌航空大学 | Biological control method for biomass excessive accumulation in waste gas biofilter |
JP2012115754A (en) * | 2010-11-30 | 2012-06-21 | Kurita Water Ind Ltd | Method and apparatus for biologically treating organic wastewater |
WO2012124675A1 (en) * | 2011-03-16 | 2012-09-20 | 栗田工業株式会社 | Device and method for biological treatment of organic wastewater |
JP6136699B2 (en) * | 2013-07-23 | 2017-05-31 | 栗田工業株式会社 | Biological treatment method for organic wastewater |
SG11201601726VA (en) * | 2013-09-27 | 2016-04-28 | Kurita Water Ind Ltd | Organic wastewater biological treatment method |
KR20170113682A (en) * | 2014-03-13 | 2017-10-12 | 쿠리타 고교 가부시키가이샤 | Apparatus and method for biologically treating organic effluent |
JP6202069B2 (en) * | 2015-10-16 | 2017-09-27 | 栗田工業株式会社 | Biological treatment method for organic wastewater |
JP7247699B2 (en) * | 2019-03-26 | 2023-03-29 | 栗田工業株式会社 | Biological treatment method for organic wastewater |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5520649A (en) * | 1978-07-29 | 1980-02-14 | Agency Of Ind Science & Technol | Biological treatment method of waste water |
JPS5774082A (en) * | 1980-10-28 | 1982-05-10 | Hitachi Plant Eng & Constr Co Ltd | Curvitating apparatus of protozoan and micrometazoan |
JPS61178094A (en) * | 1985-01-31 | 1986-08-09 | Kubota Ltd | Treatment of waste water containing organic nitrogen |
JPS621496A (en) * | 1985-06-26 | 1987-01-07 | Agency Of Ind Science & Technol | Two-stage microbiological treatment of organic dirty waste water |
JPS6393399A (en) * | 1986-10-08 | 1988-04-23 | Shinnitsuka Kankyo Eng:Kk | Microorganism treatment of waste water |
JP2000210692A (en) * | 1998-06-05 | 2000-08-02 | Agency Of Ind Science & Technol | Treatment of organic waste water |
JP2001145894A (en) * | 1999-11-19 | 2001-05-29 | Kuraray Co Ltd | Waste water treatment method |
JP2001314885A (en) * | 2000-05-10 | 2001-11-13 | Kurita Water Ind Ltd | High load biological treatment method |
JP2001347284A (en) * | 2000-06-08 | 2001-12-18 | Kuraray Co Ltd | Wastewater treatment method |
JP2005211879A (en) * | 2004-02-02 | 2005-08-11 | Kurita Water Ind Ltd | Biological treatment method for organic waste water |
JP2005349252A (en) * | 2004-06-08 | 2005-12-22 | Kurita Water Ind Ltd | Biological treatment of organic wastewater |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW363946B (en) * | 1995-02-20 | 1999-07-11 | Ind Tech Res Inst | Combined continuous and intermittent aeration for wastewater treatment |
TW290528B (en) * | 1995-06-29 | 1996-11-11 | Ind Tech Res Inst | High performance sequencing batch reactor (SBR) automatic control method |
TW200413257A (en) * | 2003-01-23 | 2004-08-01 | Shou-Hua Lee | Method for reduction of biotic sludge |
-
2007
- 2007-01-30 CN CN2007800039739A patent/CN101374772B/en active Active
- 2007-01-30 WO PCT/JP2007/051517 patent/WO2007088860A1/en active Application Filing
- 2007-01-30 KR KR1020087017429A patent/KR101233545B1/en active IP Right Grant
- 2007-01-30 JP JP2007534930A patent/JP4821773B2/en active Active
- 2007-02-01 TW TW96103685A patent/TWI422537B/en active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5520649A (en) * | 1978-07-29 | 1980-02-14 | Agency Of Ind Science & Technol | Biological treatment method of waste water |
JPS5774082A (en) * | 1980-10-28 | 1982-05-10 | Hitachi Plant Eng & Constr Co Ltd | Curvitating apparatus of protozoan and micrometazoan |
JPS61178094A (en) * | 1985-01-31 | 1986-08-09 | Kubota Ltd | Treatment of waste water containing organic nitrogen |
JPS621496A (en) * | 1985-06-26 | 1987-01-07 | Agency Of Ind Science & Technol | Two-stage microbiological treatment of organic dirty waste water |
JPS6393399A (en) * | 1986-10-08 | 1988-04-23 | Shinnitsuka Kankyo Eng:Kk | Microorganism treatment of waste water |
JP2000210692A (en) * | 1998-06-05 | 2000-08-02 | Agency Of Ind Science & Technol | Treatment of organic waste water |
JP2001145894A (en) * | 1999-11-19 | 2001-05-29 | Kuraray Co Ltd | Waste water treatment method |
JP2001314885A (en) * | 2000-05-10 | 2001-11-13 | Kurita Water Ind Ltd | High load biological treatment method |
JP2001347284A (en) * | 2000-06-08 | 2001-12-18 | Kuraray Co Ltd | Wastewater treatment method |
JP2005211879A (en) * | 2004-02-02 | 2005-08-11 | Kurita Water Ind Ltd | Biological treatment method for organic waste water |
JP2005349252A (en) * | 2004-06-08 | 2005-12-22 | Kurita Water Ind Ltd | Biological treatment of organic wastewater |
Also Published As
Publication number | Publication date |
---|---|
TWI422537B (en) | 2014-01-11 |
CN101374772A (en) | 2009-02-25 |
JP4821773B2 (en) | 2011-11-24 |
TW200730444A (en) | 2007-08-16 |
KR20080097999A (en) | 2008-11-06 |
KR101233545B1 (en) | 2013-02-14 |
CN101374772B (en) | 2011-09-07 |
WO2007088860A1 (en) | 2007-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4821773B2 (en) | Biological treatment method of organic wastewater | |
JP5176542B2 (en) | Biological treatment method and biological treatment apparatus for organic wastewater | |
US6555002B2 (en) | Apparatus and method for wastewater treatment with enhanced solids reduction (ESR) | |
JP4821493B2 (en) | Biological treatment method for organic wastewater | |
Abyar et al. | Kinetic evaluation and process analysis of COD and nitrogen removal in UAASB bioreactor | |
JP5994253B2 (en) | Biological treatment apparatus and method for organic wastewater | |
WO2012169381A1 (en) | Method and apparatus for biological treatment of organic wastewater | |
TWI465402B (en) | Biological treatment methods and devices for organic wastewater | |
CN103880184B (en) | A kind of without the ultra-clean sewage water treatment method of sludge organism ball and system | |
JP5103796B2 (en) | Biological treatment accelerator for wastewater and biological treatment method for wastewater using the same | |
KR20180031085A (en) | Method and device for biologically treating organic wastewater | |
JP2006051415A (en) | Process for biological treatment of organic waste water | |
AU2002211514A1 (en) | Apparatus and method for wastewater treatment with enhanced solids reduction (ESR) | |
JP2024104140A (en) | Biological treatment method for organic wastewater | |
JP4908533B2 (en) | Biological treatment method and apparatus using fish | |
JP2013111493A (en) | Biological treatment method of organic wastewater | |
JP2007098231A (en) | Method and apparatus for treating organic waste water biologically |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110809 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110822 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4821773 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140916 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |