JP2006167550A - Biological treatment apparatus - Google Patents

Biological treatment apparatus Download PDF

Info

Publication number
JP2006167550A
JP2006167550A JP2004361647A JP2004361647A JP2006167550A JP 2006167550 A JP2006167550 A JP 2006167550A JP 2004361647 A JP2004361647 A JP 2004361647A JP 2004361647 A JP2004361647 A JP 2004361647A JP 2006167550 A JP2006167550 A JP 2006167550A
Authority
JP
Japan
Prior art keywords
tank
biological treatment
sludge
separation membrane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004361647A
Other languages
Japanese (ja)
Other versions
JP4529670B2 (en
Inventor
Mikio Kitagawa
幹夫 北川
Teiichi Sato
禎一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004361647A priority Critical patent/JP4529670B2/en
Publication of JP2006167550A publication Critical patent/JP2006167550A/en
Application granted granted Critical
Publication of JP4529670B2 publication Critical patent/JP4529670B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provided a biological treatment apparatus which efficiently treats waste water containing organic matter of high concentration and provides high-quality treated water while reducing the required volume of a treatment tank, dispensing with a flocculant for removing waste sludge and preventing the clogging of a immersed membrane by solving the conventional problems of a fluidized bed carrier biological treatment process and a membrane separation activated sludge process. <P>SOLUTION: Organic waste water is treated in an aerobic biological treatment tank 1 in which a microbe-deposited fluidizing carrier is held and then the water treated is separated into precipitated sludge and supernatant water in a first batch precipitation tank 2A and a second batch precipitation tank 2B. The supernatant water in the first and second precipitation tanks 2A, 2B is introduced into a separation membrane-immersed tank 3 where the sludge accompanied by the supernatant water is separated and the water permeated through a separation membrane module 3A is discharged as the treated water. The sludge precipitated in the first and second precipitation tanks 2A, 2B and the sludge separated in the separation membrane-immersed tank 3 are returned to the aerobic biological treatment tank 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高濃度の有機物を含む排水から有機物を効率的に除去するための生物処理装置に関する。   The present invention relates to a biological treatment apparatus for efficiently removing organic matter from wastewater containing high-concentration organic matter.

従来、高濃度の有機物を含む排水から生物処理によって有機物を除去する方法として、微生物を付着させた担体を被処理水中で流動させて微生物に有機物を消費ないし吸収させる流動床担体生物処理法が知られている。この方法は、一般的な活性汚泥法と比べて処理槽容積当たりの有機物負荷を高く取ることができ、処理効率に優れる。このような流動床担体生物処理法の具体的手法として、例えば、特開平9−308892号公報には、微生物を担持した流動担体を保持した生物処理槽の流出液を沈殿槽で固液分離して処理水を得る方法が開示されている。   Conventionally, as a method for removing organic matter from wastewater containing a high concentration of organic matter by biological treatment, there is known a fluidized bed carrier biological treatment method in which a carrier to which microorganisms are attached flows in treated water and the microorganisms consume or absorb the organic matter. It has been. This method can take a higher organic substance load per treatment tank volume than a general activated sludge method, and is excellent in treatment efficiency. As a specific method of such a fluidized bed carrier biological treatment method, for example, Japanese Patent Application Laid-Open No. 9-308992 discloses that the effluent of a biological treatment tank holding a fluid carrier carrying microorganisms is solid-liquid separated in a sedimentation tank. A method for obtaining treated water is disclosed.

また、有機物を含む水を活性汚泥と混合して生物処理した後、分離膜を用いて濾過を行うことで活性汚泥と処理水を分離する膜分離活性汚泥法も広く用いられており、この膜分離活性汚泥法を、生物膜を形成した濾材の充填層を形成した生物膜処理槽と組み合わせた方法として、特開平6−47399号公報には、生物膜処理槽の流出水を浸漬膜型好気性処理槽で処理して膜透過水を処理水として抜き出し、該処理槽内の汚泥を前段の生物膜処理槽に返送する方法が開示されている。   A membrane separation activated sludge method is also widely used in which water containing organic matter is mixed with activated sludge for biological treatment and then filtered using a separation membrane to separate the activated sludge from the treated water. As a method in which the separation activated sludge method is combined with a biofilm treatment tank in which a packed bed of a filter medium on which a biofilm has been formed, JP-A-6-47399 discloses that the effluent water from the biofilm treatment tank is submerged in a membrane membrane type. A method is disclosed in which membrane permeated water is extracted as treated water after being treated in a tempering treatment tank, and sludge in the treatment tank is returned to the preceding biofilm treatment tank.

なお、特開2002−34585号公報には、回分式活性汚泥処理装置の処理水を浸漬膜分離装置で濾過処理する方法が開示されているが、この特開2002−34585号公報の方法では、浸漬膜分離装置で分離濃縮された汚泥を回分式生物処理装置へ返送することは想定されていない。即ち、この方法で、仮に汚泥を返送するとなると、複数ある回分式生物処理装置のいずれかに返送することになり、交互に返送したとしても、汚泥濃度を均等に保持することは難しく、処理にばらつきが生じ、処理水水質が安定しなくなる。
特開平9−308892号公報 特開平6−47399号公報 特開2002−34585号公報
Incidentally, JP 2002-34585 A discloses a method of filtering the treated water of a batch activated sludge treatment apparatus with a submerged membrane separator, but in the method of this JP 2002-34585 A, It is not assumed that the sludge separated and concentrated by the submerged membrane separator is returned to the batch biological treatment equipment. That is, if sludge is returned by this method, it will be returned to one of a plurality of batch-type biological treatment devices, and even if returned alternately, it is difficult to maintain a uniform sludge concentration. Variation occurs and the quality of treated water becomes unstable.
JP-A-9-308892 JP-A-6-47399 JP 2002-34585 A

しかし、流動床担体生物処理法では、微生物が増殖し余剰汚泥として処理水に混じって流出するが、この余剰汚泥はフロック化し難いため、沈降速度が遅く、これを沈殿槽で完全に除去するには大型の沈殿槽を設けるか、大量の凝集剤を用いて強制的に沈降させることが必要となる。   However, in the fluidized bed biological treatment method, microorganisms grow and flow out as surplus sludge mixed with the treated water, but this surplus sludge is difficult to flock, so the sedimentation rate is slow, and this is completely removed in the sedimentation tank. It is necessary to provide a large sedimentation tank or forcibly settle using a large amount of aggregating agent.

一方、膜分離活性汚泥法では、高濃度の有機物を処理しようとする場合、活性汚泥を高濃度に保つことで有機物の分解速度を上げ、かつ清浄な処理水が得られる利点があるが、活性汚泥は付着性を持つため、活性汚泥内に直接浸漬した分離膜に目詰まりを生じやすく、分離膜の洗浄強度及び頻度を増やさねばならないという欠点がある。   On the other hand, the membrane-separated activated sludge method has the advantages of increasing the decomposition rate of organic matter and obtaining clean treated water by maintaining the activated sludge at a high concentration when treating high concentrations of organic matter. Since sludge has adhesiveness, the separation membrane directly immersed in the activated sludge is likely to be clogged, and the cleaning strength and frequency of the separation membrane must be increased.

本発明は上記従来の流動床担体生物処理法と膜分離活性汚泥法の問題点を解決し、高濃度の有機物を含む排水を、処理槽の必要容量を抑え、また、余剰汚泥除去のための凝集剤を必要とすることなく、更には、浸漬膜の目詰まりを防止して効率的に処理して高水質の処理水を得ることができる生物処理装置を提供することを目的とする。   The present invention solves the problems of the above-described conventional fluidized bed carrier biological treatment method and membrane separation activated sludge method, reduces wastewater containing high-concentration organic matter, reduces the required capacity of the treatment tank, and removes excess sludge. It is another object of the present invention to provide a biological treatment apparatus that does not require a flocculant and that can be efficiently treated by preventing clogging of the immersion membrane and obtaining high-quality treated water.

本発明(請求項1)の生物処理装置は、有機性排水を受け入れる、微生物を担持した流動担体を保持する好気性生物処理槽と、該好気性生物処理槽の流出水を回分式で受け入れ、静置、上澄水排出及び沈殿汚泥の排出を行う、2つ以上の並列に連結された沈殿槽と、該沈殿槽の上澄水を受け入れ、該上澄水に同伴される汚泥を分離すると共に処理水を排出する分離膜浸漬槽であって、槽内に浸漬された分離膜モジュールと該分離膜モジュールの下方に設けられた散気手段とを備える分離膜浸漬槽と、前記沈殿槽の沈殿汚泥を前記好気性生物処理槽に返送する第1の汚泥返送手段と、前記分離膜浸漬槽の汚泥を前記好気性生物処理槽に返送する第2の汚泥返送手段と、を具備することを特徴とする。   The biological treatment apparatus of the present invention (Claim 1) accepts organic wastewater, receives an aerobic biological treatment tank holding a fluid carrier carrying microorganisms, and receives the effluent of the aerobic biological treatment tank in a batch manner, Two or more parallelly connected precipitation tanks that perform standing, discharge of the supernatant water and discharge of the precipitated sludge, and receive the supernatant water of the precipitation tank, separate the sludge entrained by the supernatant water, and treated water A separation membrane immersion tank comprising a separation membrane module immersed in the tank and an air diffuser provided below the separation membrane module, and a settling sludge in the precipitation tank. A first sludge returning means for returning to the aerobic biological treatment tank; and a second sludge returning means for returning the sludge from the separation membrane immersion tank to the aerobic biological treatment tank. .

請求項2の生物処理装置は、請求項1において、前記好気性生物処理槽が第1の好気性生物処理槽と第2好気性生物処理槽の槽とで構成され、前記沈殿槽の沈殿汚泥と前記分離膜浸漬槽の汚泥は、該第1の好気性生物処理槽に返送され、前記第1の好気性生物処理槽の槽負荷が0.8〜8.0kg−BOD/m・dであることを特徴とする。 A biological treatment apparatus according to a second aspect is the biological treatment apparatus according to the first aspect, wherein the aerobic biological treatment tank is composed of a first aerobic biological treatment tank and a second aerobic biological treatment tank. And the sludge in the separation membrane immersion tank are returned to the first aerobic biological treatment tank, and the tank load of the first aerobic biological treatment tank is 0.8 to 8.0 kg-BOD / m 3 · d. It is characterized by being.

請求項3の生物処理装置は、請求項2において、前記第2の好気性生物処理槽の実効容量が前記第1の好気性生物処理槽の実効容量の1〜10倍であることを特徴とする。   The biological treatment apparatus according to claim 3 is characterized in that, in claim 2, the effective capacity of the second aerobic biological treatment tank is 1 to 10 times the effective capacity of the first aerobic biological treatment tank. To do.

請求項4の生物処理装置は、請求項1ないし3のいずれか1項において、前記分離膜浸漬槽内の汚泥濃度が1,000〜6,000mg/Lで、滞留時間が1〜18時間であることを特徴とする。   The biological treatment apparatus according to claim 4 is the biological treatment apparatus according to any one of claims 1 to 3, wherein the sludge concentration in the separation membrane immersion tank is 1,000 to 6,000 mg / L, and the residence time is 1 to 18 hours. It is characterized by being.

本発明の生物処理装置によれば、高濃度有機性排水を、比較的小容量の装置により、凝集剤を必要とすることなく、また、浸漬膜の目詰まりを防止して、効率的に処理して高水質の処理水を得ることができる。   According to the biological treatment apparatus of the present invention, high-concentration organic wastewater can be efficiently treated by using a relatively small-capacity apparatus without requiring a flocculant and preventing clogging of the immersion film. As a result, high-quality treated water can be obtained.

即ち、本発明の生物処理装置では、高濃度の有機性排水に対してまず流動床担体生物処理を行い、その処理水を、回分にて原水受入れ、静置、上澄水排出、沈殿汚泥の排出を行う、2槽以上の比較的小さな沈殿槽により効率的に除去し、この沈殿槽で除去し得なかった僅かな余剰汚泥を更に後段の分離膜浸漬槽で高度に固液分離する。この分離膜浸漬槽には、予め回分式沈殿槽で余剰汚泥の大部分を除去した後の比較的低濃度の汚泥が流入するため、膜濾過における目詰まりの問題は少なく、この分離膜浸漬槽内で残留する有機物の分解除去と、浸漬膜による汚泥の膜濾過とを効率的に行うことができる。この分離膜浸漬槽の浸漬膜の透過水として得られる処理水は、精密濾過(MF)膜等を透過した高水質の処理水である。   That is, in the biological treatment apparatus of the present invention, first, fluidized bed carrier biological treatment is performed on high-concentration organic wastewater, and the treated water is received in batches, left to stand, discharged from the supernatant water, and discharged from the precipitated sludge. The two or more relatively small sedimentation tanks are efficiently removed, and a slight excess sludge that could not be removed in the sedimentation tank is further solid-liquid separated in a subsequent separation membrane immersion tank. In this separation membrane immersion tank, a relatively low concentration of sludge after removing most of the excess sludge in a batch type precipitation tank flows in advance, so there are few problems of clogging in membrane filtration. It is possible to efficiently perform the decomposition and removal of the organic matter remaining in the inside and the sludge membrane filtration with the immersion membrane. The treated water obtained as the permeated water of the submerged membrane in the separation membrane soaking tank is a high quality treated water that has permeated through a microfiltration (MF) membrane or the like.

本発明では、特に沈殿槽として回分式沈殿槽を設けるため、前記分離膜浸漬槽内の汚泥濃度を比較的低く保つことができ、前記分離膜浸漬の汚染を軽減し、洗浄頻度を低くすることができる点で好ましい。   In the present invention, since a batch type sedimentation tank is provided as a sedimentation tank in particular, it is possible to keep the sludge concentration in the separation membrane immersion tank relatively low, reduce the contamination of the separation membrane immersion, and reduce the washing frequency. It is preferable at the point which can do.

そして、回分式沈殿槽の沈殿汚泥と分離膜浸漬槽の分離汚泥を好気性生物処理槽に返送することにより、この好気性生物処理槽において、流動床担体生物処理における分解性の悪い有機物の除去能力を向上させ、これを効率的に分解除去することが可能となる。   Then, by returning the sedimentation sludge of the batch type sedimentation tank and the separation sludge of the separation membrane immersion tank to the aerobic biological treatment tank, in this aerobic biological treatment tank, removal of poorly degradable organic substances in the fluidized bed carrier biological treatment It is possible to improve the capability and efficiently decompose and remove it.

このようなことから、本発明によれば、比較的小さな水槽と小さな分離膜面積で、かつ分離膜の洗浄強度及び頻度を従来より大幅に低減しつつ、従って運転コストを低減して清浄な処理水を効率的に得ることが可能となる。   For this reason, according to the present invention, a relatively small water tank and a small separation membrane area, and the cleaning strength and frequency of the separation membrane are greatly reduced as compared with the prior art, and accordingly, the operation cost is reduced and a clean process is performed. It becomes possible to obtain water efficiently.

以下に図面を参照して本発明の生物処理装置の実施の形態を詳細に説明する。   Hereinafter, embodiments of a biological treatment apparatus of the present invention will be described in detail with reference to the drawings.

図1,2は本発明の生物処理装置の実施の形態を示す系統図である。   1 and 2 are system diagrams showing an embodiment of the biological treatment apparatus of the present invention.

図1において、1は好気性生物処理槽であり、内部に微生物を担持した流動担体が保持されており、処理水流出部に設けられたスクリーン1aと、槽内下部に設けられた散気装置1bとを備える。2A,2Bは並列に連結され、沈降した余剰汚泥を下部から抜き出すと共に、上澄水を上部から排出する沈殿槽(第1の沈殿槽2A,第2の沈殿槽2B)である。3は分離膜浸漬槽であり、内部に分離膜モジュール3Aが浸漬されており、この分離膜モジュール3Aの下方に散気装置3Bが設けられている。4はポンプである。   In FIG. 1, reference numeral 1 denotes an aerobic biological treatment tank, in which a fluid carrier carrying microorganisms is held, a screen 1a provided at the treated water outflow part, and an air diffuser provided at the lower part in the tank 1b. 2A and 2B are precipitation tanks (first sedimentation tank 2A and second sedimentation tank 2B) that are connected in parallel and extract the excess sludge that has settled from the bottom and discharge the supernatant water from the top. Reference numeral 3 denotes a separation membrane immersion tank, in which a separation membrane module 3A is immersed, and a diffuser 3B is provided below the separation membrane module 3A. 4 is a pump.

好気性生物処理槽1の形状には特に制限はなく、円筒形、直方体形状などいずれでも良く、内部に澱みを生じさせないためのバッフル板などが設けられていても良い。   There is no restriction | limiting in particular in the shape of the aerobic biological treatment tank 1, Any of cylindrical shape, a rectangular parallelepiped shape, etc. may be sufficient, and the baffle board etc. for preventing a stagnation inside may be provided.

好気性生物処理槽1に保持される担体は、微生物を固定化させかつ水中を流動する素材よりなり、比重が水と同等で微生物が付着しやすい、例えばスポンジ状の樹脂など、多孔質或いは多くの隙間を有する構造体であることが好ましく、その大きさは、直径ないしは2枚の平行板で挟んだときの最大距離として0.5〜200mmの範囲であることが好ましい。ただし、槽内に保持される担体は、その形状、大きさ、材質等において均一であっても良く、異なるものが混在していても良い。また、好気性生物処理槽1内の担体保持量は、担体を槽内水中におけると同じ状態のまま陸上で乱雑に積んだ際の容積が、好気生物処理槽1の有効容量の10〜60%となるようにすることが好ましい。   The carrier held in the aerobic biological treatment tank 1 is made of a material that immobilizes microorganisms and flows in water, and has a specific gravity equivalent to water and easily adheres to microorganisms. The size of the structure is preferably in the range of 0.5 to 200 mm as the maximum distance when sandwiched between two parallel plates. However, the carrier held in the tank may be uniform in shape, size, material, or the like, or different ones may be mixed. Further, the amount of carrier retained in the aerobic biological treatment tank 1 is 10 to 60 of the effective capacity of the aerobic biological treatment tank 1 when the carrier is randomly stacked on land with the same state as in the water in the tank. % Is preferable.

スクリーン1aは、担体と流出水とを分離するためのものであり、目開きが担体の大きさより小さく、流動する担体から流出水を分離し得るものであれば良く、その形状や材質は特に限定されないが、例えばステンレス製のスクリーン、プラスチック製の網状物などを用いることができる。スクリーン1aの水中部分の表面積は流出水1m/d当り0.5m以上、例えば1〜1.5mとなるようにするのが、水の流出効率の面で好ましい。また、スクリーン1aの担体による目詰まりを防ぐために、必要に応じてスクリーン1a下側に散気管などを設けるなどしてスクリーン1aの表面と平行な向きの水流が十分に当たるようにしても良い。 The screen 1a is for separating the carrier and the effluent water, as long as the opening is smaller than the size of the carrier and the effluent water can be separated from the flowing carrier, and its shape and material are particularly limited. However, for example, a stainless steel screen or a plastic mesh can be used. The surface area of water portion of the screen 1a is effluent 1 m 3 / d per 0.5 m 2 or more, for example, to such a 1~1.5M 2 is preferred from the viewpoint of water outflow efficiency. Further, in order to prevent clogging by the carrier of the screen 1a, a water flow in a direction parallel to the surface of the screen 1a may be sufficiently applied by, for example, providing a diffuser tube or the like below the screen 1a.

好気性生物処理槽1の槽下部に設けられる散気装置1bは、好気性生物処理槽1の内部全体に必要かつ十分な流動を起こし、かつ微生物に溶存酸素を行き渡らせることができるものであれば良く、その形式や設置数には特に制限はないが、例えば、ディフューザー、エアレーター、孔開き散気管などを用いることができる。   The air diffuser 1b provided in the lower part of the aerobic biological treatment tank 1 causes a necessary and sufficient flow throughout the inside of the aerobic biological treatment tank 1, and can distribute dissolved oxygen to microorganisms. There are no particular restrictions on the type or number of installations, but for example, a diffuser, an aerator, a perforated diffuser tube, or the like can be used.

好気性生物処理槽1の実効容量(有効容積)は、流入する有機物をBODで表したとき、槽負荷が0.8〜8.0kg−BOD/m・dとなるように設計することが好ましい。槽負荷がこの範囲よりも大きいと十分な有機物除去を行えず、この範囲よりも小さいと徒に装置容量が大きくなり好ましくない。 The effective capacity (effective volume) of the aerobic biological treatment tank 1 may be designed so that the tank load is 0.8 to 8.0 kg-BOD / m 3 · d when the inflowing organic matter is represented by BOD. preferable. If the tank load is larger than this range, sufficient organic matter removal cannot be performed, and if it is smaller than this range, the capacity of the apparatus is undesirably increased.

第1,第2の沈殿槽2A,2Bの形状には特に制限はなく、円筒形、直方体など何でも良く、内部に澱みを生じさせないためのバッフル板や、余剰汚泥を効率良く沈降させるための傾斜板又は攪拌装置などがあってもよいが、全体が上昇流となるような導入部と流出部とを有し、被処理水(流入水)量に対して水平面の面積速度(水面積負荷)が30m/d以下、例えば6〜10m/dであって滞留時間が2時間以上、例えば10〜12時間となるように設計することが好ましい。   The shape of the first and second settling tanks 2A and 2B is not particularly limited, and any shape such as a cylindrical shape or a rectangular parallelepiped may be used, and a baffle plate for preventing stagnation inside, and an inclination for efficiently settling excess sludge. There may be a plate or a stirring device, but it has an introduction part and an outflow part so that the whole becomes an upward flow, and the area velocity of the horizontal plane (water area load) with respect to the amount of treated water (inflow water) Is preferably 30 m / d or less, for example 6 to 10 m / d, and the residence time is 2 hours or more, for example 10 to 12 hours.

第1,第2の沈殿槽2A,2Bの形状は相互に違っていても構わないが、それぞれに連続または3点以上の水面高さを検知できるセンサ2a,2bが設けられていることが好ましい。並列に接続された第1,第2の沈殿槽2A,2Bは、回分式で原水受入れ・静置・上澄水放流・沈殿物払い出しの4工程を順に、かつ並列に繋がれた相互間で原水受入れ工程と上澄み放流工程は、それぞれ1つの沈殿槽だけが行っていて重ならないように回分パターンが定められる。   The shapes of the first and second settling tanks 2A and 2B may be different from each other, but it is preferable that sensors 2a and 2b that can detect the water surface height continuously or at three or more points are provided. . The first and second settling tanks 2A and 2B connected in parallel are batch-type raw water receiving, stationary, supernatant water discharge, sediment discharge, and the raw water between the two connected in parallel. The receiving process and the supernatant discharge process are performed by only one settling tank, and the batch pattern is determined so as not to overlap.

なお、図1では沈殿槽を2槽並列に配置しているが、3槽以上並列に配置しても良い。   In FIG. 1, two precipitation tanks are arranged in parallel, but three or more tanks may be arranged in parallel.

各第1,第2の沈殿槽2A,2Bで、沈殿分離された余剰汚泥はポンプ4によって好気生物処理槽1に返送される。   In each of the first and second settling tanks 2 </ b> A and 2 </ b> B, the excess sludge separated and precipitated is returned to the aerobic biological treatment tank 1 by the pump 4.

本発明では第1,第2の沈殿槽2A,2Bにおける上澄水のBODが300mg/L程度あっても後工程に特段の問題は発生せず、かえってこのBODを少なくしようとすると好気生物処理槽1の容積を大きくする必要があるため、好気性生物処理槽1は、前述の槽負荷の範囲において、第1,第2の沈殿槽2A,2Bから排出される上澄水のBODが150〜600mg/L程度となるように、好気性生物処理槽1の容積を定めることが好ましい。   In the present invention, even if the BOD of the supernatant water in the first and second sedimentation tanks 2A and 2B is about 300 mg / L, no particular problem occurs in the subsequent process. Since it is necessary to increase the volume of the tank 1, the aerobic biological treatment tank 1 has a BOD of the supernatant water discharged from the first and second sedimentation tanks 2 </ b> A and 2 </ b> B in the range of the tank load described above from 150 to 150. The volume of the aerobic biological treatment tank 1 is preferably determined so as to be about 600 mg / L.

分離膜浸漬槽3の形状には特に制限はなく、円筒形、直方体形状などいずれでも良く、内部に澱みを生じさせないためのバッフル板などが設けられていても良い。分離膜浸漬槽3の実効容積は被処理水(流入水)量に対して滞留時間が2時間以上、例えば5〜10時間で、分離膜モジュール3Aの分離膜部分が十分に水中に浸漬し得る大きさ以上とする。また、槽内の汚泥濃度(MLSS)は概ね6000mg/L以下、例えば3,000〜5,000mg/Lで、分離膜モジュール3Aが高い膜フラックスを維持することができるような汚泥濃度となるように、ポンプ4による汚泥の引き抜き量を調節することが好ましい。   There is no restriction | limiting in particular in the shape of the separation membrane immersion tank 3, Any, such as a cylindrical shape and a rectangular parallelepiped shape, may be provided, and the baffle plate etc. for preventing a stagnation inside may be provided. The effective volume of the separation membrane immersion tank 3 is 2 hours or more with respect to the amount of treated water (inflow water), for example, 5 to 10 hours, and the separation membrane portion of the separation membrane module 3A can be sufficiently immersed in water. Be larger than size. The sludge concentration (MLSS) in the tank is approximately 6000 mg / L or less, for example, 3,000 to 5,000 mg / L, so that the separation membrane module 3A can maintain a high membrane flux. Furthermore, it is preferable to adjust the amount of sludge withdrawn by the pump 4.

分離膜浸漬槽3内に浸漬される分離膜モジュール3Aの分離膜は、MF膜以下の細孔径のものであれば良く、その形状は中空状でも平面状でも良く、材質も特に定めない。分離膜モジュール3Aは、固液分離に関わる部分が槽内水中に完全に浸漬するように配置する。この分離膜モジュール3Aは、必要に応じて下方に設けられた散気装置3Bから散気を行うことで、膜面を振動させて微生物の固着を防いだり、クロスフロー状の流れによって膜フラックスの向上を図ったりしても良い。分離膜モジュール3Aの膜フラックスは特に定めないが、これが最大となるように分離膜浸漬槽3の汚泥濃度を定めることができるため、本来の膜式活性汚泥法に於けるフラックスよりは高くすることができる。例えば、ポリエチレン製の中空糸MF膜の場合、通常の膜式活性汚泥法で汚泥濃度10000mg/Lの条件下で膜フラックス0.25m/dで使用していたものを、後述の実施例に示すように、本発明を適用した装置では汚泥濃度4500mg/Lの条件下で膜フラックス約0.4m/dの高い膜フラックスで処理を行うことができる。   The separation membrane of the separation membrane module 3A immersed in the separation membrane immersion tank 3 may have a pore diameter equal to or smaller than that of the MF membrane, and the shape thereof may be hollow or planar, and the material is not particularly defined. The separation membrane module 3A is arranged so that the part related to solid-liquid separation is completely immersed in the water in the tank. The separation membrane module 3A performs aeration from the aeration device 3B provided below as needed to vibrate the membrane surface to prevent microorganisms from sticking, and the cross-flow flow causes the membrane flux to flow. Improvements may be made. The membrane flux of the separation membrane module 3A is not particularly defined, but since the sludge concentration in the separation membrane immersion tank 3 can be determined so that it becomes the maximum, it should be higher than the flux in the original membrane activated sludge method. Can do. For example, in the case of a hollow fiber MF membrane made of polyethylene, what is used at a membrane flux of 0.25 m / d under the condition of a sludge concentration of 10,000 mg / L by a normal membrane-type activated sludge method is shown in the following examples. Thus, in the apparatus to which the present invention is applied, the treatment can be performed with a high membrane flux of about 0.4 m / d on the condition of the sludge concentration of 4500 mg / L.

分離膜モジュール3Aの下方に設けられる散気装置3Bは、分離膜浸漬槽3の内部全体に必要かつ十分な流動を起こし、かつ微生物に溶存酸素を行き渡らせることができるものであれば良く、その形式や設置数には特に制限はないが、例えば、ディフューザー、エアレーター、孔開き散気管などを用いることができる。この散気は、上述の分離膜モジュール3Aの膜面振動のための散気を兼ねて行っても良く、各々別々に行っても良い。   The air diffuser 3B provided below the separation membrane module 3A may be any device as long as it causes necessary and sufficient flow throughout the separation membrane immersion tank 3 and can distribute dissolved oxygen to microorganisms. There are no particular restrictions on the type or number of installations, but for example, a diffuser, an aerator, a perforated diffuser tube, or the like can be used. This aeration may be performed as an aeration for membrane vibration of the separation membrane module 3A described above, or may be performed separately.

本発明では、分離膜浸漬槽3内の汚泥濃度を低く抑えるために、分離膜浸漬槽3の液(濃縮汚泥)の一部を好気性生物処理槽1へ返送するが、分離膜浸漬槽3の水面は分離膜モジュール3Aの操作圧を一定に保つため、できるだけ変動させないでおくことが好ましく、返送は第1の沈殿槽2A又は第2の沈殿槽2Bからの放流水が流入している間にのみ行うようにすることが好ましい。   In the present invention, in order to keep the sludge concentration in the separation membrane immersion tank 3 low, a part of the liquid (concentrated sludge) in the separation membrane immersion tank 3 is returned to the aerobic biological treatment tank 1. In order to keep the operating pressure of the separation membrane module 3A constant, it is preferable that the water surface of the water surface is not changed as much as possible, and the return is performed while the discharged water from the first sedimentation tank 2A or the second sedimentation tank 2B flows in. It is preferable to carry out only in the above.

また、分離膜モジュール3Aは透過流束を保つために定期的に、例えば0.1重量%次亜塩素酸ソーダなどの薬品で洗浄する必要があるが、本発明では分離膜浸漬槽3内の汚泥濃度が低いことから、透過流束を高めても薬品洗浄の頻度を低く抑えることができ、例えば後述の実施例に示すように、従来法で10000mg/L、膜の透過流束0.25m/dで運転したときと同様に、本発明により、汚泥濃度4500mg/L、膜の透過流束0.4m/dで運転したときも、0.1%次亜塩素酸ソーダによる薬品洗浄頻度は、共に3ヶ月毎で良く、膜の透過流束が長期間維持できる。   Further, the separation membrane module 3A needs to be periodically washed with a chemical such as 0.1 wt% sodium hypochlorite in order to maintain the permeation flux. Since the sludge concentration is low, the frequency of chemical cleaning can be kept low even if the permeation flux is increased. For example, as shown in the examples described later, the conventional method is 10,000 mg / L, and the permeation flux of the membrane is 0.25 m. In the same manner as when operating at / d, according to the present invention, even when operating at a sludge concentration of 4500 mg / L and a membrane permeation flux of 0.4 m / d, the chemical cleaning frequency with 0.1% sodium hypochlorite is Both can be done every 3 months, and the permeation flux of the membrane can be maintained for a long time.

ポンプ4は、第1,第2の沈殿槽2A,2Bで沈降させた余剰汚泥、及び分離膜浸漬槽3の濃縮汚泥の一部を好気生物処理槽1に戻し、かつこれら各槽の汚泥濃度を一定に保つべく引き抜くために設ける。沈殿槽2A又は沈殿槽2Bの一方と分離膜浸漬槽3とから交互に汚泥を導いても、あるいは両槽から同時に混合しながら導いてもよい。また各槽の汚泥濃度を一定に保つために、人手による各槽の汚泥濃度の分析結果、汚泥濃度計の検出値、あるいは経験上または過去の実績上発生すると予測される余剰汚泥量によって、ポンプ4の吐出側を適宜外部へ切り換えて引き抜き汚泥を排出する。ポンプは活性汚泥を送ることのできるものであれば形式は特に定めない。   The pump 4 returns a part of the excess sludge settled in the first and second settling tanks 2A and 2B and the concentrated sludge in the separation membrane immersion tank 3 to the aerobic biological treatment tank 1, and the sludge in each tank. Provided to pull out to keep the concentration constant. Sludge may be guided alternately from one of the precipitation tank 2A or the precipitation tank 2B and the separation membrane immersion tank 3, or may be guided while mixing from both tanks simultaneously. In addition, in order to keep the sludge concentration in each tank constant, the pump is determined based on the result of manual analysis of the sludge concentration in each tank, the detected value of the sludge concentration meter, or the amount of surplus sludge that is expected to occur from experience or past performance. The discharge side of No. 4 is appropriately switched to the outside, and the extracted sludge is discharged. The type of the pump is not particularly limited as long as it can send activated sludge.

このような生物処理装置において、原水(有機性排水)は、好気性生物処理槽1に導入されて流動床担体生物処理された後第1の沈殿槽2A又は第2の沈殿槽2Bで沈殿分離され、沈殿汚泥はポンプ4で分離膜浸漬槽3の濃縮汚泥と共に好気性生物処理槽1に返送される。なお、第1の沈殿槽2A又は第2の沈殿槽2Bの沈殿汚泥は、必要に応じてその一部が系外に排出されても良い。第1,第2の沈殿槽2A,2Bの上澄水は次いで分離膜浸漬槽3に導入され、槽内の微生物で好気性生物処理された後分離膜モジュール3Aで膜濾過され、膜透過水が処理水として系外へ排出される。分離膜浸漬槽3の槽内汚泥はポンプ4により第1,第2の沈殿槽2A,2Bの沈殿汚泥と共に好気性生物処理槽1に返送される。この返送汚泥もまた、必要に応じて一部系外へ排出しても良い。   In such a biological treatment apparatus, raw water (organic waste water) is introduced into the aerobic biological treatment tank 1 and subjected to fluidized bed carrier biological treatment, and then separated into precipitates in the first precipitation tank 2A or the second precipitation tank 2B. Then, the precipitated sludge is returned to the aerobic biological treatment tank 1 together with the concentrated sludge in the separation membrane immersion tank 3 by the pump 4. A part of the sedimentation sludge in the first sedimentation tank 2A or the second sedimentation tank 2B may be discharged out of the system as necessary. The supernatant water of the first and second sedimentation tanks 2A and 2B is then introduced into the separation membrane immersion tank 3, and after aerobic biological treatment with the microorganisms in the tank, the membrane is filtered by the separation membrane module 3A. It is discharged out of the system as treated water. The sludge in the separation membrane immersion tank 3 is returned to the aerobic biological treatment tank 1 by the pump 4 together with the precipitated sludge in the first and second sedimentation tanks 2A and 2B. This return sludge may also be partially discharged outside the system as necessary.

図1の生物処理装置によれば、好気性生物処理槽1を経た流動床担体生物処理水を第1の沈殿槽2A及び第2の沈殿槽2Bで沈殿分離することにより、流動床担体生物処理で生じる余剰汚泥の大部分を凝集剤を用いることなく分離することができる。そして、第1,第2の沈殿槽2A,2Bの上澄水に含まれる僅かな余剰汚泥を分離膜浸漬槽3で膜濾過して分離する。この分離膜浸漬槽3には、予め第1,第2の沈殿槽2A,2Bで余剰汚泥の大部分を除去した後の比較的低濃度の汚泥が流入するため、膜濾過における目詰まりの問題は少なく、この分離膜浸漬槽3内で残留する有機物の分解除去と、浸漬膜による汚泥の膜濾過とを効率的に行うことができる。この分離膜浸漬槽3の分離膜モジュール3Aの透過水として得られる処理水は、MF膜等を透過した高水質の処理水である。しかも、本発明では、第1,第2の沈殿槽2A,2Bの沈殿汚泥と分離膜浸漬槽3の分離汚泥を好気性生物処理槽1に返送することにより、この好気性生物処理槽1における分解性の悪い有機物の除去能力を向上させることができる。このため、好気性生物処理槽1の実効容量は比較的小さなもので足り、この結果、全体の装置容量の低減を図ることができる。   According to the biological treatment apparatus of FIG. 1, the fluidized bed carrier biological treatment water passed through the aerobic biological treatment tank 1 is separated by precipitation in the first precipitation tank 2A and the second precipitation tank 2B, thereby fluidized bed carrier biological treatment. Most of the excess sludge generated in the above can be separated without using a flocculant. Then, a slight excess sludge contained in the supernatant water of the first and second sedimentation tanks 2A and 2B is separated by membrane filtration in the separation membrane immersion tank 3. Since the relatively low concentration sludge after removing most of the excess sludge in the first and second settling tanks 2A and 2B flows into the separation membrane immersion tank 3 in advance, there is a problem of clogging in membrane filtration. However, the organic matter remaining in the separation membrane immersion tank 3 can be decomposed and removed, and sludge membrane filtration with the immersion membrane can be performed efficiently. The treated water obtained as the permeated water of the separation membrane module 3A of the separation membrane immersion tank 3 is a high-quality treated water that has permeated the MF membrane or the like. Moreover, in the present invention, the sedimentation sludge of the first and second sedimentation tanks 2A and 2B and the separation sludge of the separation membrane immersion tank 3 are returned to the aerobic biological treatment tank 1, thereby the aerobic biological treatment tank 1 The ability to remove organic substances with poor degradability can be improved. For this reason, the effective capacity of the aerobic biological treatment tank 1 is sufficient, and as a result, the overall apparatus capacity can be reduced.

図1に示す生物処理装置は、1槽の好気性生物処理槽で一段流動床担体生物処理を行うものであるが、本発明の生物処理装置は、図2に示す如く、好気性生物処理槽を2槽設け、第1の好気性生物処理槽1Aの流出水を第2の好気性生物処理槽1Bに導入して二段流動床担体生物処理を行っても良い。   The biological treatment apparatus shown in FIG. 1 performs one-stage fluidized bed carrier biological treatment in a single aerobic biological treatment tank, but the biological treatment apparatus of the present invention has an aerobic biological treatment tank as shown in FIG. Two tanks may be provided, and the two-stage fluidized-bed carrier biological treatment may be performed by introducing the effluent from the first aerobic biological treatment tank 1A into the second aerobic biological treatment tank 1B.

図2において、1Aは第1の好気性生物処理槽であり、内部に微生物を担持した流動担体が保持されており、処理水流出部に設けられたスクリーン1Aaと、槽内下部に設けられた散気装置1Abとを備える。1Bは第2の好気性生物処理槽であり、内部に微生物を担持した流動担体と浮遊活性汚泥とが保持されており、処理水流出部に設けられたスクリーン1Baと、槽内下部に設けられた散気装置1Bbとを備える。その他の構成は図1に示す生物処理装置と同様であり、同一機能を奏する部材に同一符号を付してある。   In FIG. 2, 1A is a first aerobic biological treatment tank, in which a fluid carrier carrying microorganisms is held, and is provided at a screen 1Aa provided at the treated water outflow part and at a lower part in the tank. A diffuser 1Ab is provided. 1B is a second aerobic biological treatment tank, in which a fluid carrier carrying microorganisms and suspended activated sludge are held, and is provided in a screen 1Ba provided in the treated water outflow part and in the lower part in the tank. A diffuser 1Bb. Other configurations are the same as those of the biological treatment apparatus shown in FIG. 1, and members having the same functions are denoted by the same reference numerals.

第1,第2好気性生物処理槽1A,1Bの形状、槽内に保持される担体の種類や保持量、スクリーン1Aa,1Baの構成、散気装置1Ab,1Bbの構成については、図1の好気性生物処理槽1と同様である。   The shape of the first and second aerobic biological treatment tanks 1A and 1B, the type and holding amount of the carrier held in the tank, the configuration of the screens 1Aa and 1Ba, and the configuration of the air diffusers 1Ab and 1Bb are shown in FIG. The same as the aerobic biological treatment tank 1.

第1,第2好気性生物処理槽1A,1Bは、基本的には同等の仕様のものが用いられるが、双方で異なる構成を採用しても良い。第1の好気性生物処理槽1Aに後段の第1,第2の沈殿槽2A,2B及び分離膜浸漬槽3からの汚泥が返送される。   The first and second aerobic biological treatment tanks 1A and 1B basically have the same specifications, but different configurations may be adopted for both. Sludge from the first and second precipitation tanks 2A and 2B and the separation membrane immersion tank 3 in the subsequent stage is returned to the first aerobic biological treatment tank 1A.

第1,第2の好気性生物処理槽1A,1Bの実効容量(有効容積)については、流入する有機物をBODで表したとき、槽負荷が0.8〜8.0kg−BOD/m・dとなるように設計することが好ましい。槽負荷がこの範囲よりも大きいと十分な有機物除去を行えず、この範囲よりも小さいと徒に装置容量が大きくなり好ましくない。また、第2の好気性生物処理槽1Bの実効容量は、第1の好気性生物処理槽1Aの実効容量よりも大きいことが好ましく、例えば第1の好気性生物処理槽1Aの実効容量の5〜8倍であることが好ましい。第2の好気性生物処理槽1Bの実効容量がこの範囲よりも小さいと、難分解性の有機物を十分に除去し得ず、この範囲よりも大きいと徒に装置容量が大きくなり好ましい。 Regarding the effective capacity (effective volume) of the first and second aerobic biological treatment tanks 1A and 1B, when the inflowing organic matter is represented by BOD, the tank load is 0.8 to 8.0 kg-BOD / m 3. It is preferable to design so as to be d. If the tank load is larger than this range, sufficient organic matter removal cannot be performed, and if it is smaller than this range, the capacity of the apparatus is undesirably increased. The effective capacity of the second aerobic biological treatment tank 1B is preferably larger than the effective capacity of the first aerobic biological treatment tank 1A, for example, 5 of the effective capacity of the first aerobic biological treatment tank 1A. It is preferably ˜8 times. If the effective capacity of the second aerobic biological treatment tank 1B is smaller than this range, it is not possible to sufficiently remove the hardly decomposable organic matter.

その他、第1,第2の沈殿槽2A,2B、分離膜浸漬槽3やポンプ5,6等の構成や条件については、図1の生物処理装置と同様である。   In addition, the configurations and conditions of the first and second sedimentation tanks 2A and 2B, the separation membrane immersion tank 3, the pumps 5 and 6, and the like are the same as those of the biological treatment apparatus of FIG.

図2の生物処理装置においても、原水(有機性排水)は、第1の好気性生物処理槽1A及び第2の好気性生物処理槽1Bに順次に導入され、2段流動床担体生物処理された後に、第1の沈殿槽2A又は第2の沈殿槽2Bで沈殿分離され、沈殿汚泥はポンプ4で分離膜浸漬槽3の濃縮汚泥と共に第2の好気性生物処理槽1Bに返送される。なお、第1,第2の沈殿槽2A,2Bの沈殿汚泥は、必要に応じてその一部が系外に排出されても良い。第1,第2の沈殿槽2A,2Bの上澄水は次いで分離膜浸漬槽3に導入され、槽内の微生物で好気性生物処理された後分離膜モジュール3Aで膜濾過され、膜透過水が処理水として系外へ排出される。分離膜浸漬槽3の槽内汚泥はポンプ4により第1,第2の沈殿槽2A,2Bの沈殿汚泥と共に第1の好気性生物処理槽1Aに返送される。この返送汚泥もまた、必要に応じて一部系外へ排出しても良い。   In the biological treatment apparatus of FIG. 2 as well, raw water (organic wastewater) is sequentially introduced into the first aerobic biological treatment tank 1A and the second aerobic biological treatment tank 1B and subjected to biological treatment on the two-stage fluidized bed carrier. After that, precipitation is separated in the first precipitation tank 2A or the second precipitation tank 2B, and the precipitated sludge is returned to the second aerobic biological treatment tank 1B together with the concentrated sludge in the separation membrane immersion tank 3 by the pump 4. In addition, the sedimentation sludge of 1st, 2nd sedimentation tank 2A, 2B may be discharged | emitted out of the system as needed. The supernatant water of the first and second sedimentation tanks 2A and 2B is then introduced into the separation membrane immersion tank 3, and after aerobic biological treatment with the microorganisms in the tank, the membrane is filtered by the separation membrane module 3A. It is discharged out of the system as treated water. The sludge in the separation membrane immersion tank 3 is returned by the pump 4 to the first aerobic biological treatment tank 1A together with the precipitated sludge in the first and second precipitation tanks 2A and 2B. This return sludge may also be partially discharged outside the system as necessary.

図2の生物処理装置であっても、第1,第2好気性生物処理槽1A,1Bを経た2段流動床担体生物処理水を第1の沈殿槽2A又は第2の沈殿槽2Bで沈殿分離することにより、流動床担体生物処理で生じる余剰汚泥の大部分を凝集剤を用いることなく分離することができる。そして、第1,第2の沈殿槽2A,2Bの上澄水に含まれる僅かな余剰汚泥を分離膜浸漬槽3で膜濾過して分離する。この分離膜浸漬槽3には、予め第1,第2の沈殿槽2A,2Bで余剰汚泥の大部分を除去した後の比較的低濃度の汚泥が流入するため、膜濾過における目詰まりの問題は少なく、この分離膜浸漬槽3内で残留する有機物の分解除去と、浸漬膜による汚泥の膜濾過とを効率的に行うことができる。この分離膜浸漬槽3の分離膜モジュール3Aの透過水として得られる処理水は、MF膜等を透過した高水質の処理水である。しかも、第1,第2の沈殿槽2A,2Bの沈殿汚泥と分離膜浸漬槽3の分離汚泥を第1の好気性生物処理槽1Aに返送することにより、この第2の好気性生物処理槽1Bにおける分解性の悪い有機物の除去能力を向上させることができる。このため、第2の好気性生物処理槽1Bの実効容量は比較的小さなもので足り、この結果、全体の装置容量の低減を図ることができる。そして、この生物処理装置であれば、二段流動床担体生物処理を行うことにより、より一層良好な水質の処理水を得ることができる。   Even in the biological treatment apparatus of FIG. 2, the two-stage fluidized bed carrier biological treatment water that has passed through the first and second aerobic biological treatment tanks 1A and 1B is precipitated in the first precipitation tank 2A or the second precipitation tank 2B. By separating, most of the excess sludge generated by the fluidized bed carrier biological treatment can be separated without using a flocculant. Then, a slight excess sludge contained in the supernatant water of the first and second sedimentation tanks 2A and 2B is separated by membrane filtration in the separation membrane immersion tank 3. Since the relatively low concentration sludge after removing most of the excess sludge in the first and second settling tanks 2A and 2B flows into the separation membrane immersion tank 3 in advance, there is a problem of clogging in membrane filtration. However, the organic matter remaining in the separation membrane immersion tank 3 can be decomposed and removed, and sludge membrane filtration with the immersion membrane can be performed efficiently. The treated water obtained as the permeated water of the separation membrane module 3A of the separation membrane immersion tank 3 is a high-quality treated water that has permeated the MF membrane or the like. Moreover, the second aerobic biological treatment tank is obtained by returning the precipitated sludge of the first and second sedimentation tanks 2A and 2B and the separated sludge of the separation membrane immersion tank 3 to the first aerobic biological treatment tank 1A. The ability to remove organic substances with poor degradability in 1B can be improved. For this reason, the effective capacity of the second aerobic biological treatment tank 1B is sufficient, and as a result, the overall apparatus capacity can be reduced. And if it is this biological treatment apparatus, the treated water of much better water quality can be obtained by performing a two-stage fluidized bed carrier biological treatment.

このようなことから、本発明によれば、高濃度の有機物を含む水から有機物を除去するための生物処理装置に関して、汚泥と処理水との分離に大型の沈殿槽や凝集剤を必要とせず、かつ、分離膜の洗浄強度及び頻度が大幅に低減され、運転コストの低減を図ることができる。   Therefore, according to the present invention, a biological treatment apparatus for removing organic matter from water containing a high concentration of organic matter does not require a large sedimentation tank or flocculant for separation of sludge and treated water. And the washing | cleaning intensity | strength and frequency of a separation membrane are reduced significantly, and reduction of an operating cost can be aimed at.

このような本発明の生物処理装置は、調理ゴミ等の厨芥含有排水や、食品製造排水、酒類製造排水等の有機性排水の生物処理に有効であり、特に、このような有機性排水のうち有機物濃度が2,000mg−BOD/L以上であるような高濃度有機性排水の生物処理に有効である。   Such a biological treatment apparatus of the present invention is effective for biological treatment of organic wastewater such as food wastewater and liquor production wastewater such as cooking waste, and particularly among such organic wastewater. It is effective for biological treatment of high-concentration organic wastewater whose organic matter concentration is 2,000 mg-BOD / L or more.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1
図1に示す本発明の生物処理装置により、BOD濃度2,000mg/Lの洋菓子製造排水の処理を100L/dの流量で行った。各槽の仕様は次の通りである。
好気性生物処理槽1:実効容量=100L
BOD負荷=2kg−BOD/m・d
担体種類=粒径3〜10mmの角型
材質:発泡ポリウレタン
担体保持量=槽有効容量の50%
第1の沈殿槽2A:実効容量=15.7L
処理水滞留時間=5時間
第2の沈殿槽2B:実効容量=15.7L
処理水滞留時間=5時間
分離膜浸漬槽3:実効容量=30L
滞留時間=7.2時間
分離膜モジュールの膜種=中空糸型ポリエチレン膜
Example 1
With the biological treatment apparatus of the present invention shown in FIG. 1, the confectionery manufacturing waste water with a BOD concentration of 2,000 mg / L was treated at a flow rate of 100 L / d. The specifications of each tank are as follows.
Aerobic biological treatment tank 1: Effective capacity = 100L
BOD load = 2kg-BOD / m 3 · d
Carrier type = square shape with particle size of 3-10 mm
Material: Polyurethane foam
Carrier holding amount = 50% of tank effective capacity
First sedimentation tank 2A: Effective capacity = 15.7L
Treatment water retention time = 5 hours Second sedimentation tank 2B: Effective capacity = 15.7L
Treatment water retention time = 5 hours Separation membrane immersion tank 3: Effective capacity = 30 L
Residence time = 7.2 hours
Membrane type of separation membrane module = hollow fiber type polyethylene membrane

第1,第2の沈殿槽2A,2Bの沈殿汚泥は150L/dの合計流量で好気性生物処理槽1に返送し、分離水150L/dを分離膜浸漬槽3に導入した。また、分離膜浸漬槽3では槽内汚泥を50L/dの流量で好気性生物処理槽1に返送し、膜濾過水100L/dを処理水として取り出した。この分離膜浸漬槽3の汚泥濃度は約4500mg/Lに維持された。   The precipitated sludge in the first and second settling tanks 2A and 2B was returned to the aerobic biological treatment tank 1 at a total flow rate of 150 L / d, and 150 L / d of separated water was introduced into the separation membrane immersion tank 3. In the separation membrane immersion tank 3, sludge in the tank was returned to the aerobic biological treatment tank 1 at a flow rate of 50 L / d, and 100 L / d of membrane filtrate was taken out as treated water. The sludge concentration in the separation membrane immersion tank 3 was maintained at about 4500 mg / L.

その結果、BOD濃度10mg/L以下、SSを含まない高水質処理水を分離膜モジュールの目詰まりを引き起こすことなく、0.4m/dの高い膜フラックスで安定に得ることができた。   As a result, BOD concentration of 10 mg / L or less and high-quality treated water not containing SS could be stably obtained with a high membrane flux of 0.4 m / d without causing clogging of the separation membrane module.

従来の膜式活性汚泥法に於いて、孔径0.4μmの中空糸型分離膜の薬品洗浄頻度が等しく3ヶ月毎となる場合の分離膜浸漬槽の汚泥濃度(MLSS)と、分離膜モジュールの透過流束との関係は図3に示す通りである。この図からも明らかなように、本発明の生物処理装置によれば、高濃度の有機性排水を処理するにも関わらず、分離膜浸漬槽の汚泥濃度を4500mg/L程度とすることが可能となため、3ヶ月毎の薬品洗浄頻度において、分離膜の透過流束を0.4m/d以上とすることができる。従って、その分だけ従来法より分離膜の面積を減らすことができ、また、そのときの薬品洗浄頻度を従来法と同等以下とすることができることが分かる。   In the conventional membrane activated sludge method, the sludge concentration (MLSS) of the separation membrane immersion tank when the chemical cleaning frequency of the hollow fiber type separation membrane with a pore diameter of 0.4 μm is equal every three months, and the separation membrane module The relationship with the permeation flux is as shown in FIG. As is apparent from this figure, according to the biological treatment apparatus of the present invention, it is possible to set the sludge concentration in the separation membrane immersion tank to about 4500 mg / L, even though the organic wastewater with high concentration is treated. Therefore, the permeation flux of the separation membrane can be 0.4 m / d or more at the chemical cleaning frequency every three months. Therefore, it can be seen that the area of the separation membrane can be reduced by that amount compared to the conventional method, and the chemical cleaning frequency at that time can be equal to or less than that of the conventional method.

比較例1
実施例1において、沈殿槽を省略し、好気性生物処理槽1の流出水を直接分離膜浸漬槽3に導入したこと以外は同様にして処理を行った。その結果、得られた処理水のBOD濃度は10〜20mg/L、SSは含まれず比較的高水質であったが、分離膜浸漬槽3内の汚泥濃度は25,000mg/Lとなり、3日間の運転により、分離膜モジュールの目詰まりで、膜フラックスは0.1m/d以下に低下し、運転を継続することが困難になった。
Comparative Example 1
In Example 1, the treatment was performed in the same manner except that the settling tank was omitted and the effluent from the aerobic biological treatment tank 1 was directly introduced into the separation membrane immersion tank 3. As a result, the BOD concentration of the obtained treated water was 10 to 20 mg / L and SS was not included, and the water quality was relatively high, but the sludge concentration in the separation membrane immersion tank 3 was 25,000 mg / L for 3 days. Due to the clogging of the separation membrane module, the membrane flux decreased to 0.1 m / d or less, making it difficult to continue the operation.

比較例2
実施例1において、分離膜浸漬槽を省略し、かつ、分離膜浸漬槽からの好気性生物処理槽へ返送していた分だけ、沈殿槽の処理水量を減らしたこと以外は同様にして処理を行ったところ、得られた処理水のBOD濃度は200〜500mg/L、SSは1,000〜5,000mg/Lで高水質の処理水を得ることができなかった。
Comparative Example 2
In Example 1, the treatment was performed in the same manner except that the separation membrane immersion tank was omitted and the amount of treated water in the precipitation tank was reduced by the amount returned from the separation membrane immersion tank to the aerobic biological treatment tank. As a result, the BOD concentration of the obtained treated water was 200 to 500 mg / L, and the SS was 1,000 to 5,000 mg / L, and it was not possible to obtain high quality treated water.

実施例2
実施例1において、図2に示す如く、好気性生物処理槽として、下記の第1及び第2の好気性生物処理槽1A,1Bを設けて二段流動床担体生物処理を行ったこと以外は同様にして処理を行った。
第1の好気性生物処理槽1A:実効容量=10L
BOD負荷=3kg−BOD/m・d(第2
の好気性生物処理槽と合わせて)
担体種類=粒径3〜10mmの角型
材質:発泡ポリウレタン
担体保持量=槽有効容量の50%
第2の好気性生物処理槽1B:実効容量=57L
担体種類=粒径3〜10mmの角型
材質:発泡ポリウレタン
担体保持量=槽有効容量の50%
Example 2
In Example 1, as shown in FIG. 2, the following first and second aerobic biological treatment tanks 1A and 1B are provided as the aerobic biological treatment tanks, and the two-stage fluidized bed carrier biological treatment is performed. Processing was carried out in the same manner.
First aerobic biological treatment tank 1A: Effective capacity = 10L
BOD load = 3kg-BOD / m 3 · d (second
Together with aerobic biological treatment tanks)
Carrier type = square shape with particle size of 3-10 mm
Material: Polyurethane foam
Carrier holding amount = 50% of tank effective capacity
Second aerobic biological treatment tank 1B: Effective capacity = 57L
Carrier type = square shape with particle size of 3-10 mm
Material: Polyurethane foam
Carrier holding amount = 50% of tank effective capacity

その結果、実施例1と同様に分離膜浸漬槽3の汚泥濃度は約4500mg/Lに維持され、分離膜モジュールの目詰まりを引き起こすことなく、0.4m/dの高い膜フラックスで安定な運転を行うことができ、SSを含まず、BOD濃度10mg/L以下の非常に高水質の処理水を得ることができた。   As a result, as in Example 1, the sludge concentration in the separation membrane immersion tank 3 is maintained at about 4500 mg / L, and stable operation with a high membrane flux of 0.4 m / d without causing clogging of the separation membrane module. It was possible to obtain a very high quality treated water containing no SS and having a BOD concentration of 10 mg / L or less.

本発明の生物処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the biological treatment apparatus of this invention. 本発明の生物処理装置の他の実施の形態を示す系統図である。It is a systematic diagram which shows other embodiment of the biological treatment apparatus of this invention. 膜式活性汚泥法において、孔径0.4μmの中空糸型分離膜の薬品洗浄頻度が等しく3ヶ月毎となる場合の分離膜浸漬槽の汚泥濃度(MLSS)と、分離膜モジュールの透過流束との関係を示すグラフである。In the membrane activated sludge method, the sludge concentration (MLSS) of the separation membrane immersion tank and the permeation flux of the separation membrane module when the chemical cleaning frequency of the hollow fiber type separation membrane with a pore diameter of 0.4 μm is equal every three months, It is a graph which shows the relationship.

符号の説明Explanation of symbols

1 好気性生物処理槽
1A 第1の好気性生物処理槽
1B 第2の好気性生物処理槽
2 浮上分離槽
2A 第1の沈殿槽
2B 第2の沈殿槽
3 分離膜浸漬槽
3A 分離膜モジュール
3B 散気装置
1 aerobic biological treatment tank 1A first aerobic biological treatment tank 1B second aerobic biological treatment tank 2 flotation separation tank 2A first precipitation tank 2B second precipitation tank 3 separation membrane immersion tank 3A separation membrane module 3B Air diffuser

Claims (4)

有機性排水を受け入れる、微生物を担持した流動担体を保持する好気性生物処理槽と、
該好気性生物処理槽の流出水を回分式で受け入れ、静置、上澄水排出及び沈殿汚泥の排出を行う、2つ以上の並列に連結された沈殿槽と、
該沈殿槽の上澄水を受け入れ、該上澄水に同伴される汚泥を分離すると共に処理水を排出する分離膜浸漬槽であって、槽内に浸漬された分離膜モジュールと該分離膜モジュールの下方に設けられた散気手段とを備える分離膜浸漬槽と、
前記沈殿槽の沈殿汚泥を前記好気性生物処理槽に返送する第1の汚泥返送手段と、
前記分離膜浸漬槽の汚泥を前記好気性生物処理槽に返送する第2の汚泥返送手段と、
を具備することを特徴とする生物処理装置。
An aerobic biological treatment tank holding a fluid carrier carrying microorganisms and receiving organic waste water;
Two or more parallel-connected precipitation tanks that receive the effluent of the aerobic biological treatment tank in a batch manner, and are allowed to stand, discharge the supernatant water, and discharge the precipitated sludge;
A separation membrane immersion tank that receives the supernatant water of the sedimentation tank, separates sludge entrained in the supernatant water, and discharges treated water, wherein the separation membrane module is immersed in the tank and below the separation membrane module A separation membrane immersion tank comprising a diffuser provided in
First sludge return means for returning the settling sludge of the settling tank to the aerobic biological treatment tank;
A second sludge return means for returning the sludge of the separation membrane immersion tank to the aerobic biological treatment tank;
A biological treatment apparatus comprising:
請求項1において、前記好気性生物処理槽が第1の好気性生物処理槽と第2好気性生物処理槽の槽とで構成され、前記沈殿槽の沈殿汚泥と前記分離膜浸漬槽の汚泥は、該第1の好気性生物処理槽に返送され、前記第1の好気性生物処理槽の槽負荷が0.8〜8.0kg−BOD/m・dであることを特徴とする生物処理装置。 In Claim 1, the said aerobic biological treatment tank is comprised by the tank of a 1st aerobic biological treatment tank and the tank of a 2nd aerobic biological treatment tank, The sludge of the said sedimentation tank and the sludge of the said separation membrane immersion tank are The biological treatment is returned to the first aerobic biological treatment tank, and the tank load of the first aerobic biological treatment tank is 0.8 to 8.0 kg-BOD / m 3 · d. apparatus. 請求項2において、前記第2の好気性生物処理槽の実効容量が前記第1の好気性生物処理槽の実効容量の1〜10倍であることを特徴とする生物処理装置。   3. The biological treatment apparatus according to claim 2, wherein the effective capacity of the second aerobic biological treatment tank is 1 to 10 times the effective capacity of the first aerobic biological treatment tank. 請求項1ないし3のいずれか1項において、前記分離膜浸漬槽内の汚泥濃度が1,000〜6,000mg/Lで、滞留時間が1〜18時間であることを特徴とする生物処理装置。   The biological treatment apparatus according to any one of claims 1 to 3, wherein the sludge concentration in the separation membrane immersion tank is 1,000 to 6,000 mg / L and the residence time is 1 to 18 hours. .
JP2004361647A 2004-12-14 2004-12-14 Biological treatment equipment Expired - Fee Related JP4529670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004361647A JP4529670B2 (en) 2004-12-14 2004-12-14 Biological treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004361647A JP4529670B2 (en) 2004-12-14 2004-12-14 Biological treatment equipment

Publications (2)

Publication Number Publication Date
JP2006167550A true JP2006167550A (en) 2006-06-29
JP4529670B2 JP4529670B2 (en) 2010-08-25

Family

ID=36668852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361647A Expired - Fee Related JP4529670B2 (en) 2004-12-14 2004-12-14 Biological treatment equipment

Country Status (1)

Country Link
JP (1) JP4529670B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167551A (en) * 2004-12-14 2006-06-29 Kurita Water Ind Ltd Biological treatment apparatus
JP2007160233A (en) * 2005-12-14 2007-06-28 Kurita Water Ind Ltd Organic matter-containing wastewater treatment apparatus and method
JP2009226314A (en) * 2008-03-24 2009-10-08 Metawater Co Ltd Method of manufacturing reclaimed water
JP2010137216A (en) * 2008-11-11 2010-06-24 Kobelco Eco-Solutions Co Ltd Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP2011140017A (en) * 2009-12-07 2011-07-21 Sekisui Chem Co Ltd Sewage cleaning apparatus and sewage cleaning method
WO2013005913A1 (en) * 2011-07-05 2013-01-10 대웅이엔에스 (주) Composite microorganism reactor, and apparatus and method for water treatment using same
JP2013202525A (en) * 2012-03-28 2013-10-07 Mitsubishi Rayon Co Ltd Wastewater treatment system and wastewater treatment method
CN103668839A (en) * 2013-12-06 2014-03-26 无锡大阿福信息科技有限公司 System for collecting and using waste alkaline water in weak alkali pool
CN103668836A (en) * 2013-12-06 2014-03-26 无锡大阿福信息科技有限公司 Waste alkaline water recycling system in mercerizing machine weak alkali pool
CN105000714A (en) * 2015-07-22 2015-10-28 浙江省环境工程有限公司 Coagulation treatment and membrane separation combined waste water treatment system and application thereof
CN111533363A (en) * 2020-04-03 2020-08-14 北京博泰至淳生物科技有限公司 Sewage treatment method and system for realizing in-situ improvement of treatment scale
JP2021186729A (en) * 2020-05-28 2021-12-13 王子ホールディングス株式会社 Wastewater treatment system and wastewater treatment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103112944B (en) * 2013-02-18 2015-06-03 中冶华天南京工程技术有限公司 Internal circulating nitrification filtering tank

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225488A (en) * 1996-02-20 1997-09-02 Nishihara Eisei Kogyosho:Kk Biochemical treating device for organic waste water
JPH10314791A (en) * 1997-05-19 1998-12-02 Hitoshi Daidou Waste water treating device
JPH1128468A (en) * 1997-07-08 1999-02-02 Kurita Water Ind Ltd Immersion membrane type solid-liquid separator
JPH11319493A (en) * 1998-05-21 1999-11-24 Hitoshi Daido Sewage treating apparatus
JP2000042584A (en) * 1998-07-31 2000-02-15 Kurita Water Ind Ltd High load biological treatment and device therefor
JP2001314885A (en) * 2000-05-10 2001-11-13 Kurita Water Ind Ltd High load biological treatment method
JP2001347284A (en) * 2000-06-08 2001-12-18 Kuraray Co Ltd Wastewater treatment method
JP2002102606A (en) * 2000-10-02 2002-04-09 Nishihara Environ Sanit Res Corp Water treatment device
JP2003053363A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Treatment method and treatment equipment for organic matter-containing water
JP2004141724A (en) * 2002-10-22 2004-05-20 Maezawa Ind Inc Solid-liquid separator and washing method therefor
JP2006082024A (en) * 2004-09-16 2006-03-30 Kurita Water Ind Ltd Biological treatment apparatus
JP2006167551A (en) * 2004-12-14 2006-06-29 Kurita Water Ind Ltd Biological treatment apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225488A (en) * 1996-02-20 1997-09-02 Nishihara Eisei Kogyosho:Kk Biochemical treating device for organic waste water
JPH10314791A (en) * 1997-05-19 1998-12-02 Hitoshi Daidou Waste water treating device
JPH1128468A (en) * 1997-07-08 1999-02-02 Kurita Water Ind Ltd Immersion membrane type solid-liquid separator
JPH11319493A (en) * 1998-05-21 1999-11-24 Hitoshi Daido Sewage treating apparatus
JP2000042584A (en) * 1998-07-31 2000-02-15 Kurita Water Ind Ltd High load biological treatment and device therefor
JP2001314885A (en) * 2000-05-10 2001-11-13 Kurita Water Ind Ltd High load biological treatment method
JP2001347284A (en) * 2000-06-08 2001-12-18 Kuraray Co Ltd Wastewater treatment method
JP2002102606A (en) * 2000-10-02 2002-04-09 Nishihara Environ Sanit Res Corp Water treatment device
JP2003053363A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Treatment method and treatment equipment for organic matter-containing water
JP2004141724A (en) * 2002-10-22 2004-05-20 Maezawa Ind Inc Solid-liquid separator and washing method therefor
JP2006082024A (en) * 2004-09-16 2006-03-30 Kurita Water Ind Ltd Biological treatment apparatus
JP2006167551A (en) * 2004-12-14 2006-06-29 Kurita Water Ind Ltd Biological treatment apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591678B2 (en) * 2004-12-14 2010-12-01 栗田工業株式会社 Biological treatment equipment
JP2006167551A (en) * 2004-12-14 2006-06-29 Kurita Water Ind Ltd Biological treatment apparatus
JP2007160233A (en) * 2005-12-14 2007-06-28 Kurita Water Ind Ltd Organic matter-containing wastewater treatment apparatus and method
JP2009226314A (en) * 2008-03-24 2009-10-08 Metawater Co Ltd Method of manufacturing reclaimed water
JP2013240794A (en) * 2008-11-11 2013-12-05 Kobelco Eco-Solutions Co Ltd Membrane separation activated sludge treatment apparatus, and membrane separation activated sludge treatment method
JP2010137216A (en) * 2008-11-11 2010-06-24 Kobelco Eco-Solutions Co Ltd Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP2011140017A (en) * 2009-12-07 2011-07-21 Sekisui Chem Co Ltd Sewage cleaning apparatus and sewage cleaning method
WO2013005913A1 (en) * 2011-07-05 2013-01-10 대웅이엔에스 (주) Composite microorganism reactor, and apparatus and method for water treatment using same
CN103582615A (en) * 2011-07-05 2014-02-12 大雄生态方案株式会社 Composite microorganism reactor, and apparatus and method for water treatment using same
JP2013202525A (en) * 2012-03-28 2013-10-07 Mitsubishi Rayon Co Ltd Wastewater treatment system and wastewater treatment method
CN103668839A (en) * 2013-12-06 2014-03-26 无锡大阿福信息科技有限公司 System for collecting and using waste alkaline water in weak alkali pool
CN103668836A (en) * 2013-12-06 2014-03-26 无锡大阿福信息科技有限公司 Waste alkaline water recycling system in mercerizing machine weak alkali pool
CN105000714A (en) * 2015-07-22 2015-10-28 浙江省环境工程有限公司 Coagulation treatment and membrane separation combined waste water treatment system and application thereof
CN111533363A (en) * 2020-04-03 2020-08-14 北京博泰至淳生物科技有限公司 Sewage treatment method and system for realizing in-situ improvement of treatment scale
CN111533363B (en) * 2020-04-03 2022-05-03 北京博泰至淳生物科技有限公司 Sewage treatment method and system for realizing in-situ improvement of treatment scale
JP2021186729A (en) * 2020-05-28 2021-12-13 王子ホールディングス株式会社 Wastewater treatment system and wastewater treatment method

Also Published As

Publication number Publication date
JP4529670B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
JP4492268B2 (en) Biological treatment equipment
JP4529670B2 (en) Biological treatment equipment
JP2005279447A (en) Water treatment method and apparatus
JP2008264772A (en) Membrane separation activated sludge apparatus and treatment method of organic substance-containing water
KR100927629B1 (en) Wastewater treatment method and device
KR100992827B1 (en) Cleaning system for waste-water purifier
JP4591678B2 (en) Biological treatment equipment
JP6184541B2 (en) Sewage treatment apparatus and sewage treatment method using the same
AU2006300978B2 (en) SAF system and method involving specific treatments at respective stages
WO2003043941A1 (en) Apparatus and method for treating organic waste water
JP2001276892A (en) Drain treatment device
JP2014000495A (en) Sewage treatment apparatus, and sewage treatment method using the same
JP2006205155A (en) Anaerobic tank and waste water treatment system including the same
US4014767A (en) Self-contained waste disposal system including self-cleaning filter
KR101163098B1 (en) Method for Treating Wastewater Using Membrane Coupled Fluidized-Bed Sequencing Batch Reactor
KR101204395B1 (en) The apparatus to treat municipal and industrial wastewater
JP4611334B2 (en) Organic wastewater treatment method and apparatus
KR100574672B1 (en) the treatment unit of sewage and wastewater using membrane bio reactor
JP2002346591A (en) Sewage treatment apparatus and operation method therefor
JP2006055849A (en) Apparatus and method for treating organic waste water
KR101181800B1 (en) The method and apparatus to treat municipal and industrial wastewater
JP2005334679A (en) Membrane separator
JP4335193B2 (en) Method and apparatus for treating organic wastewater
CN212246683U (en) Industrial organic wastewater sectional treatment device
JP2017189769A (en) Wastewater treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees