JP2002102606A - Water treatment device - Google Patents

Water treatment device

Info

Publication number
JP2002102606A
JP2002102606A JP2000302415A JP2000302415A JP2002102606A JP 2002102606 A JP2002102606 A JP 2002102606A JP 2000302415 A JP2000302415 A JP 2000302415A JP 2000302415 A JP2000302415 A JP 2000302415A JP 2002102606 A JP2002102606 A JP 2002102606A
Authority
JP
Japan
Prior art keywords
batch tank
water
discharge
water level
supernatant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000302415A
Other languages
Japanese (ja)
Other versions
JP4510261B2 (en
Inventor
Masanori Kobari
昌則 小針
Yoichi Hamamoto
洋一 浜本
Yoshinori Oki
芳紀 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishihara Environment Co Ltd
Original Assignee
Nishihara Environmental Sanitation Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishihara Environmental Sanitation Research Corp filed Critical Nishihara Environmental Sanitation Research Corp
Priority to JP2000302415A priority Critical patent/JP4510261B2/en
Publication of JP2002102606A publication Critical patent/JP2002102606A/en
Application granted granted Critical
Publication of JP4510261B2 publication Critical patent/JP4510261B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment device in which an overflow amount is made constant and the rising of a sludge is prevented. SOLUTION: The water treatment device comprises a batch tank 1 provided with a flow-in means 6 and a discharge means 7; a supernatant discharge means 5 for introducing a supernatant to the discharge means 7; a driving means 4 for moving the supernatant discharge means 5; a batch tank water level measuring means 2 for measuring a water level in the batch tank; and a discharge control means 3 for controlling the driving means 4. A means for operating a descending amount of the supernatant discharge means based on an algorithm expressing a relationship of the water level in the batch tank and a discharge time of the processing water by inputting an output signal from the batch tank water level measuring means 2 to the discharge control means 5 is provided. The supernatant discharge means 5 is moved between the set highest position and the lowest position of the water level in the batch tank. It is preferable that a landing detection means for detecting that the supernatant discharge means 5 lands on the water level in the batch tank and a batch tank sludge interface measuring means for measuring a sludge interface are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回分式水処理装置
に関し、特に、放流水質の向上を図ることが可能となる
回分式水処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a batch type water treatment apparatus and, more particularly, to a batch type water treatment apparatus capable of improving the quality of discharged water.

【0002】[0002]

【従来の技術】従来の回分式水処理装置における上澄水
排出装置には、フロートアーム型に分類される例とし
て、特公昭59-1362号公報に示される構造を有するもの
がある。
2. Description of the Related Art As an example of a supernatant water discharge device in a conventional batch-type water treatment device, there is a device having a structure disclosed in Japanese Patent Publication No. 59-1362, as an example classified as a float arm type.

【0003】このフロートアーム型上澄水排出装置の稼
働においては、排出工程での処理水排出時に、アーム位
置によって、上澄水排出手段の下降速度が変化する。そ
こで、機械的にアーム位置を検出し、アーム位置が変化
する都度、下降速度を変化させることで、上澄水排出装
置の下降速度をなるべく一定に保つようにして越流量の
変化を少なくする。この機械的なアーム位置の検出は、
検出スイッチによって行われ、検出スイッチの個数によ
って精度が決定される。
[0003] In the operation of the float arm type supernatant water discharge device, the lowering speed of the supernatant water discharge means changes depending on the arm position when the treated water is discharged in the discharge step. Therefore, by mechanically detecting the arm position and changing the descending speed each time the arm position changes, the descending speed of the supernatant water discharging device is kept as constant as possible to reduce the change in the overflow rate. The detection of this mechanical arm position
This is performed by the detection switches, and the accuracy is determined by the number of the detection switches.

【0004】また、フロートアーム型上澄水排出装置
は、フロートアーム型上澄水排出装置が下降するに従
い、越流量が増加する機械的特性を有する。これは、鉛
直方向の速度成分が、アームの速度v、およびアームの
水平方向に対する角度θとから、vcosθで表され
(θ:90°〜0°)、排出終了水位に近づく程(θが
小さくなる程)、越流速度が増大するためである。回分
槽下部に活性汚泥が沈降するが、沈降性の悪い活性汚泥
では活性汚泥界面が高い位置にある。このような沈降性
の悪い活性汚泥によって、活性汚泥界面が高い位置にあ
った場合では、越流量の増加に伴って、上澄水と共に活
性汚泥の一部が巻き込まれ、活性汚泥が流出することが
ある。あるいは、上澄水排出が進んで、回分槽内に形成
された活性汚泥界面が、排出終了水位近傍にあった場
合、上澄水と共に活性汚泥の一部が巻き込まれ、活性汚
泥が流出することがある。活性汚泥の流出は処理水を悪
化させ、水処理装置において望ましくない。従って、排
水終了水位近傍では、下降速度の微調整が望まれる。し
かし、フロートアーム型上澄水排出装置は、前述のよう
に排出終了水位に近づく程、下降速度が増加するので、
微調整が困難である。
[0004] The float arm type supernatant water discharger has a mechanical characteristic that the overflow amount increases as the float arm type supernatant water discharger descends. This is expressed as vcosθ (θ: 90 ° to 0 °) from the vertical velocity component of the arm and the angle θ of the arm with respect to the horizontal direction. As the vertical velocity component approaches the discharge end water level (θ becomes smaller). This is because the overflow speed increases. Activated sludge settles at the lower part of the batch tank, but activated sludge with poor sedimentation has a high activated sludge interface. When the activated sludge interface is at a high position due to such poorly sedimented activated sludge, a part of the activated sludge may be entrained along with the supernatant water with the increase in overflow, and the activated sludge may flow out. is there. Alternatively, when the supernatant water discharge proceeds and the activated sludge interface formed in the batch tank is near the discharge end water level, a part of the activated sludge is involved with the supernatant water, and the activated sludge may flow out. . The outflow of activated sludge degrades the treated water and is undesirable in water treatment equipment. Therefore, near the drainage end water level, fine adjustment of the descending speed is desired. However, as the float arm type supernatant water discharger approaches the discharge end water level as described above, the descending speed increases,
Fine adjustment is difficult.

【0005】また、従来のフロートアーム型上澄水排出
装置の制御は、下降速度多段切換式により、変速段数は
2ないし4段であり、段数が限られる。そのため、排出
工程時間を処理水量(回分槽水位)に対応させることが
できない。このため、一般的には、最大処理水量を排出
できるように、排出工程時間を最大に設定する必要があ
り、無駄時間を生じ、さらには、処理水量が少なくなっ
た(回分槽水位が低くなった)時点で、撹拌・曝気工程
や沈殿工程に早く入りたい場合でも、前記理由により排
出工程時間を最大に設定しているために、撹拌・曝気工
程や沈殿工程を長くできないという問題もあった。
[0005] In addition, the control of the conventional float arm type supernatant water discharge device is performed by a descending speed multi-stage switching type, and the number of shift stages is two to four, and the number of stages is limited. Therefore, the discharge process time cannot be made to correspond to the treated water amount (batch tank water level). For this reason, generally, it is necessary to set the discharge process time to the maximum so that the maximum treated water amount can be discharged, which causes waste time and further reduces the treated water amount (the batch tank water level becomes lower). At that time, even if it is desired to enter the stirring / aeration step or the precipitation step early, there is also a problem that the stirring / aeration step and the precipitation step cannot be lengthened because the discharge step time is set to the maximum for the above-described reason. .

【0006】さらに、従来のフロートアーム型上澄水排
出装置は、回分槽水位を排出工程時に活用しないオープ
ンループ制御であるために、越流量が時間と共に増大す
る傾向があった。
[0006] Further, the conventional float arm type supernatant water discharge apparatus has an open loop control in which the batch tank water level is not utilized in the discharge step, so that the overflow rate tends to increase with time.

【0007】また、上記従来技術では下降速度多段切換
式を採用しているものの、変速段数が有限のために、排
出工程終了時の水位近傍では、フロートアーム型上澄水
排出手段の下降速度が大きくなるという欠点が改善され
ていなかった。
In the above prior art, although the descending speed multi-stage switching type is adopted, the descending speed of the float arm type supernatant water discharging means is large near the water level at the end of the discharging step because the number of shift steps is limited. The disadvantage of becoming was not improved.

【0008】[0008]

【発明が解決しようとする課題】本発明は、越流量を一
定にし、汚泥の巻き上げを防止する回分式水処理装置を
提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a batch type water treatment apparatus which makes the overflow rate constant and prevents sludge from being rolled up.

【0009】本発明は、フロートアーム型やフロートガ
イド型の上澄水排出手段の下降速度を水面位置に応じて
制御することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to control a descending speed of a supernatant water discharging means of a float arm type or a float guide type according to a water surface position.

【0010】[0010]

【課題を解決するための手段】このような課題を解決す
るために、回分槽水位を計測し、上澄水排出手段の下降
速度を任意に制御することで、回分槽からの越流量を制
御する。
In order to solve such a problem, the overflow rate from the batch tank is controlled by measuring the batch tank water level and arbitrarily controlling the descending speed of the supernatant water discharging means. .

【0011】すなわち、本発明の回分式水処理装置は、
流入手段および排水手段を備えた回分槽と、上澄水を排
水手段に導くための上澄水排出手段と、上澄水排出手段
を動かす駆動手段と、回分槽水位を計測する回分槽水位
計測手段と、駆動手段を制御する排出制御手段とからな
る。前記排出制御手段に、回分槽水位計測手段からの出
力信号を入力して、回分槽水位と、処理水の排出時間と
の関係を表現したアルゴリズムに基づいて、上澄水排出
手段の下降量を演算する手段を設ける。
That is, the batch type water treatment apparatus of the present invention comprises:
Batch tank with inflow means and drainage means, supernatant water discharge means for guiding the supernatant water to the drainage means, driving means to move the supernatant water discharge means, batch tank water level measurement means for measuring the batch tank water level, Discharge control means for controlling the driving means. An output signal from the batch tank water level measurement means is input to the discharge control means, and the descending amount of the supernatant water discharge means is calculated based on an algorithm expressing the relationship between the batch tank water level and the discharge time of the treated water. A means for performing this is provided.

【0012】上澄水排出手段は、回分槽水位の設定され
た最高位置と最低位置との間を移動するようになってお
り、上澄水排出手段が回分槽水位に着水したことを検知
する着水検知手段を有し、上澄水排出手段が着水したこ
とを検知する着水検知手段からの出力信号を、前記排出
制御手段に入力できるようにすることが好ましい。
The supernatant water discharge means moves between the highest position and the lowest position where the batch tank water level is set, and the landing water detecting means detects that the supernatant water discharge means has reached the batch tank water level. It is preferable that an output signal from the water landing detecting means for detecting that the supernatant water discharging means has water is provided to the drain control means.

【0013】汚泥界面を計測する回分槽汚泥界面計測手
段を有し、前記排出制御手段に、回分槽汚泥界面計測手
段からの出力信号を入力できるようにすることが好まし
い。演算には、PID制御を取り入れるのが好ましい。
制御因子は、回分槽水位及び汚泥界面位置である。
[0013] It is preferable to have a batch tank sludge interface measuring means for measuring a sludge interface, and to be able to input an output signal from the batch tank sludge interface measuring means to the discharge control means. The calculation preferably incorporates PID control.
Control factors are batch tank water level and sludge interface position.

