JP2003245689A - Method and apparatus for treating wastewater - Google Patents

Method and apparatus for treating wastewater

Info

Publication number
JP2003245689A
JP2003245689A JP2002044991A JP2002044991A JP2003245689A JP 2003245689 A JP2003245689 A JP 2003245689A JP 2002044991 A JP2002044991 A JP 2002044991A JP 2002044991 A JP2002044991 A JP 2002044991A JP 2003245689 A JP2003245689 A JP 2003245689A
Authority
JP
Japan
Prior art keywords
tank
nitrogen
liquid
nitrification
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002044991A
Other languages
Japanese (ja)
Other versions
JP3821011B2 (en
Inventor
Tetsuro Fukase
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002044991A priority Critical patent/JP3821011B2/en
Publication of JP2003245689A publication Critical patent/JP2003245689A/en
Application granted granted Critical
Publication of JP3821011B2 publication Critical patent/JP3821011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently at a low cost treat wastewater containing suspended solid organic substances and ammoniacal nitrogen by reducing a nitrogen load on nitrification and denitrification. <P>SOLUTION: The wastewater containing suspended solid organic substances and ammoniacal nitrogen is separated into sludge and liquid in a precipitation tank 1, and the separated sludge is subjected to methane fermentation treatment in an anaerobic nitrification tank 2. The desorbed liquid of the nitrification tank 2 is subjected to nitrite type nitrification treatment in a nitrification tank 4, nitrification liquid is mixed with the separated liquid of the precipitation tank 1, and the mixture is denitrified by Anammox microorganisms in a denitrification tank 4. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、下水、し尿、浄化
槽汚泥、食品排水等のSS性有機物とアンモニア性窒素
とを含む排水の処理方法及び処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for treating wastewater containing sewage, night soil, septic tank sludge, food wastewater and the like containing SS organic matter and ammonia nitrogen.

【0002】[0002]

【従来の技術】従来、SS性有機物とアンモニア性窒素
とを含む排水は、図2に示す如く、まず、固液分離によ
り排水中のSS性有機物を除去した後、循環脱窒法、ス
テップ脱窒法又は通常の硝化脱窒法等により硝化脱窒す
ることにより処理されている。排水からのSS性有機物
の固液分離で生成した分離汚泥は、硝化脱窒処理で生成
した余剰汚泥と共に嫌気性消化され、消化脱離液は上記
硝化脱窒工程において、排水からSS性有機物を除去し
た分離液と共に硝化脱窒処理するか、或いは系外で別途
硝化脱窒処理した後放流されている。
2. Description of the Related Art Conventionally, as shown in FIG. 2, wastewater containing SS organic matter and ammonia nitrogen is first removed from the wastewater by solid-liquid separation to remove the SS organic matter, and then subjected to a circulation denitrification method and a step denitrification method. Alternatively, it is treated by nitrifying and denitrifying by a usual nitrifying and denitrifying method. The separated sludge produced by the solid-liquid separation of SS organic matter from the wastewater is anaerobically digested together with the surplus sludge produced by the nitrification denitrification treatment, and the digested desorption solution is used to remove the SS organic matter from the wastewater in the above nitrification denitrification step. It is discharged with nitrification denitrification treatment together with the removed separated liquid, or after nitrification denitrification treatment separately outside the system.

【0003】ところで、一般に、排水中のアンモニア性
窒素は、アンモニア性窒素をアンモニア酸化細菌により
亜硝酸性窒素に酸化し、更にこの亜硝酸性窒素を亜硝酸
酸化細菌により硝酸性窒素に酸化する硝化工程と、これ
らの亜硝酸性窒素及び硝酸性窒素を従属栄養性細菌であ
る脱窒菌により、有機物を電子供与体として利用して窒
素ガスにまで分解する脱窒工程との2段階の生物反応を
経て窒素ガスにまで分解される。
By the way, generally, the ammoniacal nitrogen in the waste water is nitrified by oxidizing the ammoniacal nitrogen to nitrite nitrogen by the ammonia-oxidizing bacteria, and further oxidizing the nitrite nitrogen to nitrate nitrogen by the nitrite-oxidizing bacteria. The two-step biological reaction between the process and the denitrification process of decomposing these nitrite nitrogen and nitrate nitrogen into nitrogen gas by utilizing organic substances as electron donors by denitrifying bacteria which are heterotrophic bacteria After that, it is decomposed into nitrogen gas.

【0004】しかし、このような従来の硝化脱窒法で
は、脱窒工程において電子供与体としてメタノールなど
の有機物を多量に必要とし、また硝化工程では多量の酸
素が必要であるため、ランニングコストが高いという欠
点がある。
However, in such a conventional nitrification denitrification method, a large amount of an organic substance such as methanol is required as an electron donor in the denitrification step, and a large amount of oxygen is required in the nitrification step, so that the running cost is high. There is a drawback that.

【0005】これに対して、近年、アンモニア性窒素を
電子供与体とし、亜硝酸性窒素を電子受容体とする独立
栄養性微生物(以下「ANAMMOX微生物」と称す場
合がある。)を利用し、アンモニア性窒素と亜硝酸性窒
素とを反応させて脱窒する方法が提案された。この方法
であれば、有機物の添加は不要であるため、従属栄養性
の脱窒菌を利用する方法と比べて、コストを低減するこ
とができる。また、独立栄養性の微生物は収率が低く、
汚泥の発生量が従属栄養性微生物と比較すると著しく少
ないので、余剰汚泥の発生量を抑えることができる。更
に、従来の硝化脱窒法で観察されるNOの発生がな
く、環境に対する負荷を低減できるといった特長もあ
る。
On the other hand, in recent years, an autotrophic microorganism having ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor (hereinafter sometimes referred to as "ANAMMOX microorganism") has been used, A method of reacting ammoniacal nitrogen and nitrite nitrogen to denitrify has been proposed. This method does not require addition of organic matter, and thus can reduce the cost as compared with the method using heterotrophic denitrifying bacteria. Also, the yield of autotrophic microorganisms is low,
Since the amount of sludge generated is significantly smaller than that of the heterotrophic microorganisms, the amount of excess sludge generated can be suppressed. Furthermore, there is a feature that N 2 O generated by the conventional nitrification denitrification method is not generated and the load on the environment can be reduced.

【0006】このANAMMOX微生物を利用する生物
脱窒プロセスは、Strous, M, et al., Appl. Microbio
l. Biotecnol., 50, p.589-596 (1998) に報告されてお
り、以下のような反応でアンモニア性窒素と亜硝酸性窒
素が反応して窒素ガスに分解されると考えられている。
The biodenitrification process utilizing this ANAMMOX microorganism is described by Strous, M, et al., Appl. Microbio
l. Biotecnol., 50, p.589-596 (1998), it is considered that ammonia nitrogen and nitrite nitrogen react with each other in the following reaction to decompose into nitrogen gas. .

【0007】[0007]

【化1】 [Chemical 1]

【0008】[0008]

【発明が解決しようとする課題】図2に示す如く、汚泥
の嫌気性消化処理で得られる消化脱離液を、排水からS
S性有機物を除去した分離液と共に硝化脱窒処理する方
法では、硝化脱窒にかかる窒素負荷が増加するため、硝
化に多量の酸素が必要となり、更に、脱窒のために多量
の有機物を必要とするという欠点がある。
As shown in FIG. 2, the digestion / desorption liquid obtained by the anaerobic digestion treatment of sludge is removed from wastewater by S
In the method of performing nitrification denitrification treatment with the separated liquid from which S-organic matter has been removed, the nitrogen load required for nitrification denitrification increases, so a large amount of oxygen is required for nitrification, and further a large amount of organic matter is required for denitrification. There is a drawback that

【0009】一方、消化脱離液を系外で別途硝化脱窒処
理する方法では、この脱離液の硝化脱窒のための装置が
必要であり、好ましくない。
On the other hand, the method of separately treating nitrifying and denitrifying the digested desorbed liquid outside the system requires an apparatus for nitrifying and denitrifying the desorbed liquid, which is not preferable.

【0010】本発明は上記従来の問題点を解決し、SS
性有機物とアンモニア性窒素とを含む排水の処理に当た
り、硝化脱窒にかかる窒素負荷を低減して低コストにて
効率的な処理を行う方法及び装置を提供することを目的
とする。
The present invention solves the above-mentioned conventional problems, and
An object of the present invention is to provide a method and an apparatus for reducing the nitrogen load on nitrification and denitrification and performing an efficient treatment at a low cost when treating a wastewater containing a volatile organic substance and ammonia nitrogen.

【0011】[0011]

【課題を解決するための手段】本発明の排水の処理方法
は、SS性有機物及びアンモニア性窒素を含む排水を処
理する方法において、該排水を固液分離する固液分離工
程と、該固液分離工程で分離された汚泥をメタン醗酵処
理する嫌気性消化工程と、該嫌気性消化工程の脱離液中
のアンモニア性窒素を亜硝酸性窒素に硝化する亜硝酸型
硝化工程と、該亜硝酸型硝化工程の処理水と前記固液分
離工程で分離された分離液とを混合して生物脱窒処理す
る生物脱窒工程とを有することを特徴とする。
A method for treating wastewater according to the present invention comprises a solid-liquid separation step of solid-liquid separating the wastewater in a method for treating the wastewater containing SS organic matter and ammonia nitrogen, and the solid-liquid separation step. An anaerobic digestion step of subjecting the sludge separated in the separation step to methane fermentation, and a nitrite-type nitrification step of nitrifying ammoniacal nitrogen in the desorbed liquid of the anaerobic digestion step into nitrite nitrogen, and the nitrite. And a biological denitrification step of mixing the treated water of the mold nitrification step and the separated liquid separated in the solid-liquid separation step to perform biological denitrification.

【0012】本発明の排水の処理装置は、SS性有機物
及びアンモニア性窒素を含む排水を処理する装置におい
て、該排水を固液分離する固液分離手段と、該固液分離
手段で分離された汚泥をメタン醗酵処理する嫌気性消化
槽と、該嫌気性消化槽の脱離液中のアンモニア性窒素を
亜硝酸性窒素に硝化する亜硝酸型硝化槽と、該亜硝酸型
硝化槽の処理水と前記固液分離手段で分離された分離液
とを混合して生物脱窒処理する生物脱窒槽とを有するこ
とを特徴とする。
The wastewater treatment apparatus of the present invention is an apparatus for treating wastewater containing SS organic matter and ammonia nitrogen, and is separated by the solid-liquid separation means for solid-liquid separation of the wastewater and the solid-liquid separation means. Anaerobic digestion tank for methane fermentation treatment of sludge, nitrite type nitrification tank for nitrifying ammoniacal nitrogen in desorbed liquid of the anaerobic digestion tank to nitrite nitrogen, and treated water of the nitrite type nitrification tank And a separation liquid separated by the solid-liquid separation means, and a biological denitrification tank for performing biological denitrification treatment.

【0013】本発明では、SS性有機物及びアンモニア
性窒素を含む排水をまず固液分離し、分離汚泥をメタン
醗酵処理して得られた脱離液について亜硝酸型硝化を行
うため、硝化処理にかかる窒素負荷を大幅に軽減するこ
とができる。しかも、この硝化処理は亜硝酸型硝化であ
るため、硝酸型硝化に比べて酸素必要量が少なく、曝気
コストを低減することができる。
In the present invention, wastewater containing SS organic matter and ammonia nitrogen is first subjected to solid-liquid separation, and the desorbed liquid obtained by subjecting the separated sludge to methane fermentation treatment is subjected to nitrite type nitrification. Such nitrogen load can be significantly reduced. Moreover, since this nitrification treatment is nitrite type nitrification, the oxygen requirement is smaller than that in nitric acid type nitrification, and the aeration cost can be reduced.

【0014】更に、亜硝酸型硝化により亜硝酸性窒素を
含む硝化液を、排水を固液分離して得られたアンモニア
性窒素を含む分離液と混合して脱窒処理することによ
り、ANAMMOX微生物により、低コストで脱窒処理
することができる。
Further, a nitrification solution containing nitrite nitrogen by nitrite type nitrification is mixed with a separation solution containing ammoniacal nitrogen obtained by solid-liquid separation of waste water to perform denitrification treatment, thereby producing an ANMMOX microorganism. Thus, denitrification can be performed at low cost.

【0015】[0015]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0016】図1は、本発明の排水の処理方法及び処理
装置の実施の形態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a wastewater treatment method and treatment equipment of the present invention.

【0017】SS性有機物及びアンモニア性窒素を含む
排水は、まず沈殿槽1に導入して固液分離する。この固
液分離手段としては、特に制限はなく、沈澱槽の他、遠
心分離装置、浮上分離装置、膜分離装置等を用いること
ができる。また、固液分離に際しては、排水に凝集剤を
添加して凝集分離を行っても良い。この場合、用いる凝
集剤は無機系凝集剤、有機系高分子凝集剤のいずれでも
良く、これらの併用であっても良い。
Wastewater containing SS organic matter and ammonia nitrogen is first introduced into the settling tank 1 for solid-liquid separation. The solid-liquid separating means is not particularly limited, and a centrifugal separator, a flotation separator, a membrane separator, etc. can be used in addition to the precipitation tank. Further, in solid-liquid separation, a coagulant may be added to the waste water to perform coagulation separation. In this case, the aggregating agent used may be either an inorganic aggregating agent or an organic polymer aggregating agent, or a combination of these.

【0018】沈殿槽1の分離汚泥はそのまま、或いは必
要に応じて濃縮処理した後、単独で或いは他の汚泥等と
共に嫌気性消化槽2に導入してメタン醗酵処理する。
The sludge separated in the settling tank 1 is used as it is, or after being concentrated if necessary, it is introduced into the anaerobic digestion tank 2 alone or together with other sludge and the like, and subjected to methane fermentation treatment.

【0019】分離汚泥を濃縮する場合、濃縮法としては
重力濃縮、浮上濃縮、遠心濃縮等の通常の方法を採用す
ることができる。また、分離汚泥を他の汚泥と共にメタ
ン醗酵処理する場合、他の汚泥としては、浄化槽汚泥、
活性汚泥等の生物処理で生成する生物性汚泥の他、生ゴ
ミ、食品廃棄物、し尿等が挙げられるが、特に、窒素含
有有機物を投入すると、メタンガスの発生量が増加する
のみならず、窒素濃度が上昇するため、後段の脱窒処理
におけるアンモニア性窒素と亜硝酸性窒素との比が低下
することによって窒素除去率が向上するので、より好ま
しい。
In the case of concentrating the separated sludge, as a concentrating method, a usual method such as gravity concentration, floating concentration, centrifugal concentration or the like can be adopted. When the separated sludge is subjected to methane fermentation treatment together with other sludge, other sludges include septic tank sludge,
In addition to biological sludge produced by biological treatment such as activated sludge, there are raw garbage, food waste, human waste, etc. In particular, when nitrogen-containing organic matter is added, not only the amount of methane gas generated increases, but also nitrogen. Since the concentration is increased, the ratio of ammoniacal nitrogen and nitrite nitrogen in the subsequent denitrification treatment is decreased, and the nitrogen removal rate is improved, which is more preferable.

【0020】嫌気性消化槽2では、遠心分離装置3から
返送される返送汚泥、及び嫌気性消化槽2内の嫌気性微
生物を含む汚泥と沈殿槽1の分離汚泥とを撹拌機2Aに
より緩やかに攪拌混合しながら嫌気性消化処理を行う。
ここで行われる嫌気性消化処理により、原水中の有機物
の多くは酸生成菌及びメタン生成菌により分解される。
In the anaerobic digestion tank 2, the sludge returned from the centrifugal separator 3 and the sludge containing the anaerobic microorganisms in the anaerobic digestion tank 2 and the separation sludge in the sedimentation tank 1 are gently stirred by the agitator 2A. Perform anaerobic digestion treatment while mixing with stirring.
Due to the anaerobic digestion process performed here, most of the organic substances in the raw water are decomposed by acid-producing bacteria and methanogenic bacteria.

【0021】嫌気性消化槽2におけるメタン発酵の条件
としては、35℃付近に最適温度がある中温メタン生成
菌、及び55℃付近に最適温度を有する高温メタン生成
菌が増殖するいずれの温度条件も採用可能である。中温
メタン生成菌は増殖が遅いため嫌気性消化槽2の滞留時
間(SRT)を長くする、即ち、嫌気性消化槽2の容量
を大きくする必要があるが、比較的低温での処理が可能
なため加温及び保温のための設備が簡単になる。これに
対し高温メタン生成菌の場合は加温及び保温の設備が必
要になるが、増殖が速いため滞留時間が短くてよく、嫌
気性消化槽2の容量を小さくすることができるという利
点がある。
The conditions for methane fermentation in the anaerobic digester 2 include both mesophilic methanogens having an optimum temperature near 35 ° C. and high temperature methanogens having an optimum temperature near 55 ° C. Can be adopted. Since the mesophilic methanogen grows slowly, it is necessary to lengthen the residence time (SRT) of the anaerobic digester 2, that is, to increase the capacity of the anaerobic digester 2, but the treatment at a relatively low temperature is possible. Therefore, the equipment for heating and keeping warm becomes simple. On the other hand, in the case of a high temperature methanogen, a heating and heat-retaining facility is required, but since the growth is fast, the residence time may be short, and there is an advantage that the capacity of the anaerobic digester 2 can be reduced. .

【0022】中温メタン生成菌を主体とする場合は嫌気
性消化槽2で汚泥の滞留時間は10日以上、好ましくは
15〜30日程度必要である。これに対して高温メタン
生成菌を主体とする場合は上記範囲よりも短い滞留時間
(例えば2日以上)とすることが可能である。
When the mesophilic methanogen is mainly used, the residence time of sludge in the anaerobic digestion tank 2 is 10 days or more, preferably about 15 to 30 days. On the other hand, when the high temperature methanogen is mainly used, the residence time (for example, 2 days or more) shorter than the above range can be set.

【0023】嫌気性消化槽2の有機物負荷は0.5〜
2.0kg−VSS/m・日、嫌気性消化槽2内のM
LSS濃度は5,000〜100,000mg/L、好
ましくは20,000〜60,000mg/L、温度は
30〜38℃又は45〜60℃の条件とすることが好ま
しい。
The organic matter load of the anaerobic digester 2 is 0.5 to
2.0 kg-VSS / m 3 · day, M in anaerobic digester 2
The LSS concentration is preferably 5,000 to 100,000 mg / L, preferably 20,000 to 60,000 mg / L, and the temperature is preferably 30 to 38 ° C or 45 to 60 ° C.

【0024】この嫌気性消化槽2におけるメタン醗酵に
当たっては、熱処理、ミルによる破砕やオゾン処理、そ
の他、物理的又は化学的処理等の前処理や、嫌気性消化
槽2内の汚泥を引き抜いてこれらの処理を施した後嫌気
性消化槽2に返送する循環処理等を行うのが好ましく、
このような改質処理を組み合わせることにより、汚泥の
分解率が向上するのみならず、脱離液中の有機物濃度が
低減し、結果として、次工程の亜硝酸型硝化を効率的に
実施することができるようになる。
In the methane fermentation in the anaerobic digestion tank 2, heat treatment, crushing by a mill, ozone treatment, other pretreatment such as physical or chemical treatment, or sludge extraction in the anaerobic digestion tank 2 It is preferable to carry out a circulation treatment or the like, in which the treatment is returned to the anaerobic digestion tank 2 after the treatment of
By combining such reforming treatments, not only the sludge decomposition rate is improved, but also the concentration of organic substances in the desorbed liquid is reduced, and as a result, the nitrite type nitrification of the next step can be carried out efficiently. Will be able to.

【0025】嫌気性消化槽2の嫌気性消化汚泥は、遠心
分離装置3で固液分離され、分離された脱離液は硝化槽
4に送給される。一方、分離された濃縮汚泥は、必要に
応じて一部が余剰汚泥として系外へ引き抜かれ、残部は
返送汚泥として嫌気性消化槽2に循環される。このよう
にすることにより、固形物の系外流出を抑え、嫌気性消
化槽2での汚泥保持量を高く保つことにより汚泥の減量
効果を高めることができる。嫌気性消化汚泥の固液分離
には、図1に示す遠心分離装置3の他、浮上分離装置、
膜分離装置、沈殿槽、その他脱水機などの固液分離装置
を用いることができる。
The anaerobic digestion sludge in the anaerobic digestion tank 2 is subjected to solid-liquid separation by the centrifugal separator 3, and the separated desorbed liquid is sent to the nitrification tank 4. On the other hand, a part of the separated concentrated sludge is withdrawn to the outside of the system as excess sludge, and the rest is circulated to the anaerobic digestion tank 2 as return sludge. By doing so, the outflow of solids from the system can be suppressed and the sludge holding amount in the anaerobic digestion tank 2 can be kept high, so that the sludge weight reduction effect can be enhanced. For solid-liquid separation of anaerobic digested sludge, in addition to the centrifugal separator 3 shown in FIG.
A solid-liquid separator such as a membrane separator, a precipitation tank, or a dehydrator can be used.

【0026】この消化汚泥の固液分離に当っては、凝集
剤を添加して消化汚泥を凝集させることによって、良好
な固液分離が行われ、清澄な脱離液が得られると共に、
固形分の系外流出を抑えて、汚泥の減容化効果を高める
ことができる。凝集剤としては、有機系、無機系のいず
れのものを用いてもよいが、添加量が少なくてよいこと
から有機高分子凝集剤、特に両性有機高分子凝集剤が好
ましい。
In the solid-liquid separation of the digested sludge, by adding a coagulant to coagulate the digested sludge, good solid-liquid separation is performed and a clear desorbed liquid is obtained.
It is possible to suppress the outflow of solids from the system and enhance the volume reduction effect of sludge. As the aggregating agent, either an organic type or an inorganic type may be used, but an organic polymer aggregating agent, particularly an amphoteric organic polymer aggregating agent is preferable because the addition amount may be small.

【0027】遠心分離装置3で分離された脱離液は、硝
化槽4において、散気管4Aによる曝気下、亜硝酸型硝
化が行われ、液中のアンモニア性窒素が亜硝酸性窒素に
酸化される。
The desorbed liquid separated by the centrifugal separator 3 is subjected to nitrite type nitrification in the nitrification tank 4 under aeration by the air diffuser 4A, and the ammoniacal nitrogen in the liquid is oxidized to nitrite nitrogen. It

【0028】この硝化槽4において、アンモニア性窒素
を硝酸性窒素にまで酸化することなく、酸化を亜硝酸性
窒素で止めて亜硝酸型硝化を行うためには、 硝化槽4内の溶存酸素(DO)濃度を0.5mg/
L以下に維持する。 硝化槽4のSRTを短くする。 硝化槽4内の亜硝酸性窒素濃度を高くする。 などの条件を適宜採用すれば良い。硝化槽4を低DOで
運転する場合、流動床、浮遊単体方式、造粒微生物等に
よる硝化方式が好ましく、SRTを短く運転する場合は
浮遊法が好ましい。
In this nitrification tank 4, in order to carry out nitrite-type nitrification by stopping the oxidation with nitrite nitrogen without oxidizing ammonia nitrogen to nitrate nitrogen, the dissolved oxygen in the nitrification tank 4 ( DO) concentration is 0.5 mg /
Keep below L. Shorten the SRT of the nitrification tank 4. The nitrite nitrogen concentration in the nitrification tank 4 is increased. The above conditions may be appropriately adopted. When the nitrification tank 4 is operated at a low DO, a fluidized bed, a floating simplex method, a nitrification method using granulating microorganisms and the like are preferable, and when operating the SRT for a short time, the floating method is preferable.

【0029】硝化槽4において、亜硝酸型硝化を行った
硝化液は、前記沈澱槽1の分離液と混合して脱窒槽4に
おいて嫌気条件下に脱窒処理する。
In the nitrification tank 4, the nitrification solution subjected to nitrite type nitrification is mixed with the separation solution in the precipitation tank 1 and is denitrified in the denitrification tank 4 under anaerobic conditions.

【0030】この脱窒槽5には、硝化槽4における亜硝
酸型硝化で、脱離液中のアンモニア性窒素が硝化性窒素
に酸化されて硝化性窒素を含む硝化液と、被処理排水中
のアンモニア性窒素を含む沈殿槽1の分離液が導入され
るため、アンモニア性窒素を電子供与体とし、亜硝酸性
窒素を電子受容体とするANAMMOX微生物による生
物脱窒が行われる。
In the denitrification tank 5, the nitric acid-type nitrification in the nitrification tank 4 oxidizes the ammoniacal nitrogen in the desorbed liquid to nitrifying nitrogen, and the nitrifying liquid containing nitrifying nitrogen and the nitrifying nitrogen in the wastewater to be treated. Since the separated liquid of the precipitation tank 1 containing ammoniacal nitrogen is introduced, the biodenitrification by the ANAMMOX microorganism using ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor is performed.

【0031】この脱窒槽5に導入される硝化液と分離液
との混合液のアンモニア性窒素と亜硝酸性窒素の割合
は、モル比でアンモニア性窒素1に対して亜硝酸性窒素
0.5〜2、特に1〜1.5とするのが好ましい。原水
中のアンモニア性窒素及び亜硝酸性窒素の濃度はそれぞ
れ5〜1000mg/L、5〜200mg/Lであるこ
とが好ましいが、処理水を循環したり、他の排水を混合
したりして希釈すればこの限りではない。
The ratio of the ammoniacal nitrogen and the nitrite nitrogen in the mixed solution of the nitrification solution and the separation solution introduced into the denitrification tank 5 is such that the molar ratio of ammoniacal nitrogen to nitrite nitrogen is 0.5. It is preferable to be 2 to 2, especially 1 to 1.5. The concentrations of ammoniacal nitrogen and nitrite nitrogen in the raw water are preferably 5 to 1000 mg / L and 5 to 200 mg / L, respectively, but the treated water is circulated or other wastewater is mixed to dilute it. This is not the case.

【0032】脱窒槽5における生物脱窒条件としては、
例えば脱窒槽内液の温度が10〜40℃、特に20〜3
5℃、pHが5〜9、特に6〜8、DO濃度が0〜2.
5mg/L、特に0〜0.2mg/L、BOD濃度が0
〜50mg/L、特に0〜20mg/L、窒素負荷が
0.1〜10kg−N/m・日、特に1〜5kg−N
/m・日の範囲とするのが好ましい。
The biological denitrification conditions in the denitrification tank 5 are as follows:
For example, the temperature of the liquid in the denitrification tank is 10 to 40 ° C, especially 20 to 3
5 ° C., pH 5-9, especially 6-8, DO concentration 0-2.
5 mg / L, especially 0-0.2 mg / L, BOD concentration 0
-50 mg / L, especially 0-20 mg / L, nitrogen load 0.1-10 kg-N / m 3 · day, especially 1-5 kg-N
/ M 3 · day is preferable.

【0033】この脱窒槽の形式としては特に制限はな
く、 (1) 槽内でANAMMOX微生物を浮遊状態で増殖さ
せ、その後段において脱窒槽から流出したANAMMO
X微生物を、沈殿槽、浮上分離装置、遠心分離装置、そ
の他の固液分離手段により処理水から分離し、濃縮され
たANAMMOX汚泥を脱窒槽に返送するもの。 (2) 微生物が付着する担体を槽内に充填し、担体表面
に生物膜として増殖するANAMMOX微生物を利用し
た脱窒槽。この場合、担体が脱窒槽内にほぼ静置された
状態で保持される固定床、担体がガスや撹拌機などによ
り緩やかに流動する流動床、菌体が主体となって造粒し
た微生物を用いるいわゆるUSB脱窒槽、担体が比較的
均一な粒径を持つもので密に充填され、SSの濾過機能
を併せ持つ生物濾過方式等のいずれでも良い。 (3) 浮遊状態で増殖するANAMMOX微生物と担体
表面に増殖するANAMMOX微生物を併用した脱窒
槽。等のいずれを採用しても良い。
The form of the denitrification tank is not particularly limited, and (1) the ANAMMOX microorganisms are grown in a suspended state in the tank, and the ANAMMO discharged from the denitrification tank in the subsequent stage.
The X microorganisms are separated from the treated water by a sedimentation tank, a flotation separator, a centrifugal separator, and other solid-liquid separation means, and the concentrated ANAMMOX sludge is returned to the denitrification tank. (2) A denitrification tank using an ANAMMOX microorganism, which is filled with a carrier to which microorganisms adhere, and which grows as a biofilm on the surface of the carrier. In this case, a fixed bed in which the carrier is held in a substantially denitrified state in the denitrification tank, a fluidized bed in which the carrier slowly flows by gas or a stirrer, and a microorganism mainly composed of bacterial cells are used. A so-called USB denitrification tank, a biological filtration system in which the carrier is densely packed with a relatively uniform particle size, and has an SS filtration function, or the like may be used. (3) A denitrification tank in which an ANAMMOX microorganism that grows in a floating state and an ANAMMOX microorganism that grows on the surface of a carrier are used together. Any of the above may be adopted.

【0034】なお、沈殿槽1の分離液は、脱窒槽5にお
ける脱窒処理に先立ち好気処理を行って、溶解性の有機
物を予め除去しても良い。この場合の好気処理で生成す
る余剰汚泥、その他系内で生成する余剰汚泥は、嫌気性
消化槽2へ投入して処理することが好ましい。
The separated liquid in the precipitation tank 1 may be subjected to aerobic treatment prior to the denitrification treatment in the denitrification tank 5 to remove soluble organic substances in advance. Excess sludge generated by the aerobic treatment in this case and excess sludge generated in other systems are preferably charged into the anaerobic digestion tank 2 for treatment.

【0035】[0035]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。
EXAMPLES The present invention will be described in more detail with reference to the following examples.

【0036】実施例1 本発明に従って、図1に示す装置により、下水(SS:
250mg/L,BOD:190mg/L,NH
N:22mg/L)の処理を行った。まず、この下水に
アニオン性高分子凝集剤を1mg/L添加し、沈殿槽1
で30分静置して上澄みを採取した。この上澄み液はS
S:12mg/L,BOD:35mg/L,NH
N:22mg/Lであった。
Example 1 According to the present invention, sewage (SS:
250 mg / L, BOD: 190 mg / L, NH 4
N: 22 mg / L). First, 1 mg / L of anionic polymer flocculant was added to this sewage, and the sedimentation tank 1
The mixture was allowed to stand for 30 minutes and the supernatant was collected. This supernatant is S
S: 12 mg / L, BOD: 35 mg / L, NH 4
N: It was 22 mg / L.

