JP2007283249A - Organic wastewater treatment system - Google Patents

Organic wastewater treatment system Download PDF

Info

Publication number
JP2007283249A
JP2007283249A JP2006115657A JP2006115657A JP2007283249A JP 2007283249 A JP2007283249 A JP 2007283249A JP 2006115657 A JP2006115657 A JP 2006115657A JP 2006115657 A JP2006115657 A JP 2006115657A JP 2007283249 A JP2007283249 A JP 2007283249A
Authority
JP
Japan
Prior art keywords
tank
solid
liquid
treatment tank
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006115657A
Other languages
Japanese (ja)
Other versions
JP5016839B2 (en
Inventor
Minehiko Sato
峰彦 佐藤
Shigeki Kamiya
成毅 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2006115657A priority Critical patent/JP5016839B2/en
Publication of JP2007283249A publication Critical patent/JP2007283249A/en
Application granted granted Critical
Publication of JP5016839B2 publication Critical patent/JP5016839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological treatment technique of organic wastewater capable of further reducing a production quantity of sludge and capable of further reducing the quantity of heat required in the adjustment of the temperature of organic wastewater. <P>SOLUTION: Organic wastewater is subjected to solid-liquid separation in a first sedimentation tank 1 while the liquid drawn out of the bottom part of the first sedimentation tank 1 is treated with thermophilic bacteria in a high-temperature treatment tank 2 and the thermophilic bacteria treated liquid discharged from the high-temperature treatment tank 2 is subjected to solid-liquid separation in a second sedimentation tank 3. The supernatant liquids of the first and second sedimentation tanks 1 and 3 are supplied to a biological treatment tank 4 for biological treatment and the liquid drawn out of the bottom part of the second sedimentation tank 3 is returned to the second sedimentation tank 3 while the biologically treated liquid discharged from the biological treatment tank 4 is subjected to solid-liquid separation in a third sedimentation tank 5 and the liquid drawn out of the bottom part of the third sedimentation tank 5 is returned to the biological treatment tank 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有機性廃水を微生物により処理する装置に関する。   The present invention relates to an apparatus for treating organic wastewater with microorganisms.

有機性廃水を好気性微生物を含む活性汚泥により処理する活性汚泥法は、浄化能力が高く、比較的処理経費が少なくて済む等の利点がある。このため、活性汚泥法を利用した種々の水処理方法が提案され、下水処理や産業排水処理等の廃水処理において広く一般に利用されている。   The activated sludge method of treating organic wastewater with activated sludge containing aerobic microorganisms has advantages such as high purification capacity and relatively low treatment costs. For this reason, various water treatment methods using the activated sludge method have been proposed and widely used in wastewater treatment such as sewage treatment and industrial wastewater treatment.

前記活性汚泥法では、処理対象となる各種の有機性廃水をエアレーションタンク(曝気槽)へと導き、この曝気槽で、活性汚泥によりBOD(生物化学的酸素要求量)で示される廃水中の有機汚濁成分を分解させて浄化処理をしている。前記活性汚泥法は、通常、BODで表される負荷量で0.3〜0.8kg/m3・day程度の条件で実施される。このため、大量の有機性廃水の処理を行うには、広い敷地面積を要する大型の曝気槽が必要となる等、設備が大型化する傾向がある。 In the activated sludge method, various organic wastewaters to be treated are guided to an aeration tank (aeration tank), and in this aeration tank, organic matter in wastewater indicated by BOD (biochemical oxygen demand) is indicated by activated sludge. Purify treatment by decomposing pollutant components. The activated sludge method is usually carried out under conditions of a load amount expressed by BOD of about 0.3 to 0.8 kg / m 3 · day. For this reason, in order to process a large amount of organic waste water, there exists a tendency for an installation to enlarge, for example, the large aeration tank which requires a large site area is needed.

さらに前記活性汚泥法では、分解した前記負荷量のうち50〜70%は微生物の維持エネルギーとして消費されるが、残りの30〜50%は菌体の増殖に使用されるので、活性汚泥の量が次第に増加する。このため、一般的には、曝気槽で処理された廃水を沈殿槽へと導き、沈殿した活性汚泥の中から有機性廃水の浄化処理に必要な量だけ返送汚泥として曝気槽内へ戻し、それ以外の活性汚泥は、濃縮、消化、脱水、コンポスト化、焼却といった工程を経て余剰汚泥として処理される。このため、このような処理に費用と手間がかかり問題となっている。   Further, in the activated sludge method, 50 to 70% of the decomposed load amount is consumed as microbial maintenance energy, but the remaining 30 to 50% is used for the growth of bacterial cells, so the amount of activated sludge Will gradually increase. For this reason, in general, wastewater treated in the aeration tank is guided to the settling tank, and only the amount necessary for the purification treatment of organic wastewater is returned from the precipitated activated sludge to the aeration tank. The activated sludge other than is treated as surplus sludge through steps such as concentration, digestion, dehydration, composting, and incineration. For this reason, such processing is costly and troublesome, which is a problem.

このため、できるだけ汚泥の出ない処理方法として、曝気槽における汚泥の滞留時間を長くする長時間曝気法、又は汚泥を接触材の表面に付着させることにより、汚泥を反応槽内に大量に保持する接触酸化法等が提案され、実用化されている(例えば、非特許文献1参照。)。   For this reason, as a treatment method in which sludge is not generated as much as possible, a large amount of sludge is retained in the reaction tank by a long-time aeration method in which the sludge residence time in the aeration tank is increased, or by attaching sludge to the surface of the contact material. A catalytic oxidation method or the like has been proposed and put into practical use (for example, see Non-Patent Document 1).

しかしながら、これらの方法では、曝気槽における汚泥の滞留時間を長くとるために曝気槽として広大な設置面積を必要とする。また長時間曝気槽では負荷の低下時に汚泥の拡散が生じ、固液分離に支障を来す場合がある。また接触酸化法では、負荷の上昇時に汚泥の目詰まりが発生する場合があり好ましくない。   However, these methods require a large installation area as an aeration tank in order to increase the sludge residence time in the aeration tank. In a long-time aeration tank, sludge is diffused when the load is reduced, which may impede solid-liquid separation. Also, the contact oxidation method is not preferred because sludge clogging may occur when the load increases.

そこで、可溶化処理によるBOD負荷の増加に対応して活性汚泥処理槽での被処理液の滞留時間を長くすること、すなわち活性汚泥処理槽の容積を大きくすることが考えられるが、その場合、設備コストの上昇を招くことになる。   Therefore, it is conceivable to increase the residence time of the liquid to be treated in the activated sludge treatment tank corresponding to the increase in BOD load due to the solubilization treatment, that is, to increase the volume of the activated sludge treatment tank. Equipment costs will increase.

一方、特許文献1には、有機性廃水(原水)を、細菌処理(主に分散菌による細菌処理)して廃水中の有機物を酸化分解すると共に非凝集性の細菌に変換させた後、さらに、前記非凝集性細菌を固着性原生動物に捕食、除去させることによって、生物処理の効率を向上させることが提案されている。そして特許文献1には、前記方法を用いると、高負荷状態での運転が可能となり、活性汚泥法による処理効率が格段に向上し、さらに生物処理の効率の向上が図れると同時に余剰汚泥の生成量を減少させることができることが記載されている。   On the other hand, Patent Document 1 discloses that organic waste water (raw water) is treated with bacteria (mainly by dispersal bacteria) to oxidize and decompose organic matter in the waste water and convert it into non-aggregating bacteria. It has been proposed to improve the efficiency of biological treatment by allowing the adherent protozoa to prey and remove the non-aggregating bacteria. In Patent Document 1, when the above method is used, it is possible to operate in a high load state, the treatment efficiency by the activated sludge method is remarkably improved, and further, the efficiency of biological treatment can be improved, and at the same time, surplus sludge is generated. It is described that the amount can be reduced.

しかしながら、前記方法を用いて本発明者が研究を進めたところ、流入廃水のBODの
濃度が約600mg/L以上でないと上記効果が得られないことがあることが分かった。これは、高温で生息する細菌は活性が非常に高いため、多くの栄養分を必要とし、流入廃水濃度が低いと餓死するためと推測される。したがって、一般的な生活廃水のBODの濃度は100mg/L程度であるため、前記方法は、そのままでは利用できない場合があることが分かった。
However, as a result of research conducted by the present inventor using the above-described method, it has been found that the above-described effect may not be obtained unless the BOD concentration of the influent wastewater is about 600 mg / L or more. This is presumably because bacteria that inhabit at high temperatures are very active and require a large amount of nutrients, and when the influent wastewater concentration is low, they die of starvation. Therefore, since the BOD concentration of general domestic wastewater is about 100 mg / L, it has been found that the above method may not be used as it is.

また特許文献1には、細菌処理の際に原生動物の混入を防止する観点から、細菌処理の温度を高めることが記載されているが、このように廃水の全量を高温処理することは、加える熱量が膨大となるため、コジェネレーションの廃熱等の安価な熱を用いても、熱コストが汚泥削減によりコストメリットよりも大きくなることがある。   In addition, Patent Document 1 describes that the temperature of the bacterial treatment is increased from the viewpoint of preventing protozoa from being mixed during the bacterial treatment. Since the amount of heat becomes enormous, even if inexpensive heat such as waste heat of cogeneration is used, the heat cost may become larger than the cost merit due to sludge reduction.

さらには、特許文献2には、固形の食品廃棄物を細かく砕いて流動性のある粥状とし、得られた粉砕物を原水と共に高温水槽に導入して高温の温水で可溶化処理し、これを生物処理することが記載されている。本発明者が特許文献2に従って実験したところ、高温水槽に流入した粥状の固形物の一部がそのまま後段の生物処理槽に流出することが確認された。そして後段の生物処理槽に流れ出た粥状の固形物はほぼ未処理であり、野菜くず等の廃棄物の形態が残ったままであるため、生物処理槽での処理が難しく、結果として汚泥の発生量が増加することがあることが確認された。   Furthermore, Patent Document 2 discloses that a solid food waste is finely crushed into a fluid bowl, and the obtained pulverized product is introduced into a high-temperature water tank together with raw water and solubilized with high-temperature hot water. Is described as biological treatment. When this inventor experimented according to patent document 2, it was confirmed that a part of bowl-shaped solid substance which flowed into the high-temperature water tank flows out into a biological treatment tank of a back | latter stage as it is. And the soot-like solids that flowed out to the biological treatment tank in the subsequent stage are almost untreated, and the form of waste such as vegetable waste remains, so it is difficult to treat in the biological treatment tank, resulting in the generation of sludge. It was confirmed that the amount may increase.

また、有機性廃水の処理では、高温での好熱菌による廃水処理を含む技術が知られている(例えば特許文献3〜6参照。)。しかしながらこれらの技術では、常温での生物処理後の固形物を高温で好熱菌により分解する技術であり、生物処理槽での負荷の低減の観点で検討の余地が残されている。
特公昭56−48235号公報 特許第3643287号公報 特許第3267935号公報 特開2003−205279号公報 特開2005−334886号公報 特開2005−279464号公報 (社)日本下水道協会発行、建設省都市局下水道部監修、「下水道施設計画・設計指針と解説」後編、1994年版
Moreover, in the treatment of organic wastewater, techniques including wastewater treatment with thermophilic bacteria at high temperatures are known (see, for example, Patent Documents 3 to 6). However, these techniques are techniques for decomposing solids after biological treatment at room temperature with thermophilic bacteria at high temperatures, and there remains room for study from the viewpoint of reducing the load in the biological treatment tank.
Japanese Patent Publication No. 56-48235 Japanese Patent No. 3643287 Japanese Patent No. 3267935 JP 2003-205279 A JP 2005-334886 A JP 2005-279464 A Issued by the Japan Sewerage Association, supervised by the Ministry of Construction City Bureau Sewerage Department, "Sewerage Facility Planning and Design Guidelines and Explanations", second part, 1994 edition

本発明は、汚泥の発生量をより低減させることができる有機性廃水の生物処理技術を提供する。   The present invention provides a biological treatment technology for organic wastewater that can further reduce the amount of sludge generated.

また本発明は、有機性廃水の温度の調整に必要な熱量をより低減させることができる有機性廃水の生物処理技術を提供する。   Moreover, this invention provides the biological treatment technique of the organic wastewater which can reduce more calorie | heat amount required for adjustment of the temperature of organic wastewater.

本発明は、第一の固液分離装置と高温処理槽と第二の固液分離装置により有機性廃水を処理するシステムである。本発明では、有機性廃水を第一の固液分離装置にて固相と液相とを分離し、上澄み液と固形物を多く含む液体とを得、固形物を多く含む液体のみを高温処理槽で処理し、得られた処理液を第二の固液分離装置によってさらに固相と液相とに分離し、得られた固相中の固形物は高温処理槽に返送し、前記の上澄み液等の前記液相を一次処理水とする。そして、公知の生物処理システムで前記一次処理水を処理し、さらに浄化された処理水を得る。有機性廃水のBODが高い場合では、一次処理水が放流基準を満足しない場合があるが、標準活性汚泥法、浸漬膜活性汚泥法、接触曝気法等の公知の生物処理システムで前記一次処理水を処理し、放流基準を満足する処理水を得ることができる
The present invention is a system for treating organic wastewater by a first solid-liquid separator, a high-temperature treatment tank, and a second solid-liquid separator. In the present invention, the organic waste water is separated into a solid phase and a liquid phase by a first solid-liquid separation device to obtain a supernatant and a liquid containing a large amount of solids, and only a liquid containing a large amount of solids is treated at a high temperature. The resulting treatment liquid is further separated into a solid phase and a liquid phase by the second solid-liquid separator, and the solid matter in the obtained solid phase is returned to the high-temperature treatment tank and the supernatant is obtained. Let said liquid phase, such as a liquid, be primary treated water. Then, the primary treated water is treated with a known biological treatment system to obtain purified treated water. When the organic wastewater has a high BOD, the primary treated water may not satisfy the release standard. However, the primary treated water may be obtained by a known biological treatment system such as a standard activated sludge method, a submerged membrane activated sludge method, or a contact aeration method. The treated water satisfying the discharge standard can be obtained.

有機性廃水を第一の固液分離装置で分離し、高温処理槽への流入水中の固形物の割合を高くすることで、高温処理槽への流入水のBOD濃度が上がる。高温処理槽では高温下で生息する好熱菌によって固形物が分解されるが、この好熱菌は活性が高いため、常に多くの栄養分が必要となる。そのため、高温処理槽への流入水のBOD濃度を上げることによって、高温処理槽において好熱菌を増殖させることができる。高温処理槽において好熱菌が増殖することによって高温処理槽における廃水処理能力が向上し、汚泥の発生量も少なくすることができる。   By separating the organic waste water with the first solid-liquid separator and increasing the ratio of solids in the inflow water to the high temperature treatment tank, the BOD concentration of the inflow water to the high temperature treatment tank increases. In a high-temperature treatment tank, solids are decomposed by thermophilic bacteria that inhabit at high temperatures. However, since these thermophilic bacteria are highly active, a lot of nutrients are always required. Therefore, thermophilic bacteria can be propagated in the high temperature treatment tank by increasing the BOD concentration of the inflow water to the high temperature treatment tank. Proliferation of thermophilic bacteria in the high-temperature treatment tank improves wastewater treatment capacity in the high-temperature treatment tank, and the amount of sludge generated can be reduced.

また固形物の割合が高い固形物の濃縮水のみを高温処理槽に流入させるため、高温処理槽の水量を少なくすることができる。そのため、高温処理槽において温度調節のために加える熱量を減らすことができ、ランニングコストを低減させることができる。   Further, since only solid concentrated water having a high proportion of solids is allowed to flow into the high-temperature treatment tank, the amount of water in the high-temperature treatment tank can be reduced. Therefore, the amount of heat applied for temperature adjustment in the high-temperature treatment tank can be reduced, and the running cost can be reduced.

また高温処理槽の下流に第二の固液分離装置を設け、この第二の固液分離装置で得られた固形物を高温処理槽に返送することにより、高温処理されなかった固形物の流出を防止し、固形物の高温処理槽内での滞留時間を伸ばすことができ、高温処理槽に流入した固形物が十分に分解される。   In addition, a second solid-liquid separation device is provided downstream of the high-temperature treatment tank, and the solid matter obtained by the second solid-liquid separation device is returned to the high-temperature treatment tank, so that the solid matter that has not been subjected to high-temperature treatment can be discharged. And the residence time of the solid matter in the high-temperature treatment tank can be extended, and the solid matter flowing into the high-temperature treatment tank is sufficiently decomposed.

なお高温処理槽への流入水のBOD濃度については、通常、家庭等で発生する廃水と同等の、BOD濃度が100mg/L程度の廃水では、好熱菌は、この程度の栄養分では十分に増殖しないことがあることが確認されている。   As for the BOD concentration of the inflow water to the high-temperature treatment tank, thermophilic bacteria are sufficiently proliferated in this amount of nutrients in wastewater with a BOD concentration of about 100 mg / L, which is usually equivalent to wastewater generated at home. It has been confirmed that there may be no.

本発明は、より詳しくは、有機性の固形物と水とを含有する有機性廃水を固液分離するための第一の固液分離装置と、前記第一の固液分離装置での固液分離による固形物を含有する第一の固形物含有液が供給される、前記第一の固形物含有液中の前記固形物を好熱菌で分解するための高温処理槽と、前記高温処理槽から排出される好熱菌処理液が供給される、前記好熱菌処理液を固液分離するための第二の固液分離装置と、前記第一の固液分離装置での固液分離による液相である第一の処理水及び前記第二の固液分離装置での固液分離による液相である第二の処理水が供給される、前記第一及び第二の処理水を生物で処理するための生物処理槽とを有し、前記第二の固液分離装置での固液分離による固形物を含有する第二の固形物含有液が前記高温処理槽に供給される、有機性廃水処理システムを提供する。   More specifically, the present invention relates to a first solid-liquid separation device for solid-liquid separation of organic waste water containing an organic solid and water, and a solid-liquid in the first solid-liquid separation device. A high-temperature treatment tank for decomposing the solid in the first solid-containing liquid with thermophilic bacteria, to which a first solid-containing liquid containing solids by separation is supplied, and the high-temperature treatment tank A second solid-liquid separation device for solid-liquid separation of the thermophilic bacterium treatment liquid supplied with a thermophilic bacterium treatment liquid discharged from the liquid, and solid-liquid separation in the first solid-liquid separation device The first treated water as a liquid phase and the second treated water as a liquid phase by solid-liquid separation in the second solid-liquid separation device are supplied. A biological treatment tank for processing, and a second solid-containing liquid containing solids by solid-liquid separation in the second solid-liquid separation device is It is supplied to the high temperature treatment tank, to provide an organic waste water processing system.

前記システムでは、有機性廃水中の固形物が、分解活性が比較的高い好熱菌によって処理され、有機性廃水中の液相が、分解活性が比較的低い通常の生物処理で処理される。また好熱菌で処理された液中の固形物は再度好熱菌によって処理され、好熱菌で処理された液中の液相は通常の生物処理で処理される。したがって、最初に有機性廃水を通常の生物処理で処理する従来のシステムに比べて汚泥の発生量をより低減させることが可能である。また、好熱菌での処理では被処理液の加熱が必要となるが、前記システムでは有機性廃水の一部のみを被処理液とすることができるので、有機性廃水の全量を好熱菌で処理する場合に比べて温度の調節に必要な熱量をより低減させることが可能である。   In the system, solids in organic wastewater are treated with thermophilic bacteria having relatively high decomposing activity, and the liquid phase in organic wastewater is treated with normal biological treatment with relatively low decomposing activity. Moreover, the solid substance in the liquid processed with the thermophilic bacterium is processed again with the thermophilic bacterium, and the liquid phase in the liquid processed with the thermophilic bacterium is processed with a normal biological treatment. Therefore, it is possible to further reduce the amount of sludge generated compared to a conventional system that first treats organic wastewater by ordinary biological treatment. In addition, in the treatment with thermophilic bacteria, it is necessary to heat the liquid to be treated. However, in the above system, only a part of the organic waste water can be used as the liquid to be treated. It is possible to further reduce the amount of heat necessary for adjusting the temperature as compared with the case of processing in step (1).

また本発明では、前記生物処理槽から排出される生物処理液が供給される、前記生物処理液を固液分離するための第三の固液分離装置をさらに有し、前記第三の固液分離装置での固液分離による固形物を含有する第三の固形物含有液は、前記高温処理槽及び前記生物処理槽のいずれか一方又は両方に供給されても良い。このシステムでは、生物処理で発生した汚泥が再度処理されることから、汚泥の発生量をさらに削減することが可能である。汚泥の発生量の削減の観点によれば、第三の固形物含有液を生物処理槽のみに供給するよりも、第三の固形物含有液を生物処理槽及び高温処理槽の両方に供給することが好ましく
、第三の固形物含有液を高温処理槽のみに供給することがより好ましい。
The present invention further includes a third solid-liquid separation device for solid-liquid separation of the biological treatment liquid supplied with the biological treatment liquid discharged from the biological treatment tank, and the third solid-liquid separation The third solid-containing liquid containing solids obtained by solid-liquid separation in the separation device may be supplied to one or both of the high-temperature treatment tank and the biological treatment tank. In this system, since the sludge generated by the biological treatment is treated again, it is possible to further reduce the amount of sludge generated. According to the viewpoint of reducing the amount of sludge generated, the third solid-containing liquid is supplied to both the biological treatment tank and the high-temperature treatment tank rather than the third solid-containing liquid is supplied only to the biological treatment tank. It is preferable to supply the third solid-containing liquid only to the high-temperature treatment tank.

また本発明では、前記生物処理槽は、前記第一及び第二の処理水が供給される槽と前記槽内の液体及び空気を接触させるための散気管とを有する活性汚泥槽、前記槽と前記散気管と前記槽内の液体をろ過するための浸漬膜とを有する浸漬膜活性汚泥槽、又は前記槽と前記散気管と前記生物を収容するための充填材とを有する接触曝気槽であることが、廃水処理能力と経済的なメリットとの両立の観点から好ましい。   Moreover, in this invention, the said biological treatment tank is an activated sludge tank which has a tank supplied with said 1st and 2nd treated water, and an aeration pipe | tube for contacting the liquid and air in the said tank, The said tank, It is an immersion membrane activated sludge tank having the aeration tube and an immersion membrane for filtering the liquid in the tank, or a contact aeration tank having the tank, the aeration tube and a filler for containing the organism. Is preferable from the viewpoint of achieving both wastewater treatment capacity and economic merits.

また本発明では、前記高温処理槽は、槽内の液体を40〜95℃で処理するための槽であることが、固形物含有液に対する十分な処理能力を発現させる観点から好ましい。   In the present invention, the high-temperature treatment tank is preferably a tank for treating the liquid in the tank at 40 to 95 ° C. from the viewpoint of developing sufficient processing capability for the solid-containing liquid.

また本発明は、廃水処理能力に優れ、かつ温度調節のためのコスト等のランニングコストも比較的低いことから、粉砕装置によって粉砕された食料品由来の有機性の固形物を含有する有機性廃水の処理に好適に用いられ、特にディスポーザ排水を含む有機性廃水の処理に好適に用いられる。   In addition, the present invention is excellent in wastewater treatment capacity and has a relatively low running cost such as a temperature control temperature. Therefore, organic wastewater containing organic solids derived from foods pulverized by a pulverizer It is preferably used for the treatment of organic waste water including disposer waste water.

本発明のシステムは、前記第一及び第二の固液分離装置と、前記高温処理槽と、前記生物処理槽とを有し、前記第二の固形物含有液が前記高温処理槽に供給されることから、有機性廃水を生物により十分に処理でき、また発生する汚泥量も少なくすることができる。さらに本発明のシステムによると、高温処理槽に流れる水量は全廃水量と比較して少ないため、少ない熱量で済む。   The system of the present invention includes the first and second solid-liquid separation devices, the high-temperature treatment tank, and the biological treatment tank, and the second solid-containing liquid is supplied to the high-temperature treatment tank. Therefore, organic wastewater can be sufficiently treated by living organisms, and the amount of generated sludge can be reduced. Furthermore, according to the system of the present invention, the amount of water flowing into the high-temperature treatment tank is small as compared with the total amount of waste water, so that a small amount of heat is sufficient.

本発明のシステムでは、前記第三の固液分離装置をさらに有し、前記第三の固形物含有液を前記高温処理槽及び前記生物処理槽の一方又は両方に供給すると、汚泥の発生量をさらに低減させる観点からより一層効果的である。前記第三の固形物含有液を高温処理槽のみに供給すると、汚泥の発生量のさらなる削減の観点からより一層効果的である。前記第三の固形物含有液を生物処理槽のみに供給すると、高温処理槽における処理液の温度の調節にかかるコストの増加の抑制の観点からより一層効果的である。前記第三の固形物含有液を高温処理槽及び生物処理槽の両方に供給すると、汚泥の発生量のさらなる削減と高温処理槽における処理液の温度の調節にかかるコストの増加の抑制とを両立させる観点からより一層効果的である。   In the system of the present invention, when the third solid-liquid separator is further provided and the third solid-containing liquid is supplied to one or both of the high-temperature treatment tank and the biological treatment tank, the amount of sludge generated is reduced. It is further effective from the viewpoint of further reduction. Supplying the third solid-containing liquid only to the high-temperature treatment tank is more effective from the viewpoint of further reducing the amount of sludge generated. Supplying the third solid-containing liquid only to the biological treatment tank is even more effective from the viewpoint of suppressing an increase in cost for adjusting the temperature of the treatment liquid in the high-temperature treatment tank. Supplying the third solid-containing liquid to both the high-temperature treatment tank and the biological treatment tank achieves both a further reduction in the amount of sludge generated and a reduction in the cost for adjusting the temperature of the treatment liquid in the high-temperature treatment tank. From the viewpoint of making it more effective.

本発明のシステムでは、生物処理槽が前記活性汚泥槽、浸漬膜活性汚泥槽、又は接触曝気槽であると、比較的低いコストで有機性廃水の処理における高い処理能力を得る観点からより一層効果的である。   In the system of the present invention, when the biological treatment tank is the activated sludge tank, the submerged membrane activated sludge tank, or the contact aeration tank, it is more effective from the viewpoint of obtaining a high treatment capacity in the treatment of organic wastewater at a relatively low cost. Is.

本発明のシステムでは、高温処理槽が槽内の液体を40〜95℃で処理するための槽であることが、汚泥の発生量を十分に削減する観点からより一層効果的である。   In the system of the present invention, it is more effective from the viewpoint of sufficiently reducing the amount of sludge generated that the high-temperature treatment tank is a tank for treating the liquid in the tank at 40 to 95 ° C.

本発明のシステムでは、粉砕装置で粉砕された食料品由来の有機性の固形物を含有する有機性廃水の処理においてより効果的であり、ディスポーザ排水を含む有機性廃水の処理においてより一層効果的である。   The system of the present invention is more effective in the treatment of organic wastewater containing organic solids derived from foodstuffs crushed by a crusher, and is more effective in the treatment of organic wastewater including disposer wastewater. It is.

本発明の有機性廃水処理システムは、有機性の固形物と水とを含有する有機性廃水を固液分離するための第一の固液分離装置と、前記第一の固液分離装置での固液分離による固形物を含有する第一の固形物含有液が供給される、前記第一の固形物含有液中の前記固形物を好熱菌で分解するための高温処理槽と、前記高温処理槽から排出される液である好熱菌処理液が供給される、前記好熱菌処理液を固液分離するための第二の固液分離装置と、
前記第一の固液分離装置での固液分離による液相である第一の処理水及び前記第二の固液分離装置での固液分離による液相である第二の処理水が供給される、前記第一及び第二の処理水を生物で処理するための生物処理槽とを有する。
The organic wastewater treatment system of the present invention includes a first solid-liquid separation device for solid-liquid separation of organic wastewater containing organic solids and water, and the first solid-liquid separation device. A high-temperature treatment tank for decomposing the solid in the first solid-containing liquid with thermophilic bacteria, to which a first solid-containing liquid containing solids by solid-liquid separation is supplied, and the high temperature A second solid-liquid separation device for solid-liquid separation of the thermophilic bacterium treatment liquid, which is supplied with a thermophilic bacterium treatment liquid that is a liquid discharged from the treatment tank;
First treated water that is a liquid phase by solid-liquid separation in the first solid-liquid separation device and second treated water that is a liquid phase by solid-liquid separation in the second solid-liquid separation device are supplied. A biological treatment tank for treating the first and second treated water with a living organism.

前記第一及び第二の固液分離装置には、有機性の固形物や処理中に発生した汚泥と液相とを分離するのに用いられる通常の固液分離装置を用いることができる。このような固液分離装置には、例えば沈殿槽、加圧浮上装置、スクリーンや網等の公知の固液分離装置が挙げられる。第一及び第二の固液分離装置は同種の装置であっても良いし、異なる種類の装置であっても良い。   As the first and second solid-liquid separators, there can be used ordinary solid-liquid separators used for separating organic solids and sludge generated during processing from the liquid phase. Examples of such a solid-liquid separation device include known solid-liquid separation devices such as a sedimentation tank, a pressure levitation device, a screen and a net. The first and second solid-liquid separation devices may be the same type of device, or may be different types of devices.

前記高温処理槽は、好熱菌が固形物等を分解することができる温度に、槽内の液の温度を維持することができる槽であれば特に限定されない。高温処理槽は、好熱菌による固形物の分解能力を十分に発現させる観点から、槽内の液体を40〜95℃で処理するための槽であることが好ましく、槽内の液体を50〜70℃で処理するための槽であることがより好ましい。高温処理槽は、好熱菌による廃水処理で用いられる公知の槽を用いることができ、例えば槽と、槽内の液温を調節するための加熱装置とによって構成することができる。高温処理槽は、前記好熱菌として好気性の好熱菌を用いる場合では、さらに散気管を有する。   The said high temperature processing tank will not be specifically limited if it is a tank which can maintain the temperature of the liquid in a tank to the temperature which a thermophile can decompose | disassemble a solid substance etc. The high-temperature treatment tank is preferably a tank for treating the liquid in the tank at 40 to 95 ° C., from the viewpoint of sufficiently expressing the ability to decompose solids by thermophilic bacteria. It is more preferable that it is a tank for processing at 70 degreeC. As the high-temperature treatment tank, a known tank used in wastewater treatment by thermophilic bacteria can be used, and for example, it can be constituted by a tank and a heating device for adjusting the liquid temperature in the tank. In the case where an aerobic thermophilic bacterium is used as the thermophilic bacterium, the high-temperature treatment tank further has an aeration tube.

