JP2006055849A - Apparatus and method for treating organic waste water - Google Patents

Apparatus and method for treating organic waste water Download PDF

Info

Publication number
JP2006055849A
JP2006055849A JP2005274864A JP2005274864A JP2006055849A JP 2006055849 A JP2006055849 A JP 2006055849A JP 2005274864 A JP2005274864 A JP 2005274864A JP 2005274864 A JP2005274864 A JP 2005274864A JP 2006055849 A JP2006055849 A JP 2006055849A
Authority
JP
Japan
Prior art keywords
tank
denitrification
filtration
nitrification
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005274864A
Other languages
Japanese (ja)
Inventor
Toshihiro Tanaka
俊博 田中
甬生 ▲葛▼
Yousei Katsura
Satoshi Konishi
聡史 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2005274864A priority Critical patent/JP2006055849A/en
Publication of JP2006055849A publication Critical patent/JP2006055849A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To solve mutually contradictory problems associated with a system for organic waste water treatment through denitrification and nitrification processes, that when the circulating volume from the nitrification tank to the denitrification tank is increased to achieve high removal of nitrogen, the introduction of a nitrified fluid rich in dissolved oxygen to the denitrification tank causes a reduction in denitrification performance of the denitrification tank by providing an apparatus and method for organic waste water treatment through denitrification and nitrification processes, which apparatus and method achieve high removal of nitrogen without reducing the denitrification performance of denitrification tanks. <P>SOLUTION: According to one embodiment of the present invention, the object stated above is achieved by providing the apparatus for treating the organic waste water which comprises at least two stages of treatment tanks in series, each of which includes the denitrification tank and the nitrification tank connected in this order, comprises a pipe for distributing the water to be treated to the denitrification tank in each stage, a means for filtering and separating at least a part of activated sludge mixture water in at least one of the nitrification tanks, and a pipe for supplying to the denitrification tank at least a part of the concentrated sludge mixture water obtained by the filtration and separation treatment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、汚水処理に関するものであり、より詳しくは、有機性工業排水や生活排水等の有機性排水を、活性汚泥法によって脱窒・硝化処理するための装置及び方法に関する。   The present invention relates to sewage treatment, and more particularly to an apparatus and method for denitrifying and nitrifying organic wastewater such as organic industrial wastewater and domestic wastewater by an activated sludge method.

従来、活性汚泥による水処理では、清浄化された処理水を得るためには活性汚泥混合液の固液分離を行わなければならなかった。通常、このためには、活性汚泥混合液を沈殿池に導入して重力沈降によって汚泥を沈降させ、上澄み液を処理水として沈殿池から流出させる方法が用いられている。この場合、活性汚泥を沈降させるために十分な沈降面積及び滞留時間を有する沈殿池が必要であり、処理装置の大型化と設置容積の増大要因となっていた。また、活性汚泥が、バルキング等によって沈降性が悪化している場合、沈殿池より汚泥が流出し、処理水の悪化を招いていた。   Conventionally, in the water treatment with activated sludge, in order to obtain purified treated water, it was necessary to perform solid-liquid separation of the activated sludge mixed liquid. Usually, for this purpose, a method is used in which an activated sludge mixed liquid is introduced into a sedimentation basin, the sludge is sedimented by gravity sedimentation, and the supernatant liquid is discharged from the sedimentation basin as treated water. In this case, a sedimentation basin having a sufficient sedimentation area and residence time is necessary to settle the activated sludge, which has been a factor in increasing the size of the processing apparatus and increasing the installation volume. Further, when the activated sludge has deteriorated in sedimentation due to bulking or the like, the sludge has flowed out of the sedimentation basin, leading to deterioration of the treated water.

また、脱窒・硝化による生物学的窒素除去法では、硝化槽から硝化液を脱窒槽に循環し、硝化液中のNO−N(硝酸性窒素及び亜硝酸性窒素)が活性汚泥中の脱窒菌によって窒素ガスに還元される。この際、流入原水のBOD源が脱窒反応のための水素供用体として用いられる。このような脱窒・硝化法においては、高い窒素除去率を得るためには、硝化槽から脱窒槽への循環量を多くする必要がある。しかしながら、硝化槽から溶存酸素濃度の高い汚泥の循環量を多くすると、溶存酸素の持込により、嫌気槽である脱窒槽での脱窒性能が低下する問題が生じる。 In the biological nitrogen removal method by denitrification and nitrification, nitrification liquid is circulated from the nitrification tank to the denitrification tank, and NO x -N (nitrate nitrogen and nitrite nitrogen) in the nitrification liquid is contained in the activated sludge. It is reduced to nitrogen gas by denitrifying bacteria. At this time, the BOD source of the incoming raw water is used as a hydrogen donor for the denitrification reaction. In such a denitrification / nitrification method, in order to obtain a high nitrogen removal rate, it is necessary to increase the amount of circulation from the nitrification tank to the denitrification tank. However, if the circulation amount of sludge having a high dissolved oxygen concentration from the nitrification tank is increased, there arises a problem that the denitrification performance in the denitrification tank, which is an anaerobic tank, decreases due to the introduction of dissolved oxygen.

一方、沈殿池に代わって膜分離によって活性汚泥の固液分離を行う手法は以前から用いられている。この場合、固液分離用膜としては、一般的に精密濾過膜や限外濾過膜が用いられている。しかしながら、この方法では、濾過分離手段としてポンプによる吸引や加圧が必要であり、通常数十kPa〜数百kPaの圧力で濾過を行うため、ポンプによる動力が大きく、ランニングコストの増大となっている。また、膜分離によってSSの全くない清澄な処理水が得られる一方、透過フラックスが低く、膜汚染を防止するために、膜を定期的に薬洗する必要がある。   On the other hand, a method of performing solid-liquid separation of activated sludge by membrane separation instead of a settling basin has been used for some time. In this case, a microfiltration membrane or an ultrafiltration membrane is generally used as the solid-liquid separation membrane. However, in this method, suction or pressurization by a pump is necessary as a filtration separation means, and filtration is usually performed at a pressure of several tens of kPa to several hundred kPa, so that the power of the pump is large and the running cost increases. Yes. In addition, clear treated water without any SS can be obtained by membrane separation, while the permeation flux is low, and it is necessary to periodically wash the membrane in order to prevent membrane contamination.

最近、沈殿池に代わる活性汚泥混合液の固液分離法として、曝気槽に、織布、不織布、金属網状材料等の通水性シートからなる濾過体を浸漬させ、濾過体表面の上に汚泥粒子自身による付着物層を二次的に形成し、この汚泥層を濾過層として用いて低い水頭圧で清澄な濾過水を得る方法が提案されている。この方法はダイナミック濾過と呼ばれ、通水性シートからなる濾過体自体は汚泥粒子を通過させるものであるが、濾過体表面において活性汚泥混合液のクロスフロー流を生成させることによって、汚泥フロックの付着物層が通水性シート上に二次的に形成され、この汚泥層が濾過層(ダイナミック濾過層)として機能することによって被処理液中の汚泥やSSが固液分離される。ダイナミック濾過層は濾過時間の経過に伴って厚みが増加し、このため濾過抵抗が増大して濾過フラックスが低下してくるが、その場合には、濾過体下部に設置した散気管より曝気して、濾過体表面に形成された汚泥のダイナミック濾過層を剥離した後、再びダイナミック濾過層を形成させることにより、安定した濾過フラックスが得られる。   Recently, as a solid-liquid separation method of activated sludge mixed liquid replacing the sedimentation basin, a filter body made of a water-permeable sheet such as woven fabric, non-woven fabric, and metal net-like material is immersed in an aeration tank, and sludge particles are formed on the surface of the filter body. A method has been proposed in which a deposit layer by itself is secondarily formed, and this sludge layer is used as a filtration layer to obtain clear filtered water at a low head pressure. This method is called dynamic filtration, and the filter body itself made of a water-permeable sheet allows sludge particles to pass through. However, the sludge flocs are attached by generating a cross-flow flow of the activated sludge mixed liquid on the surface of the filter body. A kimono layer is secondarily formed on the water-permeable sheet, and this sludge layer functions as a filtration layer (dynamic filtration layer), so that sludge and SS in the liquid to be treated are solid-liquid separated. The thickness of the dynamic filtration layer increases as the filtration time elapses, and as a result, the filtration resistance increases and the filtration flux decreases, but in that case, the dynamic filtration layer is aerated from the air diffuser installed at the bottom of the filter body. After removing the sludge dynamic filtration layer formed on the filter body surface, a stable filtration flux is obtained by forming the dynamic filtration layer again.

このダイナミック濾過法を脱窒・硝化法に適用する場合、ダイナミック濾過モジュールを硝化槽に配置する態様と、脱窒槽・硝化槽とは別に固液分離槽を設けて固液分離槽内にダイナミック濾過モジュールを配置する態様とが考えられる。しかしながら、いずれの態様においても、高い窒素除去率を得るためには、硝化槽から脱窒槽への循環量を多くする必要があり、従来の方法と同様に、溶存酸素の高い硝化液の流入により脱窒槽の脱窒性能が低下するという問題がある。   When this dynamic filtration method is applied to the denitrification / nitrification method, a dynamic filtration module is arranged in the nitrification tank, and a solid-liquid separation tank is provided separately from the denitrification tank / nitrification tank, and the dynamic filtration is performed in the solid-liquid separation tank. It is conceivable to arrange the modules. However, in any embodiment, in order to obtain a high nitrogen removal rate, it is necessary to increase the amount of circulation from the nitrification tank to the denitrification tank. There exists a problem that the denitrification performance of a denitrification tank falls.

本発明は、上記のように、脱窒・硝化による有機性排水の処理システムにおいて、高い窒素除去率を得るために硝化槽から脱窒槽への循環量を多くすると、溶存酸素の高い硝化液が脱窒槽に流入することによって、脱窒槽の脱窒性能が低下するという、相矛盾する課題を解決し、脱窒槽の脱窒性能を低下させることなく高い窒素除去率を達成することのできる、脱窒・硝化による有機性廃水の処理装置及び方法を提供することを目的とする。   In the organic wastewater treatment system by denitrification and nitrification as described above, the nitrification solution with high dissolved oxygen is obtained by increasing the circulation amount from the nitrification tank to the denitrification tank in order to obtain a high nitrogen removal rate. By flowing into the denitrification tank, the denitrification performance of the denitrification tank is reduced and the conflicting problem is solved, and a high nitrogen removal rate can be achieved without reducing the denitrification performance of the denitrification tank. It aims at providing the processing apparatus and method of organic wastewater by nitriding and nitrification.

本発明は、次の手段により上記の課題を解決した。
1. 脱窒槽及び硝化槽がこの順で接続された処理槽が2段以上直列に接続されている有機性排水の処理装置であって、被処理水を各段の脱窒槽に分注するための配管と、少なくとも一つの硝化槽内の活性汚泥混合液の少なくとも一部を濾過分離処理するための手段と、該濾過分離処理によって得られた濃縮汚泥混合液の少なくとも一部を脱窒槽に供給する配管とを具備することを特徴とする有機性排水の処理装置。
The present invention has solved the above problems by the following means.
1. An organic wastewater treatment device in which a treatment tank in which a denitrification tank and a nitrification tank are connected in this order is connected in series in two or more stages, and a pipe for dispensing treated water to each stage of the denitrification tank And means for filtering and separating at least a part of the activated sludge mixed liquid in at least one nitrification tank, and a pipe for supplying at least a part of the concentrated sludge mixed liquid obtained by the filtering and separating process to the denitrification tank An organic wastewater treatment apparatus characterized by comprising:

2. 濾過分離手段が硝化槽内に設置されており、濾過分離処理によって濃縮された硝化槽内の濃縮汚泥混合液の少なくとも一部が脱窒槽に供給される上記第1項に記載の有機性排水の処理装置。   2. Filtration separation means is installed in the nitrification tank, and at least a part of the concentrated sludge mixed liquid in the nitrification tank concentrated by the filtration separation process is supplied to the denitrification tank. Processing equipment.

3. 固液分離槽が配置されており、濾過分離手段が固液分離槽内に設置されていて、濾過分離処理によって濃縮された固液分離槽内の濃縮汚泥混合液の少なくとも一部が脱窒槽に供給される上記第1項に記載の有機性排水の処理装置。   3. A solid-liquid separation tank is arranged, filtration separation means is installed in the solid-liquid separation tank, and at least a part of the concentrated sludge mixed liquid in the solid-liquid separation tank concentrated by the filtration separation process is in the denitrification tank. The apparatus for treating organic waste water according to claim 1 to be supplied.

4. 濾過分離手段として、通水性の濾過層支持材の上に活性汚泥粒子のダイナミック濾過層が形成されるダイナミック濾過体が用いられている上記第1項〜第3項のいずれかに記載の有機性排水の処理装置。   4). The organic material according to any one of Items 1 to 3, wherein a dynamic filter body in which a dynamic filtration layer of activated sludge particles is formed on a water-permeable filtration layer support material is used as the filtration separation means. Wastewater treatment equipment.

5.通水性の濾過層支持材が、織布材料、不織布材料又は金属網状材料の1以上により構成される請求項4に記載の装置。
6. 最終段の硝化槽の活性汚泥混合液の少なくとも一部を導入して固液分離するための沈殿池と、沈殿池から回収される沈降汚泥の少なくとも一部を第一段の脱窒槽に返送する配管を更に具備する上記第1項〜第5項のいずれかに記載の有機性排水の処理装置。
5. The apparatus according to claim 4, wherein the water-permeable filter layer support material is composed of one or more of a woven material, a non-woven material, and a metal mesh material.
6). At least a part of the activated sludge mixed liquid in the final stage nitrification tank is introduced and returned to the first stage denitrification tank. The organic wastewater treatment apparatus according to any one of Items 1 to 5, further comprising a pipe.

7.第一段の脱窒槽の更に前段に絶対嫌気槽が接続されており、絶対嫌気槽にも被処理水を分注するための配管が接続されている上記第1項〜第6項のいずれかに記載の有機性排水の処理装置。   7). Any one of the above-mentioned items 1 to 6, wherein an absolute anaerobic tank is connected further upstream of the first stage denitrification tank, and a pipe for dispensing treated water is also connected to the absolute anaerobic tank. Organic wastewater treatment equipment as described in 1.

8.脱窒槽及び硝化槽の少なくとも一部に、生物菌体が付着可能な担体が充填されている上記第1項〜第7項のいずれかに記載の有機性排水の処理装置。
9. 脱窒槽及び硝化槽がこの順で接続された処理槽が2段以上直列に接続されている有機性排水の処理装置を用いて有機性排水の処理を行う方法であって、被処理水を各段の脱窒槽に分注すると共に、少なくとも一つの硝化槽内の活性汚泥混合液の少なくとも一部を濾過分離処理して、該濾過分離処理によって得られた濃縮汚泥混合液の少なくとも一部を脱窒槽に供給することを特徴とする方法。
8). The organic wastewater treatment apparatus according to any one of the above items 1 to 7, wherein a carrier capable of adhering biological cells is filled in at least a part of the denitrification tank and the nitrification tank.
9. A method for treating organic wastewater using an organic wastewater treatment apparatus in which a treatment tank in which a denitrification tank and a nitrification tank are connected in this order is connected in series in two or more stages. In addition to dispensing into the stage denitrification tank, at least a part of the activated sludge mixed liquid in at least one nitrification tank is filtered and separated, and at least a part of the concentrated sludge mixed liquid obtained by the filtration and separation process is removed. A method characterized by supplying to a nitrogen bath.

10. 濾過分離処理を、硝化槽内に設置した濾過分離手段によって行い、濾過分離処理によって濃縮された硝化槽内の濃縮汚泥混合液の少なくとも一部を脱窒槽に供給する上記第9項に記載の方法。   10. The method according to item 9, wherein the filtration / separation process is performed by a filtration / separation unit installed in the nitrification tank, and at least a part of the concentrated sludge mixed liquid in the nitrification tank concentrated by the filtration / separation process is supplied to the denitrification tank. .

11. 少なくとも一つの硝化槽内の活性汚泥混合液の少なくとも一部を、濾過分離手段がその中に配置された固液分離槽に供給して、活性汚泥混合液の濾過分離処理を行い、濾過分離処理によって濃縮された固液分離槽内の濃縮汚泥混合液の少なくとも一部を脱窒槽に供給する上記第9項に記載の方法。   11. At least a part of the activated sludge mixed liquid in at least one nitrification tank is supplied to the solid-liquid separation tank disposed in the filtration separation means, and the activated sludge mixed liquid is filtered and separated. The method according to claim 9, wherein at least a part of the concentrated sludge mixed liquid in the solid-liquid separation tank concentrated by the step is supplied to the denitrification tank.

12. 濾過分離手段として、通水性の濾過層支持材の上に活性汚泥粒子のダイナミック濾過層が形成されるダイナミック濾過体を用いる上記第9項〜第11項のいずれかに記載の方法。   12 The method according to any one of Items 9 to 11, wherein a dynamic filtration body in which a dynamic filtration layer of activated sludge particles is formed on a water-permeable filtration layer support is used as the filtration separation means.

13.通水性の濾過層支持材が、織布材料、不織布材料又は金属網状材料の1以上により構成される請求項12に記載の方法。
14. 最終段の硝化槽の活性汚泥混合液の少なくとも一部を沈殿池に導入して固液分離処理を行い、沈殿池から回収される沈降汚泥の少なくとも一部を第一段の脱窒槽に返送する上記第9項〜第13項のいずれかに記載の方法。
13. The method according to claim 12, wherein the water-permeable filter layer support is composed of one or more of a woven material, a non-woven material, or a metal network material.
14 At least a part of the activated sludge mixed solution in the final stage nitrification tank is introduced into the sedimentation basin, solid-liquid separation treatment is performed, and at least a part of the sedimentation sludge recovered from the sedimentation basin is returned to the first stage denitrification tank. 14. The method according to any one of items 9 to 13.

15.第一段の脱窒槽の更に前段に絶対嫌気槽を接続して、絶対嫌気槽にも被処理水を分注する上記第9項〜第14項のいずれかに記載の方法。
16.脱窒槽及び硝化槽の少なくとも一部に、生物菌体が付着可能な担体を充填して処理を行う上記第9項〜第15項のいずれかに記載の方法。
15. The method according to any one of Items 9 to 14, wherein an absolute anaerobic tank is connected further upstream of the first denitrification tank, and water to be treated is dispensed into the absolute anaerobic tank.
16. The method according to any one of Items 9 to 15, wherein the treatment is performed by filling at least a part of the denitrification tank and the nitrification tank with a carrier to which biological cells can adhere.

本発明によれば、脱窒槽及び硝化槽がこの順で接続された処理槽が2段以上直列に接続されている有機性排水の処理装置を用いて有機性排水の処理を行うにあたって、被処理水を各段の脱窒槽に分注すると共に、硝化槽内の活性汚泥混合液を濾過分離処理して、該濾過分離処理によって得られた濃縮汚泥混合液を脱窒槽に供給することによって、脱窒槽内の汚泥濃度を高く維持できるのに加えて、硝化液中のNO−Nが脱窒槽に供給され、脱窒槽内の脱窒菌よりNに還元されるので、処理水のNO−Nが大幅に低下し、T−N(Total Nitrogen:全窒素)の除去率が向上する。また、濾過汚泥混合液を濾過分離処理して処理水を取り出すことにより濃縮汚泥混合液を得、これを脱窒槽に供給しているので、脱窒槽に供給される濃縮汚泥混合液は溶存酸素濃度が極めて低いものとなり、これを脱窒槽へ返送しても、溶存酸素持込による脱窒性能低下の心配は極めて低くなる。 According to the present invention, when performing treatment of organic wastewater using an organic wastewater treatment apparatus in which a treatment tank in which a denitrification tank and a nitrification tank are connected in this order is connected in series in two or more stages, Water is dispensed into each stage of the denitrification tank, and the activated sludge mixed liquid in the nitrification tank is filtered and separated, and the concentrated sludge mixed liquid obtained by the filtration and separation process is supplied to the denitrification tank, thereby removing the water. in addition to the sludge concentration can be maintained high in the denitrification tank, NO x -N in nitrifying liquid is supplied to the denitrification tank, because it is reduced to N 2 than the denitrifying bacteria in the denitrification tank, the treated water NO x - N is greatly reduced, and the removal rate of TN (Total Nitrogen) is improved. In addition, the filtered sludge mixed solution is filtered and separated to obtain treated water to obtain a concentrated sludge mixed solution, which is supplied to the denitrification tank, so the concentrated sludge mixed solution supplied to the denitrification tank has a dissolved oxygen concentration However, even if this is returned to the denitrification tank, there is a very low risk of denitrification performance degradation due to the dissolved oxygen being brought in.

濾過分離処理を行うための濾過分離手段としては、従来公知の浸漬型膜分離装置を用いることができる。また、本発明の好ましい態様においては、硝化槽の汚泥混合液を濾過分離処理するための濾過分離手段として、所謂ダイナミック濾過モジュールを用いることによって、低い水頭圧で安定した濾過水を得ることができる。これらの濾過分離手段は、例えば、硝化槽内に浸漬配置することができる。   As a filtration / separation means for performing the filtration / separation treatment, a conventionally known immersion type membrane separation apparatus can be used. Further, in a preferred embodiment of the present invention, by using a so-called dynamic filtration module as filtration separation means for performing filtration separation treatment of the sludge mixed solution in the nitrification tank, stable filtered water can be obtained at a low head pressure. . These filtration separation means can be immersed and placed in a nitrification tank, for example.

また、本発明の他の形態においては、固液分離槽を別に配置して、この中に上記のような濾過分離手段を浸漬配置し、硝化槽内の活性汚泥混合液を固液分離槽に供給する配管を設置して、活性汚泥混合液を固液分離槽内で濾過分離処理を行って、得られた濃縮汚泥混合液を脱窒槽に供給することができる。   Further, in another embodiment of the present invention, a solid-liquid separation tank is separately arranged, and the filtration separation means as described above is immersed therein, and the activated sludge mixed liquid in the nitrification tank is placed in the solid-liquid separation tank. A pipe to be supplied is installed, the activated sludge mixed liquid is filtered and separated in a solid-liquid separation tank, and the resulting concentrated sludge mixed liquid can be supplied to the denitrification tank.

特に濾過分離手段としてダイナミック濾過体を用いる場合、上記のように固液分離槽を配置して、できるだけ曝気気泡の少ない状態で活性汚泥混合液を流入させて、この中でダイナミック濾過処理を行うことが好ましい。ダイナミック濾過体を硝化槽内に浸漬配置する場合には、曝気による旋回流によって濾過体表面に下降流のクロスフロー流を形成する必要があるので、濾過体表面の流れは、曝気管の位置や濾過体との距離などに大きく影響されてかなり不均一となる場合がある。濾過体表面に対する汚泥混合液の流れが不均一であると、表面に形成される汚泥のダイナミック濾過層は均一な厚みを有し得ないため、安定した濾過水量を得ることが困難である。また、ダイナミック濾過体を硝化槽(曝気槽)内に配置する場合には、曝気気泡の混在下でダイナミック濾過層を形成することになるが、このような条件下では曝気気泡によってダイナミック濾過層が剥離され易いため、濾過水質を維持することが困難な場合がある。硝化槽の水位は流入水量及び曝気風量によって変動するため、後続槽との水頭差が変動することにより濾過圧が不安定であり、濾過水量の変動要因となるだけでなく、濾過体表面に形成する汚泥濾過層の濾過性能にも悪影響を与える。しかしながら、多段の脱窒・硝化槽とは別に固液分離槽を設置し、この中にダイナミック濾過体を浸漬配置し、固液分離槽に硝化槽内の活性汚泥混合液を供給して、ダイナミック濾過による活性汚泥混合液の濾過分離処理を行うことにより、流入原水の水量、水質の変動や活性汚泥粒子性状の変化があっても、濾過水量が変動しないで安定して良好な水質の処理水が得られる。また、このように固液分離槽を別に配置した場合には、固液分離槽に関しては、硝化槽から汚泥混合液のみを供給すると共にそこから処理水を排出しているので、固液分離槽内の溶存酸素は、出口に近いほど低下する。つまり、固液分離槽から出る濃縮汚泥混合液は溶存酸素濃度がほとんど0となり、脱窒槽へ返送されても溶存酸素持込による脱窒性能低下の心配は全くなくなる。   In particular, when using a dynamic filter as a filtration / separation means, a solid-liquid separation tank is arranged as described above, and the activated sludge mixed liquid is allowed to flow in with as little aeration bubbles as possible, and the dynamic filtration process is performed therein. Is preferred. When the dynamic filter body is immersed in the nitrification tank, it is necessary to form a downflow cross-flow flow on the surface of the filter body by the swirling flow by aeration. In some cases, the distance to the filter body is greatly affected, and the result is considerably non-uniform. If the flow of the sludge mixed liquid with respect to the surface of the filter body is not uniform, the sludge dynamic filtration layer formed on the surface cannot have a uniform thickness, and it is difficult to obtain a stable amount of filtered water. In addition, when the dynamic filter is placed in the nitrification tank (aeration tank), a dynamic filtration layer is formed in the presence of aeration bubbles. Under such conditions, the dynamic filtration layer is formed by aeration bubbles. Since it is easy to peel, it may be difficult to maintain filtered water quality. Since the water level in the nitrification tank varies depending on the inflow water volume and aeration air volume, the filtration pressure is unstable due to fluctuations in the water head difference from the subsequent tank, which not only causes fluctuations in the filtration water volume, but also forms on the filter body surface. It also adversely affects the filtration performance of the sludge filtration layer. However, a solid-liquid separation tank is installed separately from the multi-stage denitrification / nitrification tank, the dynamic filter is immersed in this tank, and the activated sludge mixed liquid in the nitrification tank is supplied to the solid-liquid separation tank. By performing filtration separation of the activated sludge mixture by filtration, even if there are fluctuations in the amount of influent raw water, water quality, or changes in activated sludge particle properties, the amount of filtered water does not fluctuate and the water is treated stably with good quality. Is obtained. In addition, when the solid-liquid separation tank is arranged separately in this way, since only the sludge mixed liquid is supplied from the nitrification tank and the treated water is discharged from the nitrification tank, the solid-liquid separation tank The dissolved oxygen inside decreases as it approaches the outlet. That is, the concentrated sludge mixed solution coming out of the solid-liquid separation tank has a dissolved oxygen concentration of almost 0, and even if it is returned to the denitrification tank, there is no concern about a decrease in the denitrification performance due to bringing dissolved oxygen.

なお、濾過分離処理は、各段の硝化槽においてそれぞれ行って、それぞれの濾過分離処理で得られた濃縮活性汚泥混合液を、その段の脱窒槽に返送することができる。このようにすれば、各段の脱窒槽に、濃縮された活性汚泥混合液が供給されるので、脱窒・硝化槽内でのMLSS(Mixed Liquor Suspended Solids:活性汚泥浮遊物質)の濃度を高く保持して、高い窒素除去量を保つことが可能になる。更に、前段の硝化槽(例えば、後述の図1の1C)からの硝化液は、後段の脱窒槽(図1の2B)において、そこに供給される原水で効率よく脱窒される。或いは本発明の他の形態においては、濾過分離処理は、一部の硝化槽、特に後段の硝化槽においてのみ行ってもよい。例えば、最終段の硝化槽のみにおいて、槽内の活性汚泥混合液を濾過分離処理にかけて、得られる濃縮汚泥混合液を前段のいずれかの脱窒槽に返送することができる。   The filtration / separation process can be performed in each stage of the nitrification tank, and the concentrated activated sludge mixed solution obtained by the filtration / separation process can be returned to the denitrification tank of that stage. In this way, since the concentrated activated sludge mixture is supplied to the denitrification tanks at each stage, the concentration of MLSS (Mixed Liquor Suspended Solids) in the denitrification and nitrification tanks is increased. This makes it possible to maintain a high nitrogen removal amount. Furthermore, the nitrification liquid from the former stage nitrification tank (for example, 1C in FIG. 1 described later) is efficiently denitrified by the raw water supplied thereto in the latter stage denitrification tank (2B in FIG. 1). Alternatively, in another embodiment of the present invention, the filtration / separation treatment may be performed only in a part of the nitrification tank, particularly in the subsequent nitrification tank. For example, in only the final stage nitrification tank, the activated sludge mixed liquid in the tank can be subjected to filtration and separation treatment, and the resulting concentrated sludge mixed liquid can be returned to any of the preceding denitrification tanks.

さらに、本発明の他の態様においては、直列に接続された多段の脱窒・硝化槽の最終段の硝化槽の後段に更に沈殿池を設け、最終段の活性汚泥混合液の少なくとも一部を沈殿池に導入して、固液分離処理を行うことができる。このような構成とすることにより、原水水量や水質変動に伴って各段での濾過水量が低下しても、最終段階での沈殿池での固液分離が可能である上に、沈殿池で得られた沈降汚泥の少なくとも一部を第一段の脱窒槽に返送すれば、脱窒槽内のMLSSを更に高濃度に維持することができ、高い脱窒性能が得られる。   Furthermore, in another aspect of the present invention, a settling basin is further provided after the nitrification tank of the final stage of the multi-stage denitrification / nitrification tank connected in series, and at least a part of the activated sludge mixed liquid of the final stage is provided. It can introduce | transduce into a sedimentation basin and can perform a solid-liquid separation process. By adopting such a configuration, even if the amount of filtered water at each stage decreases due to fluctuations in raw water volume and water quality, solid-liquid separation in the final stage sedimentation basin is possible. If at least a part of the obtained settled sludge is returned to the first-stage denitrification tank, the MLSS in the denitrification tank can be maintained at a higher concentration, and high denitrification performance can be obtained.

各段の脱窒槽及び硝化槽においては、硝化槽から硝化液を濾過分離処理して、得られる濾過水を処理水として系外に排出可能であるため、槽内のMLSSを高濃度に維持でき、窒素除去量が高められ、更に水量の増大にも対応可能であるといった大きな効果が得られる。   In each stage of denitrification tank and nitrification tank, the nitrification solution can be filtered and separated from the nitrification tank, and the resulting filtrate can be discharged out of the system as treated water, so that the MLSS in the tank can be maintained at a high concentration. In addition, a great effect is obtained in that the amount of nitrogen removed can be increased and the amount of water can be increased.

なお、ダイナミック濾過体において用いるダイナミック濾過槽形成用の通水性支持材としては、不織布、織布、金属網等のいずれを用いても同様な効果が得られる。織布、金属網を用いる場合には、細口径が50〜200μmのものが適している。濾過体形状としては平面型が中心であるが、円筒型、中空型を用いることも可能であり、複数個を束ねてモジュール濾過体として用いることが可能である。   In addition, the same effect is acquired even if it uses any of a nonwoven fabric, a woven fabric, a metal net | network, etc. as a water-permeable support material for dynamic filtration tank formation used in a dynamic filter body. In the case of using a woven fabric or a metal net, those having a small diameter of 50 to 200 μm are suitable. As the filter body shape, a flat type is the center, but a cylindrical type or a hollow type can also be used, and a plurality of filter bodies can be bundled and used as a module filter body.

また、処理対象の原水中のリン濃度が高く、生物学的脱リンを行う必要がある場合には、第一段の脱窒槽の前段に新たに絶対嫌気槽を設けて、被処理水の一部を分注すると共に、返送汚泥を絶対嫌気槽に流入すれば、絶対嫌気槽においてポリリン蓄積細菌(PAO)の選択的増殖を行い、原水中のリンを硝化槽においてPAOに摂取させることができるので、原水中のリンを除去することも可能となる。この形態においては、最終段の硝化槽の後段に沈殿池を配する場合には、沈殿池で回収される沈降汚泥を絶対嫌気槽に返送することができ、また、最終段の処理槽から汚泥を返送しない場合には、第一段の脱窒槽内の汚泥混合液の少なくとも一部を絶対嫌気槽に返送することができる。   In addition, when the concentration of phosphorus in the raw water to be treated is high and biological dephosphorization is required, an absolute anaerobic tank is newly provided before the first denitrification tank, If the return sludge flows into the absolute anaerobic tank, selective growth of polyphosphorus accumulating bacteria (PAO) can be performed in the absolute anaerobic tank, and the phosphorus in the raw water can be ingested by the PAO in the nitrification tank. Therefore, it is possible to remove phosphorus in the raw water. In this embodiment, when a sedimentation basin is arranged after the final stage nitrification tank, the sedimentation sludge recovered in the sedimentation basin can be returned to the absolute anaerobic tank, and the sludge from the final stage treatment tank. Is not returned, at least a part of the sludge mixed liquid in the first-stage denitrification tank can be returned to the absolute anaerobic tank.

このようなリンの除去を行う目的で設置することのできる絶対嫌気槽とは、DO(dissolved oxygen:溶存酸素)もNO−Nも存在しない反応槽を指し、この槽を設けると、ポリリン蓄積細菌が生物処理系全体で優先的に増殖する。更に、その結果、原水中のリンがポリリンとしてポリリン蓄積細菌に摂取される。 An absolute anaerobic tank that can be installed for the purpose of removing such phosphorus refers to a reaction tank in which neither DO (dissolved oxygen) nor NO x -N exists. Bacteria grow preferentially throughout the biological treatment system. Furthermore, as a result, the phosphorus in the raw water is ingested by the polyline-accumulating bacteria as polyline.

更に、本発明においては、各段の脱窒槽及び硝化槽の少なくとも一部に、生物菌体が付着可能な担体を充填することができる。このような担体を脱窒槽及び/又は硝化槽に充填することにより、滞留時間を短縮して反応槽の容量を小さくできるという効果が得られる。この目的で用いることのできる担体としては、例えば、PEG(ポリエチレングリコール)、PVA(ポリビニルアルコール)などから構成される粒径2〜4mmの高分子粒状材料やスポンジ材料などを挙げることができる。   Furthermore, in the present invention, at least a part of each stage of the denitrification tank and nitrification tank can be filled with a carrier to which biological cells can adhere. By filling such a carrier into the denitrification tank and / or the nitrification tank, the effect of shortening the residence time and reducing the capacity of the reaction tank can be obtained. Examples of the carrier that can be used for this purpose include polymer granular materials having a particle diameter of 2 to 4 mm and sponge materials composed of PEG (polyethylene glycol), PVA (polyvinyl alcohol), and the like.

以下に、図面を参照しながら本発明の種々の実施態様を詳細に説明する。
図1に、本発明の一態様に係る有機性排水の処理装置による原水の処理の一例をフローシートで示す。
In the following, various embodiments of the present invention will be described in detail with reference to the drawings.
In FIG. 1, an example of the process of raw | natural water by the processing apparatus of the organic waste_water | drain which concerns on 1 aspect of this invention is shown with a flow sheet.

図1に示す有機性排水の処理装置は、脱窒槽Bと硝化槽Cとがこの順番で接続された処理槽を、複数段直列に接続することによって構成されている。図1では、脱窒・硝化槽の段が3段、液連通状態に直列に接続されて、1B−1C−2B−2C−3B−3Cという装置を構成している。かかる処理装置においては、流入原水1を、1A、2A、3Aに分け、それぞれ第一段脱窒槽1B、第二段脱窒槽2B、第三段脱窒槽3Bに分注して流入させる。これにより、原水中の有機物が脱窒反応の水素供与体として用いられ、嫌気条件下で脱窒反応が進行する。第一段脱窒槽1Bからの流出液は、後続の第一段硝化槽1Cに流入し、ここでNH−N(アンモニア性窒素)の硝化が行われる。硝化槽には、それぞれ、空気供給管8に接続された散気装置9が設置されており、これにより曝気が行われて槽内の雰囲気が好気性にされる。第一硝化槽1Cの硝化液(活性汚泥混合液)は、第一固液分離槽1Dに供給され、ここで固液分離槽1D内の濾過モジュールによる濾過が行われ、第一段濾過水1Fが得られる。なお、濾過水量は流入原水量以下の量とする。濾過後の濃縮汚泥混合液は、第一段循環汚泥1Eとして第一段脱窒槽1Bに循環されて、ここでNO−Nが脱窒される。また、第一段硝化槽1Cの硝化液の一部が後続の第二段脱窒槽2Bへ送られる。 The organic wastewater treatment apparatus shown in FIG. 1 is configured by connecting a treatment tank in which a denitrification tank B and a nitrification tank C are connected in this order in a plurality of stages. In FIG. 1, three stages of denitrification and nitrification tanks are connected in series in a liquid communication state to constitute an apparatus 1B-1C-2B-2C-3B-3C. In such a treatment apparatus, the inflow raw water 1 is divided into 1A, 2A, and 3A, and is dispensed into the first stage denitrification tank 1B, the second stage denitrification tank 2B, and the third stage denitrification tank 3B. Thereby, the organic matter in the raw water is used as a hydrogen donor for the denitrification reaction, and the denitrification reaction proceeds under anaerobic conditions. The effluent from the first-stage denitrification tank 1B flows into the subsequent first-stage nitrification tank 1C where NH 4 —N (ammonia nitrogen) is nitrified. Each nitrification tank is provided with an air diffuser 9 connected to an air supply pipe 8, whereby aeration is performed to make the atmosphere in the tank aerobic. The nitrification liquid (activated sludge mixed liquid) in the first nitrification tank 1C is supplied to the first solid-liquid separation tank 1D, where it is filtered by the filtration module in the solid-liquid separation tank 1D, and the first-stage filtered water 1F. Is obtained. The filtered water volume shall be less than the inflow raw water volume. The concentrated sludge mixed liquid after filtration is circulated to the first-stage denitrification tank 1B as the first-stage circulation sludge 1E, where NO x -N is denitrified. In addition, a part of the nitrification liquid in the first stage nitrification tank 1C is sent to the subsequent second stage denitrification tank 2B.

第二段脱窒槽2B、第二段硝化槽2Cについても、同様に、硝化槽の汚泥混合液が第二段固液分離槽2Dに供給されて、濾過水2Fを得ると共に、濾過後の濃縮汚泥混合液が循環汚泥2Eとして第二段脱窒槽2Bに循環されて、硝化液中のNO−Nが脱窒処理される。また、第三段脱窒槽3B、第三段硝化槽3Cについても、同様に硝化液を固液分離槽3Dに供給して濾過を行い、得られた濃縮汚泥混合液を循環汚泥3Eとして第三段脱窒槽3Bに循環する。 Similarly, in the second-stage denitrification tank 2B and the second-stage nitrification tank 2C, the sludge mixed liquid in the nitrification tank is supplied to the second-stage solid-liquid separation tank 2D to obtain filtered water 2F and concentration after filtration. The sludge mixed liquid is circulated as the circulating sludge 2E to the second-stage denitrification tank 2B, and NO x -N in the nitrification liquid is denitrified. Similarly, in the third-stage denitrification tank 3B and the third-stage nitrification tank 3C, the nitrification liquid is supplied to the solid-liquid separation tank 3D for filtration, and the obtained concentrated sludge mixed liquid is used as the circulating sludge 3E. Circulate to the stage denitrification tank 3B.

第一段〜第三の固液分離槽によって得られる濾過水量は、流入原水量より少ない量とする。図1に示すシステムでは最終段である第三段の硝化槽3Cの流出液4は、後続の沈殿池5に流入して沈降濃縮され、上澄み水が処理水6として得られる。沈殿池5で回収される沈降汚泥(濃縮汚泥)は、返送汚泥7として第1脱窒槽1Bに返送される。   The amount of filtered water obtained by the first to third solid-liquid separation tanks is smaller than the amount of inflow raw water. In the system shown in FIG. 1, the effluent 4 of the third stage nitrification tank 3 </ b> C, which is the final stage, flows into the subsequent sedimentation basin 5 and is concentrated by sedimentation, and supernatant water is obtained as treated water 6. The sedimentation sludge (concentrated sludge) collected in the sedimentation basin 5 is returned to the first denitrification tank 1B as the return sludge 7.

固液分離槽内に設置される濾過分離手段としては、当該技術において公知の浸漬型の膜分離装置を用いることができるし、或いは、所謂ダイナミック濾過モジュールを用いることもできる。ダイナミック濾過モジュールを用いた場合には、低い水頭圧で安定した濾過水を得ることができる。なお、固液分離槽内にダイナミック濾過モジュールを設置する場合には、濾過層支持材の表面上に沿った汚泥混合液のクロスフロー流を固液分離槽内で形成するための手段は特に必要ではなく、ダイナミック濾過層を形成するのには循環汚泥の通過時の流速で十分である。また、固液分離槽内にダイナミック濾過モジュールを配置する場合には、ダイナミック濾過体の空洗用の散気管を槽内に配置することが好ましい。   As the filtration separation means installed in the solid-liquid separation tank, an immersion type membrane separation apparatus known in the art can be used, or a so-called dynamic filtration module can be used. When a dynamic filtration module is used, stable filtered water can be obtained at a low head pressure. In addition, when installing a dynamic filtration module in a solid-liquid separation tank, a means for forming a cross-flow flow of sludge mixed liquid along the surface of the filtration layer support material in the solid-liquid separation tank is particularly necessary. Rather, the flow rate during the passage of the circulating sludge is sufficient to form a dynamic filtration layer. Moreover, when arrange | positioning a dynamic filtration module in a solid-liquid separation tank, it is preferable to arrange | position the diffuser pipe | tube for air washing | cleaning of a dynamic filter body in a tank.

図1には、最終段の硝化槽の後段に沈殿池5を配置した例を示したが、最終段の硝化槽の後段に沈殿池5を配置しなくてもよく、この場合には、最終段の固液分離槽から得られる濾過水が処理水として回収される。なお、沈殿池5を設けない場合には、各固液分離槽での濾過水量の合計量を流入する原水量と同程度に調整する。   FIG. 1 shows an example in which the settling basin 5 is disposed after the final nitrification tank, but the settling basin 5 may not be disposed after the final nitrification tank. The filtered water obtained from the stage solid-liquid separation tank is recovered as treated water. When the sedimentation basin 5 is not provided, the total amount of filtered water in each solid-liquid separation tank is adjusted to the same level as the amount of raw water flowing in.

固液分離槽での濾過運転は、流入原水量、水質及び処理水質に応じてその内の1つか2つで濾過処理を行うことも可能であり、また、第3固液分離槽3Dからの循環汚泥3Eを、第一段或いは第二段の脱窒槽1B、2Bに循環することもできる。高い窒素除去率が求められる場合には、第三段固液分離槽3Dの循環液を第一段脱窒槽1Bに循環することが望ましい。   The filtration operation in the solid-liquid separation tank can be performed with one or two of them depending on the inflow raw water amount, the water quality and the quality of the treated water, and from the third solid-liquid separation tank 3D. The circulating sludge 3E can also be circulated to the first-stage or second-stage denitrification tanks 1B, 2B. When a high nitrogen removal rate is required, it is desirable to circulate the circulating liquid in the third stage solid-liquid separation tank 3D to the first stage denitrification tank 1B.

また、本発明の他の形態として、濾過分離手段を硝化槽内に浸漬配置した有機性排水の処理装置の構成例を図2に示す。図2に示す有機性排水の処理装置においては、濾過分離手段1G、2G及び3Gが、それぞれ、第一段硝化槽1C、第二段硝化槽2C、第三段硝化槽3Cに浸漬配置されている。他の構成は図1に示す装置と同じである。各硝化槽内に浸漬配置された濾過分離手段によって、濾過水1F、2F及び3Fが得られる。また、各硝化槽から、同じ段の脱窒槽に濾過後の濃縮汚泥混合液が返送される(1H、2H、3H)。各硝化槽に浸漬配置される濾過分離手段としては、従来公知の浸漬型膜分離装置を用いることができるし、或いは、所謂ダイナミック濾過モジュールを用いることもできる。ダイナミック濾過モジュールを用いる場合には、硝化槽内に配置される散気装置9と離隔してダイナミック濾過モジュールを配置し、散気装置からの曝気によってダイナミック濾過モジュールの表面に沿って下向きのクロスフロー流が形成されるようにすることが好ましい。このように配置することによって、曝気によってダイナミック濾過層が剥離されることなく、安定してダイナミック濾過層を形成することが可能になる。   As another embodiment of the present invention, FIG. 2 shows a configuration example of an organic wastewater treatment apparatus in which filtration separation means is immersed in a nitrification tank. In the organic wastewater treatment apparatus shown in FIG. 2, filtration separation means 1G, 2G, and 3G are immersed in the first stage nitrification tank 1C, the second stage nitrification tank 2C, and the third stage nitrification tank 3C, respectively. Yes. Other configurations are the same as those of the apparatus shown in FIG. Filtration water 1F, 2F, and 3F are obtained by the filtration separation means arranged soaked in each nitrification tank. In addition, the concentrated sludge mixed solution after filtration is returned from each nitrification tank to the same denitrification tank (1H, 2H, 3H). As a filtration separation means immersed in each nitrification tank, a conventionally known immersion membrane separation apparatus can be used, or a so-called dynamic filtration module can be used. When the dynamic filtration module is used, the dynamic filtration module is arranged apart from the aeration device 9 arranged in the nitrification tank, and the cross flow is directed downward along the surface of the dynamic filtration module by aeration from the aeration device. It is preferred that a flow be formed. By arranging in this way, the dynamic filtration layer can be stably formed without peeling off the dynamic filtration layer by aeration.

なお、濾過分離手段としてダイナミック濾過モジュールを用いる場合には、ダイナミック濾過モジュールによって得られる濾過水を一旦別の沈殿池に供給して、そこから得られる上澄み液を処理水として回収してもよい。   In addition, when using a dynamic filtration module as a filtration separation means, the filtrate obtained by a dynamic filtration module may be once supplied to another sedimentation basin, and the supernatant liquid obtained from it may be collect | recovered as treated water.

また、原水中のリン濃度が高く、生物学的脱リン処理を合わせて行うことが求められている場合には、第一段脱窒槽の前段に新たに絶対嫌気槽を設けて、流入原水の一部及び返送汚泥を絶対嫌気槽に流入する方式を組み込むことにより、原水中のリン除去も可能である。図3及び図4に、第一段脱窒槽の前段に新たに絶対嫌気槽を設けた装置の構成例を示す。   If the concentration of phosphorus in the raw water is high and the biological dephosphorization process is required to be performed together, an absolute anaerobic tank will be newly installed in front of the first stage denitrification tank. It is possible to remove phosphorus in raw water by incorporating a method that allows a part and return sludge to flow into an absolute anaerobic tank. 3 and 4 show a configuration example of an apparatus in which an absolute anaerobic tank is newly provided before the first stage denitrification tank.

図3に示す装置は、第一段脱窒槽1Bの前段に新たに絶対嫌気槽10を設けた以外は、図1に示す装置と同じ構成である。この場合、最終沈殿池5からの返送汚泥は、絶対嫌気槽10に供給する。また、原水1を、分岐管10Aによって、絶対嫌気槽10にも分注する。なお、図3に示す装置においては、原水1は、第一段の脱窒槽1Bには分注しない。また、図4に示す装置は、第一段脱窒槽1Bの前段に新たに絶対嫌気槽10を設けた以外は、図2に示す装置と同じ構成である。   The apparatus shown in FIG. 3 has the same configuration as the apparatus shown in FIG. 1 except that an absolute anaerobic tank 10 is newly provided upstream of the first stage denitrification tank 1B. In this case, the returned sludge from the final sedimentation tank 5 is supplied to the absolute anaerobic tank 10. The raw water 1 is also dispensed into the absolute anaerobic tank 10 by the branch pipe 10A. In the apparatus shown in FIG. 3, the raw water 1 is not dispensed into the first-stage denitrification tank 1B. Moreover, the apparatus shown in FIG. 4 is the same structure as the apparatus shown in FIG. 2 except that an absolute anaerobic tank 10 is newly provided in the previous stage of the first stage denitrification tank 1B.

以下実施例により本発明を具体的に説明する。ただし、本発明はこの実施例のみに限定されるものではない。
実施例1
団地下水を、図1に示す有機性排水の処理装置によって処理した。
The present invention will be specifically described below with reference to examples. However, the present invention is not limited to this example.
Example 1
The collective groundwater was treated by the organic wastewater treatment apparatus shown in FIG.

表1に本実施例の処理条件を示す。
第一段〜第三段の各脱窒槽1B、2B、3Bに対し、それぞれ5m3/dの原水を分注して供給した。各段の固液分離槽から各段の脱窒槽への循環汚泥量は何れも15m3/dとした。第一段〜第三段の固液分離槽1D、2D、3Dから得られる濾過水量はそれぞれ、4m3/d、4.5m3/d及び5m3/dとした。沈殿池5から第1段脱窒槽1Bに2m3/dの返送汚泥を返送した。第一段脱窒・硝化槽内のMLSSは4000mg/Lであった。第2段以降の脱窒槽、硝化槽MLSSは3500mg/Lであった。
Table 1 shows the processing conditions of this example.
5 m 3 / d of raw water was dispensed and supplied to each of the first to third denitrification tanks 1B, 2B and 3B. The amount of circulating sludge from each stage of the solid-liquid separation tank to each stage of the denitrification tank was 15 m 3 / d. First stage to third-stage solid-liquid separation tank 1D, respectively 2D, filtered water obtained from 3D was a 4m 3 /d,4.5m 3 / d and 5 m 3 / d. 2 m 3 / d return sludge was returned from the settling basin 5 to the first stage denitrification tank 1B. MLSS in the first stage denitrification / nitrification tank was 4000 mg / L. The denitrification tank and the nitrification tank MLSS in the second and subsequent stages were 3500 mg / L.

Figure 2006055849
Figure 2006055849

本実施例では、第一段〜第三段の固液分離槽のそれぞれにおいて、有効濾過面積0.6m2/枚の平面形通水性濾過体3枚を濾過体モジュールとして固液分離槽に浸漬設置した。通水性濾過体としては厚み約0.1mm、孔径114μmのポリエステル織布を用いた。濾過時の水頭圧を約10cmとし、濾過体表面の汚泥混合液のクロスフロー流速を平均で0.015m/sとして、濾過体表面に汚泥のダイナミック濾過層を形成し、これによって濾過を行った。 In this example, in each of the first to third solid-liquid separation tanks, three planar water-permeable filter bodies having an effective filtration area of 0.6 m 2 / sheet are immersed in the solid-liquid separation tank as a filter body module. installed. A polyester woven cloth having a thickness of about 0.1 mm and a pore diameter of 114 μm was used as the water-permeable filter. The sludge dynamic filtration layer was formed on the filter body surface by setting the water head pressure at the time of filtration to about 10 cm and the cross flow velocity of the sludge mixed liquid on the filter body surface to 0.015 m / s on average. .

濾過運転2時間あたり1回の割合で、濾過運転を止め、ダイナミック濾過体の洗浄を行った。まず、濾過体の下方に配置されている散気管から曝気することにより、気泡による濾過体外部の洗浄(空洗)を行い、次に、濾過体内部に水を注入することによって、濾過体内部の洗浄(水逆洗)を行なった。水逆洗の後、通常の濾過運転を行ったが、所定の排泥時間の間は、濾過水の回収は行わずに、得られた濾過水は汚泥(排泥)として脱窒槽に戻した。   The filtration operation was stopped at a rate of once per 2 hours of filtration operation, and the dynamic filter was washed. First, the outside of the filter body is cleaned by air bubbles by aeration from an air diffuser arranged below the filter body, and then water is injected into the filter body to inject the inside of the filter body. Was washed (backwashing with water). After the water backwash, normal filtration operation was performed, but the filtered water was returned to the denitrification tank as sludge (waste mud) without collecting the filtered water during the predetermined drainage time. .

表2に固液分離槽の処理条件を示す。   Table 2 shows the processing conditions of the solid-liquid separation tank.

Figure 2006055849
Figure 2006055849

図5に本実施例における第一段〜第三段固液分離槽の平均濾過フラックス経過を示す。
処理開始から約2ヶ月の運転において、濾過フラックスがほぼ2.7m/d前後であり、安定した処理が得られた。
FIG. 5 shows the average filtration flux progress of the first to third solid-liquid separation tanks in this example.
In operation for about 2 months from the start of the treatment, the filtration flux was about 2.7 m / d, and a stable treatment was obtained.

また、表3に原水及び全処理水の平均水質を示す。ここで、「全処理水の平均水質」とは、各段の固液分離槽の濾過水及び沈殿池流出水の水質値の平均値である。
流入原水のSSが120mg/Lであるのに対し、全処理水SSは5.6mg/Lとなった。
Table 3 shows the average water quality of raw water and all treated water. Here, the “average water quality of all the treated water” is the average value of the water quality values of the filtered water and the settling basin effluent of each stage of the solid-liquid separation tank.
The SS of inflow raw water was 120 mg / L, whereas the total treated water SS was 5.6 mg / L.

一方、硝化脱窒処理により、流入原水のNH−Nが45mg/Lであるのに対し、全処理水のNH−Nは0.5mg/Lとほぼ完全硝化が行われたことが示された。また、全処理水のNO−Nは5.0mg/Lであった。T−Nは原水で62mg/Lであるのに対し、全処理水で7.5mg/Lとなり、約88%の除去率が得られた。 On the other hand, NH 4 -N of the influent raw water was 45 mg / L by nitrification denitrification treatment, whereas NH 4 -N of the total treated water was 0.5 mg / L, indicating that almost complete nitrification was performed. It was done. Further, NO x -N total treated water was 5.0 mg / L. TN was 62 mg / L for raw water, but 7.5 mg / L for all treated water, and a removal rate of about 88% was obtained.

Figure 2006055849
Figure 2006055849

実施例2
団地下水を、図3に示す有機性排水の処理装置によって処理した。
表4に本実施例の処理条件を示す。
Example 2
The collective groundwater was treated with an organic wastewater treatment apparatus shown in FIG.
Table 4 shows the processing conditions of this example.

絶対嫌気槽10、第二段及び第三段の各脱窒槽2B、3Bに対し、それぞれ5m3/dの原水を分注して供給した。各段の固液分離槽から各段の脱窒槽への循環汚泥量は何れも15m3/dとした。第一段〜第三段の固液分離槽1D、2D、3Dから得られる濾過水量はそれぞれ、4m3/d、4.5m3/d及び5m3/dとした。沈殿池5から絶対嫌気槽10に2m3/dの返送汚泥を返送した。絶対嫌気槽10での混合液のMLSSは4000mg/Lであった。第二段以降の脱窒槽、硝化槽MLSSは3500mg/Lであった。 5m 3 / d of raw water was dispensed and supplied to the absolute anaerobic tank 10, the second and third denitrification tanks 2B and 3B, respectively. The amount of circulating sludge from each stage of the solid-liquid separation tank to each stage of the denitrification tank was 15 m 3 / d. First stage to third-stage solid-liquid separation tank 1D, respectively 2D, filtered water obtained from 3D was a 4m 3 /d,4.5m 3 / d and 5 m 3 / d. 2 m 3 / d return sludge was returned from the sedimentation basin 5 to the absolute anaerobic tank 10. The MLSS of the mixed solution in the absolute anaerobic tank 10 was 4000 mg / L. The denitrification tank and nitrification tank MLSS after the second stage were 3500 mg / L.

Figure 2006055849
Figure 2006055849

本実施例では、第一段〜第三段の固液分離槽のそれぞれにおいて、有効濾過面積0.6m2/枚の平面形通水性濾過体3枚を濾過体モジュールとして固液分離槽に浸漬設置した。通水性濾過体としては厚み約0.1mm、孔径114μmのポリエステル織布を用いた。濾過時の水頭圧を約10cmとし、濾過体表面の汚泥混合液のクロスフロー流速を平均で0.015m/sとして、濾過体表面に汚泥のダイナミック濾過層を形成し、これによって濾過を行った。 In this example, in each of the first to third solid-liquid separation tanks, three planar water-permeable filter bodies having an effective filtration area of 0.6 m 2 / sheet are immersed in the solid-liquid separation tank as a filter body module. installed. A polyester woven cloth having a thickness of about 0.1 mm and a pore diameter of 114 μm was used as the water-permeable filter. The sludge dynamic filtration layer was formed on the filter body surface by setting the water head pressure at the time of filtration to about 10 cm and the cross flow velocity of the sludge mixed liquid on the filter body surface to 0.015 m / s on average. .

濾過運転2時間あたり1回の割合で、濾過運転を止め、ダイナミック濾過体の洗浄を行った。まず、濾過体の下方に配置されている散気管から曝気することにより、気泡による濾過体外部の洗浄(空洗)を行い、次に、濾過体内部に水を注入することによって、濾過体内部の洗浄(水逆洗)を行なった。水逆洗の後、通常の濾過運転を行ったが、所定の排泥時間の間は、濾過水の回収は行わずに、得られた濾過水は汚泥(排泥)として脱窒槽に戻した。   The filtration operation was stopped at a rate of once per 2 hours of filtration operation, and the dynamic filter was washed. First, the outside of the filter body is cleaned by air bubbles by aeration from an air diffuser arranged below the filter body, and then water is injected into the filter body to inject the inside of the filter body. Was washed (backwashing with water). After the water backwash, normal filtration operation was performed, but the filtered water was returned to the denitrification tank as sludge (waste mud) without collecting the filtered water during the predetermined drainage time. .

表5に固液分離槽の処理条件を示す。   Table 5 shows the processing conditions of the solid-liquid separation tank.

Figure 2006055849
Figure 2006055849

処理開始から約2ヶ月の運転において、濾過フラックスがほぼ2.7m/d前後であり、安定した処理が得られた。
また、表6に原水及び全処理水の平均水質を示す。ここで、「全処理水の平均水質」とは、各段の固液分離槽の濾過水及び沈殿池流出水の水質値の平均値である。
In operation for about 2 months from the start of the treatment, the filtration flux was about 2.7 m / d, and a stable treatment was obtained.
Table 6 shows the average water quality of raw water and all treated water. Here, the “average water quality of all the treated water” is the average value of the water quality values of the filtered water and the settling basin effluent of each stage of the solid-liquid separation tank.

流入原水のSSが120mg/Lであるのに対し、全処理水SSは6.5mg/Lとなった。絶対嫌気槽10を設けたことにより、ポリリン蓄積菌の増殖が可能となり、その結果、原水のT−P(全リン)が4mg/Lであったのに対して、全処理水のT−Pは0.8mg/Lとなった。また、ポリリン蓄積菌の存在のため、絶対嫌気槽10では、リン濃度(PO−P)は25mg/Lとなっていた。 The SS of the influent raw water was 120 mg / L, whereas the total treated water SS was 6.5 mg / L. By providing the absolute anaerobic tank 10, it is possible to grow polyline-accumulating bacteria, and as a result, TP (total phosphorus) of raw water was 4 mg / L, whereas TP of total treated water was Was 0.8 mg / L. Moreover, in the absolute anaerobic tank 10, the phosphorus concentration (PO 4 -P) was 25 mg / L due to the presence of polyline accumulating bacteria.

一方、硝化脱窒処理により、流入原水のNH−Nが45mg/Lであるのに対し、全処理水のNH−Nは0.5mg/Lとほぼ完全硝化が行われたことが示された。また、全処理水のNO−Nは5.0mg/Lであった。T−Nは原水で62mg/Lであるのに対し、全処理水で7.5mg/Lとなり、約88%の除去率が得られた。 On the other hand, NH 4 -N of the influent raw water was 45 mg / L by nitrification denitrification treatment, whereas NH 4 -N of the total treated water was 0.5 mg / L, indicating that almost complete nitrification was performed. It was. Further, NO x -N total treated water was 5.0 mg / L. TN was 62 mg / L for raw water, but 7.5 mg / L for all treated water, and a removal rate of about 88% was obtained.

Figure 2006055849
Figure 2006055849

産業上の利用の可能性Industrial applicability

本発明によれば、脱窒槽及び硝化槽がこの順で接続された処理槽を2段以上直列に接続して、被処理水を各段の脱窒槽に分注すると共に、硝化槽内の活性汚泥混合液を濾過分離し、得られた濃縮汚泥混合液を脱窒槽に返送することにより、脱窒槽内の汚泥濃度を高く維持できる上、硝化液中のNO−Nが脱窒槽に供給され、これが脱窒槽内の脱窒菌によりNに還元されるので、処理水のNO−Nが大幅に低下し、T−Nの除去率が向上する。 According to the present invention, two or more stages of treatment tanks in which a denitrification tank and a nitrification tank are connected in this order are connected in series, and water to be treated is dispensed into each stage of the denitrification tank, and the activity in the nitrification tank is By filtering and separating the sludge mixed liquid and returning the obtained concentrated sludge mixed liquid to the denitrification tank, the sludge concentration in the denitrification tank can be kept high, and NO x -N in the nitrification liquid is supplied to the denitrification tank. Since this is reduced to N 2 by denitrifying bacteria in the denitrification tank, the NO x -N of the treated water is greatly reduced, and the removal rate of TN is improved.

また、濾過汚泥混合液を濾過分離処理して処理水を取り出すことにより濃縮汚泥混合液を得、これを脱窒槽に供給しているので、脱窒槽に供給される濃縮汚泥混合液は溶存酸素濃度が極めて低いものとなり、これを脱窒槽へ返送しても、溶存酸素持込による脱窒性能低下の心配は極めて低くなる。   In addition, the filtered sludge mixed solution is filtered and separated to obtain treated water to obtain a concentrated sludge mixed solution, which is supplied to the denitrification tank, so the concentrated sludge mixed solution supplied to the denitrification tank has a dissolved oxygen concentration However, even if this is returned to the denitrification tank, there is a very low risk of denitrification performance degradation due to the dissolved oxygen being brought in.

更に、本発明の一形態においては、硝化槽の活性汚泥混合液を、濾過手段を浸漬設置している固液分離槽に供給することにより、流入原水の水量、水質の変動や活性汚泥粒子性状の変化があっても、濾過水量が変動しないで安定して良好な水質の処理水が得られる。   Furthermore, in one form of the present invention, the activated sludge mixed liquid in the nitrification tank is supplied to the solid-liquid separation tank in which the filtration means is immersed, so that the amount of raw inflow water, fluctuations in water quality and activated sludge particle properties Even if there is a change in water, the amount of filtered water does not fluctuate, and treated water with good quality can be obtained stably.

さらに、本発明の好ましい態様においては、最終硝化槽の後段に沈殿池を配することにより、原水水量や水質変動に伴って濾過水量が低下しても、沈殿池での固液分離が可能である。また、各段での濾過手段によって処理水の大部分が濾過水として排出されるので、沈殿池への流入水量が少なく、返送汚泥濃度が高くなる。したがって、この汚泥を脱窒槽に返送すれば、脱窒槽内のMLSSを高濃度に維持することができ、高い脱窒性能が得られる。   Furthermore, in a preferred embodiment of the present invention, by disposing a sedimentation basin after the final nitrification tank, solid-liquid separation in the sedimentation basin is possible even if the amount of filtered water decreases due to fluctuations in raw water volume and water quality. is there. Moreover, since most of the treated water is discharged as filtered water by the filtering means at each stage, the amount of water flowing into the settling basin is small and the return sludge concentration is high. Therefore, if this sludge is returned to the denitrification tank, the MLSS in the denitrification tank can be maintained at a high concentration, and high denitrification performance can be obtained.

各脱窒槽及び硝化槽においては、硝化槽の汚泥混合液を濾過手段によって濾過して濾過水を槽外に排出するため、槽内のMLSSを高濃度に維持でき、窒素除去量が高めら、水量増大に対応できるといった大きな効果が得られる。   In each denitrification tank and nitrification tank, the sludge mixed liquid in the nitrification tank is filtered by a filtration means and the filtrate water is discharged outside the tank, so that the MLSS in the tank can be maintained at a high concentration, and the amount of nitrogen removal is increased. A great effect is obtained such that it can cope with an increase in the amount of water.

本発明の一態様に係る有機性排水の処理装置の概念図である。It is a conceptual diagram of the processing apparatus of the organic waste_water | drain which concerns on 1 aspect of this invention. 本発明の他の態様に係る有機性排水の処理装置の概念図である。It is a conceptual diagram of the processing apparatus of the organic waste_water | drain which concerns on the other aspect of this invention. 本発明の他の態様に係る有機性排水の処理装置の概念図である。It is a conceptual diagram of the processing apparatus of the organic waste_water | drain which concerns on the other aspect of this invention. 本発明の他の態様に係る有機性排水の処理装置の概念図である。It is a conceptual diagram of the processing apparatus of the organic waste_water | drain which concerns on the other aspect of this invention. 本発明の実施例における固液分離槽の平均濾過フラックス経過を示すグラフである。It is a graph which shows the average filtration flux progress of the solid-liquid separation tank in the Example of this invention.

Claims (16)

脱窒槽及び硝化槽がこの順で接続された処理槽が2段以上直列に接続されている有機性排水の処理装置であって、被処理水を各段の脱窒槽に分注するための配管と、少なくとも一つの硝化槽内の活性汚泥混合液の少なくとも一部を濾過分離処理するための手段と、該濾過分離処理によって得られた濃縮汚泥混合液の少なくとも一部を脱窒槽に供給する配管とを具備することを特徴とする有機性排水の処理装置。 An organic wastewater treatment device in which a treatment tank in which a denitrification tank and a nitrification tank are connected in this order is connected in series in two or more stages, and a pipe for dispensing treated water to each stage of the denitrification tank And means for filtering and separating at least a part of the activated sludge mixed liquid in at least one nitrification tank, and a pipe for supplying at least a part of the concentrated sludge mixed liquid obtained by the filtering and separating process to the denitrification tank An organic wastewater treatment apparatus characterized by comprising: 濾過分離手段が硝化槽内に設置されており、濾過分離処理によって濃縮された硝化槽内の濃縮汚泥混合液の少なくとも一部が脱窒槽に供給される請求項1に記載の有機性排水の処理装置。 The organic wastewater treatment according to claim 1, wherein filtration separation means is installed in the nitrification tank, and at least a part of the concentrated sludge mixed liquid in the nitrification tank concentrated by the filtration separation process is supplied to the denitrification tank. apparatus. 固液分離槽が配置されており、濾過分離手段が固液分離槽内に設置されていて、濾過分離処理によって濃縮された固液分離槽内の濃縮汚泥混合液の少なくとも一部が脱窒槽に供給される請求項1に記載の有機性排水の処理装置。 A solid-liquid separation tank is arranged, filtration separation means is installed in the solid-liquid separation tank, and at least a part of the concentrated sludge mixed liquid in the solid-liquid separation tank concentrated by the filtration separation process is in the denitrification tank. The organic wastewater treatment apparatus according to claim 1 to be supplied. 濾過分離手段として、通水性の濾過層支持材の上にダイナミック濾過層が形成されるダイナミック濾過体が用いられている請求項1〜3のいずれかに記載の有機性排水の処理装置。 The organic wastewater treatment apparatus according to any one of claims 1 to 3, wherein a dynamic filter body in which a dynamic filtration layer is formed on a water-permeable filtration layer support material is used as the filtration separation means. 通水性の濾過層支持材が、織布材料、不織布材料又は金属網状材料の1以上により構成される請求項4に記載の装置。 The apparatus according to claim 4, wherein the water-permeable filter layer support material is composed of one or more of a woven material, a non-woven material, and a metal mesh material. 最終段の硝化槽の活性汚泥混合液の少なくとも一部を導入して固液分離するための沈殿池と、沈殿池から回収される沈降汚泥を第一段の脱窒槽に返送する配管を更に具備する請求項1〜5のいずれかに記載の有機性排水の処理装置。 A sedimentation basin for introducing at least part of the activated sludge mixed solution in the final stage nitrification tank and solid-liquid separation, and a pipe for returning the sedimentation sludge recovered from the sedimentation tank to the first stage denitrification tank are further provided. The organic wastewater treatment apparatus according to any one of claims 1 to 5. 第一段の脱窒槽の更に前段に絶対嫌気槽が接続されており、絶対嫌気槽にも被処理水を分注するための配管が接続されている請求項1〜6のいずれかに記載の有機性排水の処理装置。 The absolute anaerobic tank is further connected to the first stage of the denitrification tank of the first stage, and a pipe for dispensing treated water is also connected to the absolute anaerobic tank. Organic wastewater treatment equipment. 脱窒槽及び硝化槽の少なくとも一部に、生物菌体が付着可能な担体が充填されている請求項1〜7のいずれかに記載の有機性排水の処理装置。 The organic wastewater treatment apparatus according to any one of claims 1 to 7, wherein a carrier capable of adhering to biological cells is filled in at least a part of the denitrification tank and the nitrification tank. 脱窒槽及び硝化槽がこの順で接続された処理槽が2段以上直列に接続されている有機性排水の処理装置を用いて有機性排水の処理を行う方法であって、被処理水を各段の脱窒槽に分注すると共に、少なくとも一つの硝化槽内の活性汚泥混合液の少なくとも一部を濾過分離処理して、該濾過分離処理によって得られた濃縮汚泥混合液の少なくとも一部を脱窒槽に供給することを特徴とする方法。 A method for treating organic wastewater using an organic wastewater treatment apparatus in which a treatment tank in which a denitrification tank and a nitrification tank are connected in this order is connected in series in two or more stages. In addition to dispensing into the stage denitrification tank, at least a part of the activated sludge mixed liquid in at least one nitrification tank is filtered and separated, and at least a part of the concentrated sludge mixed liquid obtained by the filtration and separation process is removed. A method characterized by supplying to a nitrogen bath. 濾過分離処理を、硝化槽内に設置した濾過分離手段によって行い、濾過分離処理によって濃縮された硝化槽内の濃縮汚泥混合液の少なくとも一部を脱窒槽に供給する請求項9に記載の方法。 The method according to claim 9, wherein the filtration / separation process is performed by a filtration / separation unit installed in the nitrification tank, and at least a part of the concentrated sludge mixed liquid in the nitrification tank concentrated by the filtration / separation process is supplied to the denitrification tank. 少なくとも一つの硝化槽内の活性汚泥混合液の少なくとも一部を、濾過分離手段がその中に配置された固液分離槽に供給して、活性汚泥混合液の濾過分離処理を行い、濾過分離処理によって濃縮された固液分離槽内の濃縮汚泥混合液の少なくとも一部を脱窒槽に供給する請求項9に記載の方法。 At least a part of the activated sludge mixed liquid in at least one nitrification tank is supplied to the solid-liquid separation tank disposed in the filtration separation means, and the activated sludge mixed liquid is filtered and separated. The method according to claim 9, wherein at least a part of the concentrated sludge mixed liquid in the solid-liquid separation tank concentrated by is supplied to the denitrification tank. 濾過分離手段として、通水性の濾過層支持材の上にダイナミック濾過層が形成されるダイナミック濾過体を用いる請求項9〜11のいずれかに記載の方法。 The method according to any one of claims 9 to 11, wherein a dynamic filtration body in which a dynamic filtration layer is formed on a water-permeable filtration layer support material is used as the filtration separation means. 通水性の濾過層支持材が、織布材料、不織布材料又は金属網状材料の1以上により構成される請求項12に記載の方法。 The method according to claim 12, wherein the water-permeable filter layer support is composed of one or more of a woven material, a non-woven material, or a metal network material. 最終段の硝化槽の活性汚泥混合液の少なくとも一部を沈殿池に導入して固液分離処理を行い、沈殿池から回収される沈降汚泥を第一段の脱窒槽に返送する請求項9〜13のいずれかに記載の方法。 9. At least a part of the activated sludge mixed liquid in the final stage nitrification tank is introduced into the settling basin, solid-liquid separation treatment is performed, and the settling sludge collected from the settling basin is returned to the first stage denitrification tank. 14. The method according to any one of 13. 第一段の脱窒槽の更に前段に絶対嫌気槽を接続して、絶対嫌気槽にも被処理水を分注する請求項9〜14のいずれかに記載の方法。 The method according to any one of claims 9 to 14, wherein an absolute anaerobic tank is connected further upstream of the first stage denitrification tank, and water to be treated is dispensed into the absolute anaerobic tank. 脱窒槽及び硝化槽の少なくとも一部に、生物菌体が付着可能な担体を充填して処理を行う請求項9〜15のいずれかに記載の方法。 The method according to any one of claims 9 to 15, wherein the treatment is performed by filling at least a part of the denitrification tank and the nitrification tank with a carrier to which biological cells can adhere.
JP2005274864A 2001-11-22 2005-09-22 Apparatus and method for treating organic waste water Pending JP2006055849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005274864A JP2006055849A (en) 2001-11-22 2005-09-22 Apparatus and method for treating organic waste water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001357837 2001-11-22
JP2005274864A JP2006055849A (en) 2001-11-22 2005-09-22 Apparatus and method for treating organic waste water

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003545586A Division JPWO2003043941A1 (en) 2001-11-22 2002-11-21 Organic wastewater treatment apparatus and method

Publications (1)

Publication Number Publication Date
JP2006055849A true JP2006055849A (en) 2006-03-02

Family

ID=36103763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005274864A Pending JP2006055849A (en) 2001-11-22 2005-09-22 Apparatus and method for treating organic waste water

Country Status (1)

Country Link
JP (1) JP2006055849A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013111493A (en) * 2011-11-25 2013-06-10 Kurita Water Ind Ltd Biological treatment method of organic wastewater
JP2014503349A (en) * 2010-12-16 2014-02-13 香港科技大学 Method, apparatus and membrane bioreactor for wastewater treatment
JP2018192419A (en) * 2017-05-17 2018-12-06 株式会社クボタ Organic waste water treatment method and organic waste water treatment system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503349A (en) * 2010-12-16 2014-02-13 香港科技大学 Method, apparatus and membrane bioreactor for wastewater treatment
US9975796B2 (en) 2010-12-16 2018-05-22 The Hong Kong University Of Science And Technology Process, apparatus and membrane bioreactor for wastewater treatment
JP2013111493A (en) * 2011-11-25 2013-06-10 Kurita Water Ind Ltd Biological treatment method of organic wastewater
JP2018192419A (en) * 2017-05-17 2018-12-06 株式会社クボタ Organic waste water treatment method and organic waste water treatment system
JP7015117B2 (en) 2017-05-17 2022-02-02 株式会社クボタ Organic wastewater treatment method and organic wastewater treatment system

Similar Documents

Publication Publication Date Title
JP2008264772A (en) Membrane separation activated sludge apparatus and treatment method of organic substance-containing water
JP3853657B2 (en) Wastewater treatment method and apparatus
JP2005279447A (en) Water treatment method and apparatus
JP4059790B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP4492268B2 (en) Biological treatment equipment
US11053150B2 (en) Wastewater treatment system and method
JPWO2003043941A1 (en) Organic wastewater treatment apparatus and method
JP4529670B2 (en) Biological treatment equipment
JP2006055849A (en) Apparatus and method for treating organic waste water
JP2016049512A (en) Anaerobic ammonia oxidation treatment method, anaerobic ammonia oxidation treatment apparatus, and denitrification method of organic waste water
JP3607088B2 (en) Method and system for continuous simultaneous removal of nitrogen and suspended solids from wastewater
KR100547463B1 (en) Nitrogen removal system in aeration tank using sulfur packed MBR reactor
JP2003010871A (en) Sewage treatment apparatus and its operating method
JP2002346591A (en) Sewage treatment apparatus and operation method therefor
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment
JP3973069B2 (en) Organic wastewater treatment method and apparatus
JP3721092B2 (en) Solid-liquid separation method and apparatus for activated sludge
JPH0623391A (en) Ascending flow type biological treatment apparatus
JP3883358B2 (en) Filtration separation method and apparatus for sewage treatment
JP4124957B2 (en) Filter body washing method and apparatus
KR100304404B1 (en) Dense wastewater treatment method by fixed biofilm and continuous backwash filtration
JP2520798B2 (en) Method and apparatus for biological dephosphorization of organic wastewater
JP4092848B2 (en) Waste water treatment equipment
JPH09248592A (en) Waste water treating device
JPH11216492A (en) Waste water treatment and device therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407