JP2013111493A - Biological treatment method of organic wastewater - Google Patents

Biological treatment method of organic wastewater Download PDF

Info

Publication number
JP2013111493A
JP2013111493A JP2011257649A JP2011257649A JP2013111493A JP 2013111493 A JP2013111493 A JP 2013111493A JP 2011257649 A JP2011257649 A JP 2011257649A JP 2011257649 A JP2011257649 A JP 2011257649A JP 2013111493 A JP2013111493 A JP 2013111493A
Authority
JP
Japan
Prior art keywords
biological treatment
treatment tank
raw water
tank
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011257649A
Other languages
Japanese (ja)
Other versions
JP5887874B2 (en
Inventor
Shigeki Fujishima
繁樹 藤島
Katsura Kitatsuji
桂 北辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011257649A priority Critical patent/JP5887874B2/en
Publication of JP2013111493A publication Critical patent/JP2013111493A/en
Application granted granted Critical
Publication of JP5887874B2 publication Critical patent/JP5887874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a biological treatment method of organic wastewater capable of shortening the start-up period for a multistage biological treatment apparatus.SOLUTION: The biological treatment method of the organic wastewater has a start-up step for starting up the biological treatment apparatus having a first biological treatment tank 1 and a second biological treatment tank 2 to which raw water is made to flow in order during the normal operation. At starting up, a second biological treatment tank start-up step for supplying at least a part of the raw water to the second biological treatment tank 2 and starting up the second biological treatment tank 2 is performed, and then, water is made to flow from the first biological treatment tank 1 to the second biological treatment tank 2 in series, and the operation is shifted to the normal operation.

Description

本発明は、生活排水、下水、食品工場やパルプ工場をはじめとした広い濃度範囲の有機性排水の処理に利用することができる有機性排水の生物処理方法に関するものであり、特に、生物処理装置の立ち上げを短期間で行うことができる有機性排水の生物処理方法に関する。   The present invention relates to a biological treatment method for organic wastewater that can be used for treatment of organic wastewater in a wide concentration range including domestic wastewater, sewage, food factories and pulp factories, and in particular, biological treatment equipment. The present invention relates to a biological treatment method for organic wastewater that can be launched in a short period of time.

有機性排水を生物処理する場合に用いられる活性汚泥法は、処理水質が良好で、メンテナンスが容易であるなどの利点から、下水処理や産業廃水処理等に広く用いられている。しかしながら、活性汚泥法におけるBOD容積負荷は一般に0.5〜0.8kg/m/d程度であるため、広い敷地面積が必要となる。また、分解したBODの20〜40%が菌体、即ち汚泥へと変換されるため、大量の余剰汚泥処理も問題となる。 The activated sludge method used when biologically treating organic wastewater is widely used for sewage treatment, industrial wastewater treatment, and the like because of its advantages such as good treated water quality and easy maintenance. However, since the BOD volumetric load in the activated sludge method is generally about 0.5 to 0.8 kg / m 3 / d, a large site area is required. Moreover, since 20 to 40% of the decomposed BOD is converted into microbial cells, that is, sludge, a large amount of excess sludge treatment is also a problem.

有機性排水の高負荷処理に関しては、反応槽に担体を添加した流動床法が知られている。この流動床法によると、3kg/m/d以上のBOD容積負荷で運転することが可能となる。しかしながら、この方法では発生汚泥量は分解したBODの30〜50%程度であり、通常の活性汚泥法より高くなることが欠点となっている。 For high-load treatment of organic wastewater, a fluidized bed method in which a carrier is added to a reaction tank is known. According to this fluidized bed method, it is possible to operate with a BOD volume load of 3 kg / m 3 / d or more. However, this method has a disadvantage that the amount of generated sludge is about 30 to 50% of the decomposed BOD, which is higher than that of a normal activated sludge method.

特許文献1,2には、有機性排水をまず、第一処理槽で細菌により処理し、排水に含まれる有機物を酸化分解して非凝集性の細菌の菌体に変換した後、第二処理槽で固着性原生動物に捕食除去させることで余剰汚泥の減量化が可能になることが記載されている。   In Patent Documents 1 and 2, the organic wastewater is first treated with bacteria in the first treatment tank, the organic matter contained in the wastewater is oxidatively decomposed and converted into non-aggregating bacterial cells, and then the second treatment. It is described that the amount of excess sludge can be reduced by precipitating and removing the sticking protozoa in the tank.

生物処理装置への原水通水を開始してから定常運転に至るまでの装置の立ち上げ期間を短縮する方法として、特許文献3には、立ち上げ用原水として、被処理排水に硫酸アンモニウムを添加した高基質濃度原水を通水することが記載されている。特許文献3は処理槽を1槽のみ設置した単槽式生物処理槽の立ち上げ方法に関するものであり、多槽式生物処理槽の立ち上げ方法については記載がない。   As a method of shortening the startup period of the apparatus from the start of raw water flow to the biological treatment apparatus until steady operation, Patent Document 3 added ammonium sulfate to the wastewater to be treated as raw water for startup. It describes the passage of raw water with a high substrate concentration. Patent Document 3 relates to a method for starting up a single tank type biological treatment tank in which only one treatment tank is installed, and there is no description about a method for starting up a multi-tank type biological treatment tank.

担体への細菌の定着は、ある程度菌が定着すれば、その上に菌同士が層状に定着していくため、菌体保持量の増加は早い。しかしながら、多段処理では、後段生物処理に流入する成分が難分解性のため、担体表面に直接定着する菌の増殖が遅く、その結果、目標とする処理水質に到達する時間(立ち上げ時間)が単槽式の生物処理より遅くなってしまう。汚泥減量を促進する微小動物の担体への定着も、担体表面に菌が定着していなければ、安定定着は困難であり、汚泥減量効果を発揮するまでに時間がかかってしまう。   Bacteria are fixed on the carrier. If the bacteria are fixed to a certain extent, the bacteria are fixed in layers on the carrier, so that the amount of cells retained increases rapidly. However, in multistage treatment, since the components flowing into the subsequent biological treatment are difficult to decompose, the growth of bacteria that directly settle on the carrier surface is slow, and as a result, the time to reach the target treated water quality (start-up time) is reduced. It will be slower than single tank type biological treatment. Even if microbes are fixed on the carrier for promoting sludge reduction, stable fixation is difficult unless bacteria are fixed on the surface of the carrier, and it takes time to exert the sludge reduction effect.