前記生物処理槽は、常温における有機性廃水の処理に用いられる公知の槽を用いることができる。このような生物処理槽としては、例えば、前記第一及び第二の処理水が供給される槽と前記槽内の液体と空気とを接触させるための散気管とを有する活性汚泥槽、前記槽と前記散気管と前記槽内の液体をろ過するための浸漬膜とを有する浸漬膜活性汚泥槽、及び前記槽と前記散気管と前記生物を収容するための充填材とを有する接触曝気槽、等が挙げられる。   The biological treatment tank may be a known tank used for treating organic wastewater at room temperature. As such a biological treatment tank, for example, an activated sludge tank having a tank to which the first and second treated waters are supplied and an air diffuser for bringing the liquid and air in the tank into contact with each other, the tank A submerged membrane activated sludge tank having an immersion film for filtering the liquid in the tank and the aeration pipe, and a contact aeration tank having a filling material for containing the tank, the aeration pipe and the organism, Etc.

特に、前記浸漬膜活性汚泥槽や前記接触曝気槽は、前記活性汚泥槽に比べて槽内に活性汚泥をより長時間滞留させることが可能であるので、汚泥の発生量の削減の観点で優れている。さらに前記浸漬膜活性汚泥槽は、槽内でろ過された液体が処理水として得られることから、処理水の浮遊物質濃度(SS)のさらなる低減の観点で優れている。   In particular, the immersed membrane activated sludge tank and the contact aeration tank can retain activated sludge in the tank for a longer time than the activated sludge tank, which is excellent in terms of reducing the amount of sludge generated. ing. Furthermore, the submerged membrane activated sludge tank is excellent in terms of further reducing the suspended solids concentration (SS) of the treated water because the liquid filtered in the tank is obtained as the treated water.

本発明のシステムでは、前記第二の固液分離装置での固液分離による固形物を含有する第二の固形物含有液が前記高温処理槽に供給される。   In the system of the present invention, a second solid-containing liquid containing solids obtained by solid-liquid separation in the second solid-liquid separator is supplied to the high-temperature treatment tank.

本発明において、固液分離装置から処理槽への固形物含有液の供給は、固液分離装置の形態に応じた適当な構成によって行うことができる。例えば固液分離装置が沈殿槽である場合では、前記固形物が沈殿している沈殿槽の底部と処理槽とを接続する管と、この管を開閉するための弁と、前記管中の液を処理槽に向けて送るためのポンプとによって固形物含有液を固液分離装置から処理槽へ供給することができる。   In the present invention, the supply of the solid-containing liquid from the solid-liquid separator to the processing tank can be performed with an appropriate configuration according to the form of the solid-liquid separator. For example, in the case where the solid-liquid separation device is a precipitation tank, a pipe connecting the bottom of the precipitation tank where the solid is precipitated and the treatment tank, a valve for opening and closing the pipe, and a liquid in the pipe The solid-containing liquid can be supplied from the solid-liquid separator to the processing tank by a pump for feeding the liquid to the processing tank.

また例えば固液分離装置が、スクリーンや網等のろ過部材を用いて固形物と液相とを分離する装置である場合では、固形物を捕集したろ過部材を有機性廃水や前記液相(処理水)で洗浄する装置と、この装置と処理槽とを接続する管と、この管を開閉するための弁と、前記洗浄装置で生じ前記管に供給された洗液を処理槽に向けて送るためのポンプとによって固形物含有液を固液分離装置から処理槽へ供給することができる。   For example, in the case where the solid-liquid separation device is a device that separates a solid and a liquid phase using a filtration member such as a screen or a net, the filtration member that collects the solid is used as an organic wastewater or the liquid phase ( An apparatus for cleaning with treated water), a pipe connecting the apparatus and the treatment tank, a valve for opening and closing the pipe, and a washing liquid generated in the washing apparatus and supplied to the pipe toward the treatment tank The solid-containing liquid can be supplied from the solid-liquid separator to the treatment tank by a pump for feeding.

また固液分離装置から処理槽への固形物含有液の供給、及び有機性廃水の第一の固液分離装置への供給は、流量計による流量の検出、前記ポンプの運転、前記弁の開度等の通常の技術を利用して連続して、又は間欠的に調整することが可能である。   In addition, the supply of the solid-containing liquid from the solid-liquid separator to the treatment tank and the supply of the organic waste water to the first solid-liquid separator are performed by detecting the flow rate with a flow meter, operating the pump, and opening the valve. It is possible to adjust continuously or intermittently using a normal technique such as degree.

前記有機性廃水は、有機性の固形物と水とを含有する。有機性の固形物は、特に限定されないが、有機性の固形物としては、例えば粉砕装置によって粉砕された食料品由来の有機性の固形物(いわゆる生ごみ)が挙げられ、このような固形物を含有する有機性廃水としては、例えば粉砕装置であるディスポーザから排出されるディスポーザ排水が挙げられる。ディスポーザ排水は有機性廃水としてそのまま用いられても良いし、他の廃水や水で適宜希釈されて用いられても良い。   The organic waste water contains an organic solid and water. The organic solid is not particularly limited, and examples of the organic solid include organic solids derived from foods (so-called garbage) pulverized by a pulverizer. Examples of the organic waste water containing, include a disposer drainage discharged from a disposer that is a pulverizer. Disposer waste water may be used as it is as organic waste water, or may be used after appropriately diluted with other waste water or water.

前記好熱菌は、高温処理槽において高温(例えば40〜95℃)で有機性の固形物を分解する菌であれば特に限定されない。好熱菌は好気性の菌であっても良いし嫌気性の菌であっても良い。好熱菌には、例えば特開2003−205279号公報に記載されているように、バチルス・ステアロサーモフィラス等の好熱菌そのもの、及びこのような好熱菌を含有する市販の微生物製剤が挙げられる。前記好熱菌は、前記の菌や微生物製剤から得ることができるが、有機性廃水中の菌を高温処理槽での処理温度で培養して得られる、前記処理温度で増殖する有機性廃水中の菌を前記好熱菌に用いることもできる。   The thermophilic bacterium is not particularly limited as long as it is a bacterium that decomposes organic solids at a high temperature (for example, 40 to 95 ° C.) in a high-temperature treatment tank. The thermophilic bacterium may be an aerobic bacterium or an anaerobic bacterium. As thermophiles, for example, as described in JP-A-2003-205279, thermophiles such as Bacillus stearothermophilus itself, and commercially available microbial preparations containing such thermophiles Is mentioned. The thermophilic bacterium can be obtained from the bacterium or the microbial preparation, but is obtained by culturing the bacterium in the organic waste water at the treatment temperature in the high temperature treatment tank, and is grown at the treatment temperature. Can also be used as the thermophilic bacterium.

生物処理槽での処理に用いられる生物には、標準活性汚泥法、浸漬膜活性汚泥法、接触曝気法等の下水の通常の生物処理方法で用いられる生物を用いることができる。このような生物には、例えば特許第3643287号公報に記載されているように、アシネトバクター属細菌、アルカリゲネス属細菌、シュウドモナス属細菌、バチルス属細菌、アエロバクター属細菌、フラボバクテリウム属細菌等の細菌や、ボルチセラ、エピステイリス、オペルクラリア、カルケシウム、ズータニウム等有柄固着型の繊毛虫類等の原生動物、前記細菌や前記原生動物を含有する市販の製剤、及び前記細菌や前記原生動物を含有する活性汚泥が挙げられる。   As the organism used for the treatment in the biological treatment tank, an organism used in a normal biological treatment method of sewage such as a standard activated sludge method, a submerged membrane activated sludge method, or a contact aeration method can be used. Examples of such organisms include bacteria such as Acinetobacter bacteria, Alkagenes bacteria, Pseudomonas bacteria, Bacillus bacteria, Aerobacter bacteria, Flavobacterium bacteria, and the like as described in Japanese Patent No. 3643287. And protozoa such as stalk-fixed ciliates such as vorticella, epistairis, opelclaria, calcesium, and zutanium, commercially available preparations containing the bacteria and the protozoa, and activities containing the bacteria and the protozoa Examples include sludge.

本発明のシステムは、前記生物処理槽から排出される液である生物処理液が供給される、前記生物処理液を固液分離するための第三の固液分離装置をさらに有していても良い。前記第三の固液分離装置は、前述した第一及び第二の固液分離装置と同様の装置を用いることができる。   The system of the present invention may further include a third solid-liquid separation device for solid-liquid separation of the biological treatment liquid supplied with a biological treatment liquid that is a liquid discharged from the biological treatment tank. good. As the third solid-liquid separation device, the same device as the first and second solid-liquid separation devices described above can be used.

前記第三の固液分離装置での固液分離による固形物を含有する第三の固形物含有液は、前記高温処理槽及び前記生物処理槽のいずれか一方又は両方に供給される。第三の固形物含有液の高温処理槽及び生物処理槽への供給は、前述した第二の固形物含有液の高温処理槽への供給と同様に行うことができる。   The third solid-containing liquid containing solids obtained by solid-liquid separation in the third solid-liquid separator is supplied to one or both of the high-temperature treatment tank and the biological treatment tank. The supply of the third solid-containing liquid to the high-temperature treatment tank and the biological treatment tank can be performed in the same manner as the above-described supply of the second solid-containing liquid to the high-temperature treatment tank.

本発明のシステムは、前述した装置以外の他の構成要素をさらに有していても良い。このような他の構成要素としては、例えば処理水中の汚泥を処理するためのオゾン発生装置が挙げられる。前記オゾン発生装置によれば、汚泥を可溶化することが可能であり、または殺菌することも可能である。特に前記オゾン発生装置を処理水に用いると、フミン質等の処理水中の難分解物質の分解が可能であり、それに伴い色度の除去が可能である。   The system of the present invention may further include other components other than the above-described apparatus. Examples of such other constituent elements include an ozone generator for treating sludge in treated water. According to the ozone generator, sludge can be solubilized or sterilized. In particular, when the ozone generator is used for treated water, it is possible to decompose hardly decomposed substances in the treated water such as humic substances and to remove chromaticity accordingly.

また本発明のシステムは、前記他の構成要素として、高温処理槽における好熱菌や生物処理槽における生物の生育環境を調整するための装置として、槽内のpHを調整する装置や、栄養分を補給する装置等をさらに有していても良い。   In addition, the system of the present invention includes, as the other component, a device for adjusting the pH in the tank, and a nutrient as a device for adjusting a thermophilic bacterium in a high-temperature treatment tank and a living environment in a biological treatment tank. You may have further the apparatus etc. which replenish.

本発明のシステムは、例えば図1に示すように構成される。図1のシステムは、有機性廃水が供給される第一沈殿槽1と、第一沈殿槽1の底部と接続されている高温処理槽2と、高温処理槽2の液が供給される第二沈殿槽3と、第一沈殿槽1の上部及び第二沈殿槽3の上部のそれぞれと接続されている生物処理槽4と、生物処理槽4の液が供給される第三沈殿槽5とを有する。第二沈殿槽3の底部と高温処理槽2とは接続されており、第三沈殿槽5の底部と生物処理槽4とは接続されている。   The system of the present invention is configured as shown in FIG. 1, for example. The system of FIG. 1 includes a first settling tank 1 to which organic waste water is supplied, a high-temperature treatment tank 2 connected to the bottom of the first settling tank 1, and a second liquid to which the liquid in the high-temperature treatment tank 2 is supplied. A sedimentation tank 3, a biological treatment tank 4 connected to each of the upper part of the first precipitation tank 1 and the upper part of the second precipitation tank 3, and a third precipitation tank 5 to which the liquid of the biological treatment tank 4 is supplied Have. The bottom of the second sedimentation tank 3 and the high temperature treatment tank 2 are connected, and the bottom of the third sedimentation tank 5 and the biological treatment tank 4 are connected.

第一沈殿槽1にはディスポーザ排水又はその希釈液等の有機性廃水が供給される。第一沈殿槽1の底部には、有機性廃水中の固形物が沈殿し、第一沈殿槽1内の液は沈殿物と上澄み液とに分かれる。   The first settling tank 1 is supplied with organic waste water such as a disposer drain or a diluted solution thereof. Solids in the organic wastewater are precipitated at the bottom of the first precipitation tank 1, and the liquid in the first precipitation tank 1 is divided into a precipitate and a supernatant.

第一沈殿槽1の沈殿物は、第一沈殿槽1の底部から、第一沈殿槽1内の液とともに抜き出される。第一沈殿槽1の底部から抜き出された液には第一沈殿槽1の沈殿物が多く含まれており、この液(第一の固形物含有液)は、高温処理槽2に供給される。第一沈殿槽1の底部からの液の抜き出し量は、第一沈殿槽1中の沈殿物の堆積高さを増加させない程度であれば良く、例えば有機性廃水中の固形物の濃度が500〜2,000mg/Lであれば、第一沈殿槽1への有機性廃水の流入量の10〜40%である。ただし第一沈殿槽1の底部からの液の抜き出し量は、流入する有機性廃水中の固形物の沈降性により左右され、沈降性が良い場合は少なく、沈降性が悪い場合は多くなるため、前記範囲外の場合もある。   The sediment in the first sedimentation tank 1 is extracted from the bottom of the first sedimentation tank 1 together with the liquid in the first sedimentation tank 1. The liquid extracted from the bottom of the first sedimentation tank 1 contains a large amount of sediment in the first sedimentation tank 1, and this liquid (first solid-containing liquid) is supplied to the high-temperature treatment tank 2. The The amount of liquid extracted from the bottom of the first sedimentation tank 1 may be of a level that does not increase the deposit height of the sediment in the first sedimentation tank 1, for example, the concentration of solids in the organic wastewater is 500 to 500. If it is 2,000 mg / L, it will be 10 to 40% of the inflow amount of the organic waste water to the first sedimentation tank 1. However, the amount of liquid extracted from the bottom of the first sedimentation tank 1 depends on the sedimentation property of the solid matter in the inflowing organic waste water, and is low when the sedimentation property is good, and increases when the sedimentation property is poor. It may be out of the range.

高温処理槽2は、例えば槽内の液温を調節するためのジャケットと槽内における気液接触のための散気管とを有しており、好気性の好熱菌が投入されている。第一沈殿槽1の底部から抜き出された液は高温処理槽2において好熱菌によって処理され、前記液中の固形物は好熱菌によって分解される。   The high-temperature treatment tank 2 has, for example, a jacket for adjusting the liquid temperature in the tank and a diffuser tube for gas-liquid contact in the tank, and is loaded with aerobic thermophilic bacteria. The liquid extracted from the bottom of the first sedimentation tank 1 is processed by thermophilic bacteria in the high-temperature processing tank 2, and the solid matter in the liquid is decomposed by thermophilic bacteria.

高温処理槽2で処理された液(好熱菌処理液)は第二沈殿槽3に供給される。第二沈殿槽3の底部には好熱菌処理液の固形物が沈殿し、第二沈殿槽3内の液は沈殿物と上澄み液とに分かれる。第二沈殿槽3の沈殿物は、第二沈殿槽3の底部から、第二沈殿槽3内の液とともに抜き出される。第二沈殿槽3の底部から抜き出された液には第二沈殿槽3の沈殿物が多く含まれており、この液(第二の固形物含有液)は、高温処理槽2に供給される。第二沈殿槽3の底部からの液の抜き出し量は、第二沈殿槽3中の沈殿物の堆積高さを増加させない程度であれば良く、例えば好熱菌処理液中の固形物の濃度が250〜1,000mg/Lであれば、第二沈殿槽3への好熱菌処理液の流入量の5〜20%である。ただし第二沈殿槽3の底部からの液の抜き出し量は、流入する好熱菌処理液中の固形物の沈降性により左右され、沈降性が良い場合は少なく、沈降性が悪い場合は多くなるため、前記範囲外の場合もある。   The liquid (thermophilic treatment liquid) treated in the high temperature treatment tank 2 is supplied to the second precipitation tank 3. The solid of the thermophilic bacterium treatment liquid is precipitated at the bottom of the second precipitation tank 3, and the liquid in the second precipitation tank 3 is divided into a precipitate and a supernatant. The sediment in the second sedimentation tank 3 is extracted from the bottom of the second sedimentation tank 3 together with the liquid in the second sedimentation tank 3. The liquid extracted from the bottom of the second sedimentation tank 3 contains a large amount of sediment in the second sedimentation tank 3, and this liquid (second solid-containing liquid) is supplied to the high-temperature treatment tank 2. The The amount of liquid withdrawn from the bottom of the second sedimentation tank 3 may be such that it does not increase the deposit height of the sediment in the second sedimentation tank 3. For example, the concentration of solids in the thermophilic bacteria treatment liquid is If it is 250 to 1,000 mg / L, it is 5 to 20% of the inflow amount of the thermophilic bacteria treatment liquid to the second sedimentation tank 3. However, the extraction amount of the liquid from the bottom of the second sedimentation tank 3 depends on the sedimentation property of the solid matter in the inflowing thermophilic treatment solution, and is small when the sedimentation property is good and increases when the sedimentation property is poor. Therefore, it may be out of the range.

一方で第一沈殿槽1の上澄み液は生物処理槽4に供給される。また第二沈殿槽3の上澄み液も生物処理槽4に供給される。生物処理槽4は、例えば槽とこの槽内の液体と空気とを接触させるための散気管とを有する活性汚泥槽であり、活性汚泥が収容されている。前記上澄み液は生物処理槽4において活性汚泥中の生物によって処理され、前記上澄み液中の有機物が活性汚泥中の生物によって分解される。   On the other hand, the supernatant liquid of the first sedimentation tank 1 is supplied to the biological treatment tank 4. The supernatant liquid of the second sedimentation tank 3 is also supplied to the biological treatment tank 4. The biological treatment tank 4 is an activated sludge tank having, for example, a tank and an air diffuser for bringing the liquid and air in the tank into contact with each other, and contains activated sludge. The supernatant liquid is treated in the biological treatment tank 4 by the organisms in the activated sludge, and the organic matter in the supernatant liquid is decomposed by the organisms in the activated sludge.

生物処理槽4で処理された液(生物処理液)は第三沈殿槽5に供給される。第三沈殿槽5の底部には生物処理液の固形物が沈殿し、第三沈殿槽5内の液は沈殿物と上澄み液とに分かれる。第三沈殿槽5の沈殿物は、第三沈殿槽5の底部から、第三沈殿槽5内の液とともに抜き出される。第三沈殿槽5の底部から抜き出された液には第三沈殿槽5の沈殿物が多く含まれており、この液(第三の固形物含有液)は、生物処理槽4に供給される。第三沈殿槽5の底部からの液の抜き出し量は、一般的に行われている活性汚泥処理と同等とする。   The liquid (biological treatment liquid) processed in the biological treatment tank 4 is supplied to the third precipitation tank 5. Solid matter of the biological treatment liquid is precipitated at the bottom of the third settling tank 5, and the liquid in the third settling tank 5 is divided into a precipitate and a supernatant. The precipitate in the third settling tank 5 is extracted from the bottom of the third settling tank 5 together with the liquid in the third settling tank 5. The liquid extracted from the bottom of the third sedimentation tank 5 contains a large amount of sediment in the third sedimentation tank 5, and this liquid (third solid-containing liquid) is supplied to the biological treatment tank 4. The The extraction amount of the liquid from the bottom of the third sedimentation tank 5 is set to be equal to the activated sludge treatment that is generally performed.

第三沈殿槽5の上澄み液は、最終的な処理水として下水に放流される。   The supernatant liquid of the third sedimentation tank 5 is discharged into sewage as final treated water.

図1のシステムでは、有機性廃水中の固形物が選択的に高温処理槽2に供給され、この固形物が高温処理槽2で分解される。このように処理負荷の高い有機性廃水中の固形物を
処理能力の高い高温処理槽2に選択的に供給し分解することができる。
In the system of FIG. 1, the solid matter in the organic waste water is selectively supplied to the high temperature treatment tank 2, and the solid matter is decomposed in the high temperature treatment tank 2. Thus, the solid matter in the organic wastewater having a high treatment load can be selectively supplied to the high-temperature treatment tank 2 having a high treatment capacity and decomposed.

また図1のシステムでは、第二沈殿槽3の沈殿物が選択的に高温処理槽2に戻される。したがって、固形物の処理で生じた汚泥が高温処理槽2でさらに分解されるので、固形物の処理に伴う汚泥の発生量を低減させることができる。   Further, in the system of FIG. 1, the sediment in the second sedimentation tank 3 is selectively returned to the high temperature treatment tank 2. Therefore, since the sludge produced by the treatment of the solid matter is further decomposed in the high-temperature treatment tank 2, the amount of sludge generated due to the treatment of the solid matter can be reduced.

また図1のシステムでは、第二沈殿槽3の沈殿物が選択的に高温処理槽2に戻されるので、未処理の固形物を高温処理槽2に戻すことができ、高温処理槽2における固形物の滞留時間を長くすることができる。したがって、固形物の処理を十分に行うことができる。   In the system of FIG. 1, the sediment in the second sedimentation tank 3 is selectively returned to the high temperature treatment tank 2, so that untreated solid matter can be returned to the high temperature treatment tank 2, and the solid in the high temperature treatment tank 2 The residence time of the product can be increased. Therefore, the solid material can be sufficiently processed.

また図1のシステムでは、有機性廃水の一部及び好熱菌処理液の一部が高温処理槽2に供給されることから、有機性廃水の全量を高温処理槽2に供給する場合に比べて、高温処理槽2において温度を調整すべき液の量を低減させることができ、高温処理槽2における液の温度調節にかかるコストを低減させることができる。   In the system of FIG. 1, a part of the organic waste water and a part of the thermophilic bacterium treatment liquid are supplied to the high temperature treatment tank 2. Thus, the amount of the liquid whose temperature should be adjusted in the high temperature treatment tank 2 can be reduced, and the cost for adjusting the temperature of the liquid in the high temperature treatment tank 2 can be reduced.

また図1のシステムでは、比較的処理負荷の低い第一沈殿槽1の上澄み液と第二沈殿槽3の上澄み液とが生物処理槽4に供給される。したがって、生物処理槽4での生物処理によって放流基準を満足する処理水を得ることができる。   Further, in the system of FIG. 1, the supernatant liquid of the first precipitation tank 1 and the supernatant liquid of the second precipitation tank 3 having a relatively low processing load are supplied to the biological treatment tank 4. Therefore, treated water satisfying the discharge standard can be obtained by biological treatment in the biological treatment tank 4.

また図1のシステムでは、第三沈殿槽5の沈殿物が生物処理槽4に戻されることから、生物処理槽4で生じた汚泥の減量や最終処理水への汚泥の流出を防止する観点からより一層効果的である。   Moreover, in the system of FIG. 1, since the sediment of the 3rd sedimentation tank 5 is returned to the biological treatment tank 4, from the viewpoint of preventing sludge reduction in the biological treatment tank 4 and outflow of sludge to the final treated water. Even more effective.

また本発明のシステムは、例えば図2に示すように構成される。図2のシステムは、第三沈殿槽5の底部が高温処理槽2と生物処理槽4との両方に接続されている以外は、図1のシステムと同じである。   The system of the present invention is configured as shown in FIG. 2, for example. The system of FIG. 2 is the same as the system of FIG. 1 except that the bottom of the third sedimentation tank 5 is connected to both the high temperature treatment tank 2 and the biological treatment tank 4.

図2のシステムでは、第三沈殿槽5の沈殿物は生物処理槽4と高温処理槽2の両方に適当な割合で供給される。したがって生物処理槽4で発生した汚泥等の固形物について、生物処理槽4における滞留時間を伸ばすこともできるし、また高温処理槽2で分解することもできる。図2のシステムにおける第三沈殿槽5から高温処理槽2及び生物処理槽4への第三の固形物含有液の分配は、例えば生物処理液のSSの上昇に応じて高温処理槽2への第三の固形物含有液の供給量を増やす等、第三沈殿槽5に流入する生物処理液のSS等の水質に応じて適宜調整することができる。   In the system of FIG. 2, the sediment in the third sedimentation tank 5 is supplied to both the biological treatment tank 4 and the high temperature treatment tank 2 at an appropriate ratio. Therefore, the solid time such as sludge generated in the biological treatment tank 4 can be extended in the biological treatment tank 4 or decomposed in the high-temperature treatment tank 2. The distribution of the third solid-containing liquid from the third sedimentation tank 5 to the high-temperature treatment tank 2 and the biological treatment tank 4 in the system of FIG. 2 is performed, for example, according to the increase in SS of the biological treatment liquid. It can adjust suitably according to water quality, such as SS of the biological treatment liquid which flows into the 3rd sedimentation tank 5, such as increasing the supply amount of a 3rd solid substance containing liquid.

図2のシステムでは、汚泥の発生量の低減や最終処理水の水質の向上の観点から、図1のシステムに比べてより一層効果的である。   The system in FIG. 2 is more effective than the system in FIG. 1 from the viewpoint of reducing the amount of sludge generated and improving the quality of the final treated water.

さらに本発明のシステムは、例えば図3に示すように構成される。図3のシステムは、生物処理槽4が、例えば槽と前記散気管と前記槽内の液体をろ過するための浸漬膜とを有する浸漬膜活性汚泥槽であり、第三沈殿槽5を有さず、第三の固形物含有液が生物処理槽4に供給されない以外は図1のシステムと同じである。   Furthermore, the system of the present invention is configured as shown in FIG. 3, for example. In the system of FIG. 3, the biological treatment tank 4 is an immersion membrane activated sludge tank having, for example, a tank, the air diffuser, and an immersion membrane for filtering the liquid in the tank, and has a third sedimentation tank 5. The third solid-containing liquid is the same as the system in FIG. 1 except that the biological treatment tank 4 is not supplied.

図3のシステムでは、浸漬膜でろ過された最終処理水が得られる。したがって、最終処理水の水質の向上の観点からより一層効果的である。   In the system of FIG. 3, the final treated water filtered through the immersion membrane is obtained. Therefore, it is more effective from the viewpoint of improving the quality of the final treated water.

本発明のシステムは、住宅、集合住宅、飲食店、食料品製造工場等の廃水処理に広く用いることができ、これらの用途において本発明の優れた効果を奏する。   The system of the present invention can be widely used for wastewater treatment in houses, apartment houses, restaurants, food manufacturing factories, and the like, and exhibits excellent effects of the present invention in these applications.

[実施例1]
図1に示す有機性廃水処理システムを用いて、有機性廃水である試験廃水の処理を行った。図1の有機性廃水処理システムにおける各槽の容量、材質及び形態は以下の通りである。
第一〜第三沈殿槽:10L(塩ビ製、円錐形)
高温処理槽:10L(ステンレス製、加熱のためジャケット式とした)
生物処理槽:20L(塩ビ製、角型)
[Example 1]
Using the organic wastewater treatment system shown in FIG. 1, the test wastewater which is organic wastewater was treated. The capacity, material and form of each tank in the organic wastewater treatment system of FIG. 1 are as follows.
First to third settling tanks: 10 L (made of PVC, conical)
High temperature treatment tank: 10L (made of stainless steel, jacket type for heating)
Biological treatment tank: 20L (PVC, square type)

試験廃水の組成、流入時間及び流入量の割合は「下水道のためのディスポーザ排水処理システム性能基準(案)」(平成16年3月 社団法人日本下水道協会)に従った。試験廃水には、前記文献の「[3]ディスポーザ排水の条件」の記載に基づいて調製されたディスポーザ排水を、前記文献の「資料8 試験方法」に記載の「試験用原水」の水質の許容範囲となるように水で希釈した液を用いた。ディスポーザで粉砕される生ごみについては、前記文献の「資料3 標準生ごみの組成」及び「資料4 標準生ごみの調製方法」の記載に従って調製した。   The composition of the test wastewater, the inflow time, and the ratio of the inflow amount were in accordance with “Disposer wastewater treatment system performance standards for sewage (draft)” (Japan Sewage Association, March 2004). For the test wastewater, disposer drainage prepared based on the description of “[3] Disposer drainage conditions” in the above-mentioned document is used, and the water quality tolerance of “raw water for test” described in “Document 8 Test Method” in the above-mentioned document is used. A solution diluted with water so as to be in the range was used. The garbage to be crushed by the disposer was prepared in accordance with the descriptions in “Document 3 Composition of Standard Garbage” and “Document 4 Preparation Method of Standard Garbage”.

試験廃水の流入時間及び流入量は、前記文献の「資料8 試験方法」に記載のの記載に基づいた。また試験廃水の流入量は、0.5人分とした。すなわち前記文献の「原水流入パターン例」の記載に基づき下表の通りとした。   The inflow time and the inflow amount of the test wastewater were based on the description in “Document 8 Test Method” in the above literature. In addition, the amount of inflow of test wastewater was 0.5 people. That is, based on the description of the “raw water inflow pattern example” in the above document, the following table was used.

Figure 2007283249
Figure 2007283249

高温処理槽及び生物処理槽へは、散気管で空気を供給した。高温処理槽へは10L/minで空気を供給し、生物処理槽へは5L/minで空気を供給した。また高温処理槽の液温を65℃に保ち、生物処理槽の液温を室温(約23℃)に保った。高温処理槽における好熱菌には、高温処理槽中の環境で増殖する有機性廃水中の菌を用いた。すなわち、前記の条件で試験廃水を本システム又はそれと同様の構成のシステムに導入し、槽内の液の温度を65℃とした高温処理槽において1〜2週間で増殖した菌を用いた。好熱菌の増殖は、高温処理槽中の液体の外観(色)が変化する(濃くなる)ことを目視で観察することによって確認した。また生物処理槽における処理生物には、別の有機性廃水の処理で用いられていた活性汚泥を用いた。   Air was supplied to the high-temperature treatment tank and the biological treatment tank through an air diffuser. Air was supplied to the high temperature treatment tank at 10 L / min, and air was supplied to the biological treatment tank at 5 L / min. Moreover, the liquid temperature of the high temperature treatment tank was kept at 65 ° C., and the liquid temperature of the biological treatment tank was kept at room temperature (about 23 ° C.). For the thermophilic bacteria in the high temperature treatment tank, the bacteria in the organic wastewater that grows in the environment in the high temperature treatment tank was used. That is, the test wastewater was introduced into the present system or a system having the same configuration under the above-described conditions, and the bacteria that grew in a high-temperature treatment tank in which the temperature of the liquid in the tank was 65 ° C. were used for 1 to 2 weeks. The growth of thermophilic bacteria was confirmed by visually observing that the appearance (color) of the liquid in the high-temperature treatment tank changes (darkens). Moreover, the activated sludge used by the treatment of another organic wastewater was used for the treatment organism in a biological treatment tank.

第一沈殿槽から高温処理槽への第一の固形物含有液の流入量は、第一沈殿槽内の沈殿物が全て高温処理槽へ流れるように調整した。第一沈殿槽から高温処理槽への第一の固形物含有液の流入量は、高温処理槽の全水量の約20%であった。   The inflow amount of the first solid-containing liquid from the first precipitation tank to the high-temperature treatment tank was adjusted so that all the precipitates in the first precipitation tank flowed to the high-temperature treatment tank. The inflow amount of the first solid-containing liquid from the first precipitation tank to the high-temperature treatment tank was about 20% of the total amount of water in the high-temperature treatment tank.

第二沈殿槽から高温処理槽への第二の固形物含有液の流入量は、第二沈殿槽に固形物が溜まらないように調整した。第二沈殿槽から高温処理槽への第二の固形物含有液の流入量は、高温処理槽への固形物含有液の全流入量の約30%であった。   The inflow amount of the second solid-containing liquid from the second precipitation tank to the high-temperature treatment tank was adjusted so that the solids did not accumulate in the second precipitation tank. The inflow of the second solid-containing liquid from the second precipitation tank to the high-temperature treatment tank was about 30% of the total inflow of the solid-containing liquid into the high-temperature treatment tank.

第三沈殿槽から生物処理槽への第三の固形物含有量の流入量は、生物処理槽への処理液
及び固形物含有液の全流入量の約50%となるように調整した。
The inflow amount of the third solid content from the third settling tank to the biological treatment tank was adjusted to be about 50% of the total inflow amount of the treatment liquid and the solid content liquid into the biological treatment tank.

前述の条件で試験廃水の処理を30日間行った。その後、高温処理槽内及び第二沈殿槽の沈殿物を調査したところ、生物処理されない卵殻以外はほぼ沈殿物が無かった。また生物処理槽及び第三沈殿槽を調査したところ、野菜くず等の固形物は確認されなかった。原水(試験廃水)及び第三沈殿槽の上澄み液である最終処理水の水質は表1に示す通りとなった。本システムを利用することで、排水基準値(SS:300mg/L以下、BOD:300mg/L以下)を十分満足することが分かった。なお、SS及びBODは、前記の「下水道のためのディスポーザ排水処理システム性能基準(案)」における「資料5 ディスポーザ排水の全負荷水質測定方法」に記載の方法、及び(社)日本下水道協会発行、建設省都市局下水道部・厚生省生活衛生局水道環境部監修、「下水試験方法」−1997年版−に準拠して求めた。   The test wastewater was treated for 30 days under the conditions described above. Then, when the deposits in the high-temperature treatment tank and the second sedimentation tank were examined, there was almost no precipitate except for the eggshell that was not biologically treated. Moreover, when the biological treatment tank and the third sedimentation tank were investigated, solids such as vegetable waste were not confirmed. Table 1 shows the quality of raw water (test wastewater) and the final treated water that is the supernatant of the third sedimentation tank. It was found that by using this system, the drainage standard values (SS: 300 mg / L or less, BOD: 300 mg / L or less) were sufficiently satisfied. SS and BOD are the methods described in “Document 5 Disposer Wastewater Disposal Wastewater Treatment System Performance Standard (Draft)” described in “Document 5 Method for Measuring Discharged Wastewater Full Load Water Quality” and issued by Japan Sewerage Association. It was obtained in accordance with the "Sewage Test Method"-1997 edition, supervised by the Ministry of Construction, Urban Bureau, Sewerage Department, Ministry of Health and Welfare, Health Sanitation Bureau, Water Environment Department.

Figure 2007283249
Figure 2007283249

[比較例1]
高温処理槽中の液の温度を常温(約23℃)に保つ以外は実施例1と同様に試験廃水の処理を行った。原水及び最終処理水の水質を表2に示す。なお比較例1では、過負荷状態となったため汚泥がバルキングし、最終処理水が得られなくなり、30日間連続した試験廃水の処理ができず、試験廃水の処理を途中で中止した。表2の実験結果は、まだ最終処理水が得られているときの値である。高温処理槽内及び第二沈殿槽の沈殿物を調査したところ、比較例1では、槽内の約半分が未処理の生ゴミで埋まり、常温では試験廃水の処理ができないことが確認された。
[Comparative Example 1]
The test wastewater was treated in the same manner as in Example 1 except that the temperature of the liquid in the high-temperature treatment tank was kept at room temperature (about 23 ° C.). Table 2 shows the quality of raw water and final treated water. In Comparative Example 1, since it was overloaded, the sludge was bulked, the final treated water could not be obtained, the test wastewater could not be treated continuously for 30 days, and the treatment of the test wastewater was stopped halfway. The experimental results in Table 2 are values when final treated water is still obtained. When the deposits in the high temperature treatment tank and the second sedimentation tank were examined, it was confirmed that in Comparative Example 1, about half of the tank was filled with untreated garbage, and the test wastewater could not be treated at room temperature.

[比較例2]
高温処理槽下段の沈殿槽、すなわち第二沈殿槽を除いた以外は実施例1と同様に試験廃水の処理を行った。原水及び最終処理水の水質を表2に示す。比較例2では、高温処理槽後に沈殿槽を設けないことで、高温処理槽に流入した第一の固形物含有液に含まれる固形物がそのまま生物処理槽へ流れ出すことによる最終処理水の水質の悪化が見られた。
[Comparative Example 2]
The test wastewater was treated in the same manner as in Example 1 except that the lower sedimentation tank, that is, the second sedimentation tank, was removed. Table 2 shows the quality of raw water and final treated water. In Comparative Example 2, by not providing a sedimentation tank after the high-temperature treatment tank, the quality of the final treated water by the solid matter contained in the first solid-containing liquid flowing into the high-temperature treatment tank flows out to the biological treatment tank as it is. Deterioration was seen.

さらに実施例1及び比較例1、2における相対的な余剰汚泥の発生量を表3に示す。余剰汚泥の発生量は、試験開始前と試験完了後に試験系統内の全SS量を測定し、その差によって求めた。   Furthermore, Table 3 shows the amount of relative excess sludge generated in Example 1 and Comparative Examples 1 and 2. The amount of excess sludge generated was determined by measuring the total amount of SS in the test system before the start of the test and after the completion of the test, and obtaining the difference.

Figure 2007283249
Figure 2007283249

余剰汚泥の発生量は、実施例1が比較例1、2と比べて小さかった。なお、数値では表せないが、生物処理槽中の活性汚泥は、実施例1における汚泥が最も良く、試験廃水の処
理中、安定した運転が可能であった。比較例2では、生物処理槽中の活性汚泥中に生ゴミが混じっていることが確認され、その量は試験廃水の処理が進むにつれて増えていった。このことから、試験廃水中の生ゴミが完全には処理されていないことが確認された。
The amount of surplus sludge generated was smaller in Example 1 than in Comparative Examples 1 and 2. In addition, although it cannot express by a numerical value, the activated sludge in a biological treatment tank is the sludge in Example 1, and the stable operation | movement was possible during the process of test wastewater. In Comparative Example 2, it was confirmed that garbage was mixed in the activated sludge in the biological treatment tank, and the amount thereof increased as the treatment of the test wastewater proceeded. From this, it was confirmed that the garbage in the test wastewater was not completely treated.

[実施例2]
図2に示すように、第三沈殿槽における第三の固形物含有液の一部を高温処理槽に返送する以外は実施例1と同様に試験廃水の処理を行った。具体的には第三の固形物含有液の約10%を高温処理槽に返送した。その結果、余剰汚泥の量は、実施例1に比べて約2割減少した。実施例1に対する相対的な余剰汚泥の発生量を表4に示す。なお、この際の最終処理水の水質は実施例1と同等であった。本実施例における余剰汚泥の減少は、好熱菌により汚泥が捕食された結果と考えられるが、詳細は不明である。
[Example 2]
As shown in FIG. 2, the test wastewater was treated in the same manner as in Example 1 except that a part of the third solid-containing liquid in the third sedimentation tank was returned to the high-temperature treatment tank. Specifically, about 10% of the third solid-containing liquid was returned to the high temperature treatment tank. As a result, the amount of excess sludge was reduced by about 20% compared to Example 1. Table 4 shows the amount of excess sludge generated relative to Example 1. In addition, the quality of the final treated water at this time was the same as in Example 1. The decrease in excess sludge in this example is considered to be a result of predation of sludge by thermophilic bacteria, but details are unknown.

Figure 2007283249
Figure 2007283249

[実施例3]
図3に示すように、生物処理槽の替わりに浸漬膜活性汚泥槽を設け、かつ第三沈殿槽を除いた以外は実施例1と同様に試験廃水の処理を行った。原水及び最終処理水の水質を表5に示す。また実施例1に対する相対的な余剰汚泥の発生量を表6に示す。
[Example 3]
As shown in FIG. 3, the test wastewater was treated in the same manner as in Example 1 except that a submerged membrane activated sludge tank was provided instead of the biological treatment tank and the third sedimentation tank was removed. Table 5 shows the quality of raw water and final treated water. Table 6 shows the amount of excess sludge generated relative to Example 1.

Figure 2007283249
Figure 2007283249

Figure 2007283249
Figure 2007283249

浸漬膜を用いることで、非常に良好な最終処理水を得ることができる。また、実施例1と比較して余剰汚泥の発生量も少なかった。なお、浸漬膜を用いると、最終処理水の水質が良く、浸漬膜活性汚泥槽内にSSが溜まるため、余剰汚泥の発生量は実施例2よりも多かった。実施例1よりも余剰汚泥の発生量が少ないのは、浸漬膜活性汚泥槽での汚泥の滞留時間が長いため、汚泥の自己消化が起きたためと考えられる。   By using an immersion film, very good final treated water can be obtained. In addition, the amount of excess sludge generated was smaller than that in Example 1. In addition, when the immersion membrane was used, the quality of the final treated water was good, and SS was accumulated in the immersion membrane activated sludge tank. Therefore, the amount of surplus sludge generated was larger than that in Example 2. The reason why the amount of surplus sludge generated is smaller than that in Example 1 is considered to be that the sludge self-digestion occurred because the sludge residence time in the submerged membrane activated sludge tank is long.

本発明の有機性廃水処理システムの一例の構成を概略的に示す図である。It is a figure which shows roughly the structure of an example of the organic wastewater treatment system of this invention. 本発明の有機性廃水処理システムの他の例の構成を概略的に示す図である。It is a figure which shows roughly the structure of the other example of the organic wastewater treatment system of this invention. 本発明の有機性廃水処理システムの他の例の構成を概略的に示す図である。It is a figure which shows roughly the structure of the other example of the organic wastewater treatment system of this invention.

符号の説明Explanation of symbols

1 第一沈殿槽
2 高温処理槽
3 第二沈殿槽
4 生物処理槽
5 第三沈殿槽
DESCRIPTION OF SYMBOLS 1 1st precipitation tank 2 High temperature treatment tank 3 2nd precipitation tank 4 Biological treatment tank 5 3rd precipitation tank

Claims (7)

有機性の固形物と水とを含有する有機性廃水を固液分離するための第一の固液分離装置と、
前記第一の固液分離装置での固液分離による固形物を含有する第一の固形物含有液が供給される、前記第一の固形物含有液中の前記固形物を好熱菌で分解するための高温処理槽と、
前記高温処理槽から排出される好熱菌処理液が供給される、前記好熱菌処理液を固液分離するための第二の固液分離装置と、
前記第一の固液分離装置での固液分離による液相である第一の処理水及び前記第二の固液分離装置での固液分離による液相である第二の処理水が供給される、前記第一及び第二の処理水を生物で処理するための生物処理槽とを有し、
前記第二の固液分離装置での固液分離による固形物を含有する第二の固形物含有液が前記高温処理槽に供給される、有機性廃水処理システム。
A first solid-liquid separation device for solid-liquid separation of organic wastewater containing organic solids and water;
The first solid-containing liquid containing the solid by solid-liquid separation in the first solid-liquid separator is supplied, and the solid in the first solid-containing liquid is decomposed by thermophilic bacteria. A high-temperature treatment tank,
A second solid-liquid separation device for solid-liquid separation of the thermophilic bacterium treatment liquid supplied with a thermophilic bacterium treatment liquid discharged from the high-temperature treatment tank;
First treated water that is a liquid phase by solid-liquid separation in the first solid-liquid separation device and second treated water that is a liquid phase by solid-liquid separation in the second solid-liquid separation device are supplied. A biological treatment tank for treating the first and second treated water with a living organism,
An organic wastewater treatment system in which a second solid-containing liquid containing solids obtained by solid-liquid separation in the second solid-liquid separator is supplied to the high-temperature treatment tank.
前記生物処理槽から排出される生物処理液が供給される、前記生物処理液を固液分離するための第三の固液分離装置をさらに有し、
前記第三の固液分離装置での固液分離による固形物を含有する第三の固形物含有液は、前記高温処理槽及び前記生物処理槽のいずれか一方又は両方に供給されることを特徴とする請求項1記載の有機性廃水処理システム。
A third solid-liquid separation device for solid-liquid separation of the biological treatment liquid supplied with the biological treatment liquid discharged from the biological treatment tank;
The third solid-containing liquid containing solids obtained by solid-liquid separation in the third solid-liquid separator is supplied to one or both of the high-temperature treatment tank and the biological treatment tank. The organic wastewater treatment system according to claim 1.
前記第三の固形物含有液は前記生物処理槽及び前記高温処理槽のそれぞれに供給されることを特徴とする請求項2記載の有機性廃水処理システム。   The organic wastewater treatment system according to claim 2, wherein the third solid-containing liquid is supplied to each of the biological treatment tank and the high-temperature treatment tank. 前記生物処理槽は、前記第一及び第二の処理水が供給される槽と前記槽内の液体及び空気を接触させるための散気管とを有する活性汚泥槽、前記槽と前記散気管と前記槽内の液体をろ過するための浸漬膜とを有する浸漬膜活性汚泥槽、又は前記槽と前記散気管と前記生物を収容するための充填材とを有する接触曝気槽であることを特徴とする請求項1記載の有機性廃水処理システム。   The biological treatment tank has an activated sludge tank having a tank to which the first and second treated waters are supplied and an air diffuser for contacting the liquid and air in the tank, the tank, the air diffuser, and the air It is a submerged membrane activated sludge tank having a submerged membrane for filtering the liquid in the tank, or a contact aeration tank having the tank, the air diffuser, and a filler for containing the organism. The organic wastewater treatment system according to claim 1. 前記高温処理槽は、槽内の液体を40〜95℃で処理するための槽であることを特徴とする請求項1〜4のいずれか一項に記載の有機性廃水処理システム。   The organic wastewater treatment system according to any one of claims 1 to 4, wherein the high-temperature treatment tank is a tank for treating a liquid in the tank at 40 to 95 ° C. 前記有機性廃水中の前記固形物は、粉砕装置によって粉砕された食料品由来の有機性の固形物であることを特徴とする請求項1〜5のいずれか一項に記載の有機性廃水処理システム。   The organic wastewater treatment according to any one of claims 1 to 5, wherein the solid matter in the organic wastewater is a food-derived organic solid matter pulverized by a pulverizer. system. 前記粉砕装置はディスポーザであり、前記有機性廃水はディスポーザから排出されるディスポーザ排水を含むことを特徴とする請求項6記載の有機性廃水処理システム。   The organic wastewater treatment system according to claim 6, wherein the pulverizer is a disposer, and the organic wastewater includes disposer drainage discharged from the disposer.
JP2006115657A 2006-04-19 2006-04-19 Organic wastewater treatment system Active JP5016839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115657A JP5016839B2 (en) 2006-04-19 2006-04-19 Organic wastewater treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115657A JP5016839B2 (en) 2006-04-19 2006-04-19 Organic wastewater treatment system

Publications (2)

Publication Number Publication Date
JP2007283249A true JP2007283249A (en) 2007-11-01
JP5016839B2 JP5016839B2 (en) 2012-09-05

Family

ID=38755506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115657A Active JP5016839B2 (en) 2006-04-19 2006-04-19 Organic wastewater treatment system

Country Status (1)

Country Link
JP (1) JP5016839B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211836A (en) * 2010-04-05 2011-10-12 南亮压力容器技术(上海)有限公司 Sludge circulation type continuous loop-type reaction tank
CN102503044A (en) * 2011-11-17 2012-06-20 重庆大学 Recycling system for treating community wastewater through combining membrane bioreactor and constructed wetland

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836698A (en) * 1981-08-31 1983-03-03 Nishihara Environ Sanit Res Corp Treatment for sewage
JPH09314183A (en) * 1996-05-28 1997-12-09 Ebara Corp Method and apparatus for highly removing nitrogen of sewage
JP2002001384A (en) * 2000-06-15 2002-01-08 Shinko Pantec Co Ltd Treating method for organic waste water and treating apparatus for the same
JP2003245689A (en) * 2002-02-21 2003-09-02 Kurita Water Ind Ltd Method and apparatus for treating wastewater
JP2003275720A (en) * 2002-03-25 2003-09-30 Toto Ltd Garbage-containing waste water treating apparatus and operating method therefor
JP2003334592A (en) * 2002-05-20 2003-11-25 Kubota Corp Sewage treatment apparatus
JP2005169184A (en) * 2003-12-08 2005-06-30 Takasago Thermal Eng Co Ltd Total energy system in building
JP2006043512A (en) * 2004-07-30 2006-02-16 Sumitomo Heavy Ind Ltd Sewage treatment method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836698A (en) * 1981-08-31 1983-03-03 Nishihara Environ Sanit Res Corp Treatment for sewage
JPH09314183A (en) * 1996-05-28 1997-12-09 Ebara Corp Method and apparatus for highly removing nitrogen of sewage
JP2002001384A (en) * 2000-06-15 2002-01-08 Shinko Pantec Co Ltd Treating method for organic waste water and treating apparatus for the same
JP2003245689A (en) * 2002-02-21 2003-09-02 Kurita Water Ind Ltd Method and apparatus for treating wastewater
JP2003275720A (en) * 2002-03-25 2003-09-30 Toto Ltd Garbage-containing waste water treating apparatus and operating method therefor
JP2003334592A (en) * 2002-05-20 2003-11-25 Kubota Corp Sewage treatment apparatus
JP2005169184A (en) * 2003-12-08 2005-06-30 Takasago Thermal Eng Co Ltd Total energy system in building
JP2006043512A (en) * 2004-07-30 2006-02-16 Sumitomo Heavy Ind Ltd Sewage treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211836A (en) * 2010-04-05 2011-10-12 南亮压力容器技术(上海)有限公司 Sludge circulation type continuous loop-type reaction tank
CN102503044A (en) * 2011-11-17 2012-06-20 重庆大学 Recycling system for treating community wastewater through combining membrane bioreactor and constructed wetland

Also Published As

Publication number Publication date
JP5016839B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
Ng Industrial wastewater treatment
Günder The membrane-coupled activated sludge process in municipal wastewater treatment
CN202898159U (en) Sewage treatment device
Birwal et al. Advanced technologies for dairy effluent treatment
CN106116031A (en) A kind of efficient treatment process of slaughtering wastewater
JP2013154349A (en) Deeply sewage treating method and apparatus without discharging sludge
Ranjit et al. Conventional wastewater treatment processes
KR100807219B1 (en) Purification apparatus and method for high organic wastewater
CN109052822A (en) A kind of microbial inoculum treatment process of town sewage
CN105645687A (en) Sewage biological reaction device and process integrating PHAs synthesis and nitrogen and phosphorus removal
Asthana et al. Wastewater treatment
JP2006181393A (en) Non-sludge high-speed wastewater treatment system
CN114291942A (en) Catalytic electrolysis municipal sewage purification system and purification method
JP5016839B2 (en) Organic wastewater treatment system
CN211595374U (en) Sewage treatment equipment combining suspended biological membrane with deep filtration
KR100283867B1 (en) Large scale sewage treatment method using active microorganism
JP6852214B2 (en) Sewage treatment system
KR102488754B1 (en) Apparatus and Method for Treating Anaerobic Digestive Fluid
KR101070725B1 (en) Diposer Waste and Wastewater Treatment System
CN103508629A (en) Wastewater treatment system for food industry
El Hafiane et al. Anaerobic reactor/high rate pond combined technology for sewage treatment in the Mediterranean area
Wheatley Biotechnology and effluent treatment
O'Keeffe et al. Practical measures for reducing phosphorus and faecal microbial loads from onsite wastewater treatment system discharges to the environment: a review
Singh et al. Study the different parameters of sewage treatment with UASB & SBR technologies
KR100249465B1 (en) Filtration tub of sewage purification tub

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5016839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150