【0014】[0014]

【発明の実施の形態】本発明の回分式水処理装置は、図
1に示すように、被処理水を収容し、水の浄化を行う回
分槽1(寸法:例えば、6800mm×6800mm×有効水深5000m
m)に、上澄水排出手段5と、上澄水排出手段5を動かす
駆動手段4と、回分槽水位を計測して排出制御手段3に
出力する回分槽水位計測手段2と、回分槽水位計測手段
2からの信号を受け、駆動手段4に出力する排出制御手
段3と、流入手段6と、排水手段7とを備える。また、
回分槽水位計測手段2は、上澄水排出手段5の着水位置
を検知する機能も有することが好ましく、出力信号は排
出制御手段3に出力する。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in FIG. 1, a batch type water treatment apparatus according to the present invention is a batch tank 1 (dimensions :, for example, 6800 mm × 6800 mm × effective water depth) for storing and purifying water to be treated. 5000m
m), a supernatant water discharging means 5, a driving means 4 for moving the supernatant water discharging means 5, a batch tank water level measuring means 2 for measuring the batch tank water level and outputting it to the discharge control means 3, and a batch tank water level measuring means The apparatus includes a discharge control unit 3 that receives a signal from the control unit 2 and outputs the signal to the drive unit 4, an inflow unit 6, and a drain unit 7. Also,
The batch tank water level measuring means 2 preferably also has a function of detecting the landing position of the supernatant water discharging means 5, and outputs an output signal to the discharge control means 3.

【0015】上澄水排出手段5は、上澄水を排出手段に
導くために、特公昭59−1362号公報のように構成
され、最高位置と最低位置の間で、駆動装置4により下
降量調整可能に上下できる。
The supernatant water discharge means 5 is configured as shown in Japanese Patent Publication No. 59-1362 to guide the supernatant water to the discharge means, and the amount of descent can be adjusted by the drive unit 4 between the highest position and the lowest position. Can go up and down.

【0016】駆動装置4は、該上澄水排出手段5が常に
水平であり、上下方向に移動できるように、例えば同期
式電動機の回転を直線運動に変換する機構を備える。
The driving device 4 is provided with a mechanism for converting, for example, the rotation of a synchronous motor into a linear motion so that the supernatant water discharging means 5 is always horizontal and can move up and down.

【0017】回分槽水位計測手段2は、回分槽1の最低
水位より下に設置する圧力感知式の水位計や、回分槽上
部より発信した超音波が水面で反射する往復時間を測定
して、水位に換算して計測する方式の装置などでよい。
The batch tank water level measuring means 2 measures a pressure sensing type water level meter installed below the lowest water level of the batch tank 1 and a round trip time when ultrasonic waves transmitted from the upper part of the batch tank are reflected on the water surface. An apparatus of a type that measures by converting to a water level may be used.

【0018】図4に、排出制御手段3の構成ブロック図
を示した。
FIG. 4 is a block diagram showing the structure of the discharge control means 3. As shown in FIG.

【0019】排出制御手段3には、データ収集部101
と、演算部102と、制御信号変換部103と、工程制
御部104と、パラメータ設定部105と、信号接点出
力部106とを備える。具体的には、電子演算回路で実
現してもよいし、市販の電子計算機とソフトウェアおよ
び適当なプログラムにより実現してもよい。
The emission control means 3 includes a data collection unit 101
, An operation unit 102, a control signal conversion unit 103, a process control unit 104, a parameter setting unit 105, and a signal contact output unit 106. Specifically, it may be realized by an electronic arithmetic circuit, or may be realized by a commercially available electronic computer, software, and an appropriate program.

【0020】前記回分槽水位計測手段2は、データ収集
部101と接続しており、データを記憶する。後述する
回分槽汚泥界面計測手段を付設する場合にも、同様に、
データ収集部101に接続する。データ収集部101か
らの回分槽水位の信号と、パラメータ設定部105から
の設定排出時間と、工程制御部104からの排出工程信
号とにより、演算部102において、上澄水排出手段5
の適切な下降量を算出する。
The batch tank water level measuring means 2 is connected to the data collecting unit 101 and stores data. Similarly, when a batch tank sludge interface measuring means described later is provided,
Connect to data collection unit 101. The arithmetic unit 102 uses the signal of the batch tank water level from the data collection unit 101, the set discharge time from the parameter setting unit 105, and the discharge process signal from the process control unit 104 to calculate the supernatant water
Calculate an appropriate descending amount of.

【0021】下降量は、制御信号変換部103へ入力さ
れ、制御信号に変換した後、駆動手段4へ出力する。ま
た工程制御部104から、上澄水排出手段5の上昇・下
降信号が、信号接点出力部106を経由して駆動手段4
へ出力される。
The lowering amount is input to the control signal converter 103, converted into a control signal, and then output to the driving means 4. In addition, the process control unit 104 sends an ascending / descending signal of the supernatant water discharging unit 5 via the signal contact output unit 106 to the driving unit
Output to

【0022】下降量の算出は、工程制御部104におい
て排出工程中、上澄水排出手段5が下降を始めてから、
上澄水排出手段5の着水検知を回分槽水位計測手段2か
らの出力信号の変化から検知すると同時に、開始する。
適切な下降量は、現在の回分槽水位と、パラメータ設定
部105から出力される設定排出時間とを用いて、後述
する実施例1のように算出する。
The amount of descent is calculated by the process controller 104 during the discharging step, after the supernatant water discharging means 5 starts to descent.
The detection of the landing of the supernatant water discharge means 5 is started at the same time as the detection of the change in the output signal from the batch tank water level measuring means 2.
The appropriate descending amount is calculated using the current batch tank water level and the set discharge time output from the parameter setting unit 105 as in the first embodiment described later.

【0023】本発明の回分式水処理装置では、以上のよ
うに、回分槽水位を計測して排出制御手段3に出力し、
排出制御手段3で目標値・制御量を演算し、排出時間を
設定して、上澄水排出手段5の制御量を変化させて越流
量を制御するので、良好な処理水の排出を行うことがで
きる。
In the batch type water treatment apparatus of the present invention, the batch tank water level is measured and output to the discharge control means 3 as described above.
Since the discharge control means 3 calculates the target value / control amount, sets the discharge time, and changes the control amount of the supernatant water discharge means 5 to control the overflow rate, it is possible to discharge the treated water satisfactorily. it can.

【0024】図2に示した本発明の回分式水処理装置の
異なる実施例では、回分槽水位を計測して排出制御手段
3に出力する回分槽水位計測手段2の出力信号の他に、
上澄水排出手段5の着水を水位変化により検知し、出力
信号を排出制御手段3に出力する上澄水排出手段5の着
水を検知する着水検知手段8を回路として備える。着水
検知手段8は、上記の回分槽水位計測手段2を用いた方
法でもよいし、あるいは、上澄水排出手段5に取り付け
られ、フロートと検出スイッチから構成されてもよい。
その他の構成、動作および適切な下降量の算出について
は図1に示した実施例と同様にする。
In a different embodiment of the batch type water treatment apparatus of the present invention shown in FIG. 2, in addition to the output signal of the batch tank water level measuring means 2 which measures the batch tank water level and outputs it to the discharge control means 3,
A circuit for detecting the landing of the supernatant water discharge means 5 based on a change in the water level and outputting an output signal to the discharge control means 3 is provided as a circuit. The landing detection means 8 may be a method using the above-mentioned batch tank water level measurement means 2 or may be attached to the supernatant water discharge means 5 and may be constituted by a float and a detection switch.
Other configurations, operations, and calculation of an appropriate descending amount are the same as those in the embodiment shown in FIG.

【0025】図3に示した本発明の回分式水処理装置の
異なる実施例では、汚泥界面10を計測して排出制御手
段3に出力する回分槽汚泥界面計測手段9を備える。回
分槽汚泥界面計測手段9は、例えば、(株)西原環境衛
生研究所製の「NU−AL」自動汚泥界面計でよい。こ
れは、超音波の減衰量が汚泥界面10の変化に対して、
比例関係にあることを利用して、内蔵モータが作動して
センサーを上下させ、センサー位置(界面)を出力する
構成である。あるいは、汚泥界面10が測定できて、出
力できる構成であればよい。その他の構成、動作につい
ては図1、2に示した実施例と同様にする。そして、適
切な下降量の算出に、回分槽汚泥界面計測手段9が計測
した汚泥界面10を加味し、後述する実施例2のように
算出する。
A different embodiment of the batch type water treatment apparatus of the present invention shown in FIG. 3 is provided with a batch tank sludge interface measuring means 9 for measuring a sludge interface 10 and outputting it to the discharge control means 3. The batch tank sludge interface measuring means 9 may be, for example, an “NU-AL” automatic sludge interface meter manufactured by Nishihara Environmental Sanitation Laboratory. This is because the amount of attenuation of the ultrasonic wave is
Utilizing the proportional relationship, the built-in motor operates to move the sensor up and down and output the sensor position (interface). Alternatively, any configuration can be used as long as the sludge interface 10 can be measured and output. Other configurations and operations are the same as those of the embodiment shown in FIGS. Then, the sludge interface 10 measured by the batch tank sludge interface measuring means 9 is added to the calculation of the appropriate descent amount, and the calculation is performed as in Example 2 described later.

【0026】本発明の回分式水処理装置での水処理運転
工程は下記の方法による。
The water treatment operation process in the batch type water treatment apparatus of the present invention is performed by the following method.

【0027】回分槽1へ汚水が流入手段6から投入さ
れ、撹拌・曝気工程、沈殿工程を経て、排出工程で上澄
水が上澄水排出手段5を経由して排水手段7から排水さ
れる。排出制御手段3は、排出工程において、回分槽1
に設置された回分槽水位計測手段2から回分槽水位を得
て、予め設定された排出時間から、上澄水排出手段5の
適切な単位時間当たりの下降量すなわち下降速度を算出
する。その下降速度となるように、排出制御手段3から
駆動手段4へ制御量が出力され、上澄水排出手段5の速
度制御を行なう。具体的には、駆動装置4の電動機の回
転数により速度制御する。排出工程終了時には、上澄水
排出手段5を上昇させ、排出工程を終了する。
Sewage is fed into the batch tank 1 from the inflow means 6, passes through a stirring / aeration step and a sedimentation step, and in a discharge step, supernatant water is drained from the drainage means 7 via the supernatant water discharge means 5. The discharge control means 3 controls the batch tank 1 in the discharge step.
The batch tank water level is obtained from the batch tank water level measuring means 2 installed in the apparatus, and an appropriate amount of descent of the supernatant water discharging means 5 per unit time, that is, a descent speed, is calculated from a preset discharge time. A control amount is output from the discharge control means 3 to the drive means 4 so that the descending speed is attained, and the speed control of the supernatant water discharge means 5 is performed. Specifically, the speed is controlled by the number of rotations of the electric motor of the driving device 4. At the end of the discharging step, the supernatant water discharging means 5 is raised to end the discharging step.

【0028】以下に、本発明の実施例について説明す
る。
An embodiment of the present invention will be described below.

【0029】(実施例1)図1に示した回分式水処理装
置を用いて、上澄水排出手段5の越流量一定制御運転を
行った。
(Example 1) The batch water treatment apparatus shown in FIG. 1 was used to carry out a constant overflow flow control operation of the supernatant water discharging means 5.

【0030】図5は、回分式水処理装置の越流負荷一定
制御運転時の回分槽水位の経時変化を説明するための概
念図である。排出工程中の排出時間と回分槽水位変化に
着目して図示している。
FIG. 5 is a conceptual diagram for explaining a temporal change of the batch tank water level during the constant overflow load control operation of the batch type water treatment apparatus. The figure focuses on the discharge time and the change in the batch tank water level during the discharge process.

【0031】HWLは排出工程開始時の回分槽高水位であ
り、LWLは排出工程終了時の回分槽排出水位である。t1
は上澄水排出手段5の下降開始から着水までの時間であ
り、上澄水排出手段5が空中を移動する時間である。t2
は着水から排出終了までの時間であり、このt2の間に越
流負荷一定制御を行う。排出工程中の回分槽の水位低下
を監視することにより、上澄水排出手段5の着水を検知
し、着水から排出終了までの時間t2を算出する。
HWL is the batch tank high water level at the start of the discharge step, and LWL is the batch tank discharge water level at the end of the discharge step. t1
Is the time from the start of lowering of the supernatant water discharge means 5 to the landing, and the time during which the supernatant water discharge means 5 moves in the air. t2
Is the time from landing to the end of discharge, and during this time t2, the overflow load constant control is performed. By monitoring the decrease in the water level of the batch tank during the discharging step, the landing of the supernatant water discharging means 5 is detected, and the time t2 from the landing to the end of discharging is calculated.

【0032】越流負荷を一定にするということは、回分
槽が直方体の場合には回分槽水位の時間変化を一定にす
ることと等価であるから、
To make the overflow load constant is equivalent to making the time change of the batch tank water level constant when the batch tank is a rectangular parallelepiped.

【数1】 となる。ただし、ΔHは微小水位変化、Δtは微小時間変
化である。
(Equation 1) Becomes Here, ΔH is a minute water level change, and Δt is a minute time change.

【0033】以下に、速度形制御・位置形制御につい
て、説明する。
Hereinafter, the speed type control and the position type control will be described.

【0034】速度形制御の場合には、HWLからLWLまでの
平均の回分槽水位変化速度は前記(数1)で表され、回
分槽高水位HWL、回分槽排出水位LWL、設定排出時間Td、
下降開始から着水までの時間t1を用いて書き換えると、
In the case of the speed type control, the average batch tank water level change speed from HWL to LWL is expressed by the above (Equation 1), and the batch tank high water level HWL, the batch tank discharge water level LWL, the set discharge time Td,
When rewriting using the time t1 from the start of descent to landing,

【数2】 となる。(数2)の一定値が、処理水排出時に目標とす
べき平均勾配である。
(Equation 2) Becomes The constant value of (Equation 2) is the average gradient to be targeted when the treated water is discharged.

【0035】上澄水排出手段5の着水以降、(数2)の
一定値を目標値(SV)とし、制御周期毎に計測されたΔH
から、ΔH/Δtを演算した結果をプロセス値(PV)とし、
駆動手段4をPID制御した。
After the landing of the supernatant water discharge means 5, the constant value of (Equation 2) is set as the target value (SV), and ΔH measured in each control cycle is calculated.
From the above, the result of calculating ΔH / Δt is defined as the process value (PV),
The driving means 4 was subjected to PID control.

【0036】位置形制御の場合には、時刻tでの回分槽
目標水位H(t)が、上澄水排出手段5の下降開始からの時
間tの関数になり、
In the case of the position type control, the batch tank target water level H (t) at the time t is a function of the time t from the start of the descending of the supernatant water discharge means 5,

【数3】 となる。(Equation 3) Becomes

【0037】上澄水排出手段5の着水以降、(数3)に
よって与えられる回分槽目標水位H(t)を目標値(SV)と
し、制御周期毎に回分槽水位計測手段2により得られる
回分槽水位をプロセス値(PV)とし、駆動手段4をPID制
御した。
After the landing of the supernatant water discharge means 5, the batch tank target water level H (t) given by (Equation 3) is set as a target value (SV), and the batch volume obtained by the batch tank water level measurement means 2 for each control cycle. The tank water level was used as the process value (PV), and the driving means 4 was controlled by PID.

【0038】図6は、水処理装置の越流負荷一定制御運
転時の回分槽水位の経時変化を示すグラフである。回分
槽初期水位が6.9[m]、5.8[m]の両者について、設定排出
時間を105分とし、越流負荷一定制御を行った。速度形
制御および位置形制御のいずれにおいても結果は同じ
で、初期水位が1.1[m]異なるにも関わらず、排出時間の
等しいことが判る。
FIG. 6 is a graph showing the change over time in the batch tank water level during the constant overflow load control operation of the water treatment apparatus. For both the batch tank initial water level of 6.9 [m] and 5.8 [m], the set discharge time was 105 minutes and the overflow load constant control was performed. The results are the same in both the velocity type control and the position type control, and it can be seen that the discharge time is the same even though the initial water level differs by 1.1 [m].

【0039】本実施例においては回分槽形状が直方体で
あったが、回分槽形状が直方体以外でも、前記速度形制
御・位置形制御のいずれも適用可能である。ただし、水
平断面積が一定でない場合には、回分槽水位の下降速度
が一定であっても、越流量が一定とは限らない。
In this embodiment, the shape of the batch tank is a rectangular parallelepiped, but any of the above-described speed-type control and position-type control can be applied to a batch tank other than a rectangular parallelepiped. However, when the horizontal cross-sectional area is not constant, the overflow amount is not always constant even if the descending speed of the batch tank water level is constant.

【0040】(実施例2)図3に示した回分式水処理装
置を用いて、排出制御手段3に、回分槽水位計測手段2
からの計測信号と、回分槽汚泥界面計測手段9からの計
測信号とを入力し、汚泥界面に近いほど、上澄水排出手
段5の下降速度を減速させて、越流量を減少する運転を
行った。ただし、汚泥界面はLWLより低い(LWL≧DWL)
ことが必要である。
(Embodiment 2) Using the batch type water treatment apparatus shown in FIG.
And the measurement signal from the batch tank sludge interface measuring means 9 were input, and the lowering speed of the supernatant water discharging means 5 was reduced so as to be closer to the sludge interface, and an operation to reduce the overflow was performed. . However, sludge interface is lower than LWL (LWL ≧ DWL)
It is necessary.

【0041】時刻tでの回分槽目標水位H'(t)が、上澄水
排出手段5の下降開始からの時間tおよび汚泥界面の水
位DWLの関数であり、
The batch tank target water level H ′ (t) at time t is a function of the time t from the start of lowering of the supernatant water discharge means 5 and the water level DWL at the sludge interface,

【数4】 とした。ただし、kは調整パラメータである。(Equation 4) And Here, k is an adjustment parameter.

【0042】上澄水排出手段5の着水以降、時間tと汚
泥界面水位DWLによる(数4)で与えられる回分槽目標
水位を目標値(SV)とし、制御周期毎に計測される回分槽
水位をプロセス値(PV)とし、駆動手段4をPID制御し
た。(数4)は、汚泥界面水位DWLが高い場合には、早
めに減速し、汚泥界面DWLが低い場合には、減速がほと
んどないように設定されている。
After the landing of the supernatant water discharge means 5, the batch tank target water level given by the time t and the sludge interface water level DWL (Equation 4) is set as a target value (SV), and the batch tank water level measured at each control cycle. Is a process value (PV), and PID control of the driving means 4 is performed. (Equation 4) is set so that when the sludge interface water level DWL is high, the deceleration is early, and when the sludge interface DWL is low, there is almost no deceleration.

【0043】図7は、回分槽汚泥界面計測手段9を併用
した回分式水処理装置の制御運転時の回分槽水位の経時
変化を示すグラフである。汚泥の沈降性がよい場合(a)
でも、悪い場合(b)でも、排出時間の等しいことが分か
る。
FIG. 7 is a graph showing the change over time in the batch tank water level during the control operation of the batch type water treatment apparatus using the batch tank sludge interface measuring means 9 together. When the sedimentation of sludge is good (a)
However, even in the bad case (b), it can be seen that the discharge time is equal.

【0044】上澄水の排出による汚泥巻き上げはほとん
ど見られなかった。従って、汚泥界面の上昇に伴う汚泥
流出が防止できた。
Little lifting of sludge due to discharge of supernatant water was observed. Therefore, sludge outflow accompanying the rise of the sludge interface could be prevented.

【0045】また、回分槽汚泥界面計測手段9の出力の
変化により、上澄水排出手段5の下降を停止し、汚泥流
出を防止する運転も可能である。これにより、バルキン
グ等による汚泥界面の上昇に伴う汚泥流出による排出水
の水質悪化を未然に防止することができる。
Further, it is possible to stop the descending of the supernatant water discharging means 5 by the change of the output of the batch tank sludge interface measuring means 9 so as to prevent the sludge from flowing out. As a result, it is possible to prevent the water quality of the discharged water from being deteriorated due to the sludge flowing out due to the rise of the sludge interface due to bulking or the like.

【0046】[0046]

【発明の効果】本発明によれば以下の効果がある。According to the present invention, the following effects can be obtained.

【0047】(1)一定の越流量で上澄水を排出するこ
とができる。
(1) The supernatant water can be discharged at a constant overflow flow rate.

【0048】(2)任意の排出時間を設定できるので、
撹拌・曝気工程、沈殿工程の設定時間を長めに設定でき
る。そのため、高負荷時の対応範囲が拡大する。
(2) Since any discharge time can be set,
The setting time of the stirring / aeration step and the precipitation step can be set longer. Therefore, the range of response under a high load is expanded.

【0049】(3)汚泥巻き上げが少なくなり水質が向
上する。さらに、回分槽汚泥界面計測手段を併用するこ
とにより、汚泥界面の上昇に伴う汚泥流出による排出水
質悪化を未然に防止可能となる。
(3) Sludge roll-up is reduced and water quality is improved. Furthermore, the combined use of the batch tank sludge interface measuring means makes it possible to prevent the quality of the discharged water from deteriorating due to the sludge flowing out due to the rise of the sludge interface.

【0050】(4)上澄水排出手段の着水検出が回分槽
水位計で代替できる。また、本発明は水処理装置以外で
も、排出速度を一定に保ちたいような液体排出装置にも
適用可能である。
(4) The detection of the landing of the supernatant water discharge means can be replaced by a batch tank water level gauge. Further, the present invention can be applied to a liquid discharge device that wants to keep a discharge speed constant, other than the water treatment device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の回分式水処理装置の一実施例を示す
概略縦断面図である。
FIG. 1 is a schematic longitudinal sectional view showing one embodiment of a batch type water treatment apparatus of the present invention.

【図2】 本発明の回分式水処理装置の異なる実施例を
示す概略縦断面図である。
FIG. 2 is a schematic vertical sectional view showing another embodiment of the batch type water treatment apparatus of the present invention.

【図3】 本発明の回分式水処理装置の異なる実施例を
示す概略縦断面図である。
FIG. 3 is a schematic longitudinal sectional view showing another embodiment of the batch type water treatment apparatus of the present invention.

【図4】 本発明の回分式水処理装置の排出制御手段の
一実施例を示す構成ブロック図である。
FIG. 4 is a configuration block diagram showing one embodiment of a discharge control means of the batch type water treatment apparatus of the present invention.

【図5】 越流負荷一定制御運転の概念図である。FIG. 5 is a conceptual diagram of an overflow load constant control operation.

【図6】 本発明の回分式水処理装置による越流負荷一
定制御運転時のグラフである。
FIG. 6 is a graph at the time of an overflow load constant control operation by the batch type water treatment apparatus of the present invention.

【図7】 本発明の回分式水処理装置において、回分槽
汚泥界面計測手段を併用した制御運転時のグラフであ
る。
FIG. 7 is a graph of a batch type water treatment apparatus of the present invention during a control operation using a batch tank sludge interface measuring means.

【符号の説明】[Explanation of symbols]

1 回分槽 2 回分槽水位計測手段 3 排出制御手段 4 駆動手段 5 上澄水排出手段 6 流入手段 7 排水手段 8 着水検知手段 9 回分槽汚泥界面計測手段 10 汚泥界面 101 データ収集部 102 演算部 103 制御信号変換部 104 工程制御部 105 パラメータ設定部 106 信号接点出力部 1 batch tank 2 batch tank water level measurement means 3 discharge control means 4 drive means 5 supernatant water discharge means 6 inflow means 7 drainage means 8 water landing detection means 9 batch tank sludge interface measurement means 10 sludge interface 101 data collection unit 102 arithmetic unit 103 Control signal conversion unit 104 Process control unit 105 Parameter setting unit 106 Signal contact output unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 流入手段および排水手段を備えた回分槽
と、上澄水を排水手段に導くための上澄水排出手段と、
上澄水排出手段を動かす駆動手段と、回分槽水位を計測
する回分槽水位計測手段と、駆動手段を制御する排出制
御手段とからなる回分式水処理装置において、前記排出
制御手段に、回分槽水位計測手段からの出力信号を入力
して、回分槽水位と、処理水の排出時間との関係を表現
したアルゴリズムに基づいて、上澄水排出手段の下降量
を演算する手段を設けたことを特徴とする回分式水処理
装置。
A batch tank provided with an inflow means and a drainage means, a supernatant water discharge means for guiding the supernatant water to the drainage means,
In a batch type water treatment apparatus comprising a driving means for moving a supernatant water discharging means, a batch tank water level measuring means for measuring a batch tank water level, and a discharge control means for controlling the driving means, the discharge control means includes a batch tank water level. An output signal from the measuring means is input, and a means for calculating a descending amount of the supernatant water discharging means is provided based on an algorithm expressing a relationship between a batch tank water level and a treated water discharging time. Batch type water treatment equipment.
【請求項2】 上澄水排出手段が回分槽水位に着水した
ことを検知する着水検知手段を有し、上澄水排出手段が
着水したことを検知する着水検知手段からの出力信号
を、前記排出制御手段に入力できるようにしたことを特
徴とする請求項1に記載の回分式水処理装置。
2. The apparatus according to claim 1, wherein the supernatant water discharge means has a water landing detection means for detecting that water has reached the batch tank water level, and outputs an output signal from the water landing detection means for detecting that the supernatant water discharge means has landed. 2. A batch type water treatment apparatus according to claim 1, wherein said apparatus can be inputted to said discharge control means.
【請求項3】 汚泥界面を計測する回分槽汚泥界面計測
手段を有し、排出制御手段に、回分槽汚泥界面計測手段
からの出力信号を入力できるようにしたことを特徴とす
る請求項1または請求項2に記載の回分式水処理装置。
3. A batch tank sludge interface measuring means for measuring a sludge interface, wherein an output signal from the batch tank sludge interface measuring means can be inputted to the discharge control means. The batch type water treatment apparatus according to claim 2.
JP2000302415A 2000-10-02 2000-10-02 Batch water treatment system Expired - Lifetime JP4510261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000302415A JP4510261B2 (en) 2000-10-02 2000-10-02 Batch water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000302415A JP4510261B2 (en) 2000-10-02 2000-10-02 Batch water treatment system

Publications (2)

Publication Number Publication Date
JP2002102606A true JP2002102606A (en) 2002-04-09
JP4510261B2 JP4510261B2 (en) 2010-07-21

Family

ID=18783769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000302415A Expired - Lifetime JP4510261B2 (en) 2000-10-02 2000-10-02 Batch water treatment system

Country Status (1)

Country Link
JP (1) JP4510261B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167550A (en) * 2004-12-14 2006-06-29 Kurita Water Ind Ltd Biological treatment apparatus
CN104302373A (en) * 2012-04-27 2015-01-21 英文特环境及工艺股份公司 Device for decanting a supernatant received in a clarifier
CN111517388A (en) * 2020-05-11 2020-08-11 珠海九通水务股份有限公司 Material level control system, control method and water treatment tank
JP2022065712A (en) * 2020-10-16 2022-04-28 株式会社日水コン Supernatant water drainage device and supernatant water drainage method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522058A (en) * 1975-06-24 1977-01-08 Suzuki Yasuo Means for discharging treated liquid from sewage treatment system
JPS58171300U (en) * 1982-05-04 1983-11-15 株式会社西原環境衛生研究所 Batch type activated sludge treatment equipment
JPS60108313U (en) * 1983-12-28 1985-07-23 株式会社 西原環境衛生研究所 Supernatant water discharge device
JPS6391109A (en) * 1986-10-07 1988-04-21 Sanki Eng Co Ltd Water injection type water collector
JPS63229195A (en) * 1987-03-18 1988-09-26 Hitachi Kiden Kogyo Ltd Method for controlling batch type drainage processing equipment
JPH03105902U (en) * 1990-02-20 1991-11-01
JPH08243580A (en) * 1995-03-13 1996-09-24 Meidensha Corp Device for controlling discharge of supernatant water in batch-wise sewerage facility
JPH10202288A (en) * 1997-01-24 1998-08-04 Kubota Corp Batch activated sludge process
JPH1177081A (en) * 1997-09-10 1999-03-23 Kubota Corp Control of operation of batch type waste water treating apparatus
JPH11151496A (en) * 1997-11-20 1999-06-08 Kajima Corp Treated water discharge system of batch-operated water treating tank
JP2000140511A (en) * 1998-11-10 2000-05-23 Hitachi Plant Eng & Constr Co Ltd Supernatant water drain apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522058A (en) * 1975-06-24 1977-01-08 Suzuki Yasuo Means for discharging treated liquid from sewage treatment system
JPS58171300U (en) * 1982-05-04 1983-11-15 株式会社西原環境衛生研究所 Batch type activated sludge treatment equipment
JPS60108313U (en) * 1983-12-28 1985-07-23 株式会社 西原環境衛生研究所 Supernatant water discharge device
JPS6391109A (en) * 1986-10-07 1988-04-21 Sanki Eng Co Ltd Water injection type water collector
JPS63229195A (en) * 1987-03-18 1988-09-26 Hitachi Kiden Kogyo Ltd Method for controlling batch type drainage processing equipment
JPH03105902U (en) * 1990-02-20 1991-11-01
JPH08243580A (en) * 1995-03-13 1996-09-24 Meidensha Corp Device for controlling discharge of supernatant water in batch-wise sewerage facility
JPH10202288A (en) * 1997-01-24 1998-08-04 Kubota Corp Batch activated sludge process
JPH1177081A (en) * 1997-09-10 1999-03-23 Kubota Corp Control of operation of batch type waste water treating apparatus
JPH11151496A (en) * 1997-11-20 1999-06-08 Kajima Corp Treated water discharge system of batch-operated water treating tank
JP2000140511A (en) * 1998-11-10 2000-05-23 Hitachi Plant Eng & Constr Co Ltd Supernatant water drain apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167550A (en) * 2004-12-14 2006-06-29 Kurita Water Ind Ltd Biological treatment apparatus
JP4529670B2 (en) * 2004-12-14 2010-08-25 栗田工業株式会社 Biological treatment equipment
CN104302373A (en) * 2012-04-27 2015-01-21 英文特环境及工艺股份公司 Device for decanting a supernatant received in a clarifier
JP2015515377A (en) * 2012-04-27 2015-05-28 インヴェント ウムヴェルト ウント フェアファーレンシュテッヒニク アーゲーInvent Umwelt‐ und Verfahrenstechnik AG Device for decanting the supernatant received in the purifier
EP2841178B1 (en) * 2012-04-27 2016-04-27 INVENT Umwelt- und Verfahrenstechnik AG Device for decanting a supernatant received in a clarifier
CN111517388A (en) * 2020-05-11 2020-08-11 珠海九通水务股份有限公司 Material level control system, control method and water treatment tank
JP2022065712A (en) * 2020-10-16 2022-04-28 株式会社日水コン Supernatant water drainage device and supernatant water drainage method
JP7186757B2 (en) 2020-10-16 2022-12-09 株式会社日水コン Supernatant water drainage device and supernatant water drainage method

Also Published As

Publication number Publication date
JP4510261B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP5116722B2 (en) Ladle tilting automatic pouring method, ladle tilt control system, and storage medium storing ladle tilt control program
JP5471169B2 (en) Interface level meter and solid-liquid separation tank management method using interface level meter
FI59496C (en) SAETT ATT STYRA EN ROERLIG SUGANORDNING FOER SUGNING AV SUSPENDERBART MATERIAL FRAON BOTTEN AV EN VAETSKESAMLING OCH ANORDNING FOER UTOEVNING AV SAETTET
CN109764931A (en) A kind of sponge city river water level forecast method for early warning
JP2002102606A (en) Water treatment device
JP4849932B2 (en) Automatic operation submersible pump
KR102257907B1 (en) Apparatus for measuring sludge level of water purifcation plant using sensor and measuring method thereof
JP2003075429A (en) Scum detection method and apparatus
JPS60111759A (en) Method for controlling operation of sectorial pouring mechine
JP2720611B2 (en) Steel continuous casting method
JPH05134056A (en) Estimating apparatus for inflow of rain water
KR19980033565A (en) Speed Control and Operation Method of Midda Sludge Collector
JP2005241545A (en) Doppler ultrasonic flowmeter, equipment/method for controlling received voltage level thereof and program
KR102327104B1 (en) Method for measuring sludge level of water purifcation plant
JP3221243B2 (en) Rainwater pump operating number control device
JP4342381B2 (en) Pump control device
JP3104867B2 (en) Treatment water discharge device for batch type water treatment tank
JP3887209B2 (en) Inflow prediction device
KR102327097B1 (en) Method for measuring sludge height of sequencing batch reactor process
JPH08100771A (en) Pump operation support system for drainage pumping station of river
JP4108947B2 (en) Air lock / suction blockage determination apparatus and method for pump equipment
JP2007029191A (en) Ultrasonic diagnostic device
KR100882268B1 (en) Apparatus and method for dredging a settling pond
JP4383608B2 (en) Pouring control method
JPS59173196A (en) Sludge control device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4510261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150514

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250