特開2006−51414JP 2006-51414 A 特開2008−36580JP2008-36580 特開平8−71575JP-A-8-71575

本発明は、多段式の生物処理装置の立ち上げ期間を短くすることができる有機性排水の生物処理方法を提供することを目的とする。   An object of this invention is to provide the biological treatment method of the organic waste water which can shorten the starting period of a multistage type biological treatment apparatus.

本発明の有機性排水の生物処理方法は、定常運転時には原水が順次に通水される第1ないし第n(nは2以上の整数)の生物処理槽を有した生物処理装置を立ち上げる立ち上げ工程を有する有機性排水の生物処理方法において、立ち上げ時に、原水の少なくとも一部を第nの生物処理槽に供給して第nの生物処理槽を立ち上げる第n生物処理槽立ち上げ工程を行うことを特徴とするものである。   The biological treatment method for organic wastewater according to the present invention starts up a biological treatment apparatus having first to nth (n is an integer of 2 or more) biological treatment tanks through which raw water is sequentially passed during steady operation. In the biological treatment method for organic wastewater having a raising process, at the time of startup, at least a part of the raw water is supplied to the nth biological treatment tank, and the nth biological treatment tank is started up. It is characterized by performing.

本発明では、第n生物処理槽が原水中の有機物を90%以上除去するようになるまで第n生物処理槽立ち上げ工程を行うことが好ましい。   In the present invention, it is preferable to perform the n-th biological treatment tank startup process until the n-th biological treatment tank removes 90% or more of organic substances in the raw water.

また、第n生物処理槽立ち上げ工程において、定常運転時における生物処理装置への原水負荷の20〜50%の負荷にて第n生物処理槽に原水を供給することが好ましい。   Moreover, in the n-th biological treatment tank startup process, it is preferable to supply raw water to the n-th biological treatment tank at a load of 20 to 50% of the raw water load on the biological treatment apparatus during steady operation.

生物処理装置が第1生物処理槽と第2生物処理槽との2槽から成る場合には、まず第2生物処理槽を立ち上げ、その後、第1生物処理槽から第2生物処理槽の順に原水を通水し、定常運転に移行する。なお、この定常運転に際しては、原水の全量を第1生物処理槽に供給してもよく、原水の大部分を第1生物処理槽に供給し、原水の一部を第2生物処理槽に供給してもよい。   When the biological treatment apparatus is composed of two tanks, ie, a first biological treatment tank and a second biological treatment tank, the second biological treatment tank is first started, and then the first biological treatment tank and the second biological treatment tank in this order. Pass raw water and shift to steady operation. In this steady operation, the entire amount of raw water may be supplied to the first biological treatment tank, most of the raw water is supplied to the first biological treatment tank, and part of the raw water is supplied to the second biological treatment tank. May be.

本発明では、立ち上げ時に、原水の少なくとも一部を後段の生物処理槽に直接に供給する。そして、ある程度、細菌が担体に定着した後に、第1生物処理槽から第n生物処理槽の順に通水する直列通水運転に移行し、好ましくは徐々に負荷を増大させる。これにより、後段側の生物処理槽での難分解性有機物分解細菌や微小動物の定着を促進させ、生物処理装置全体における立ち上げ期間を短縮することができる。   In the present invention, at the time of start-up, at least a part of the raw water is directly supplied to the biological treatment tank at the subsequent stage. Then, after the bacteria have settled on the carrier to some extent, the operation shifts to a serial water passing operation in which water passes through the first biological treatment tank in order from the first biological treatment tank, and preferably the load is gradually increased. Thereby, colonization of the hardly decomposable organic matter-degrading bacteria and micro-animals in the biological treatment tank on the rear stage side can be promoted, and the start-up period in the entire biological treatment apparatus can be shortened.

実施の形態に係る有機性排水の生物処理方法の説明図である。It is explanatory drawing of the biological treatment method of the organic waste_water | drain which concerns on embodiment. 実施の形態に係る有機性排水の生物処理方法の説明図である。It is explanatory drawing of the biological treatment method of the organic waste_water | drain which concerns on embodiment.

以下に図面を参照して本発明の有機性排水の生物処理方法および装置の実施の形態を詳細に説明する。   Embodiments of a biological treatment method and apparatus for organic wastewater according to the present invention will be described below in detail with reference to the drawings.

図1は本発明の有機性排水の生物処理方法を示す系統図であり、(a)図は立ち上げ時、(b)図は別の立ち上げ時、(c)図は定常運転時を示す。   FIG. 1 is a system diagram showing a biological treatment method for organic wastewater according to the present invention. FIG. 1 (a) shows a start-up, FIG. 1 (b) shows another start-up, and FIG. 1 (c) shows a steady operation. .

まず、(c)図を参照して定常運転時について説明する。原水(有機性排水)は第一生物処理槽1に導入され、分散性細菌により、有機成分(溶解性BOD)の70%以上、望ましくは80%以上、さらに望ましくは90%以上が酸化分解される。この第一生物処理槽1のpHは6以上、望ましくは8以下とする。ただし、原水中に油分を多く含む場合にはpHは8以上としても良い。   First, the steady operation will be described with reference to FIG. Raw water (organic wastewater) is introduced into the first biological treatment tank 1, and 70% or more, desirably 80% or more, more desirably 90% or more of the organic component (soluble BOD) is oxidatively decomposed by dispersible bacteria. The The pH of the first biological treatment tank 1 is 6 or more, preferably 8 or less. However, when the raw water contains a large amount of oil, the pH may be 8 or more.

第一生物処理槽1へのBOD容積負荷は1kg/m/d以上、例えば1〜20kg/m/d、HRT(原水滞留時間)は24h以下、例えば0.5〜24hとすることで、分散性細菌が優占化した処理水を得ることができ、また、HRTを短くすることでBOD濃度の低い排水を高負荷で処理することができ、好ましい。 BOD volume load to the first biological treatment tank 1 is 1 kg / m 3 / d or more, for example 1 to 20 kg / m 3 / d, and HRT (raw water residence time) is 24 h or less, for example 0.5 to 24 h. It is preferable because treated water predominated by dispersible bacteria can be obtained, and waste water having a low BOD concentration can be treated with a high load by shortening the HRT.

また、この第一生物処理槽1の溶存酸素濃度は1mg/L以下、特に0.5mg/L以下、とりわけ0.1mg/L以下に制御することが好ましく、これにより、1〜5μm程度の大きさの分散性細菌が優占化し、これらは第二生物処理槽2で微小動物により速やかに捕食される。   In addition, the dissolved oxygen concentration in the first biological treatment tank 1 is preferably controlled to 1 mg / L or less, particularly 0.5 mg / L or less, particularly 0.1 mg / L or less. The dispersible bacteria become dominant, and these are rapidly preyed on by the small animals in the second biological treatment tank 2.

この第一生物処理槽1には、第2生物処理槽2や、それ以降の固液分離槽などからの汚泥の一部を返送してもよい。   A part of the sludge from the second biological treatment tank 2 or the subsequent solid-liquid separation tank may be returned to the first biological treatment tank 1.

なお、第一生物処理槽1のHRTが最適値に比べて長くなると、糸状性細菌の優占化やフロックの形成につながり、後段の第二生物処理槽2で微小動物により捕食されにくい細菌が生成してしまう。そこで、第一生物処理槽1のHRTを一定に制御するのが好ましい。この最適HRTは原水の水質により異なるため、机上試験などから、有機成分の70〜95%を除去できるHRTを求めるのが好ましい。HRTを最適値に維持する方法としては、原水流量減少時に、処理水の一部を返送して、第一生物処理槽1に流入する水量を一定にすることで、第一生物処理槽1のHRTを安定させる方法や、原水流量の変動に合わせて第一生物処理槽1の水位を変動させる方法がある。第一生物処理槽1のHRTを安定させる幅は、机上試験で求めた最適HRTの0.75〜1.5倍の範囲内に納めることが望ましい。   If the HRT of the first biological treatment tank 1 is longer than the optimum value, it leads to the predominance of filamentous bacteria and the formation of flocs, and bacteria that are difficult to be preyed on by the microanimals in the second biological treatment tank 2 at the subsequent stage. It will generate. Therefore, it is preferable to control the HRT of the first biological treatment tank 1 to be constant. Since this optimum HRT varies depending on the quality of raw water, it is preferable to obtain an HRT capable of removing 70 to 95% of organic components from a desktop test or the like. As a method of maintaining the HRT at an optimum value, when the raw water flow rate is reduced, a part of the treated water is returned and the amount of water flowing into the first biological treatment tank 1 is made constant, so that the first biological treatment tank 1 There are a method of stabilizing the HRT and a method of changing the water level of the first biological treatment tank 1 in accordance with the fluctuation of the raw water flow rate. It is desirable that the width for stabilizing the HRT of the first biological treatment tank 1 be within the range of 0.75 to 1.5 times the optimum HRT obtained by the desktop test.

なお、第一生物処理槽1で溶解性有機物を完全に分解した場合、第二生物処理槽2ではフロックが形成されず、また、微小動物増殖のための栄養も不足し、圧密性の低い汚泥のみが優占化した生物処理槽となる。従って、第一生物処理槽1での有機成分の分解率は100%ではなく、95%以下となるようにすることが好ましい。   In addition, when dissolved organic matter is completely decomposed in the first biological treatment tank 1, flocs are not formed in the second biological treatment tank 2, and nutrients for microanimal growth are insufficient, and sludge with low compactness is used. Only becomes the dominant biological treatment tank. Therefore, it is preferable that the decomposition rate of the organic component in the first biological treatment tank 1 is not 100% but 95% or less.

第一生物処理槽1の処理水(第一生物処理水)については、後段の第二生物処理槽2に導入し、残存している有機成分の酸化分解、分散性細菌の自己分解および微小動物の捕食による余剰汚泥の減量化を行う。   About the treated water (1st biological treated water) of the 1st biological treatment tank 1, it introduce | transduces into the 2nd biological treatment tank 2 of a back | latter stage, oxidative degradation of the remaining organic component, self-decomposition of dispersible bacteria, and a micro animal Reduction of excess sludge by predation.

第二生物処理槽2では、細菌に比べ増殖速度の遅い微小動物の働きと細菌の自己分解を利用するため、微小動物と細菌が系内に留まるような運転条件および処理装置を用いることが好ましい。そこで、第二生物処理槽2は、曝気槽内に担体を添加した流動床を形成することにより、微小動物の槽内保持量を高めるのが望ましい。第二生物処理槽2に添加する担体の形状は、球状、ペレット状、中空筒状、糸状、板状等任意であり、大きさも0.1〜10mm程度の径で良い。また、担体の材料は天然素材、無機素材、高分子素材等任意であり、ゲル状物質を用いても良い。   In the second biological treatment tank 2, it is preferable to use an operation condition and a treatment apparatus that allow the microanimal and the bacteria to remain in the system in order to utilize the action of the microanimal having a slower growth rate than the bacteria and the autolysis of the bacteria. . Therefore, it is desirable that the second biological treatment tank 2 increases the retained amount of the micro-animal in the tank by forming a fluidized bed in which the carrier is added in the aeration tank. The shape of the carrier added to the second biological treatment tank 2 is arbitrary such as a spherical shape, a pellet shape, a hollow cylindrical shape, a thread shape, a plate shape, and the size may be about 0.1 to 10 mm. The material of the carrier is arbitrary such as a natural material, an inorganic material, or a polymer material, and a gel material may be used.

第二生物処理槽2では、微小動物を維持するための多量の足場が必要となることから、添加する担体の充填率は10%以上、望ましくは20%以上、例えば20〜40%とすることが望ましい。   In the second biological treatment tank 2, since a large amount of scaffolding for maintaining the micro-animal is required, the filling rate of the carrier to be added is 10% or more, desirably 20% or more, for example, 20 to 40%. Is desirable.

本発明において、第二生物処理槽2に導入する第一生物処理水中に有機物が多量に残存した場合、その酸化分解は第二生物処理槽2で行われることになる。しかし、微小動物が多量に存在する第二生物処理槽2で細菌による有機物の酸化分解が起こると、微小動物の捕食から逃れるための対策として、細菌は捕食されにくい形態で増殖することが知られており、このように増殖した細菌群は微小動物により捕食されず、これらの分解は自己消化のみに頼ることとなり、汚泥発生量低減の効果が下がってしまう。   In the present invention, when a large amount of organic matter remains in the first biological treatment water introduced into the second biological treatment tank 2, the oxidative decomposition is performed in the second biological treatment tank 2. However, when oxidative degradation of organic matter by bacteria occurs in the second biological treatment tank 2 in which a large amount of micro animals are present, it is known that the bacteria grow in a form that is difficult to be predated as a countermeasure to escape from predation of the micro animals. Thus, the bacteria that have grown in this way are not preyed on by the micro-animals, and their decomposition depends only on autolysis, which reduces the effect of reducing the amount of sludge generated.

そこで、前述の如く、第一生物処理槽1では原水中の有機成分の大部分、すなわち原水BODの70%以上、望ましくは80%以上を分解し、菌体へと安定して変換しておくのが好ましい。そのため、第一生物処理槽1を、担体を充填した流動床式とすることが望ましい。しかし、第一生物処理槽1に添加する担体の充填率が高い場合、分散性細菌は生成せず、細菌は担体に付着するか、糸状性細菌が増殖するので、第一生物処理槽1に添加する担体の充填率は20%以下、望ましくは10%以下、例えば3〜10%とすることが好ましく、これにより、濃度変動に影響されず、捕食しやすい分散性細菌の生成が可能となる。   Therefore, as described above, in the first biological treatment tank 1, most of the organic components in the raw water, that is, 70% or more, preferably 80% or more of the raw water BOD, is decomposed and stably converted into cells. Is preferred. Therefore, it is desirable that the first biological treatment tank 1 be a fluidized bed type filled with a carrier. However, when the filling rate of the carrier added to the first biological treatment tank 1 is high, dispersible bacteria are not generated, and the bacteria adhere to the carrier or the filamentous bacteria grow. The filling rate of the carrier to be added is preferably 20% or less, desirably 10% or less, for example, 3 to 10%. This makes it possible to produce dispersible bacteria that are not affected by concentration fluctuations and are easy to prey. .

なお、この第一生物処理槽1に充填する担体としては特に制限はないが、前述の第二生物処理槽2に充填する担体と同様のものを用いることができる。   In addition, there is no restriction | limiting in particular as a support | carrier filled with this 1st biological treatment tank 1, The thing similar to the support | carrier filled with the above-mentioned 2nd biological treatment tank 2 can be used.

また、前述の如く、第一生物処理槽1では、原水中の有機成分の大部分、すなわち原水BODの70%以上、望ましくは80%以上、さらに望ましくは90%以上を分解し、菌体へと変換しておくのが好ましいが、第2生物処理槽でも適度な有機物負荷が必要となるため、原水の一部を第二生物処理槽2に直接導入し、第二生物処理槽2での溶解性BODによる汚泥負荷が0.01〜0.05kg−BOD/kg−MLSS/dとなるように運転することが望ましい。   In addition, as described above, in the first biological treatment tank 1, most of the organic components in the raw water, that is, 70% or more, preferably 80% or more, more preferably 90% or more of the raw water BOD, is decomposed into cells. However, since an appropriate organic load is required even in the second biological treatment tank, a part of the raw water is directly introduced into the second biological treatment tank 2, and the second biological treatment tank 2 It is desirable to operate so that the sludge load due to the soluble BOD is 0.01 to 0.05 kg-BOD / kg-MLSS / d.

図示は省略するが、第二生物処理槽2の処理水(第二生物処理水)を第三生物処理槽に導入し、第二生物処理槽2で分解し切れなかった有機物、分散性細菌、原水由来の固形物を分解することで、さらに汚泥の減量化を図るようにしてもよい。この場合には、第三生物処理槽を最初に立ち上げ、次に第二生物処理槽→第三生物処理槽の順に原水を通水して第二生物処理槽を立ち上げ、その後、第一生物処理槽、第二生物処理槽、第三生物処理槽の順に通水し、第一生物処理槽を立ち上げ、定常運転に移行する。   Although illustration is abbreviate | omitted, the treated water (2nd biological treatment water) of the 2nd biological treatment tank 2 is introduce | transduced into a 3rd biological treatment tank, the organic substance which could not be decomposed | disassembled in the 2nd biological treatment tank 2, dispersible bacteria, You may make it aim at the reduction | decrease of sludge further by decomposing | disassembling the solid substance derived from raw | natural water. In this case, the third biological treatment tank is started up first, and then the second biological treatment tank is started by passing raw water in the order of the second biological treatment tank → the third biological treatment tank. Water is passed in the order of the biological treatment tank, the second biological treatment tank, and the third biological treatment tank, the first biological treatment tank is started up, and a transition is made to steady operation.

本発明においては、微小動物による捕食を促進させるために、第二以降の生物処理槽、特に第二生物処理槽2においては、pHを7以下、例えばpH5.5〜6.5の条件にすることが好ましい。   In the present invention, in order to promote predation by micro animals, in the second and subsequent biological treatment tanks, particularly in the second biological treatment tank 2, the pH is set to 7 or less, for example, pH 5.5 to 6.5. It is preferable.

また、運転条件を微小動物の増殖に適したものに設定しても、原水中に微小動物の増殖に必須な成分が含まれていなければ、微小動物は増殖せず、汚泥減量効果も向上しない。そこで、第二以降の生物処理槽、特に、第二生物処理槽2に栄養剤を添加して、微小動物を安定して維持させ、これにより汚泥減量の効果を安定させるようにしても良い。また、第三生物処理槽が設置されている場合には、第三生物処理槽に栄養剤を添加することにより、減量効果を促進しても良い。栄養剤としてはリン脂質、遊離脂肪酸、リゾリン脂質、ステロールやこれらを含むレシチン、その他、液糖、米糠、ビールの絞り粕、植物性油の絞り粕、大豆抽出物、甜菜粕、貝殻粉、卵殻、野菜エキス、魚肉エキス、各種アミノ酸、各種ビタミン等の後生動物の増殖促進に効果のある栄養剤を用いることができる。これらは1種を単独で用いても良く、2種以上を混合して用いても良い。   In addition, even if the operating conditions are set to be suitable for the growth of micro-animals, the micro-animals will not proliferate and the sludge reduction effect will not improve unless the raw water contains essential ingredients for the micro-animal growth. . Therefore, a nutrient may be added to the second and subsequent biological treatment tanks, in particular, the second biological treatment tank 2 to stably maintain the micro animals, thereby stabilizing the sludge reduction effect. Moreover, when the 3rd biological treatment tank is installed, you may accelerate | stimulate the weight loss effect by adding a nutrient to a 3rd biological treatment tank. Nutrients include phospholipids, free fatty acids, lysophospholipids, sterols and lecithins containing these, liquid sugar, rice bran, beer pomace, vegetable oil pomace, soy extract, sugar beet bowl, shellfish powder, Nutrients effective in promoting the growth of metazoans such as eggshell, vegetable extract, fish meat extract, various amino acids, various vitamins, and the like can be used. These may be used alone or in combination of two or more.

これらの栄養剤を添加する場合、その添加量は原水中の有機物量の0.5〜10重量%程度とすることが好ましい。   When these nutrients are added, the addition amount is preferably about 0.5 to 10% by weight of the amount of organic matter in the raw water.

次に立ち上げ運転方法について説明する。   Next, the startup operation method will be described.

立ち上げ時に原水の流量が少なかったり原水中の有機物濃度が低く負荷が低い場合は、まず図1(a)のように、原水の全量を第二生物処理槽2に通水して第二生物処理槽2を立ち上げる。原水の流量が多かったり原水中の有機物濃度が高く負荷が高い場合は、原水の一部を第二生物処理槽2に直接流入させ、菌の初期定着を促進させると共に原水の残部を第一生物処理槽1に導入するのが好ましい。   If the flow rate of raw water is small at the time of start-up, or the organic matter concentration in raw water is low and the load is low, first, as shown in FIG. The processing tank 2 is started up. When the flow rate of raw water is high or the organic matter concentration in the raw water is high and the load is high, a part of the raw water is directly flowed into the second biological treatment tank 2 to promote the initial colonization of the bacteria and the remaining raw water is used as the first organism. It is preferable to introduce into the treatment tank 1.

第二生物処理槽2に流入させる原水負荷は想定原水負荷×(第2生物処理槽容積/第1及び第2生物処理槽の合計容積)以下とすることが望ましい。想定原水負荷とは、定常運転時における原水負荷(原水流量と溶解性有機物濃度との積)である。このように後段に積極的に負荷を掛け、想定原水負荷の20%以上望ましくは30〜50%の負荷で原水中の有機物を90%以上望ましくは95%以上除去できる有機物除去能を獲得した後に、定常運転の多段直列運転に移行することにより、菌の定着は促進され、想定負荷での目標有機物除去能や汚泥減量率の目標達成までの期間を短縮できる。   The raw water load flowing into the second biological treatment tank 2 is preferably equal to or less than the assumed raw water load × (second biological treatment tank volume / total volume of the first and second biological treatment tanks). The assumed raw water load is the raw water load (the product of the raw water flow rate and the dissolved organic matter concentration) during steady operation. After positively applying a load to the subsequent stage in this way, after obtaining an organic substance removing ability capable of removing 90% or more, preferably 95% or more of organic substances in the raw water at a load of 20% or more, preferably 30 to 50% of the assumed raw water load. By shifting to the multistage serial operation of steady operation, colonization of the bacteria is promoted, and the period until the target organic matter removal ability and sludge reduction rate at the assumed load are achieved can be shortened.

第三以降の生物処理槽が設置されている場合は、最も下流側の生物処理槽に最初に高負荷をかけて立ち上げ、その後、順次に上流側の生物処理槽を立ち上げていくように運転すればよい。   If a third or later biological treatment tank is installed, start up with the highest load on the most downstream biological treatment tank first, and then start up the upstream biological treatment tank sequentially. Just drive.

第二生物処理槽2を立ち上げる場合、図1(b)のように、原水の一部を第一生物処理1に供給してもよい。この場合、第二生物処理槽2に流入させる原水負荷は想定原水負荷の20%以上、望ましくは30〜50%の負荷とし、また第二生物処理槽2に直接に供給する原水供給量を第一生物処理槽1への原水供給流量よりも多くする(例えば1.2〜5倍量)。   When starting up the 2nd biological treatment tank 2, you may supply a part of raw | natural water to the 1st biological treatment 1 like FIG.1 (b). In this case, the raw water load flowing into the second biological treatment tank 2 is 20% or more of the assumed raw water load, preferably 30 to 50%, and the raw water supply amount supplied directly to the second biological treatment tank 2 is the first. The raw water supply flow rate to the one biological treatment tank 1 is increased (for example, 1.2 to 5 times the amount).

第二生物処理槽2を立ち上げる場合、図2のように、第二生物処理槽2の流出水を凝集槽3に導入し、塩化第二鉄、PACなどの無機凝集剤と高分子凝集剤を添加した後、沈降槽4に導入して固液分離し、上澄水を処理水として取り出し、沈降した濃縮汚泥の一部を第二生物処理槽2に返送してもよい。これにより、立ち上げ時間をさらに短縮することができる。また、固液分離は加圧浮上分離であってもよい。   When starting up the second biological treatment tank 2, as shown in FIG. 2, the effluent water of the second biological treatment tank 2 is introduced into the coagulation tank 3, and an inorganic coagulant such as ferric chloride and PAC and a polymer coagulant. May be introduced into the sedimentation tank 4 for solid-liquid separation, the supernatant water may be taken out as treated water, and a part of the concentrated sludge that has settled may be returned to the second biological treatment tank 2. Thereby, the start-up time can be further shortened. Further, the solid-liquid separation may be a pressure floating separation.

原水として食品加工排水(BOD800mg/L、pH6)を用いて以下の実施例及び比較例を行った。   The following Examples and Comparative Examples were performed using food processing wastewater (BOD 800 mg / L, pH 6) as raw water.

実施例1(図1)
図1(a)に示す通水方法によって立ち上げを行った。第一生物処理槽1(汚泥返送なし)の容量は2.5Lであり、第二生物処理槽2(汚泥返送なし)の容量は4.4Lである。第一生物処理槽1のDOを0.5mg/Lとし、第二の生物処理槽2のDOを2〜3mg/Lとして運転した。また、第一生物処理槽1には担体充填率5%の流動床を形成し、第二生物処理槽には充填率40%で担体を添加して流動床とした。担体は共に5mm角のウレタンフォームである。通水開始前に種汚泥として、排水処理場汚泥(MLSS2000mg/L)を各槽に500mlずつ添加した。
Example 1 (FIG. 1)
Startup was carried out by the water flow method shown in FIG. The capacity of the first biological treatment tank 1 (without sludge return) is 2.5L, and the capacity of the second biological treatment tank 2 (without sludge return) is 4.4L. The first biological treatment tank 1 was operated with DO of 0.5 mg / L, and the second biological treatment tank 2 with DO of 2-3 mg / L. Further, a fluidized bed having a carrier filling rate of 5% was formed in the first biological treatment tank 1, and a carrier was added to the second biological treatment tank at a filling rate of 40% to obtain a fluidized bed. Both carriers are 5 mm square urethane foam. Before starting water flow, 500 ml of wastewater treatment plant sludge (MLSS 2000 mg / L) was added to each tank as seed sludge.

運転開始〜5日目まで原水を第二生物処理槽2にのみ流量0.22L/hr(想定原水負荷の30%)で通水した。運転開始5日後、溶解性有機物除去率が90%以上に達したため、原水流量を0.43L/hr(想定原水負荷の60%)にて第一生物処理槽1から第二生物処理槽2に直列通水した。直列通水移行後2日(運転開始後7日)で90%以上の溶解性有機物除去率に達したため、運転開始後8日目に原水流量を0.72L/hr(想定原水負荷の100%)とし、第一生物処理槽1のBOD容積負荷5.5kg−BOD/m/d、HRT3.5h、全体でのBOD容積負荷2.0kg−BOD/m/d、HRT9.6hの条件で運転した。運転開始後10日以降は、常に溶解性有機物除去率95%を維持し、汚泥転換率も0.20kg−MLSS/kg−BODとなった。従って、所定の性能を得るのにかかった日数(生物処理装置全体の立ち上げ所要日数)は10日であった。 From the start of operation to the fifth day, raw water was passed through the second biological treatment tank 2 only at a flow rate of 0.22 L / hr (30% of the assumed raw water load). Five days after the start of operation, the dissolved organic matter removal rate reached 90% or more, so the raw water flow rate was 0.43 L / hr (60% of the assumed raw water load) from the first biological treatment tank 1 to the second biological treatment tank 2. Series water was passed. Since dissolved organic matter removal rate of 90% or more was reached on the 2nd day (7th day after the start of operation) after the series water transfer, the raw water flow rate was 0.72L / hr (100% of the assumed raw water load) on the 8th day after the start of the operation. And BOD volumetric load of the first biological treatment tank 1 5.5 kg-BOD / m 3 / d, HRT 3.5 h, overall BOD volumetric load 2.0 kg-BOD / m 3 / d, HRT 9.6 h Drove in. After 10 days from the start of operation, the soluble organic matter removal rate was always maintained at 95%, and the sludge conversion rate was 0.20 kg-MLSS / kg-BOD. Therefore, the number of days required to obtain the predetermined performance (the number of days required for starting up the entire biological treatment apparatus) was 10 days.

実施例2(図2)
実施例1において、第二生物処理槽2の立ち上げに際し、立ち上げ開始2日目以降は第二生物処理槽2から流出する処理水を図2の通り凝集槽3に導入し、凝集剤としてPACを200mg/L添加した後、沈降槽4に導入し、固液分離し、上澄水を処理水として取り出し、汚泥の一部を第二生物処理槽2に返送した。それ以外の条件は実施例1と同様にして立ち上げを開始した。
Example 2 (FIG. 2)
In Example 1, when the second biological treatment tank 2 is started up, treated water flowing out from the second biological treatment tank 2 is introduced into the coagulation tank 3 as shown in FIG. After 200 mg / L of PAC was added, it was introduced into the sedimentation tank 4 and separated into solid and liquid, the supernatant water was taken out as treated water, and a part of the sludge was returned to the second biological treatment tank 2. Other conditions were the same as in Example 1 and start-up was started.

具体的には、通水開始前に種汚泥として、排水処理場汚泥(MLSS2000mg/L)を各槽に500mlずつ添加し、運転開始から1日目の間は、実施例1と同じく原水流量を0.22L/hr(想定原水負荷の30%)にて第二生物処理槽2にのみ供給した。運転開始2日目からは、沈降槽4で固液分離した濃縮汚泥2000mg−SS/Lを200mL/hrにて第二生物処理槽2に返送した。運転開始3日後、溶解性有機物除去率が90%以上に達したため、原水流量を0.43L/hr(想定原水負荷の60%)にて第一生物処理槽1から第二生物処理槽2に直列通水した。濃縮汚泥の返送は同様にして行った。直列通水への移行後は90%以上の溶解性有機物除去率を達成したため、運転開始後5日目に原水流量を0.72L/hr(想定原水負荷の100%)とし、第一生物処理槽1のBOD容積負荷5.5kg−BOD/m/d、HRT3.5h、全体でのBOD容積負荷2.0kg−BOD/m/d、HRT9.6hの条件で運転した。その後は、常に溶解性有機物除去率95%を維持し、汚泥転換率も0.20kg−MLSS/kg−BODとなった。従って、所定の性能を得るのにかかった日数(生物処理装置全体の立ち上げ所要日数)は5日であった。 Specifically, 500 ml of wastewater treatment plant sludge (MLSS 2000 mg / L) is added to each tank as seed sludge before the start of water flow, and the raw water flow rate is the same as in Example 1 for the first day from the start of operation. It was supplied only to the second biological treatment tank 2 at 0.22 L / hr (30% of the assumed raw water load). From the second day after the start of operation, 2000 mg-SS / L of concentrated sludge separated into solid and liquid in the sedimentation tank 4 was returned to the second biological treatment tank 2 at 200 mL / hr. Three days after the start of operation, the dissolved organic matter removal rate reached 90% or more, so the raw water flow rate was 0.43 L / hr (60% of the assumed raw water load) from the first biological treatment tank 1 to the second biological treatment tank 2. Series water was passed. The concentrated sludge was returned in the same manner. After the transition to series water flow, 90% or more of the soluble organic matter removal rate was achieved, so the raw water flow rate was set to 0.72 L / hr (100% of the assumed raw water load) on the fifth day after the start of operation. The tank 1 was operated under the conditions of BOD volumetric load 5.5 kg-BOD / m 3 / d, HRT 3.5 h, overall BOD volumetric load 2.0 kg-BOD / m 3 / d, HRT 9.6 h. Thereafter, a soluble organic matter removal rate of 95% was always maintained, and the sludge conversion rate was 0.20 kg-MLSS / kg-BOD. Therefore, the number of days required to obtain the predetermined performance (the number of days required for starting up the entire biological treatment apparatus) was 5 days.

比較例1(直列通水による立ち上げ)
実施例1において、運転開始直後から原水を第一生物処理槽1から第二生物処理槽2に直列に通水した。なお、実施例1と同じく、第一生物処理槽1のDOを0.5mg/Lとし、第二生物処理槽2のDOを2〜3mg/Lとした。また、第一生物処理槽1及び第二生物処理槽2には実施例1と同一条件にて担体を添加し、通水開始前に種汚泥として、排水処理場汚泥(MLSS2000mg/L)を各槽に500mlずつ添加した。
Comparative example 1 (start-up by serial water flow)
In Example 1, raw water was passed in series from the first biological treatment tank 1 to the second biological treatment tank 2 immediately after the start of operation. In addition, like Example 1, DO of the 1st biological treatment tank 1 was 0.5 mg / L, and DO of the 2nd biological treatment tank 2 was 2-3 mg / L. In addition, a carrier is added to the first biological treatment tank 1 and the second biological treatment tank 2 under the same conditions as in Example 1, and each wastewater treatment plant sludge (MLSS 2000 mg / L) is used as seed sludge before the start of water flow. 500 ml each was added to the tank.

運転開始直後は、0.22L/hr(想定原水負荷の30%)の原水流量で運転し、運転開始7日後、溶解性有機物除去率が90%以上に達したため、原水流量0.43L/hr(想定原水負荷の60%)での通水に移行した。その後7日(運転開始から14日)で90%以上の溶解性有機物除去率に達したため、運転開始から15日目に原水流量0.72L/hr(想定原水負荷の100%)へ移行した。想定原水負荷100%通水移行後、常に溶解性有機物除去率95%を維持するようになるまでにかかった日数は10日であった。また、汚泥転換率が0.20kg−MLSS/kg−BODとなるのには100%通水以降後15日かかった。従って、所定の性能を得るのにかかった立ち上げ所要日数は30日であった。   Immediately after the start of operation, it was operated at a raw water flow rate of 0.22 L / hr (30% of the assumed raw water load), and 7 days after the start of operation, the dissolved organic matter removal rate reached 90% or more, so the raw water flow rate was 0.43 L / hr. Shifted to water flow (60% of assumed raw water load). After that, since the dissolved organic matter removal rate reached 90% or more on the 7th day (14 days from the start of operation), the raw water flow rate changed to 0.72 L / hr (100% of the assumed raw water load) on the 15th day from the start of the operation. The number of days required to maintain the removal rate of soluble organic matter of 95% after the transition to the assumed raw water load of 100% was 10 days. In addition, it took 15 days after 100% water flow for the sludge conversion rate to be 0.20 kg-MLSS / kg-BOD. Accordingly, the required startup time for obtaining the predetermined performance was 30 days.

1 第一生物処理槽
2 第二生物処理槽
3 凝集槽
4 沈降槽
1 First biological treatment tank 2 Second biological treatment tank 3 Coagulation tank 4 Sedimentation tank

Claims (4)

定常運転時には原水が順次に通水される第1ないし第n(nは2以上の整数)の生物処理槽を有した生物処理装置を立ち上げる立ち上げ工程を有する有機性排水の生物処理方法において、
立ち上げ時に、原水の少なくとも一部を第nの生物処理槽に供給して第nの生物処理槽を立ち上げる第n生物処理槽立ち上げ工程を行うことを特徴とする有機性排水の生物処理方法。
In an organic wastewater biological treatment method having a startup process of starting up a biological treatment apparatus having first to nth biological treatment tanks (n is an integer of 2 or more) through which raw water is sequentially passed during normal operation ,
Biological treatment of organic wastewater characterized by performing an nth biological treatment tank start-up step of supplying at least part of raw water to the nth biological treatment tank and starting the nth biological treatment tank at the time of start-up Method.
請求項1において、第n生物処理槽が原水中の有機物を90%以上除去するようになるまで第n生物処理槽立ち上げ工程を行うことを特徴とする有機性排水の生物処理方法。   2. The biological treatment method for organic wastewater according to claim 1, wherein the nth biological treatment tank is started up until the nth biological treatment tank removes 90% or more of organic matter in the raw water. 請求項1又は2において、第n生物処理槽立ち上げ工程において、定常運転時における生物処理装置への原水負荷の20〜50%の原水負荷にて第n生物処理槽に原水を供給することを特徴とする有機性排水の生物処理方法。   In claim 1 or 2, in the n-th biological treatment tank start-up step, the raw water is supplied to the n-th biological treatment tank at a raw water load of 20 to 50% of the raw water load to the biological treatment apparatus during steady operation. A biological treatment method for organic wastewater. 請求項1ないし3のいずれか1項において、nは2であり、第2生物処理槽の立ち上げ工程後の定常運転では、原水の全量を第1生物処理槽に供給するか、又は原水を第1生物処理槽と第2生物処理槽とに供給することを特徴とする有機性排水の生物処理方法。   In any 1 item | term of Claim 1 thru | or 3, n is 2, and in the steady operation after the starting process of a 2nd biological treatment tank, whole quantity of raw | natural water is supplied to a 1st biological treatment tank, or raw | natural water is used. A biological treatment method for organic wastewater, characterized by being supplied to a first biological treatment tank and a second biological treatment tank.
JP2011257649A 2011-11-25 2011-11-25 Biological treatment method for organic wastewater Active JP5887874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011257649A JP5887874B2 (en) 2011-11-25 2011-11-25 Biological treatment method for organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011257649A JP5887874B2 (en) 2011-11-25 2011-11-25 Biological treatment method for organic wastewater

Publications (2)

Publication Number Publication Date
JP2013111493A true JP2013111493A (en) 2013-06-10
JP5887874B2 JP5887874B2 (en) 2016-03-16

Family

ID=48707625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011257649A Active JP5887874B2 (en) 2011-11-25 2011-11-25 Biological treatment method for organic wastewater

Country Status (1)

Country Link
JP (1) JP5887874B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045094A1 (en) * 2013-09-27 2015-04-02 栗田工業株式会社 Organic wastewater biological treatment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000051886A (en) * 1998-06-05 2000-02-22 Agency Of Ind Science & Technol Organic waste water treatment method
JP2002059185A (en) * 2000-08-17 2002-02-26 Kuraray Co Ltd Treating method for waste water
JP2005211788A (en) * 2004-01-29 2005-08-11 Daiki Co Ltd Organic wastewater treatment apparatus
JP2006055849A (en) * 2001-11-22 2006-03-02 Ebara Corp Apparatus and method for treating organic waste water
JP2006110511A (en) * 2004-10-18 2006-04-27 Hitachi Plant Eng & Constr Co Ltd Operation method for anaerobic ammonia oxidation apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000051886A (en) * 1998-06-05 2000-02-22 Agency Of Ind Science & Technol Organic waste water treatment method
JP2002059185A (en) * 2000-08-17 2002-02-26 Kuraray Co Ltd Treating method for waste water
JP2006055849A (en) * 2001-11-22 2006-03-02 Ebara Corp Apparatus and method for treating organic waste water
JP2005211788A (en) * 2004-01-29 2005-08-11 Daiki Co Ltd Organic wastewater treatment apparatus
JP2006110511A (en) * 2004-10-18 2006-04-27 Hitachi Plant Eng & Constr Co Ltd Operation method for anaerobic ammonia oxidation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045094A1 (en) * 2013-09-27 2015-04-02 栗田工業株式会社 Organic wastewater biological treatment method

Also Published As

Publication number Publication date
JP5887874B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
CN101328001B (en) Process for biological treatment of organic waste water and apparatus thereof
JP4821493B2 (en) Biological treatment method for organic wastewater
JP5092797B2 (en) Biological treatment method and apparatus for organic wastewater
EP2447223A2 (en) Process for biological treatment of organic waste water and apparatus therefor
JP5176542B2 (en) Biological treatment method and biological treatment apparatus for organic wastewater
JP4821773B2 (en) Biological treatment method of organic wastewater
WO2012169381A1 (en) Method and apparatus for biological treatment of organic wastewater
WO2007125598A1 (en) Method and apparatus for biologically treating organic discharged water
US9688555B2 (en) Biological wastewater treatment processes that enhances the capacity for polyhydroxyalkanoate accumulation in a mixed culture biomass
WO2014167952A1 (en) Biological treatment method and device for organic wastewater
JP5915643B2 (en) Biological treatment method and apparatus for organic wastewater
JP6442856B2 (en) Biological treatment method and apparatus for organic wastewater
JP2006247494A (en) Biological treatment method and apparatus of organic wastewater
JP2006043586A (en) Biological treatment accelerator for wastewater and biological treatment method of wastewater using it
JP5887874B2 (en) Biological treatment method for organic wastewater
JP4581551B2 (en) Biological treatment method for organic wastewater
JP5103796B2 (en) Biological treatment accelerator for wastewater and biological treatment method for wastewater using the same
JP4967225B2 (en) Biological treatment method for organic wastewater
KR20130040800A (en) Method and device for biologically treating organic wastewater
JP6195000B1 (en) Biological treatment method for organic wastewater
WO2012073752A1 (en) Method and apparatus for biologically treating organic wastewater
JP5850097B2 (en) Biological treatment method and biological treatment apparatus for organic wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5887874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250