【0037】沈殿した汚泥を採取し、下水メタン醗酵汚
泥と1:1となるよう混合し、嫌気性消化槽2にて空気
と接触しないようにして35℃で30日間ゆっくり撹拌
を続けた後遠心分離装置3で固液分離し、脱離液を採取
した。嫌気性消化槽2の有機物負荷は2.5kg−VS
S/m・日、MLSS濃度は5,400mg/Lであ
った。この脱離液は、SS:88mg/L,NH
N:775mg/L,BOD:197mg/Lであっ
た。
The sludge precipitated was collected, mixed with sewage methane fermentation sludge in a ratio of 1: 1 and stirred slowly at 35 ° C. for 30 days in an anaerobic digestion tank 2 without contact with air, and then centrifuged. Solid-liquid separation was performed by the separation device 3, and the desorbed liquid was collected. The organic matter load of the anaerobic digester 2 is 2.5 kg-VS.
S / m 3 · day, MLSS concentration was 5,400 mg / L. This desorbed liquid was SS: 88 mg / L, NH 4 −.
It was N: 775 mg / L and BOD: 197 mg / L.

【0038】この脱離液を予め亜硝酸型硝化を行ってい
る硝化槽(曝気槽)4へ滞留時間24時間となるよう連
続添加し、温度30℃、pH7.5、DO濃度0.3〜
0.5mg/L、窒素負荷0.8kg−N/m・日で
処理した。沈澱槽は設けなかった。この硝化液は、S
S:221mg/L,BOD:76mg/L,NH
N:13mg/L,NO−N:770mg/Lであっ
た。
This desorbed solution was continuously added to a nitrification tank (aeration tank) 4 in which nitrite type nitrification was carried out in advance so that the residence time was 24 hours, the temperature was 30 ° C., the pH was 7.5, and the DO concentration was 0.3-.
The treatment was performed at 0.5 mg / L and a nitrogen load of 0.8 kg-N / m 3 · day. No settling tank was provided. This nitrification solution is S
S: 221 mg / L, BOD: 76 mg / L, NH 4
N: 13mg / L, NO 2 -N: was 770 mg / L.

【0039】この硝化液を、沈殿槽1にて下水の凝集分
離で得られた上澄み液と、硝化液:上澄み液=1:40
(容量比)の割合で混合し、ANAMMOX活性を持つ
微生物を含む脱窒槽5に滞留時間12時間となるように
連続添加し、嫌気処理した。このANAMMOX微生物
は予め、不織布を担体とする反応槽でアンモニア性窒素
と亜硝酸性窒素を1:1となるように添加して、約1年
間培養したものである。脱窒槽の温度は25℃,pHは
7.4、窒素負荷は0.1kg−N/m・日であっ
た。
This nitrification solution was mixed with the supernatant obtained by the coagulation separation of the sewage in the settling tank 1, and the nitrification solution: supernatant solution = 1: 40.
The mixture was mixed at a ratio of (volume ratio), continuously added to the denitrification tank 5 containing a microorganism having ANAMMOX activity so as to have a residence time of 12 hours, and anaerobically treated. This ANAMMOX microorganism was prepared by adding ammonia nitrogen and nitrite nitrogen at a ratio of 1: 1 in a reaction vessel using a non-woven fabric as a carrier and culturing for about 1 year. The temperature of the denitrification tank was 25 ° C., the pH was 7.4, and the nitrogen load was 0.1 kg-N / m 3 · day.

【0040】その結果、この脱窒槽5からBOD:16
mg/L,SS:26mg/L,NH−N:8mg/
L,NO−N:0.1mg/L以下,NO−N:
0.7mg/Lの処理水を得ることができた。
As a result, from this denitrification tank 5, BOD: 16
mg / L, SS: 26mg / L, NH 4 -N: 8mg /
L, NO 2 -N: 0.1mg / L or less, NO 3 -N:
0.7 mg / L of treated water could be obtained.

【0041】[0041]

【発明の効果】以上詳述した通り、本発明の排水の処理
方法及び処理装置によれば、SS性有機物とアンモニア
性窒素とを含む排水の処理に当たり、硝化脱窒にかかる
窒素負荷を低減して低コストにて効率的な処理を行うこ
とができる。
As described above in detail, according to the wastewater treatment method and treatment apparatus of the present invention, the nitrogen load on nitrification and denitrification can be reduced in the treatment of wastewater containing SS organic matter and ammonia nitrogen. Therefore, efficient processing can be performed at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の排水の処理方法及び処理装置の実施の
形態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a wastewater treatment method and treatment equipment of the present invention.

【図2】従来法を示す系統図である。FIG. 2 is a system diagram showing a conventional method.

【符号の説明】[Explanation of symbols]

1 沈殿槽 2 嫌気性消化槽 3 遠心分離装置 4 硝化槽 5 脱窒槽 1 settling tank 2 Anaerobic digester 3 Centrifuge 4 Nitrification tank 5 denitrification tank

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 SS性有機物及びアンモニア性窒素を含
む排水を処理する方法において、 該排水を固液分離する固液分離工程と、 該固液分離工程で分離された汚泥をメタン醗酵処理する
嫌気性消化工程と、 該嫌気性消化工程の脱離液中のアンモニア性窒素を亜硝
酸性窒素に硝化する亜硝酸型硝化工程と、 該亜硝酸型硝化工程の処理水と前記固液分離工程で分離
された分離液とを混合して生物脱窒処理する生物脱窒工
程とを有することを特徴とする排水の処理方法。
1. A method for treating wastewater containing SS organic matter and ammonia nitrogen, comprising a solid-liquid separation step of solid-liquid separation of the wastewater, and anaerobic digestion of sludge separated in the solid-liquid separation step with methane. In the anaerobic digestion step, a nitrite type nitrification step of nitrifying ammoniacal nitrogen in the desorbed liquid of the anaerobic digestion step to nitrite nitrogen, and treated water in the nitrite type nitrification step and the solid-liquid separation step. A biological denitrification step of mixing the separated liquid with the separated liquid to perform a biological denitrification process.
【請求項2】 請求項1において、該生物脱窒工程は、
アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電
子受容体とする独立栄養性脱窒微生物により生物脱窒処
理する工程であることを特徴とする排水の処理方法。
2. The biological denitrification step according to claim 1,
A method for treating wastewater, which comprises a step of performing biological denitrification treatment with an autotrophic denitrifying microorganism using ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor.
【請求項3】 SS性有機物及びアンモニア性窒素を含
む排水を処理する装置において、 該排水を固液分離する固液分離手段と、 該固液分離手段で分離された汚泥をメタン醗酵処理する
嫌気性消化槽と、 該嫌気性消化槽の脱離液中のアンモニア性窒素を亜硝酸
性窒素に硝化する亜硝酸型硝化槽と、 該亜硝酸型硝化槽の処理水と前記固液分離手段で分離さ
れた分離液とを混合して生物脱窒処理する生物脱窒槽と
を有することを特徴とする排水の処理装置。
3. An apparatus for treating wastewater containing SS organic matter and ammonia nitrogen, wherein solid-liquid separation means for solid-liquid separating the wastewater and anaerobic methane fermentation treatment for sludge separated by the solid-liquid separation means. Oxidative digestion tank, a nitrite type nitrification tank for nitrifying ammoniacal nitrogen in the desorbed liquid of the anaerobic digestion tank to nitrite nitrogen, treated water of the nitrite type nitrification tank and the solid-liquid separation means. An apparatus for treating wastewater, comprising: a biological denitrification tank that mixes the separated liquid separated to perform a biological denitrification process.
【請求項4】 請求項3において、該生物脱窒槽は、ア
ンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子
受容体とする独立栄養性脱窒微生物により生物脱窒処理
する槽であることを特徴とする排水の処理装置。
4. The biological denitrification tank according to claim 3, wherein the biological denitrification treatment is performed by an autotrophic denitrifying microorganism having ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. A wastewater treatment device characterized in that
JP2002044991A 2002-02-21 2002-02-21 Wastewater treatment method and treatment apparatus Expired - Fee Related JP3821011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002044991A JP3821011B2 (en) 2002-02-21 2002-02-21 Wastewater treatment method and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002044991A JP3821011B2 (en) 2002-02-21 2002-02-21 Wastewater treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JP2003245689A true JP2003245689A (en) 2003-09-02
JP3821011B2 JP3821011B2 (en) 2006-09-13

Family

ID=28659189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002044991A Expired - Fee Related JP3821011B2 (en) 2002-02-21 2002-02-21 Wastewater treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP3821011B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082792A1 (en) * 2004-03-01 2005-09-09 Kurita Water Industries Ltd. Method of nitrifying ammonium-nitrogen-containing water and method of treating the same
JP2006110511A (en) * 2004-10-18 2006-04-27 Hitachi Plant Eng & Constr Co Ltd Operation method for anaerobic ammonia oxidation apparatus
JP2006305488A (en) * 2005-04-28 2006-11-09 Kobe Steel Ltd Method of treating organic sludge
JP2007044579A (en) * 2005-08-08 2007-02-22 Takuma Co Ltd Biomass treatment system
JP2007283249A (en) * 2006-04-19 2007-11-01 Takasago Thermal Eng Co Ltd Organic wastewater treatment system
JP2008272625A (en) * 2007-04-26 2008-11-13 Kumamoto Univ Wastewater treatment system
JP2009039643A (en) * 2007-08-08 2009-02-26 Hitachi Plant Technologies Ltd Removing method of organic substance and nitrogen as liquid to be treated, granule, solution for acclimatization and apparatus
JP2009066557A (en) * 2007-09-14 2009-04-02 Mitsui Eng & Shipbuild Co Ltd Biogas system
JP2009101296A (en) * 2007-10-23 2009-05-14 Asahi Breweries Ltd Treatment method and apparatus for food production wastewater
JP2009136725A (en) * 2007-12-04 2009-06-25 Hitachi Plant Technologies Ltd Ammonia-containing waste water treatment apparatus
JP2010110706A (en) * 2008-11-07 2010-05-20 Obihiro Univ Of Agriculture & Veterinary Medicine System and method for treating organic waste
JP2010253404A (en) * 2009-04-27 2010-11-11 Ebara Engineering Service Co Ltd Method and apparatus of denitrifying digested sludge separation liquid
JP2012024725A (en) * 2010-07-26 2012-02-09 Nishihara Environment Co Ltd Sewage treatment apparatus
JP2012206022A (en) * 2011-03-30 2012-10-25 Kubota Corp Organic wastewater treatment facility and method
JP2013123706A (en) * 2011-12-16 2013-06-24 Kubota Corp System and method for treating waste water containing suspended organic matter
WO2014030583A1 (en) * 2012-08-24 2014-02-27 株式会社クボタ System and method for treating wastewater containing suspended organic substance
JP2014097478A (en) * 2012-11-15 2014-05-29 Hitachi Ltd Effluent treatment method and effluent treatment apparatus
JP2015515370A (en) * 2012-04-04 2015-05-28 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Process comprising an ANAMOX microorganism on a biofilm carrier for removing ammonium from a wastewater stream
JP2016131974A (en) * 2015-01-15 2016-07-25 黎明興技術顧問股▲分▼有限公司 Waste water treatment system
JP2016172236A (en) * 2015-03-17 2016-09-29 水ing株式会社 Apparatus and method for treating water
JP2018176131A (en) * 2017-04-20 2018-11-15 栗田工業株式会社 Denitrification treatment apparatus for ammonia nitrogen-containing drainage and method for denitrification treatment
JP2019177333A (en) * 2018-03-30 2019-10-17 Jfeエンジニアリング株式会社 Method for methane fermentation of organic waste
CN112979075A (en) * 2021-02-26 2021-06-18 天津凯英科技发展股份有限公司 Zero-carbon-source-added biogas slurry denitrification method and application thereof
CN113880251A (en) * 2021-09-26 2022-01-04 北京工业大学 Method and device for realizing deep denitrification and sludge reduction of high ammonia nitrogen wastewater by using sludge fermentation liquor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04227899A (en) * 1991-05-13 1992-08-17 Ebara Infilco Co Ltd Treatment of night soil
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04227899A (en) * 1991-05-13 1992-08-17 Ebara Infilco Co Ltd Treatment of night soil
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005217249B2 (en) * 2004-03-01 2009-04-30 Kurita Water Industries Ltd. Method of nitrifying ammonium-nitrogen-containing water and method of treating the same
WO2005082792A1 (en) * 2004-03-01 2005-09-09 Kurita Water Industries Ltd. Method of nitrifying ammonium-nitrogen-containing water and method of treating the same
CN1926072B (en) * 2004-03-01 2010-04-14 栗田工业株式会社 Method of nitrifying ammonium-nitrogen-containing water and method of treating the same
US7329352B2 (en) 2004-03-01 2008-02-12 Kurita Water Industries Ltd. Nitrifying method of treating water containing ammonium-nitrogen
JP2006110511A (en) * 2004-10-18 2006-04-27 Hitachi Plant Eng & Constr Co Ltd Operation method for anaerobic ammonia oxidation apparatus
JP2006305488A (en) * 2005-04-28 2006-11-09 Kobe Steel Ltd Method of treating organic sludge
JP2007044579A (en) * 2005-08-08 2007-02-22 Takuma Co Ltd Biomass treatment system
JP2007283249A (en) * 2006-04-19 2007-11-01 Takasago Thermal Eng Co Ltd Organic wastewater treatment system
JP2008272625A (en) * 2007-04-26 2008-11-13 Kumamoto Univ Wastewater treatment system
JP2009039643A (en) * 2007-08-08 2009-02-26 Hitachi Plant Technologies Ltd Removing method of organic substance and nitrogen as liquid to be treated, granule, solution for acclimatization and apparatus
JP2009066557A (en) * 2007-09-14 2009-04-02 Mitsui Eng & Shipbuild Co Ltd Biogas system
JP2009101296A (en) * 2007-10-23 2009-05-14 Asahi Breweries Ltd Treatment method and apparatus for food production wastewater
JP2009136725A (en) * 2007-12-04 2009-06-25 Hitachi Plant Technologies Ltd Ammonia-containing waste water treatment apparatus
JP2010110706A (en) * 2008-11-07 2010-05-20 Obihiro Univ Of Agriculture & Veterinary Medicine System and method for treating organic waste
JP2010253404A (en) * 2009-04-27 2010-11-11 Ebara Engineering Service Co Ltd Method and apparatus of denitrifying digested sludge separation liquid
JP2012024725A (en) * 2010-07-26 2012-02-09 Nishihara Environment Co Ltd Sewage treatment apparatus
JP2012206022A (en) * 2011-03-30 2012-10-25 Kubota Corp Organic wastewater treatment facility and method
JP2013123706A (en) * 2011-12-16 2013-06-24 Kubota Corp System and method for treating waste water containing suspended organic matter
JP2015515370A (en) * 2012-04-04 2015-05-28 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Process comprising an ANAMOX microorganism on a biofilm carrier for removing ammonium from a wastewater stream
WO2014030583A1 (en) * 2012-08-24 2014-02-27 株式会社クボタ System and method for treating wastewater containing suspended organic substance
JP2014042857A (en) * 2012-08-24 2014-03-13 Kubota Corp Processing system and processing method of suspension property organic material inclusion waste water
CN104271516A (en) * 2012-08-24 2015-01-07 株式会社久保田 System and method for treating wastewater containing suspended organic substance
JP2014097478A (en) * 2012-11-15 2014-05-29 Hitachi Ltd Effluent treatment method and effluent treatment apparatus
JP2016131974A (en) * 2015-01-15 2016-07-25 黎明興技術顧問股▲分▼有限公司 Waste water treatment system
JP2016172236A (en) * 2015-03-17 2016-09-29 水ing株式会社 Apparatus and method for treating water
JP2018176131A (en) * 2017-04-20 2018-11-15 栗田工業株式会社 Denitrification treatment apparatus for ammonia nitrogen-containing drainage and method for denitrification treatment
JP2019177333A (en) * 2018-03-30 2019-10-17 Jfeエンジニアリング株式会社 Method for methane fermentation of organic waste
CN112979075A (en) * 2021-02-26 2021-06-18 天津凯英科技发展股份有限公司 Zero-carbon-source-added biogas slurry denitrification method and application thereof
CN112979075B (en) * 2021-02-26 2022-12-23 天津凯英科技发展股份有限公司 Zero-carbon-source-added biogas slurry denitrification method and application thereof
CN113880251A (en) * 2021-09-26 2022-01-04 北京工业大学 Method and device for realizing deep denitrification and sludge reduction of high ammonia nitrogen wastewater by using sludge fermentation liquor
CN113880251B (en) * 2021-09-26 2023-10-10 北京工业大学 Method and device for realizing deep denitrification and sludge reduction of high ammonia nitrogen wastewater by using sludge fermentation liquor

Also Published As

Publication number Publication date
JP3821011B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
JP3821011B2 (en) Wastewater treatment method and treatment apparatus
JP3737410B2 (en) High concentration organic wastewater treatment method and apparatus using biomaker
US8864993B2 (en) Process for removing ammonium from a wastewater stream
KR101830902B1 (en) Apparatus of high nitrogen wastewater treatment using partial nitritation sequencing batch reactor supplied with ammonium oxidation bacteria(AOB) granule from the connected AOB granule reactor and using anaerobic ammonium oxidation
JP4224951B2 (en) Denitrification method
CN107108293A (en) The denitrogenation method and nitrogen rejection facility of nitrogenous effluent
JP2019025438A (en) Organic waste water treatment apparatus and organic wastewater treatment method
JP3122654B2 (en) Method and apparatus for treating highly concentrated wastewater
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP6084150B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP2003033789A (en) Method for denitrificaton treatment using living organisms and device therefor
KR100733823B1 (en) Compact apparatus and method for wastewater treatment using genus bacillus
JP2005066381A (en) Method and apparatus for treating organic waste water
JP2004358391A (en) Treatment method and treatment apparatus of organic waste
JP2003053385A (en) Biological denitrification equipment
JP4642635B2 (en) High concentration organic waste liquid treatment method and apparatus
JP5873736B2 (en) Organic wastewater treatment method and treatment apparatus
JP4570550B2 (en) Nitrogen removal method and apparatus for high concentration organic wastewater
JP6880894B2 (en) Wastewater treatment method with ANAMMOX process
JP2002301500A (en) Water treatment method and apparatus using acid fermentation
KR100714825B1 (en) Method for treating sewage and high organic loading wastewater by anaerobic/oxic process with membrane and biological aerated filter
JP2002361292A (en) Anaerobic digesting apparatus
JP2018176131A (en) Denitrification treatment apparatus for ammonia nitrogen-containing drainage and method for denitrification treatment
KR0129831B1 (en) A process for sewage treatment wsing denitrification and dephosphorization
KR960011888B1 (en) Method and apparatus for biological treatment of waste water including nitrogen and phosphorus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3821011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140630

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees