JP2008279384A - Anaerobic treatment apparatus for paper industry sewage - Google Patents

Anaerobic treatment apparatus for paper industry sewage Download PDF

Info

Publication number
JP2008279384A
JP2008279384A JP2007126548A JP2007126548A JP2008279384A JP 2008279384 A JP2008279384 A JP 2008279384A JP 2007126548 A JP2007126548 A JP 2007126548A JP 2007126548 A JP2007126548 A JP 2007126548A JP 2008279384 A JP2008279384 A JP 2008279384A
Authority
JP
Japan
Prior art keywords
reaction tank
waste liquid
sludge
liquid
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007126548A
Other languages
Japanese (ja)
Other versions
JP5297000B2 (en
Inventor
Takaaki Tokutomi
孝明 徳富
Motoyuki Yoda
元之 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007126548A priority Critical patent/JP5297000B2/en
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to PCT/JP2008/055003 priority patent/WO2008139779A1/en
Priority to CN2008800156417A priority patent/CN101679085B/en
Priority to EP20080722397 priority patent/EP2157057B1/en
Priority to CN201110279363XA priority patent/CN102358641B/en
Priority to EP20110187701 priority patent/EP2428492A1/en
Priority to CA 2687228 priority patent/CA2687228A1/en
Publication of JP2008279384A publication Critical patent/JP2008279384A/en
Priority to US12/591,163 priority patent/US7972511B2/en
Application granted granted Critical
Publication of JP5297000B2 publication Critical patent/JP5297000B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform a stably anaerobic treatment of an evaporated water condensate exhausted from a paper industry process with a granule sludge for a long time at a high load and rate. <P>SOLUTION: The evaporated water condensate is introduced into a reaction vessel 20 through a treating liquid path 31. A coating waste liquid exhausted from the coating process part 71 is added to a mid flow of the treating liquid path 31 or to the reaction vessel 20. The granule sludge is brought in contact with a sludge blanket 24 expanded from the granule sludge for methane fermentation with the granule sludge formed by self-granulating from a methane producing bacteria retained in the reaction vessel 20. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、製紙工場で発生する排水の嫌気性処理装置に関し、特に、グラニュール汚泥を保持する反応槽に製紙排水を導入して嫌気的に生物処理する処理装置に関する。   The present invention relates to an anaerobic treatment apparatus for wastewater generated in a paper mill, and more particularly to a treatment apparatus for anaerobically biotreating papermaking wastewater into a reaction tank that holds granular sludge.

紙を製造する製紙工程は、パルプ化工程、紙化工程、塗工加工工程、および仕上工程に大別できる。例えば、パルプ化工程では主として木材を原料とし、これを機械的方法、化学的方法、またはその両方で処理して繊維を抽出しパルプ原料を得る。紙化工程では、パルプ化工程で製造されたパルプ原料をリファイナーと呼ばれる機械で叩解し、薬品等を加えて抄紙する。塗工加工工程では、塗料を抄紙して乾燥させた紙原体に塗布し、艶出し等の仕上げを行い、これを仕上工程で断裁して製品が得られる。   The papermaking process for producing paper can be broadly divided into a pulping process, a papermaking process, a coating process, and a finishing process. For example, in the pulping process, wood is mainly used as a raw material, which is treated by a mechanical method, a chemical method, or both to extract fibers to obtain a pulp raw material. In the paper making process, the pulp raw material produced in the pulping process is beaten with a machine called a refiner, and chemicals are added to make paper. In the coating process, the paint is applied to a paper base that has been made and dried, and finishes such as glazing are performed, and this is cut in the finishing process to obtain a product.

こうした製紙工程では、様々な性状の廃液が排出される。例えば、パルプ化工程で製造されるパルプとしては、原料を化学的に処理して繊維を抽出する化学パルプが一般的であり、特に、クラフト法により製造された化学パルプ(クラフトパルプ)が製造されることが多い。   In such a papermaking process, waste liquids having various properties are discharged. For example, as a pulp manufactured in the pulping process, a chemical pulp in which raw materials are chemically processed to extract fibers is generally used. In particular, a chemical pulp manufactured by a kraft method (craft pulp) is manufactured. Often.

クラフトパルプは、アルカリと硫化ナトリウムとを含む薬液中で木材を砕片化したチップを加熱(蒸解)して得られる。この蒸解により得られた液体(蒸解液)は、蒸留されてアルカリ分が回収される。蒸解液の蒸留に伴い、蒸発凝縮水(エバポレータ・コンデンサ)と呼ばれる廃液が発生する。   Kraft pulp is obtained by heating (cooking) chips obtained by pulverizing wood in a chemical solution containing alkali and sodium sulfide. The liquid (distilled liquid) obtained by this cooking is distilled to recover the alkali content. As the cooking liquor is distilled, a waste liquid called evaporative condensed water (evaporator / condenser) is generated.

蒸発凝縮水の発生量はクラフトパルプの生産量の5〜7倍程度に達し、その有機物濃度は3,000〜10,000mg/Lに達する。有機物含有水は、活性汚泥法と呼ばれる好気性の生物処理法で処理されることが一般的であるが、蒸発凝縮水は有機物濃度が高いため、活性汚泥法での処理に適さない。   The amount of evaporating condensed water reaches about 5 to 7 times the amount of kraft pulp produced, and the organic substance concentration reaches 3,000 to 10,000 mg / L. The organic matter-containing water is generally treated by an aerobic biological treatment method called an activated sludge method, but evaporative condensed water is not suitable for treatment by the activated sludge method because the organic matter concentration is high.

一方、嫌気性の微生物により有機物をメタン発酵させる嫌気性処理によれば、高濃度の有機物含有水を希釈せずに処理できるため、蒸発凝縮水の処理に嫌気性処理を適用する技術が開発されている。ただし、蒸発凝縮水には、薬液に含まれていた硫化ナトリウムに由来する硫黄化合物が含まれ、これがメタン発酵を阻害する場合がある。   On the other hand, according to the anaerobic treatment in which organic matter is methane-fermented by anaerobic microorganisms, water containing high concentration organic matter can be treated without diluting. ing. However, the evaporated condensed water contains a sulfur compound derived from sodium sulfide contained in the chemical solution, which may inhibit methane fermentation.

そこで、蒸発凝縮水のpHを低くしてメタン発酵を阻害する阻害物質を凝集させて除去した後、メタン発酵を行う反応槽に供給して嫌気性処理を行う方法が開発されている(特許文献1)。
特公平2−32958号公報
Thus, a method has been developed in which an inhibitory substance that inhibits methane fermentation is aggregated and removed by lowering the pH of the evaporated condensed water and then supplied to a reaction tank for methane fermentation to perform anaerobic treatment (Patent Document). 1).
JP-B-2-32958

ところで、有機物含有水の嫌気性処理方法として、高負荷高速処理が可能なUASB(Upflow Anaerobic Sludge Blanket…上向流嫌気性スラッジブランケット)法、およびUASB法よりさらに高負荷高速処理が可能なEGSB法(Expanded Granule Sludge
Blanket)が知られている。UASB法およびEGSB法では、高密度で沈降性の大き
いグラニュール汚泥を保持する反応槽に有機物含有水を導入し上向流通液することで、グラニュールを展開させ、高負荷高速処理を行う。
By the way, as an anaerobic treatment method of organic substance-containing water, a UASB (Upflow Anaerobic Sludge Blanket) method capable of high-load high-speed treatment, and an EGSB method capable of higher-load high-speed treatment than the UASB method. (Expanded Granule Sludge
Blanket) is known. In the UASB method and the EGSB method, the organic substance-containing water is introduced into a reaction tank holding granule sludge having a high density and a large sedimentation property, and the upward circulation liquid is used to develop the granules and perform high-load high-speed treatment.

グラニュール汚泥は、嫌気性微生物が自己造粒して形成された粒状の汚泥である。UA
SB法およびEGSB法による嫌気性処理を安定的に行う最大のポイントは、グラニュール汚泥を維持、増殖させることである。反応槽内に、グラニュール汚泥を維持、増殖させることができないと、処理性能は徐々に低下し、やがて処理不能に陥ることもある。
Granule sludge is granular sludge formed by self-granulation of anaerobic microorganisms. UA
The greatest point of stably performing the anaerobic treatment by the SB method and the EGSB method is to maintain and propagate the granular sludge. If granule sludge cannot be maintained and propagated in the reaction tank, the treatment performance gradually decreases and may eventually become untreatable.

ここで、蒸発凝縮水はメタノールを主成分(概ね、全CODcrの70質量%以上)とする有機物含有水であるため、蒸発凝縮水を嫌気性処理するとMethanosaeta属(旧称Methanothrix属)、Methanosarcina属、およびMethanobacterium属等の微生物が増殖する。これらの菌は、メタノールを資化してメタンを生成するものの、グラニュール汚泥を形成しにくい。   Here, the evaporated condensed water is an organic substance-containing water whose main component is methanol (approximately 70% by mass or more of the total CODcr). Therefore, when the evaporated condensed water is anaerobically treated, the Methanosaeta genus (formerly Methanothrix genus), the Methanosarcina genus, And microorganisms such as Methanobacterium grow. Although these bacteria assimilate methanol to produce methane, it is difficult to form granular sludge.

このため、蒸発凝縮水を被処理液として長期間運転を継続すると、グラニュール汚泥が解体して小粒径化し、反応槽内の汚泥量が減少する。このため、従来、グラニュール汚泥を用いる嫌気性処理方法によって蒸発凝縮水を処理することは困難であった。   For this reason, when evaporative condensed water is used as the liquid to be treated and the operation is continued for a long time, the granular sludge is disassembled to reduce the particle size, and the amount of sludge in the reaction tank is reduced. For this reason, conventionally, it has been difficult to treat evaporative condensed water by an anaerobic treatment method using granular sludge.

本発明は、上記課題に対し、蒸発凝縮水を主とする製紙排水を、グラニュール汚泥を用いて高負荷高速処理することを可能とする嫌気性処理装置を提供することを目的とする。本発明はまた、グラニュール汚泥を用いた嫌気性処理により蒸発凝縮水を安定的かつ効率的に処理しつつ、製紙工程の排水処理全体の効率化を図ることを目的とする。   In view of the above problems, an object of the present invention is to provide an anaerobic treatment apparatus that enables high-load and high-speed treatment of papermaking wastewater mainly composed of evaporated condensed water using granular sludge. Another object of the present invention is to improve the efficiency of the entire wastewater treatment in the papermaking process while stably and efficiently treating evaporative condensed water by anaerobic treatment using granular sludge.

本発明は以下を提供する。   The present invention provides the following.

(1)グラニュール汚泥が保持されメタン発酵が行われる反応槽と、 パルプ製造工程から排出される蒸発凝縮水を前記反応槽に導入する被処理液路と、 製紙工程から排出され澱粉を含む澱粉含有廃液を前記反応槽または前記被処理液路の途中に供給する澱粉廃液路と、を含む製紙排水の嫌気性処理装置。
(2)前記澱粉廃液路は、前記澱粉含有廃液として塗工廃液を供給する塗工廃液路である(1)に記載の嫌気性処理装置。
(1) A reaction tank in which granule sludge is retained and methane fermentation is carried out, a treated liquid path for introducing evaporative condensed water discharged from the pulp manufacturing process into the reaction tank, and starch containing starch discharged from the papermaking process An anaerobic treatment apparatus for papermaking wastewater, comprising: a starch waste liquid path for supplying a contained waste liquid in the middle of the reaction tank or the liquid path to be treated.
(2) The anaerobic treatment apparatus according to (1), wherein the starch waste liquid path is a coating waste liquid path that supplies a coating waste liquid as the starch-containing waste liquid.

本発明によれば、グラニュール汚泥の崩壊を防止できる。よって、従来、グラニュール汚泥の維持、増殖が困難であった蒸発凝縮水を被処理液とする高負荷高速処理を長期に渡り、安定的に継続できる。   According to the present invention, the granule sludge can be prevented from collapsing. Therefore, conventionally, high-load high-speed treatment using evaporative condensed water, which has been difficult to maintain and multiply granular sludge, as the liquid to be treated can be stably continued over a long period of time.

以下、本発明について図面を用いて詳細に説明する。図1は、本発明の第1実施形態に係る有機物含有水の嫌気性処理装置(以下、単に「処理装置」という)1が配置された製紙工場の模式図である。ここではクラフトパルプを原料とする製紙工程を示し、その工程はパルプ化工程、紙化工程、塗工加工工程、および仕上工程に大別される。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view of a paper mill in which an anaerobic treatment apparatus (hereinafter simply referred to as “treatment apparatus”) 1 for organic substance-containing water according to a first embodiment of the present invention is arranged. Here, a papermaking process using kraft pulp as a raw material is shown, and the process is roughly divided into a pulping process, a papermaking process, a coating process, and a finishing process.

パルプ工程では、チップ51がフィーダ53に投入されアルカリと硫化ナトリウムとを含む薬液と混合され、蒸解釜55で加熱され繊維が抽出され、クラフトパルプが製造される。クラフトパルプはパルプ貯槽57に一時的に貯留された後、抄紙工程に送られる。抄紙工程ではクラフトパルプを原料として調製されたパルプスラリがワイヤパート61で抄造される。抄紙シートは、ワイヤパート63でプレス脱水され、ドライヤパート65で乾燥される。乾燥された紙原体は、塗工加工工程で塗工機71により塗工液を塗布され、艶出し処理された後、図示しない断裁機でカットされ、紙製品が得られる。   In the pulp process, the chip 51 is put into the feeder 53, mixed with a chemical solution containing alkali and sodium sulfide, heated in the digester 55, and the fibers are extracted to produce kraft pulp. Kraft pulp is temporarily stored in the pulp storage tank 57 and then sent to the paper making process. In the paper making process, pulp slurry prepared from kraft pulp is made by the wire part 61. The papermaking sheet is press dehydrated by the wire part 63 and dried by the dryer part 65. The dried paper base is coated with a coating liquid by a coating machine 71 in a coating process, polished, and then cut with a cutting machine (not shown) to obtain a paper product.

蒸解釜55からは、チップに含まれていたリグニン等が溶出した蒸解液(黒液)が排出される。蒸解液は、蒸留機59で蒸留することによりアルカリを回収する。このとき、メ
タノールを主成分とする蒸発凝縮水が廃液として排出される。蒸留機59は被処理液路31により嫌気性処理装置1の反応槽20と接続され、蒸留機59から排出された蒸発凝縮水が反応槽20に送られる。
From the digester 55, the digested liquid (black liquor) from which the lignin and the like contained in the chips are eluted is discharged. The cooking liquor collects alkali by distillation with a distiller 59. At this time, the evaporated condensed water containing methanol as a main component is discharged as a waste liquid. The distiller 59 is connected to the reaction tank 20 of the anaerobic treatment apparatus 1 by the liquid passage 31 to be treated, and the evaporated condensed water discharged from the distiller 59 is sent to the reaction tank 20.

反応槽20内には、グラニュール汚泥が充填されている。被処理液路31は反応槽20下部に接続されている。有機物含有水は、被処理液路31に設けられたポンプPにより反応槽20に導入され上向流で反応槽20内を流れる。また、反応槽20の上部には、気固液分離装置(GSS)が設けられている。GSSの頂部は、反応槽20内の液面から突出する。ガス路33は、反応槽20上部に接続されている。処理液路32は、GSSの内側に連絡している。   The reaction tank 20 is filled with granular sludge. The liquid path 31 to be treated is connected to the lower part of the reaction tank 20. The organic substance-containing water is introduced into the reaction tank 20 by a pump P provided in the liquid passage 31 to be treated and flows through the reaction tank 20 in an upward flow. In addition, a gas-solid-liquid separator (GSS) is provided in the upper part of the reaction tank 20. The top of the GSS protrudes from the liquid level in the reaction vessel 20. The gas path 33 is connected to the upper part of the reaction tank 20. The processing liquid path 32 communicates with the inside of the GSS.

反応槽20内において、GSSの内側は気固液分離部分であり、その下部はグラニュール汚泥が展開する反応部22となっている。反応部22ではグラニュール汚泥が展開してスラッジブランケット24が形成される。グラニュール汚泥は、嫌気性微生物を含む微生物が自己造粒して平均粒径0.5〜1.0mm程度の粒状になった汚泥であり、密度は1.02〜1.1kg/L程度であり沈降性に優れる。反応部22の液はGSS内部で気固液分離され、処理液路32からグラニュール汚泥と分離された処理液が取り出される。   In the reaction tank 20, the inside of the GSS is a gas-solid separation part, and the lower part thereof is a reaction part 22 where the granular sludge is developed. In the reaction part 22, the granular sludge is developed to form a sludge blanket 24. Granule sludge is sludge in which anaerobic microorganisms are self-granulated into granules having an average particle size of about 0.5 to 1.0 mm, and the density is about 1.02 to 1.1 kg / L. There is excellent sedimentation. The liquid in the reaction unit 22 is gas-solid-liquid separated inside the GSS, and the treatment liquid separated from the granular sludge is taken out from the treatment liquid path 32.

このように処理装置1では、グラニュール汚泥を保持する反応槽20に蒸発凝縮水を上向流で通液してグラニュール汚泥を展開させ、スラッジブランケット24を形成する。これにより、蒸発凝縮水とグラニュール汚泥との接触効率が高くなるため、高さ5〜7m程度の反応槽内に高さ3〜5m程度のスラッジブランケットを展開させるUASBでは、汚泥負荷0.1〜0.7kg−CODcr/kg−VSS/d、反応槽内の上昇流速0.3〜1.5m/h程度の高負荷高速処理が可能である。高さ7〜20m程度の反応槽内に、高さ5〜18m程度のスラッジブランケットを展開させるEGSBでは、汚泥負荷0.1〜1.0kg−CODcr/kg−VSS/d、反応槽内の上昇流速3〜10m/h程度にできる。   In this way, in the processing apparatus 1, the evaporative condensed water is passed through the reaction tank 20 holding the granule sludge in an upward flow to develop the granule sludge, and the sludge blanket 24 is formed. As a result, the contact efficiency between the evaporative condensed water and the granular sludge increases, so in the UASB in which a sludge blanket having a height of about 3 to 5 m is deployed in a reaction tank having a height of about 5 to 7 m, a sludge load of 0.1 High load high speed processing of about 0.7 kg-CODcr / kg-VSS / d and an ascending flow rate in the reaction tank of about 0.3 to 1.5 m / h is possible. In EGSB where a sludge blanket with a height of about 5 to 18 m is deployed in a reaction tank with a height of about 7 to 20 m, a sludge load of 0.1 to 1.0 kg-CODcr / kg-VSS / d, an increase in the reaction tank The flow rate can be about 3 to 10 m / h.

ただし、UASB式の反応槽についての好適な汚泥負荷は0.2〜0.6kgCODcr/kg−Vss/d、好適な上昇流速は0.5〜1.0m/hである。また、EGSB方式の反応槽であれば、好適な汚泥負荷は0.2〜0.7kgCODcr/kg−Vss/d、好適な上昇流速は2〜5m/hである。   However, the preferable sludge load for the UASB type reaction tank is 0.2 to 0.6 kg CODcr / kg-Vss / d, and the preferable ascending flow rate is 0.5 to 1.0 m / h. Moreover, if it is an EGSB type reaction tank, a suitable sludge load is 0.2-0.7 kgCODcr / kg-Vss / d, and a suitable ascending flow rate is 2-5 m / h.

反応槽20に導入される蒸発凝縮水は一般に、CODcrとして3,000〜10,000mg/Lの濃度の有機物を含み、その大部分(80〜90質量%)がメタノールである。反応槽20に対する有機物負荷は5〜30kg−CODcr/m/d、特に8〜20kg−CODcr/m/dが好ましい。また、反応槽20内には酸素を供給せずに嫌気的条件とし、温度は25〜40℃、特に30〜38℃とすることが好ましい。 Evaporated condensed water introduced into the reaction tank 20 generally contains an organic substance having a concentration of 3,000 to 10,000 mg / L as CODcr, and most (80 to 90% by mass) is methanol. The organic load on the reaction tank 20 is preferably 5 to 30 kg-CODcr / m 3 / d, and particularly preferably 8 to 20 kg-CODcr / m 3 / d. Moreover, it is preferable to set it as anaerobic conditions without supplying oxygen in the reaction tank 20, and to make temperature into 25-40 degreeC, especially 30-38 degreeC.

反応槽20は、あらかじめ上記性状のグラニュール汚泥を反応槽容積あたり20〜50%程度、保持している。グラニュール汚泥は被処理液を嫌気性処理することにより自然発生的に形成することができ、浮遊性の嫌気性汚泥を保持する反応槽内に凝集剤等を添加して自己造粒を促進して浮遊性汚泥を自己造粒させることもできる。しかし、自然発生的なグラニュール汚泥の形成には時間がかかる。また凝集剤を添加して浮遊汚泥を造粒させると、形成されたグラニュール汚泥の密度が低くなる場合もある。   The reaction tank 20 holds about 20 to 50% of the granular sludge having the above properties per reaction tank volume in advance. Granule sludge can be formed spontaneously by anaerobic treatment of the liquid to be treated, and promotes self-granulation by adding a flocculant etc. to the reaction tank holding floating anaerobic sludge. The floating sludge can be self-granulated. However, it takes time to form naturally occurring granular sludge. Moreover, when a flocculant is added and floating sludge is granulated, the density of the formed granular sludge may become low.

これに対し、既設のUASB、またはEGSB式の反応槽から余剰汚泥として排出されるグラニュール汚泥を反応槽内に充填して、グラニュール汚泥を増殖させる基質を含む有機物含有水を供給すれば、短時間で反応槽を立ち上げることができる(すなわち必要量のグラニュール汚泥を保持する反応槽が得られる)。これは、グラニュール汚泥が反応槽内
で成長し、反応槽内の水流やガスの発生に伴う流動により破砕され、破砕された微小な粒子や破片が核となって、新たにグラニュール状の汚泥が形成されるためとされている。
On the other hand, if the granular sludge discharged as surplus sludge from the existing UASB or EGSB type reaction tank is filled in the reaction tank and the organic substance-containing water containing the substrate for growing the granular sludge is supplied, The reaction tank can be started up in a short time (that is, a reaction tank holding a necessary amount of granular sludge can be obtained). This is because granule sludge grows in the reaction tank and is crushed by the flow of water and gas generated in the reaction tank. It is said that sludge is formed.

UASBで安定した処理を行うためには、反応槽20内には平均粒径0.5〜3.0mm、好ましくは0.8〜1.5mm程度のグラニュール汚泥を、上述したスラッジブランケット24を形成できるように維持する。EGSBの場合は、反応槽20内に、平均粒径0.5〜3.0mm、好ましくは1.0〜1.5mm程度のグラニュール汚泥を安定的に保持する必要がある。   In order to perform a stable treatment with UASB, granule sludge having an average particle size of 0.5 to 3.0 mm, preferably about 0.8 to 1.5 mm, and the sludge blanket 24 described above are provided in the reaction tank 20. Maintain to form. In the case of EGSB, it is necessary to stably hold granular sludge having an average particle diameter of 0.5 to 3.0 mm, preferably about 1.0 to 1.5 mm, in the reaction tank 20.

しかし、蒸発凝縮水の処理を継続すると、グラニュール汚泥の崩壊を招く。そこで、本発明では、澱粉含有廃液を反応槽20に供給する。製紙工程から排出される澱粉含有廃液としては、塗工加工工程から排出される塗工廃液(コーター系排水)、脱墨パルプ(Deinked Pulp)製造工程(図示せず)から排出される廃液(DIP系排水)、および紙化工
程から排出され紙化工程で用いられるサイズ剤を含む抄紙廃液が挙げられる。
However, if the evaporative condensed water treatment is continued, the granular sludge is destroyed. Therefore, in the present invention, the starch-containing waste liquid is supplied to the reaction tank 20. Starch-containing waste liquid discharged from the papermaking process includes coating waste liquid (coater wastewater) discharged from the coating process, and waste liquid (DIP) discharged from the deinked pulp manufacturing process (not shown). System wastewater) and papermaking waste liquid containing a sizing agent discharged from the papermaking process and used in the papermaking process.

例えば、抄紙後の紙表面に塗布される塗工液であれば、一般にカオリンや炭酸カルシウム等の顔料100部に対し、接着剤10〜20部、分散剤や染料等の助剤1〜5分程度を含む。よって、こうした塗工液を使用する工程から排出される廃液にはこれらの物質が含まれる。澱粉含有廃液としては、接着剤として天然有機系の接着剤、特に澱粉系接着剤を含む塗工液由来の塗工廃液が好ましい。   For example, in the case of a coating solution applied to the paper surface after papermaking, generally 10 to 20 parts of an adhesive and 1 to 5 minutes of an auxiliary agent such as a dispersant or a dye with respect to 100 parts of a pigment such as kaolin or calcium carbonate. Including degree. Therefore, these substances are contained in the waste liquid discharged from the process of using such a coating liquid. As the starch-containing waste liquid, a coating waste liquid derived from a coating liquid containing a natural organic adhesive as an adhesive, particularly a starch-based adhesive is preferable.

澱粉廃液路は、廃液の排出源と被処理液路31(または反応槽20)とを接続する構成とすればよい。本実施態様では、澱粉廃液路として塗工パート71と被処理液路31(または反応槽20)とを接続する塗工廃液路34を設け、塗工廃液を被処理液路31の途中(または反応槽20)に添加する。塗工廃液路34の途中には弁Vを設けて、塗工廃液の添加量を調整するとよい。塗工廃液の添加量は、塗工廃液由来のCODcr濃度が蒸発濃縮水のCODcr濃度に対して、0.1〜10%となるように添加することが好ましい。塗工廃液路の途中に設けた弁Vは、澱粉含有廃液としての塗工廃液の澱粉濃度応じて開閉するようにして、例えば、塗工廃液の澱粉濃度がある程度高い(例えば100mg/L以上である)場合に、塗工廃液を被処理液路31(または反応槽20)に供給するように使用してもよい。   The starch waste liquid path may be configured to connect the waste liquid discharge source and the liquid path 31 to be treated (or the reaction tank 20). In this embodiment, a coating waste liquid path 34 that connects the coating part 71 and the liquid path 31 (or the reaction tank 20) is provided as a starch waste liquid path, and the coating waste liquid is disposed in the middle of the liquid path 31 (or Add to reaction vessel 20). A valve V may be provided in the middle of the coating waste liquid path 34 to adjust the amount of coating waste liquid added. It is preferable to add the coating waste liquid so that the CODcr concentration derived from the coating waste liquid is 0.1 to 10% with respect to the CODcr concentration of the evaporated concentrated water. The valve V provided in the middle of the coating waste liquid path opens and closes according to the starch concentration of the coating waste liquid as the starch-containing waste liquid, for example, the starch concentration of the coating waste liquid is somewhat high (for example, 100 mg / L or more). In some cases, the coating waste liquid may be used so as to be supplied to the liquid passage 31 (or the reaction tank 20).

また、塗工廃液路34の途中に塗工廃液貯槽(図示せず)を設ける場合、塗工廃液貯槽における塗工廃液の滞留時間は1時間〜24時間とすることが好ましい。また、塗工廃液を30〜35℃程度として添加してもよく、pHを6.0〜9.0程度として添加してもよい。塗工廃液の温度を高くすることで、塗工廃液に含まれる微生物の基質を、グラニュールを形成する微生物にとって資化しやすい形態にできるため、グラニュール汚泥の崩壊防止効果を高めることができると推察される。   Moreover, when providing a coating waste liquid storage tank (not shown) in the middle of the coating waste liquid path 34, it is preferable that the residence time of the coating waste liquid in a coating waste liquid storage tank shall be 1 to 24 hours. Further, the coating waste liquid may be added at about 30 to 35 ° C., and the pH may be added at about 6.0 to 9.0. By increasing the temperature of the coating waste liquid, the microorganism substrate contained in the coating waste liquid can be made into a form that is easy to assimilate for the microorganisms that form the granule. Inferred.

また、反応槽20の前段または反応槽20に、凝集剤、硝酸または亜硝酸、カルシウムまたはマグネシウム等の無機イオンのいずれか一つ以上をさらに添加するようにしてもよい。凝集剤としては、ノニオン系、カチオン系、アニオン系、両性系等の高分子凝集剤を使用するとよい。凝集剤の添加濃度は高分子凝集剤の場合0.01〜2mg/l、特に0.01〜1mg/l程度とするとよい。   Moreover, you may make it add any one or more of inorganic ions, such as a flocculant, nitric acid or nitrous acid, calcium, or magnesium, to the front | former stage of the reaction tank 20, or the reaction tank 20. As the aggregating agent, nonionic, cationic, anionic or amphoteric polymer aggregating agents may be used. In the case of a polymer flocculant, the addition concentration of the flocculant is preferably about 0.01 to 2 mg / l, particularly about 0.01 to 1 mg / l.

硝酸または亜硝酸は、添加後の処理対象液中での窒素(N)濃度が1〜1,000mg/L、特に1〜100mg/Lとなるように添加することが好ましい。硝酸または亜硝酸は、連続的、または間欠的のどちらの態様で添加してもよい。凝集剤、硝酸または亜硝酸、無機イオンの添加順序は限定されない。   Nitric acid or nitrous acid is preferably added so that the nitrogen (N) concentration in the treatment target liquid after addition is 1 to 1,000 mg / L, particularly 1 to 100 mg / L. Nitric acid or nitrous acid may be added either continuously or intermittently. The order of adding the flocculant, nitric acid or nitrous acid, and inorganic ions is not limited.

反応槽20における嫌気性処理の好ましい条件は、上述したとおりである。反応槽20内では、蒸発凝縮水中の有機物がグラニュール汚泥の働きにより分解され、メタンを含むガスが発生する。また、グラニュール汚泥は、有機物含有水を基質として増殖する。   Preferred conditions for the anaerobic treatment in the reaction tank 20 are as described above. In the reaction tank 20, organic substances in the evaporative condensed water are decomposed by the action of the granular sludge, and a gas containing methane is generated. Granule sludge grows using organic substance-containing water as a substrate.

反応槽10で生成されたガスおよび増殖した汚泥を含む混合液は、GSS内部で気固液分離され、ガスはガス路33から反応槽20外に取り出されてガスホルダ30に貯留される。また、汚泥が分離され清澄化された液分は、処理液路32から反応槽20外に取り出される。処理液は、後段に設けた好気性生物処理装置(図示せず)等によりさらに処理してもよい。   The mixed liquid containing the gas generated in the reaction tank 10 and the grown sludge is gas-solid-liquid separated inside the GSS, and the gas is taken out of the reaction tank 20 from the gas path 33 and stored in the gas holder 30. Further, the liquid component separated and clarified from the sludge is taken out of the reaction tank 20 from the treatment liquid path 32. The treatment liquid may be further treated by an aerobic biological treatment apparatus (not shown) provided at a later stage.

〈実施例1〉
以下、実施例に基づき本発明をさらに詳しく説明する。実施例では、図1に示す処理装置1を模した実験装置を作成し、パルプ化工程から排出される蒸発凝縮水を11L/dの通液量で反応槽20に供給した。また、被処理液路31の途中に、塗工廃液路34を接続し、塗工加工工程から排出される塗工廃液を4.2L/dの量で添加した。蒸発凝縮水は、CDOcrとしての有機物濃度が2,700mg/Lで、そのうち、メタノール濃度は約1,500mg/Lであった。塗工廃液は、CODcrとしての有機物濃度が約700mg/Lで、澱粉が100〜200mg/Lの濃度で含まれていた。塗工廃液は、蒸発凝縮水への添加後に得られる混合液中について、そのCODcr中の塗工廃液由来のCODcr比率がおおむね10%となるように添加した。
<Example 1>
Hereinafter, the present invention will be described in more detail based on examples. In the example, an experimental apparatus simulating the processing apparatus 1 shown in FIG. 1 was created, and evaporated condensed water discharged from the pulping process was supplied to the reaction tank 20 at a liquid flow rate of 11 L / d. Moreover, the coating waste liquid path 34 was connected in the middle of the to-be-processed liquid path 31, and the coating waste liquid discharged | emitted from a coating process is added in the quantity of 4.2 L / d. Evaporated condensed water had an organic substance concentration of 2,700 mg / L as CDOcr, of which the methanol concentration was about 1,500 mg / L. The coating waste liquid contained an organic substance concentration as CODcr of about 700 mg / L and starch at a concentration of 100 to 200 mg / L. The coating waste liquid was added so that the CODcr ratio derived from the coating waste liquid in the CODcr was about 10% in the mixed liquid obtained after the addition to the evaporated condensed water.

反応槽20は、内径6cm、高さ1.2mでGSSが設置された部分を除く反応部12の容量は3L、GSS部を含めた部分の容量は4Lである。反応槽20内には、化学工場の既設のUASB式の反応槽から取り出したグラニュール汚泥(密度1.03〜1.1mm、粒径1.2〜1.5mm)を1.0L、充填することにより反応槽20の立ち上げを完了させた状態で実験を開始した。   The reaction tank 20 has an inner diameter of 6 cm, a height of 1.2 m, and the capacity of the reaction part 12 excluding the part where the GSS is installed is 3 L, and the capacity of the part including the GSS part is 4 L. The reaction tank 20 is filled with 1.0 L of granular sludge (density 1.03-1.1 mm, particle size 1.2-1.5 mm) taken out from the existing UASB-type reaction tank in the chemical factory. Thus, the experiment was started in a state where the start-up of the reaction vessel 20 was completed.

反応槽20には、蒸発凝縮水由来のCODcr負荷10g−CODcr/L/d、汚泥負荷0.4〜0.7g−CODcr/g−VSS/dで廃液を通水した。廃液は反応槽20内での上昇流速が3m/hとなるように処理水循環を行いながら通水し、グラニュール汚泥を展開させてスラッジブランケットを形成させた。反応槽20内の温度は30〜35℃に維持し、pH7.0となるようにpH調整を行った。pH調整は、pH調整剤槽(図示せず)に貯留したpH調整剤(NaHO溶液)を、被処理液路31に添加することにより行った。 Waste water was passed through the reaction tank 20 at a CODcr load of 10 g-CODcr / L / d derived from evaporated condensed water and a sludge load of 0.4 to 0.7 g-CODcr / g-VSS / d. The waste liquid was passed while circulating the treated water so that the ascending flow rate in the reaction tank 20 was 3 m / h, and the sludge blanket was formed by developing the granular sludge. The temperature in the reaction vessel 20 was maintained at 30 to 35 ° C., and the pH was adjusted to be pH 7.0. The pH adjustment was performed by adding a pH adjuster (NaHO 3 solution) stored in a pH adjuster tank (not shown) to the liquid channel 31 to be treated.

反応槽20内でグラニュール汚泥が展開されて形成されるスラッジブランケットの上端(汚泥界面)高さは増加し、90日の実験期間中、継続して処理開始時のグラニュール汚泥量以上の量のグラニュール汚泥を反応槽20内に維持できた。このとき、グラニュール汚泥の平均粒径も大きくなり、グラニュール汚泥の崩壊を防止できた。   The height of the upper end (sludge interface) of the sludge blanket formed by the development of the granule sludge in the reaction tank 20 increases, and during the 90-day experiment period, the amount is more than the amount of granule sludge at the start of treatment. The granular sludge could be maintained in the reaction tank 20. At this time, the average particle size of the granular sludge was increased, and the collapse of the granular sludge could be prevented.

〈実施例2〉
実施例2として被処理液路31に硝酸ナトリウム溶液をさらに添加した。硝酸の添加量は、硝酸ナトリウム溶液と被処理液とを混合した後の硝酸の濃度が20mg−N/Lとなるようにした。その他は実施例1と同様にして実験を行ったところ、反応槽20内のグラニュール汚泥量は増加し、平均粒径も大きくなった。
<Example 2>
In Example 2, a sodium nitrate solution was further added to the liquid passage 31 to be treated. The amount of nitric acid added was such that the concentration of nitric acid after mixing the sodium nitrate solution and the liquid to be treated was 20 mg-N / L. Other than that, the experiment was conducted in the same manner as in Example 1. As a result, the amount of granular sludge in the reaction tank 20 increased and the average particle size also increased.

〈実施例3〉
実施例3として被処理液路31に凝集剤を添加した。凝集剤としては、カチオン系の高分子凝集剤(ポリアミノアルキルアクリレート)を用い、その添加量は凝集剤と被処理液
とを混合した後の濃度が0.1mg/Lとなるようにしたその他は実施例1と同様にして実験を行ったところ、反応槽20内のグラニュール汚泥量は増加し、平均粒径も大きくなった。
<Example 3>
In Example 3, a flocculant was added to the liquid passage 31 to be treated. As the flocculant, a cationic polymer flocculant (polyaminoalkyl acrylate) was used, and the amount added was adjusted to 0.1 mg / L after the flocculant and the liquid to be treated were mixed . Other than that, the experiment was conducted in the same manner as in Example 1. As a result, the amount of granular sludge in the reaction tank 20 increased and the average particle size also increased.

〈実施例4〉
実施例4として被処理液路31に硝酸および凝集剤をさらに添加した。硝酸、および凝集剤の種類および添加量は実施例2、および実施例3と同様にした。その他は実施例1と同様にして実験を行ったところ、反応槽20内のグラニュール汚泥量は増加し、平均粒径も大きくなった。
<Example 4>
As Example 4, nitric acid and a flocculant were further added to the liquid passage 31 to be treated. The types and addition amounts of nitric acid and flocculant were the same as in Example 2 and Example 3. Other than that, the experiment was conducted in the same manner as in Example 1. As a result, the amount of granular sludge in the reaction tank 20 increased and the average particle size also increased.

〈比較例1〉
比較例1では、塗工廃液を反応槽20に供給しなかった。その他は実施例1と同様の条件で実験を行った結果、反応槽20内のグラニュール汚泥量がわずかずつ減少し、その粒径も低下した。
<Comparative example 1>
In Comparative Example 1, the coating waste liquid was not supplied to the reaction tank 20. Other than that, the experiment was performed under the same conditions as in Example 1. As a result, the amount of granular sludge in the reaction tank 20 was gradually decreased, and the particle size was also decreased.

図2および図3に実施例および比較例の結果を示す。このように、発明によればグラニュール汚泥を用い、その崩壊を防止して蒸発凝縮水を高負荷高速処理できることが示された。また、蒸発凝縮水と塗工廃液とを混合することで、製紙排水処理の効率化を図ることができることが示された。   2 and 3 show the results of Examples and Comparative Examples. Thus, according to the invention, it has been shown that granulated sludge can be used to prevent the collapse thereof and evaporate condensed water can be processed at high load and high speed. Moreover, it was shown that the efficiency of the papermaking wastewater treatment can be improved by mixing the evaporated condensed water and the coating waste liquid.

本発明は、製紙工場から排出される排水処理に用いることができる。   The present invention can be used for waste water treatment discharged from a paper mill.

本発明の第1実施形態に係る嫌気性処理装置の模式図。The schematic diagram of the anaerobic processing apparatus which concerns on 1st Embodiment of this invention. 実施例および比較例の結果を示す図。The figure which shows the result of an Example and a comparative example. 実施例および比較例の結果を示す図。The figure which shows the result of an Example and a comparative example.

符号の説明Explanation of symbols

1 嫌気性処理装置
20 反応槽
22 反応部
24 スラッジブランケット
30 ガスホルダ
31 被処理液路
32 処理液路
33 ガス路
34 塗工廃液路(澱粉廃液路)
DESCRIPTION OF SYMBOLS 1 Anaerobic processing apparatus 20 Reaction tank 22 Reaction part 24 Sludge blanket 30 Gas holder 31 Processed liquid path 32 Processed liquid path 33 Gas path 34 Coating waste liquid path (starch waste liquid path)

Claims (2)

グラニュール汚泥が保持されメタン発酵が行われる反応槽と、
パルプ製造工程から排出される蒸発凝縮水を前記反応槽に導入する被処理液路と、
製紙工程から排出され澱粉を含む澱粉含有廃液を前記反応槽または前記被処理液路の途中に供給する澱粉廃液路と、を含む製紙排水の嫌気性処理装置。
A reaction tank in which granule sludge is retained and methane fermentation is carried out;
A treated liquid path for introducing evaporative condensed water discharged from the pulp manufacturing process into the reaction tank;
An anaerobic treatment apparatus for papermaking wastewater, comprising: a starch waste liquid path that supplies a starch-containing waste liquid that is discharged from the papermaking process and contains starch in the middle of the reaction tank or the liquid path to be treated.
前記澱粉廃液路は、前記澱粉含有廃液として塗工廃液を供給する塗工廃液路である請求項1に記載の嫌気性処理装置。   The anaerobic treatment apparatus according to claim 1, wherein the starch waste liquid path is a coating waste liquid path that supplies a coating waste liquid as the starch-containing waste liquid.
JP2007126548A 2007-05-11 2007-05-11 Anaerobic treatment equipment for papermaking wastewater Expired - Fee Related JP5297000B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2007126548A JP5297000B2 (en) 2007-05-11 2007-05-11 Anaerobic treatment equipment for papermaking wastewater
CN2008800156417A CN101679085B (en) 2007-05-11 2008-03-18 Method of anaerobic treatment and anaerobic treatment apparatus
EP20080722397 EP2157057B1 (en) 2007-05-11 2008-03-18 Method of anaerobic treatment
CN201110279363XA CN102358641B (en) 2007-05-11 2008-03-18 Anaerobic treatment method
PCT/JP2008/055003 WO2008139779A1 (en) 2007-05-11 2008-03-18 Method of anaerobic treatment and anaerobic treatment apparatus
EP20110187701 EP2428492A1 (en) 2007-05-11 2008-03-18 Anaerobic treatment method and anaerobic treatment apparatus
CA 2687228 CA2687228A1 (en) 2007-05-11 2008-03-18 Anaerobic treatment method and anaerobic treatment apparatus
US12/591,163 US7972511B2 (en) 2007-05-11 2009-11-10 Anaerobic treatment method and anaerobic treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007126548A JP5297000B2 (en) 2007-05-11 2007-05-11 Anaerobic treatment equipment for papermaking wastewater

Publications (2)

Publication Number Publication Date
JP2008279384A true JP2008279384A (en) 2008-11-20
JP5297000B2 JP5297000B2 (en) 2013-09-25

Family

ID=40140665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126548A Expired - Fee Related JP5297000B2 (en) 2007-05-11 2007-05-11 Anaerobic treatment equipment for papermaking wastewater

Country Status (1)

Country Link
JP (1) JP5297000B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274207A (en) * 2009-05-29 2010-12-09 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
JP2011218298A (en) * 2010-04-09 2011-11-04 Ihi Corp Anaerobic treatment facility and anaerobic treatment method
JP2012239954A (en) * 2011-05-17 2012-12-10 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus and anaerobic treatment method
JP2014030827A (en) * 2013-11-21 2014-02-20 Ihi Corp Anaerobic treatment facility and anaerobic treatment method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03290303A (en) * 1990-04-05 1991-12-20 Eka Nobel Ab Preparation of chlorine dioxide
JPH04310294A (en) * 1991-04-09 1992-11-02 Ebara Infilco Co Ltd Treatment of methanol-containing waste water
JPH0584499A (en) * 1991-09-27 1993-04-06 Kanzaki Paper Mfg Co Ltd Method for methane-fermenting kraft pulp waste water
JPH06134213A (en) * 1992-09-22 1994-05-17 Nippon Paper Ind Co Ltd Flocculating method for organic drain
JP2002224686A (en) * 2001-02-05 2002-08-13 Kurita Water Ind Ltd Anaerobic treatment method and equipment for starch particle-containing liquid
JP2006136797A (en) * 2004-11-11 2006-06-01 Oji Paper Co Ltd Waste coating color treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03290303A (en) * 1990-04-05 1991-12-20 Eka Nobel Ab Preparation of chlorine dioxide
JPH04310294A (en) * 1991-04-09 1992-11-02 Ebara Infilco Co Ltd Treatment of methanol-containing waste water
JPH0584499A (en) * 1991-09-27 1993-04-06 Kanzaki Paper Mfg Co Ltd Method for methane-fermenting kraft pulp waste water
JPH06134213A (en) * 1992-09-22 1994-05-17 Nippon Paper Ind Co Ltd Flocculating method for organic drain
JP2002224686A (en) * 2001-02-05 2002-08-13 Kurita Water Ind Ltd Anaerobic treatment method and equipment for starch particle-containing liquid
JP2006136797A (en) * 2004-11-11 2006-06-01 Oji Paper Co Ltd Waste coating color treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274207A (en) * 2009-05-29 2010-12-09 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
JP2011218298A (en) * 2010-04-09 2011-11-04 Ihi Corp Anaerobic treatment facility and anaerobic treatment method
JP2012239954A (en) * 2011-05-17 2012-12-10 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus and anaerobic treatment method
JP2014030827A (en) * 2013-11-21 2014-02-20 Ihi Corp Anaerobic treatment facility and anaerobic treatment method

Also Published As

Publication number Publication date
JP5297000B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
Bajpai Anaerobic technology in pulp and paper industry
Meyer et al. Anaerobic digestion of pulp and paper mill wastewater and sludge
Thompson et al. The treatment of pulp and paper mill effluent: a review
US7972511B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
Santos et al. Sugarcane vinasse treatment by two-stage anaerobic membrane bioreactor: Effect of hydraulic retention time on changes in efficiency, biogas production and membrane fouling
US4666605A (en) Methane fermentation process for treating evaporator condensate from pulp making system
CA2504375A1 (en) Apparatus, system and method for treating waste material
Habets et al. In line biological water regeneration in a zero discharge recycle paper mill
JP5261977B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
CA2267690C (en) Process for reducing production of biomass during activated sludge treatment of pulp and paper mill effluents
Chakraborty et al. Integration of biological pre-treatment methods for increased energy recovery from paper and pulp biosludge
JP5297000B2 (en) Anaerobic treatment equipment for papermaking wastewater
JP3174364B2 (en) Methane fermentation of kraft pulp wastewater.
BR112016030896B1 (en) METHOD FOR TREATMENT OF BIOLOGICAL SLUDGE
laqa Kakar et al. Combined hydrothermal and free nitrous acid, alkali and acid pretreatment for biomethane recovery from municipal sludge
EP2917156B1 (en) Method of increasing the production of biogas from a waste activated sludge
NO332969B1 (en) System and procedure for treatment of municipal and industrial sewage and sludge
JP2012210584A (en) Method for treating kraft pulp wastewater
Minami A trial of high performance anaerobic treatment on wastewater from a kraft pulp mill
JP2012000557A (en) Anaerobic treatment method and anaerobic treatment apparatus
Chaiprapat et al. Sulfidogenesis in pretreatment of high-sulfate acidic wastewater using anaerobic sequencing batch reactor and upflow anaerobic sludge blanket reactor
Osman Anaerobic Fermentation of industrial wastewater
Driessen et al. Anaerobic treatment of recycled paper mill effluent with the internal circulation reactor
Bajpai et al. Anaerobic treatment of pulp and paper industry effluents
JP5117882B2 (en) Anaerobic treatment method for pulp wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130614

R150 Certificate of patent or registration of utility model

Ref document number: 5297000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees