JP2002361292A - Anaerobic digesting apparatus - Google Patents

Anaerobic digesting apparatus

Info

Publication number
JP2002361292A
JP2002361292A JP2001168390A JP2001168390A JP2002361292A JP 2002361292 A JP2002361292 A JP 2002361292A JP 2001168390 A JP2001168390 A JP 2001168390A JP 2001168390 A JP2001168390 A JP 2001168390A JP 2002361292 A JP2002361292 A JP 2002361292A
Authority
JP
Japan
Prior art keywords
anaerobic digestion
tank
sludge
digestion tank
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001168390A
Other languages
Japanese (ja)
Inventor
Goel Rajiv
ゴエル ラジブ
Hidenari Yasui
英斉 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001168390A priority Critical patent/JP2002361292A/en
Publication of JP2002361292A publication Critical patent/JP2002361292A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease ammonia produced from organic nitrogen in an anaerobic digesting process and to realize high-load treatment in an anaerobic digesting apparatus to reduce the volume of raw water containing an organic waste liquid by anaerobic treatment. SOLUTION: The raw sludge is subjected to anaerobic digestion in an anaerobic digestion tank 1 and the digested sludge is concentrated by a centrifugal separation means 2. The separated sludge is returned to the anaerobic digestion tank 1, while the separated water is discharged to the outside of the system. A part of the digested sludge is sent to a nitrification tank 4 to nitrify ammonia nitrogen, solubilized in an ozone reaction tank 3, sent to a denitrification tank 5 to denitrify nitric acid nitrogen and then returned to the anaerobic digestion tank 1. Or, a part of the digested sludge is nitrified in the nitrification tank while another part is solubilized in the ozone reaction tank, then the digested liquid and the solubilized liquid are sent to the denitrification tank to be denitrified and then returned to the anaerobic digestion tank.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は嫌気性消化装置に係
り、特に、有機性汚泥、し尿、下水最初沈殿池汚泥、余
剰汚泥、家畜糞尿、食品排水等の有機性排液を含む原水
を嫌気性処理することにより減容化する嫌気性消化装置
において、嫌気性消化工程で有機性窒素から生成するア
ンモニアを低減し、高負荷処理を可能とする嫌気性消化
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anaerobic digester, and particularly to anaerobic digestion of raw water containing organic wastewater such as organic sludge, night soil, sludge from the first sedimentation basin, excess sludge, livestock manure, food wastewater and the like. The present invention relates to an anaerobic digester that reduces the volume of ammonia generated from organic nitrogen in the anaerobic digestion step and enables high-load processing in an anaerobic digester whose volume is reduced by anaerobic treatment.

【0002】[0002]

【従来の技術】有機性排液を活性汚泥の存在下に好気的
に生物処理する方法では、難脱水性の余剰汚泥が大量に
生成する。また、嫌気性汚泥の存在下に嫌気的に処理す
る方法でも、大量の余剰汚泥が生成する。このような余
剰汚泥の減容化のために、余剰汚泥を好気的又は嫌気的
に消化する方法が行われている。このうち好気性消化で
は、余剰汚泥を消化槽で単純に曝気して消化し、曝気汚
泥を固液分離して分離汚泥を消化槽に返送している。ま
た、嫌気性消化では、余剰汚泥を消化槽に投入し、嫌気
性細菌の作用で消化している。
2. Description of the Related Art In a method of aerobically biologically treating an organic wastewater in the presence of activated sludge, a large amount of hardly dewaterable surplus sludge is generated. Also, a method of anaerobically treating in the presence of anaerobic sludge generates a large amount of excess sludge. In order to reduce the volume of such excess sludge, a method of digesting excess sludge aerobically or anaerobically has been used. Among them, in aerobic digestion, excess sludge is simply aerated and digested in a digestion tank, the aerated sludge is separated into solid and liquid, and the separated sludge is returned to the digestion tank. In anaerobic digestion, excess sludge is put into a digestion tank and digested by the action of anaerobic bacteria.

【0003】このような消化方法は、好気性又は嫌気性
生物の作用を利用して消化するものであるが、余剰汚泥
自体生物処理を経て生物学的に安定した汚泥であるた
め、汚泥の減容化には限度があり、通常余剰汚泥の35
〜50%が減容されるにすぎない。
[0003] Such a digestion method digests by utilizing the action of aerobic or anaerobic organisms. However, since excess sludge itself is biologically stable through biological treatment, sludge is reduced. There is a limit to the volume of waste sludge, usually 35
Only 5050% volume reduction.

【0004】このような点を改善するために、図3に示
す如く、余剰汚泥等の原泥を原泥供給路11より嫌気性
消化槽1に供給し、嫌気性消化槽1で嫌気性消化し、消
化汚泥を汚泥移送路12を経て固液分離手段2に送給し
て固液分離し、分離水を処理水排出路13より系外へ排
出し、分離汚泥を汚泥返送路14より嫌気性消化槽1に
循環する方法において、オゾン反応槽3を設け、消化汚
泥の一部を汚泥引抜路15からオゾン反応槽3に送給
し、オゾン反応槽3で消化汚泥をオゾン処理して可溶化
した後、可溶化液返送路16より嫌気性消化槽1に戻す
方法が提案された(特開平8−299995号公報)。
この方法であれば、消化汚泥をオゾン処理することによ
り、汚泥中の生菌の殆どが死滅し、汚泥は易生物分解性
に改質されるため、この汚泥を嫌気性消化槽に返送する
ことにより、これを更に分解して汚泥を大幅に減容化す
ることが可能となる。この方法では、増殖する汚泥より
も多い量の汚泥をオゾン処理することにより、余剰汚泥
の発生量をゼロにすることもできる。
In order to improve such a point, as shown in FIG. 3, raw sludge such as surplus sludge is supplied to the anaerobic digestion tank 1 from the raw mud supply passage 11 and the anaerobic digestion tank 1 performs the anaerobic digestion. Then, the digested sludge is fed to the solid-liquid separation means 2 through the sludge transfer passage 12 to be separated into solid and liquid, the separated water is discharged out of the system from the treated water discharge passage 13, and the separated sludge is anaerobically discharged from the sludge return passage 14. In the method of circulating in the digestive digester 1, an ozone reactor 3 is provided, a part of digested sludge is fed to the ozone reactor 3 from the sludge extraction passage 15, and the digested sludge is treated with ozone in the ozone reactor 3. After solubilization, a method has been proposed in which the solution is returned to the anaerobic digestion tank 1 through the solubilized solution return path 16 (Japanese Patent Application Laid-Open No. Hei 8-29995).
With this method, most of the viable bacteria in the sludge are killed by ozone treatment of the digested sludge, and the sludge is reformed to be easily biodegradable. Therefore, this sludge must be returned to the anaerobic digestion tank. Thereby, the sludge can be further decomposed to significantly reduce the volume of sludge. In this method, the amount of excess sludge generated can be reduced to zero by treating the sludge with a larger amount than the growing sludge with ozone.

【0005】ところで、嫌気性消化槽内の温度を消化に
好適な30〜35℃の温度に維持するための加熱コスト
は、嫌気性消化槽の固形物負荷に反比例し、加熱コスト
の削減のためには、嫌気性消化槽の固形物負荷を高くす
ることが好ましい。また、嫌気性消化槽の固形物負荷を
高くすることは、処理効率の向上、嫌気性消化槽容量の
低減にもつながるため、この点からも嫌気性消化槽の固
形物負荷を高めることが望まれる。
The heating cost for maintaining the temperature in the anaerobic digestion tank at 30 to 35 ° C. suitable for digestion is inversely proportional to the solid load of the anaerobic digestion tank. It is preferable to increase the solid load in the anaerobic digester. Also, increasing the solids load of the anaerobic digestion tank leads to an improvement in treatment efficiency and a reduction in the capacity of the anaerobic digestion tank. Therefore, it is desirable to increase the solids load of the anaerobic digestion tank from this point as well. It is.

【0006】[0006]

【発明が解決しようとする課題】嫌気性消化工程では、
原泥中の有機性窒素がアンモニアに変換されるため、嫌
気性消化槽内ではアンモニア濃度が上昇する。しかし、
アンモニアはメタン生成菌の阻害物質であるため、嫌気
性消化槽1内のアンモニア濃度が過度に高くなると嫌気
性消化が進行しなくなる。このため、嫌気性消化槽の固
形物負荷は、嫌気性消化槽内のアンモニア濃度により制
限される。即ち、一般的には、嫌気性消化槽内のアンモ
ニア性窒素濃度が2500mg/Lを超えるとメタン生
成菌の活性を阻害することが知られている。通常、原泥
中の固形物中には約10%のアンモニア性窒素が含ま
れ、また、消化による汚泥の減容効率が90%であると
すると、アンモニアによるメタン生成菌の活性阻害を防
止するために、嫌気性消化槽のVSS負荷が2.5〜
2.8kg−VSS/m・dを超えないようにする必
要がある。このため、従来法では、嫌気性消化槽の固形
物負荷がアンモニア濃度により制約を受け、高い固形物
負荷での運転を行えないという問題があった。
In the anaerobic digestion process,
Since the organic nitrogen in the raw mud is converted to ammonia, the ammonia concentration increases in the anaerobic digestion tank. But,
Since ammonia is an inhibitor of methanogens, anaerobic digestion does not proceed if the ammonia concentration in the anaerobic digestion tank 1 becomes excessively high. For this reason, the solid load in the anaerobic digester is limited by the ammonia concentration in the anaerobic digester. That is, it is generally known that when the ammonia nitrogen concentration in the anaerobic digestion tank exceeds 2500 mg / L, the activity of the methanogen is inhibited. Normally, solid matter in raw mud contains about 10% ammonia nitrogen, and if the sludge volume reduction efficiency by digestion is 90%, the inhibition of the activity of methanogens by ammonia is prevented. Therefore, VSS load of anaerobic digestion tank is 2.5 ~
It is necessary to not exceed 2.8kg-VSS / m 3 · d . For this reason, in the conventional method, there was a problem that the solid load of the anaerobic digestion tank was restricted by the ammonia concentration, and the operation at a high solid load could not be performed.

【0007】本発明は、上記従来の問題点を解決し、有
機性汚泥、し尿、下水最初沈殿池汚泥、余剰汚泥、家畜
糞尿、食品排水等の有機性排液を含む原水を嫌気性処理
することにより減容化する嫌気性消化装置において、嫌
気性消化工程で有機性窒素から生成するアンモニアを低
減し、高負荷処理を可能とする嫌気性消化装置を提供す
ることを目的とする。
[0007] The present invention solves the above-mentioned conventional problems and anaerobically treats raw water containing organic wastewater such as organic sludge, night soil, sludge in the first sedimentation basin, excess sludge, livestock manure, and food wastewater. It is an object of the present invention to provide an anaerobic digester that reduces the volume of ammonia generated from organic nitrogen in the anaerobic digestion step and enables high-load processing in an anaerobic digester that is reduced in volume.

【0008】[0008]

【課題を解決するための手段】請求項1の嫌気性消化装
置は、嫌気性消化槽と、有機性排液を含む原水を該嫌気
性消化槽に送給する原水送給手段と、該嫌気性消化槽の
流出液を固液分離する固液分離手段と、該固液分離手段
で分離された汚泥を嫌気性消化槽に返送する汚泥返送手
段とを備える嫌気性消化装置において、前記嫌気性消化
槽の流出液の一部を生物学的に硝化処理する硝化手段
と、該硝化手段の硝化液を可溶化処理する可溶化手段
と、該可溶化手段の可溶化液を生物学的に脱窒処理する
脱窒手段と、該脱窒手段の脱窒液を前記嫌気性消化槽に
送給する脱窒液送給手段とを設けたことを特徴とする。
An anaerobic digester according to claim 1 comprises an anaerobic digestion tank, raw water feed means for feeding raw water containing organic wastewater to the anaerobic digestion tank, and the anaerobic digestion tank. An anaerobic digestion apparatus comprising: a solid-liquid separation unit for solid-liquid separation of the effluent of the anaerobic digestion tank; and a sludge return unit for returning the sludge separated by the solid-liquid separation unit to the anaerobic digestion tank. Nitrification means for biologically nitrifying a part of the effluent of the digestion tank, solubilization means for solubilizing the nitrification liquid of the nitrification means, and biological denitration of the lysate of the solubilization means. A denitrification means for performing a nitrification treatment and a denitrification liquid feeding means for feeding a denitrification liquid of the denitrification means to the anaerobic digestion tank are provided.

【0009】請求項2の嫌気性消化装置は、嫌気性消化
槽と、有機性排液を含む原水を該嫌気性消化槽に送給す
る原水送給手段と、該嫌気性消化槽の流出液を固液分離
する固液分離手段と、該固液分離手段で分離された汚泥
を嫌気性消化槽に返送する汚泥返送手段とを備える嫌気
性消化装置において、前記嫌気性消化槽の流出液の一部
を生物学的に硝化処理する硝化手段と、前記嫌気槽消化
槽の流出液の他の一部を可溶化処理する可溶化手段と、
前記硝化手段の硝化液と前記可溶化液とを受け入れて生
物学的に脱窒処理する脱窒手段と、該脱窒手段の脱窒液
を前記嫌気性消化槽に送給する脱窒液送給手段とを設け
たことを特徴とする。
An anaerobic digester according to a second aspect of the present invention comprises an anaerobic digester, raw water supply means for supplying raw water containing organic wastewater to the anaerobic digester, and an effluent from the anaerobic digester. An anaerobic digestion apparatus comprising: a solid-liquid separation unit for solid-liquid separation; and a sludge return unit for returning the sludge separated by the solid-liquid separation unit to the anaerobic digestion tank. Nitrification means for biologically nitrifying part, and solubilizing means for solubilizing another part of the effluent of the anaerobic digester,
Denitrification means for receiving the nitrification liquid of the nitrification means and the solubilized liquid and biologically denitrifying the same, and feeding the denitrification liquid of the denitrification means to the anaerobic digestion tank. And supplying means.

【0010】請求項1の嫌気性消化装置では、嫌気性消
化槽の流出液(以下「消化汚泥」と称す場合がある。)
を生物学的に硝化処理して消化汚泥中のアンモニア性窒
素を硝酸性又は亜硝酸性窒素に酸化する。そして、この
硝化液を可溶化処理することにより液中の難生物分解性
物質を易生物分解性に可溶化する。この可溶化液を次い
で脱窒処理することにより、液中の硝酸性又は亜硝酸性
窒素を窒素ガスに還元して除去する。このようにして嫌
気性消化工程で生成したアンモニアを除去した液を嫌気
性消化槽に戻すことにより、嫌気性消化槽内のメタン生
成菌の阻害物質であるアンモニア濃度を低減することが
できる。このため、アンモニア濃度に制約を受けること
なく、嫌気性消化槽の固形物質負荷を高めることができ
る。また、可溶化処理により汚泥の減容化効果も得られ
る。
In the anaerobic digester of the first aspect, the effluent of the anaerobic digestion tank (hereinafter sometimes referred to as “digested sludge”).
Is biologically nitrified to oxidize ammonia nitrogen in digested sludge to nitrate or nitrite nitrogen. Then, by solubilizing the nitrification solution, the hardly biodegradable substance in the solution is solubilized so as to be easily biodegradable. The solubilized solution is then subjected to a denitrification treatment to reduce nitric or nitrite nitrogen in the solution by reducing it to nitrogen gas. By returning the liquid from which the ammonia generated in the anaerobic digestion process has been removed to the anaerobic digestion tank, the concentration of ammonia, which is an inhibitor of methanogens in the anaerobic digestion tank, can be reduced. For this reason, the solid substance load of the anaerobic digestion tank can be increased without being restricted by the ammonia concentration. In addition, the effect of reducing the volume of sludge can be obtained by the solubilization treatment.

【0011】なお、硝化液の可溶化処理により生成した
易生物分解性物質は、脱窒工程において脱窒細菌の硝酸
呼吸に必要な水素供子体として利用され、メタノール等
の有機物を系外から添加する必要がなくなるか、或いは
その添加量を低減することができる。
The easily biodegradable substance produced by the solubilization treatment of the nitrification liquid is used as a hydrogen donor required for nitric acid respiration of the denitrifying bacteria in the denitrification step, and organic substances such as methanol are removed from the outside of the system. It is not necessary to add, or the amount of addition can be reduced.

【0012】ところで、硝化工程においては、硝化工程
の酸素供給量を低減すると共に、脱窒工程での水素供子
体としての炭素供給量を低減するために、亜硝酸性窒素
の生成を促進し、硝酸性窒素の生成効率を高めるように
することが望ましい。しかしながら、完全なる亜硝酸化
を行う処理条件の設定は困難であり、一般的には硝化工
程において硝酸性窒素が生成する。
In the nitrification step, the production of nitrite nitrogen is promoted in order to reduce the amount of oxygen supplied in the nitrification step and the amount of carbon supplied as a hydrogen donor in the denitrification step. It is desirable to increase the production efficiency of nitrate nitrogen. However, it is difficult to set processing conditions for performing complete nitritation, and nitrate nitrogen is generally generated in the nitrification step.

【0013】亜硝酸性窒素を含む硝化液を例えばオゾン
処理のような酸化反応によって可溶化する場合、オゾン
が亜硝酸性窒素の酸化に使用されてしまい、可溶化効率
が悪くなる。従って、この場合には、請求項2の嫌気性
消化装置の如く、硝化液を直接脱窒工程に送給し、別途
嫌気性消化槽から引き抜いた消化汚泥を可溶化処理した
可溶化液を脱窒のための炭素源として脱窒工程に供給す
ることが好ましい。
When solubilizing a nitrifying liquid containing nitrite nitrogen by an oxidation reaction such as ozone treatment, ozone is used for oxidation of nitrite nitrogen, and the solubilization efficiency is deteriorated. Therefore, in this case, as in the anaerobic digestion apparatus of claim 2, the nitrification liquid is directly sent to the denitrification step, and the digested sludge separately extracted from the anaerobic digestion tank is solubilized to remove the solubilized liquid. It is preferable to supply to the denitrification step as a carbon source for nitriding.

【0014】この請求項2の嫌気性消化装置であって
も、嫌気性消化槽内から引き抜いた消化汚泥を硝化、脱
窒して嫌気性消化工程で生成したアンモニアを除去した
液を嫌気性消化槽に戻すことにより、嫌気性消化槽内の
アンモニア濃度を低減することができ、これによりアン
モニア濃度に制約を受けることなく、嫌気性消化槽の固
形物負荷を高めることができる。また、可溶化処理によ
り汚泥の減容化効果も得られる上に、脱窒のための水素
供子体の系内補給も可能となる。
In the anaerobic digester according to the present invention, the digested sludge extracted from the anaerobic digestion tank is nitrified and denitrified to remove the ammonia produced in the anaerobic digestion step. By returning to the tank, the ammonia concentration in the anaerobic digestion tank can be reduced, thereby increasing the solids load of the anaerobic digestion tank without being restricted by the ammonia concentration. Further, the solubilization treatment can obtain the effect of reducing the volume of sludge, and can also supply hydrogen donors for denitrification in the system.

【0015】[0015]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0016】図1,2は本発明の嫌気性消化装置の実施
の形態を示す系統図である。図1,2において、図3に
示す部材と同様の機能を奏する部材には同一符号を付し
てある。
FIGS. 1 and 2 are system diagrams showing an embodiment of the anaerobic digester of the present invention. 1 and 2, members having the same functions as those shown in FIG. 3 are denoted by the same reference numerals.

【0017】図1の嫌気性消化装置において、原泥は、
まず、原泥供給路11より嫌気性消化槽1に導入されて
メタン発酵処理される。嫌気性消化槽1では、原泥は、
後述の固液分離手段2から返送される分離汚泥及び脱窒
槽5から返送される脱窒液と混合され、撹拌機などによ
る撹拌下、メタン発酵処理が行われる。このメタン発酵
処理により、汚泥中の有機物は酸生成菌及びメタン生成
菌により分解される。このメタン発酵で生成したメタン
ガスを含む消化ガスは図示しないガス取出路より系外へ
排出される。
In the anaerobic digester of FIG. 1, raw mud is
First, it is introduced into the anaerobic digestion tank 1 from the raw mud supply channel 11 and subjected to methane fermentation treatment. In the anaerobic digester 1, raw mud is
The separated sludge returned from the solid-liquid separation means 2 described below and the denitrification liquid returned from the denitrification tank 5 are mixed, and methane fermentation is performed under stirring by a stirrer or the like. By this methane fermentation treatment, organic matter in the sludge is decomposed by acid-producing bacteria and methane-producing bacteria. The digestion gas containing methane gas generated by this methane fermentation is discharged out of the system from a gas extraction path (not shown).

【0018】この嫌気性消化槽1から、汚泥移送路12
を経て取り出された消化汚泥のうちの一部は汚泥引抜路
17を経て硝化槽4に送給され、残部は固液分離手段2
で固液分離され、分離汚泥は、汚泥返送路14より嫌気
性消化槽1に戻される。この分離汚泥の一部は必要に応
じて余剰汚泥として図示しない余剰汚泥排出路より系外
へ排出される。この固液分離手段2の分離水は処理水排
出路13より系外へ排出され、活性汚泥処理等の任意の
方法で処理される。
From the anaerobic digestion tank 1, a sludge transfer path 12
A part of the digested sludge taken out through the process is sent to the nitrification tank 4 through a sludge extraction path 17, and the remainder is solid-liquid separation means 2.
The separated sludge is returned to the anaerobic digestion tank 1 from the sludge return path 14. A part of this separated sludge is discharged out of the system as a surplus sludge from a surplus sludge discharge passage (not shown) as needed. The separated water of the solid-liquid separation means 2 is discharged out of the system through a treated water discharge passage 13 and is treated by an arbitrary method such as activated sludge treatment.

【0019】硝化槽4に導入された消化汚泥は、硝化槽
4内でアンモニア性窒素が硝酸性窒素又は亜硝酸性窒素
に硝化された後、移送路18を経てオゾン反応槽3に送
給され、オゾン処理により可溶化され、次いで、移送路
19より脱窒槽5に送給され、硝酸性窒素及び亜硝酸性
窒素が窒素ガスに還元されて脱窒される。この脱窒液
は、返送路20より嫌気性消化槽1に返送される。
The digested sludge introduced into the nitrification tank 4 is supplied to the ozone reaction tank 3 via the transfer path 18 after the ammonia nitrogen is nitrified into nitrate nitrogen or nitrite nitrogen in the nitrification tank 4. Then, it is solubilized by ozone treatment, and then is sent from the transfer path 19 to the denitrification tank 5, where nitrate nitrogen and nitrite nitrogen are reduced to nitrogen gas and denitrified. This denitrification liquid is returned to the anaerobic digestion tank 1 from the return path 20.

【0020】このように、嫌気性消化槽1から引き抜い
た消化汚泥を硝化槽4及び脱窒槽5で消化、脱窒処理し
て嫌気性消化槽1に戻すことにより、嫌気性消化槽1内
で生成したアンモニアを除去して嫌気性消化槽1内のア
ンモニア濃度を低減することができるため、アンモニア
濃度による制約を受けることなく高負荷処理を行うこと
が可能となる。なお、消化汚泥はオゾン反応槽3で可溶
化され、これにより易生物分解性とされた有機物が再度
嫌気性消化槽1でメタン発酵されるため、汚泥量を大幅
に低減することができる。しかも、この可溶化液を脱窒
のための水素供与体としても有効利用することができ、
系外からの水素供与体の添加を不要とすることもでき
る。
As described above, the digested sludge extracted from the anaerobic digestion tank 1 is digested and denitrified in the nitrification tank 4 and the denitrification tank 5 and returned to the anaerobic digestion tank 1. Since the generated ammonia can be removed and the ammonia concentration in the anaerobic digestion tank 1 can be reduced, high-load processing can be performed without being restricted by the ammonia concentration. In addition, the digested sludge is solubilized in the ozone reaction tank 3, and thereby the organic matter which has been made easily biodegradable is subjected to methane fermentation again in the anaerobic digestion tank 1, so that the amount of sludge can be significantly reduced. Moreover, the solubilized solution can be effectively used as a hydrogen donor for denitrification,
The addition of a hydrogen donor from outside the system may be unnecessary.

【0021】また、嫌気性消化槽1の消化汚泥を抜き出
し、固液分離手段2で固液分離し、分離汚泥を嫌気性消
化槽1に返送して汚泥を濃縮することにより、反応効
率、装置稼動効率を高め、処理効率を向上させることが
できる。
The digested sludge in the anaerobic digestion tank 1 is extracted, separated into solid and liquid by the solid-liquid separation means 2, and the separated sludge is returned to the anaerobic digestion tank 1 to concentrate the sludge. The operation efficiency can be improved, and the processing efficiency can be improved.

【0022】一方、図2の嫌気性消化装置においては、
原泥は、まず、原泥供給路11より嫌気性消化槽1に導
入されてメタン発酵処理される。嫌気性消化槽1では、
原泥は、後述の固液分離手段2から返送される分離汚
泥、オゾン反応槽3から返送される可溶化液及び脱窒槽
5から返送される脱窒液と混合され、撹拌機などによる
撹拌下、メタン発酵処理が行われる。このメタン発酵処
理により、汚泥中の有機物は酸生成菌及びメタン生成菌
により分解される。このメタン発酵で生成したメタンガ
スを含む消化ガスは図示しないガス取出路より系外へ排
出される。
On the other hand, in the anaerobic digester shown in FIG.
Raw mud is first introduced into the anaerobic digestion tank 1 from the raw mud supply channel 11 and subjected to methane fermentation. In the anaerobic digester 1,
The raw mud is mixed with the separated sludge returned from the solid-liquid separation means 2 described below, the solubilized liquid returned from the ozone reaction tank 3 and the denitrification liquid returned from the denitrification tank 5, and is mixed with a stirrer or the like. , A methane fermentation treatment is performed. By this methane fermentation treatment, organic matter in the sludge is decomposed by acid-producing bacteria and methane-producing bacteria. The digestion gas containing methane gas generated by this methane fermentation is discharged out of the system from a gas extraction path (not shown).

【0023】この嫌気性消化槽1から、汚泥移送路12
を経て取り出された消化汚泥のうちの一部は汚泥引抜路
17を経て硝化槽4に送給され、他の一部は汚泥引抜路
15を経てオゾン反応槽3に返送され、残部は固液分離
手段2で固液分離され、分離汚泥は、汚泥返送路14よ
り嫌気性消化槽1に戻される。この分離汚泥の一部は必
要に応じて余剰汚泥として図示しない余剰汚泥排出路よ
り系外へ排出される。この固液分離手段2の分離水は処
理水排出路13より系外へ排出され、活性汚泥処理等の
任意の方法で処理される。
From the anaerobic digestion tank 1, a sludge transfer path 12
A part of the digested sludge taken out through the process is sent to the nitrification tank 4 through a sludge extraction path 17, another part is returned to the ozone reaction tank 3 through a sludge extraction path 15, and the rest is solid-liquid. The solid sludge is separated by the separation means 2 and the separated sludge is returned to the anaerobic digestion tank 1 from the sludge return line 14. A part of this separated sludge is discharged out of the system as a surplus sludge from a surplus sludge discharge passage (not shown) as needed. The separated water of the solid-liquid separation means 2 is discharged out of the system through a treated water discharge passage 13 and is treated by an arbitrary method such as activated sludge treatment.

【0024】硝化槽4に導入された消化汚泥は、硝化槽
4内でアンモニア性窒素が硝酸性窒素又は亜硝酸性窒素
に硝化された後、移送路18を経てオゾン反応槽3から
の可溶化液と共に脱窒槽5に送給され、硝酸性窒素及び
亜硝酸性窒素が窒素ガスに還元されて脱窒される。この
脱窒液は、返送路20より嫌気性消化槽1に返送され
る。
The digested sludge introduced into the nitrification tank 4 is solubilized from the ozone reaction tank 3 via the transfer path 18 after the ammonia nitrogen is nitrified into nitrate nitrogen or nitrite nitrogen in the nitrification tank 4. The liquid is sent to the denitrification tank 5 together with the liquid, and nitrate nitrogen and nitrite nitrogen are reduced to nitrogen gas and denitrified. This denitrification liquid is returned to the anaerobic digestion tank 1 from the return path 20.

【0025】また、オゾン反応槽3に導入された消化汚
泥は、オゾン処理により可溶化され、一部又は全部が移
送路19より脱窒槽5に送給され、残部が嫌気性消化槽
1に返送される。
The digested sludge introduced into the ozone reaction tank 3 is solubilized by ozone treatment, and part or all of the digested sludge is sent from the transfer path 19 to the denitrification tank 5, and the rest is returned to the anaerobic digestion tank 1. Is done.

【0026】この嫌気性消化装置においても、嫌気性消
化槽1から引き抜いた消化汚泥を硝化槽4及び脱窒槽5
で消化、脱窒処理して嫌気性消化槽1に戻すことによ
り、嫌気性消化槽1内で生成したアンモニアを除去して
嫌気性消化槽1内のアンモニア濃度を低減することがで
きるため、アンモニア濃度による制約を受けることなく
高負荷処理を行うことが可能となる。また、消化汚泥の
一部がオゾン反応槽3で可溶化され、これにより易生物
分解性とされた有機物が再度嫌気性消化槽1でメタン発
酵されるため、汚泥量を大幅に低減することができる。
しかも、この可溶化液を脱窒のための水素供与体として
も有効利用することができ、系外からの水素供与体の添
加を不要とすることもできる。
Also in this anaerobic digester, digested sludge extracted from the anaerobic digester 1 is converted into a nitrification tank 4 and a denitrification tank 5.
By returning to the anaerobic digestion tank 1 by digestion and denitrification treatment in the anaerobic digestion tank 1, ammonia generated in the anaerobic digestion tank 1 can be removed and the ammonia concentration in the anaerobic digestion tank 1 can be reduced. High load processing can be performed without being restricted by the density. In addition, a part of the digested sludge is solubilized in the ozone reaction tank 3, whereby the organic matter which is made readily biodegradable is methane fermented again in the anaerobic digestion tank 1, so that the amount of sludge can be significantly reduced. it can.
In addition, the solubilized liquid can be effectively used as a hydrogen donor for denitrification, and the addition of a hydrogen donor from outside the system can be unnecessary.

【0027】また、嫌気性消化槽1の消化汚泥を抜き出
し、固液分離手段2で固液分離し、分離汚泥を嫌気性消
化槽1に返送して汚泥を濃縮することにより、反応効
率、装置稼動効率を高め、処理効率を向上させることが
できる。
Further, the digestion sludge in the anaerobic digestion tank 1 is extracted, separated into solid and liquid by the solid-liquid separation means 2, and the separated sludge is returned to the anaerobic digestion tank 1 to concentrate the sludge. The operation efficiency can be improved, and the processing efficiency can be improved.

【0028】図1,2の嫌気性消化装置において、硝化
槽4としては、浮遊式生物処理槽であっても生物膜式生
物処理槽であっても良く、その好適な運転条件はHRT
1日以上、好ましくは1〜3日、pH6.5〜8.0、
温度20〜35℃であり、DO(溶存酸素)濃度は0.
3〜2.0mg/Lの範囲で完全な硝酸化を行うか一部
亜硝酸化するかによって決定される。
In the anaerobic digester shown in FIGS. 1 and 2, the nitrification tank 4 may be a floating type biological treatment tank or a biofilm type biological treatment tank.
1 day or more, preferably 1 to 3 days, pH 6.5 to 8.0,
The temperature is 20 to 35 ° C., and the DO (dissolved oxygen) concentration is 0.
It is determined depending on whether complete nitration or partial nitritation is performed in the range of 3 to 2.0 mg / L.

【0029】この硝化槽4には、硝化細菌の培養のため
に必要に応じて原泥の一部を連続的又は間欠的に導入し
ても良い。
A part of the raw mud may be continuously or intermittently introduced into the nitrification tank 4 as needed for culturing nitrifying bacteria.

【0030】脱窒槽5もまた、浮遊式生物処理槽であっ
ても生物膜式生物処理槽であっても良く、脱窒槽5は、
HRT0.5日以上、特に1〜2日で運転するのが好ま
しく、嫌気性条件下、pH6.5〜8.0、温度20〜
40℃の条件とするのが好ましい。
The denitrification tank 5 may also be a floating type biological treatment tank or a biofilm type biological treatment tank.
It is preferable to operate the HRT for 0.5 days or more, particularly for 1 to 2 days, under anaerobic conditions, pH 6.5 to 8.0, temperature 20 to
Preferably, the temperature is 40 ° C.

【0031】この脱窒槽5には、脱窒細菌の培養のため
に必要に応じて原泥の一部を連続的又は間欠的に可溶化
液と共に導入しても良く、また、更に、水素供与体とし
てメタノール等の有機物源を系外から添加して補給して
も良い。
A part of the raw mud may be continuously or intermittently introduced into the denitrification tank 5 together with the solubilizing solution for the cultivation of the denitrifying bacteria, if necessary. An organic matter source such as methanol may be added as a body from outside the system and replenished.

【0032】本発明において、硝化槽及び脱窒槽は、連
続運転、バッチ運転のいずれでも良く、これらを適宜切
り換えて行える制御機構を有するものであっても良い。
硝化槽及び脱窒槽はケモスタットで連続培養により菌体
濃度を一定に保つように運転を行うのが好ましい。
In the present invention, the nitrification tank and the denitrification tank may be either a continuous operation or a batch operation, and may have a control mechanism capable of appropriately switching these operations.
It is preferable that the nitrification tank and the denitrification tank are operated with a chemostat so as to keep the cell concentration constant by continuous culture.

【0033】硝化槽及び脱窒槽は汚泥の返送を行わずに
汚泥を保持する一過式の処理槽とするのが簡便で好まし
い。汚泥を保持するためには、生物膜方式とするか、H
RTを長くして槽内での汚泥の増殖を図れば良い。生物
膜式の場合、生物膜形成の担体としては、スポンジ、ハ
ニカム状のプラスチックなどが挙げられる。
The nitrification tank and the denitrification tank are preferably simple and convenient treatment tanks for holding sludge without returning sludge. To retain sludge, use biofilm method or H
It is only necessary to increase the RT so as to increase the sludge in the tank. In the case of the biofilm type, examples of the biofilm-forming carrier include a sponge and a honeycomb-shaped plastic.

【0034】オゾン反応槽3におけるオゾン添加量は
0.02〜0.1g−O/g−VSS程度とするのが
好ましい。
It is preferable that the amount of ozone added to the ozone reaction tank 3 be about 0.02 to 0.1 g-O 3 / g-VSS.

【0035】図1に示す嫌気性消化装置において、嫌気
性消化槽1から引き抜いた消化汚泥のうち、固液分離手
段2で濃縮する汚泥量及び硝化槽4へ送給してアンモニ
アの硝化・脱窒及び可溶化を行う汚泥量は、嫌気性消化
槽の負荷やアンモニア濃度、余剰汚泥の減容化率等に応
じて適宜決定されるが、一般的には、嫌気性消化槽1か
ら引き抜いた消化汚泥のうちの原泥流入量に対して50
〜200%を硝化槽4へ送給し、残部を固液分離手段2
に送給することが好ましい。
In the anaerobic digester shown in FIG. 1, of the digested sludge withdrawn from the anaerobic digestion tank 1, the amount of the sludge to be concentrated by the solid-liquid separation means 2 is fed to the nitrification tank 4 for nitrification and denitration of ammonia. The amount of sludge to be subjected to nitrification and solubilization is appropriately determined according to the load of the anaerobic digestion tank, the ammonia concentration, the volume reduction rate of excess sludge, and the like. 50 for the inflow of raw mud in digested sludge
~ 200% to the nitrification tank 4 and the remainder to solid-liquid separation means 2
Is preferably sent to

【0036】また、図2に示す嫌気性消化装置におい
て、嫌気性消化槽1から引き抜いた消化汚泥のうち、固
液分離手段2で濃縮する汚泥量、オゾン反応槽3で可溶
化する汚泥量及び硝化槽4へ送給してアンモニアの硝化
・脱窒及び可溶化を行う汚泥量は、嫌気性消化槽の負荷
やアンモニア濃度、余剰汚泥の減容化率等に応じて適宜
決定されるが、一般的には、嫌気性消化槽1から引き抜
いた消化汚泥のうち原泥流入量に対して50〜200%
を硝化槽4へ送給し、同じく50〜200%をオゾン反
応槽3へ送給し、残部を固液分離手段2に送給すること
が好ましい。
Further, in the anaerobic digester shown in FIG. 2, of the digested sludge extracted from the anaerobic digestion tank 1, the amount of sludge concentrated in the solid-liquid separation means 2, the amount of sludge solubilized in the ozone reaction tank 3, and The amount of sludge fed to the nitrification tank 4 for nitrification, denitrification and solubilization of ammonia is appropriately determined according to the load of the anaerobic digestion tank, the ammonia concentration, the volume reduction rate of excess sludge, and the like. Generally, the digested sludge extracted from the anaerobic digestion tank 1 accounts for 50 to 200% of the inflow of raw mud.
Is preferably sent to the nitrification tank 4, 50 to 200% is sent to the ozone reaction tank 3, and the remainder is sent to the solid-liquid separation means 2.

【0037】また、この場合において、オゾン反応槽3
からの可溶化液のうち脱窒槽5に送給する可溶化液と嫌
気性消化槽1に返送する可溶化液も、アンモニアの除去
の程度や汚泥減容化率等に応じて適宜決定されるが、一
般的には、オゾン反応槽3からの可溶化液のうちの50
〜100%を脱窒槽5に送給し、残部を嫌気性消化槽1
に戻すようにするのが好ましい。
In this case, the ozone reaction tank 3
Of the solubilized solution from the above, the solubilized solution sent to the denitrification tank 5 and the solubilized solution returned to the anaerobic digestion tank 1 are also appropriately determined according to the degree of ammonia removal, sludge volume reduction rate, and the like. However, generally, 50% of the solubilized solution from the ozone reactor 3
~ 100% to the denitrification tank 5 and the rest to the anaerobic digestion tank 1
It is preferable to return to.

【0038】なお、図1,2に示す装置は、本発明の嫌
気性消化装置の実施の形態の一例を示すものであって、
本発明は何ら図示の装置に限定されるものではない。
The apparatus shown in FIGS. 1 and 2 shows an example of an embodiment of the anaerobic digester of the present invention.
The invention is not limited to the illustrated device in any way.

【0039】例えば、図1では、可溶化手段としてオゾ
ン反応槽が採用されているが、過酸化水素等の酸化力の
強い酸化剤による可溶化手段、その他物理的処理、化学
的処理、熱的処理のいずれであっても良い。
For example, in FIG. 1, an ozone reaction tank is employed as a solubilizing means. However, solubilizing means using an oxidizing agent having a strong oxidizing power such as hydrogen peroxide, other physical treatment, chemical treatment, and thermal treatment Any of the processes may be used.

【0040】また、一般に、嫌気性硝化槽は、通常2基
以上の複数基が設置されることから、既設の嫌気性消化
装置を改造する場合には、複数設置されている嫌気性消
化槽のうち、1つを脱窒槽として転用しても良い。ま
た、嫌気性消化槽の内部を区画して、一部を脱窒槽とし
て使用することもできる。
In general, two or more anaerobic nitrification tanks are usually installed. Therefore, when retrofitting an existing anaerobic digestion apparatus, an existing anaerobic digestion tank is installed. One of them may be diverted as a denitrification tank. Further, the inside of the anaerobic digestion tank can be partitioned and a part thereof can be used as a denitrification tank.

【0041】このような本発明の嫌気性消化装置は、有
機性汚泥、し尿、下水最初沈殿池汚泥、余剰汚泥(下水
を最初沈殿池で沈殿処理した上澄水を活性汚泥処理し、
これを汚泥と処理水に分離する沈殿池の汚泥)、家畜糞
尿、食品排水等、或いはこれらを混合した混合汚泥等、
各種の生物系又は非生物系、溶解性又はSS性の有機性
排液の処理に好適であり、高い処理効率にて汚泥の効率
的な減容化を行える。
Such an anaerobic digester of the present invention comprises organic sludge, night soil, sewage first sedimentation basin sludge, and excess sludge (the activated sludge of the sewage is firstly treated in the first sedimentation basin;
Sludge in a sedimentation basin that separates this into sludge and treated water), livestock manure, food wastewater, etc., or a mixture of these,
It is suitable for the treatment of various biological or non-living, soluble or SS organic wastewater, and can efficiently reduce the volume of sludge with high treatment efficiency.

【0042】[0042]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0043】実施例1 容量2Lの嫌気性消化槽を設けた図1に示す嫌気性消化
装置で、SBR反応槽からの合成汚泥の処理を行った。
この汚泥のTS濃度は25g/Lに調整し、100mL
/dayの供給量で処理を行った。このときの固形物負
荷は0.6kg−VSS/m・dayである。
Example 1 An anaerobic digestion apparatus shown in FIG. 1 provided with an anaerobic digestion tank having a capacity of 2 L was used to treat synthetic sludge from an SBR reaction tank.
The TS concentration of this sludge was adjusted to 25 g / L, and 100 mL
The processing was performed with the supply amount of / day. Solids loading at this time is 0.6kg-VSS / m 3 · day .

【0044】嫌気性消化槽からは200mL/dayの
消化汚泥を引き抜き、うち120mL/dayを固形分
離手段(遠心分離機)に送給し、分離水100mL/d
ayを系外へ排出し、6倍に濃縮された分離汚泥20m
L/dayのうち、一部5mL/dayを余剰汚泥とし
て系外へ排出し、残部を嫌気性消化槽に戻した。また、
引き抜いた消化汚泥の残部80mL/dayを硝化槽、
オゾン反応槽及び脱窒槽で順次処理した後、嫌気性消化
槽に戻した。各槽の運転条件は次の通りとした。
200 mL / day of digested sludge is withdrawn from the anaerobic digestion tank, and 120 mL / day of the sludge is fed to a solid separation means (centrifugal separator), and separated water 100 mL / d.
ay is discharged to the outside of the system, and the separated sludge, which is concentrated 6 times, 20m
Of the L / day, 5 mL / day was partly discharged out of the system as excess sludge, and the remainder was returned to the anaerobic digestion tank. Also,
The remaining 80 mL / day of the digested sludge withdrawn is converted into a nitrification tank,
After the treatment in the ozone reaction tank and the denitrification tank sequentially, it was returned to the anaerobic digestion tank. The operating conditions of each tank were as follows.

【0045】なお、硝化槽へは連続的に消化汚泥を供給
し、硝化液はバッチ方式でオゾン反応槽に供給した。 [硝化槽] HRT :1day pH :7.2 DO濃度:2.0mg/L 温度 :35℃ [オゾン反応槽] オゾン添加量:0.004g−O/g−VSS pH :7.0 温度 :30℃ [脱窒槽] HRT :0.5day pH :7.5 温度 :30℃
The digested sludge was continuously supplied to the nitrification tank, and the nitrification liquid was supplied to the ozone reaction tank in a batch system. [Nitrification tank] HRT: 1day pH: 7.2 DO concentration: 2.0 mg / L Temperature: 35 ° C. [ozone reaction tank] Ozone amount: 0.004g-O 3 / g- VSS pH: 7.0 Temperature: 30 ° C [denitrification tank] HRT: 0.5 day pH: 7.5 Temperature: 30 ° C

【0046】この処理を30日間維続したときの嫌気性
消化槽内の汚泥濃度及びアンモニア濃度は表1に示す通
りであり、アンモニアの影響を受けることなく、高負荷
処理が可能であった。
The concentration of sludge and the concentration of ammonia in the anaerobic digestion tank when this treatment was continued for 30 days are as shown in Table 1, and high-load treatment was possible without being affected by ammonia.

【0047】なお、消化汚泥VSSのうちの10%が脱
窒の水素源として使用され、これにより、嫌気性消化槽
でのメタン生成率は、従来の比較例1の場合を100%
とすると85%に低減した。
It should be noted that 10% of the digested sludge VSS is used as a denitrifying hydrogen source, whereby the methane production rate in the anaerobic digestion tank is 100% that of the conventional comparative example 1.
Then, it was reduced to 85%.

【0048】比較例1 実施例1において、硝化槽と脱窒槽を設けず、アンモニ
アの除去を行わなかったこと以外は同様にして処理を行
い、嫌気性消化槽内の汚泥濃度及びアンモニア濃度を調
べ、結果を表1に示した。
Comparative Example 1 In Example 1, the same treatment was carried out except that no nitrification tank and denitrification tank were provided and ammonia was not removed, and the sludge concentration and ammonia concentration in the anaerobic digestion tank were examined. The results are shown in Table 1.

【0049】実施例1 実施例1において、嫌気性消化槽の負荷を4.0kg−
VSS/m・dayに高めたこと以外は同様にして処
理を行った。
Example 1 In Example 1, the load of the anaerobic digester was 4.0 kg-
The same processing was performed except that the voltage was increased to VSS / m 3 · day.

【0050】このときの嫌気性消化槽内の汚泥濃度及び
アンモニア濃度は表1に示す通りであり、高負荷処理が
可能であった。
At this time, the sludge concentration and the ammonia concentration in the anaerobic digestion tank are as shown in Table 1, and high-load treatment was possible.

【0051】比較例2 実施例2において、硝化槽と脱窒槽を設けず、アンモニ
アの除去を行わなかったこと以外は同様にして処理を行
ったところ、20日処理を行った後、嫌気性消化槽内の
アンモニア濃度は表1に示すように高まり、処理を維続
することができなかった。
Comparative Example 2 In Example 2, the same treatment was performed except that the nitrification tank and the denitrification tank were not provided and the ammonia was not removed. After the treatment was performed for 20 days, the anaerobic digestion was performed. The ammonia concentration in the tank increased as shown in Table 1, and the treatment could not be continued.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【発明の効果】以上詳述した通り、本発明の嫌気性消化
装置によれば、有機性汚泥、し尿、下水最初沈殿池汚
泥、余剰汚泥、家畜糞尿、食品排水等の有機性排液を含
む原水を嫌気性処理することにより減容化する嫌気性消
化装置において、嫌気性消化槽内のメタン生成菌の阻害
物質であるアンモニア濃度を低減することができる。こ
のため、アンモニア濃度に制約を受けることなく、嫌気
性消化槽の固形物質負荷を高めることができ、これによ
り効率的な嫌気性消化処理を行える。
As described in detail above, according to the anaerobic digester of the present invention, organic sludge including organic sludge, human waste, sludge in the first sedimentation basin, surplus sludge, livestock manure, food wastewater and the like are contained. In an anaerobic digester in which the volume of raw water is reduced by anaerobic treatment, the concentration of ammonia, which is an inhibitor of methanogens, in the anaerobic digestion tank can be reduced. For this reason, the solid substance load of the anaerobic digestion tank can be increased without being restricted by the ammonia concentration, whereby an efficient anaerobic digestion treatment can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明(請求項1)の嫌気性消化装置の実施の
形態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of an anaerobic digester according to the present invention (claim 1).

【図2】本発明(請求項2)の嫌気性消化装置の実施の
形態を示す系統図である。
FIG. 2 is a system diagram showing an embodiment of an anaerobic digester according to the present invention (claim 2).

【図3】従来法を示す系統図である。FIG. 3 is a system diagram showing a conventional method.

【符号の説明】[Explanation of symbols]

1 嫌気性消化槽 2 固液分離手段 3 オゾン反応槽 4 硝化槽 5 脱窒槽 DESCRIPTION OF SYMBOLS 1 Anaerobic digestion tank 2 Solid-liquid separation means 3 Ozone reaction tank 4 Nitrification tank 5 Denitrification tank

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D040 AA23 AA27 BB13 BB23 4D059 AA01 AA04 AA05 AA23 BA12 BA27 BA34 BC02 BK12 CA28 DA43 DA44  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D040 AA23 AA27 BB13 BB23 4D059 AA01 AA04 AA05 AA23 BA12 BA27 BA34 BC02 BK12 CA28 DA43 DA44

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 嫌気性消化槽と、 有機性排液を含む原水を該嫌気性消化槽に送給する原水
送給手段と、 該嫌気性消化槽の流出液を固液分離する固液分離手段
と、 該固液分離手段で分離された汚泥を嫌気性消化槽に返送
する汚泥返送手段とを備える嫌気性消化装置において、 前記嫌気性消化槽の流出液の一部を生物学的に硝化処理
する硝化手段と、 該硝化手段の硝化液を可溶化処理する可溶化手段と、 該可溶化手段の可溶化液を生物学的に脱窒処理する脱窒
手段と、 該脱窒手段の脱窒液を前記嫌気性消化槽に送給する脱窒
液送給手段とを設けたことを特徴とする嫌気性消化装置
An anaerobic digestion tank, raw water feeding means for feeding raw water containing organic wastewater to the anaerobic digestion tank, and solid-liquid separation for solid-liquid separation of the effluent of the anaerobic digestion tank Means, and a sludge return means for returning the sludge separated by the solid-liquid separation means to the anaerobic digestion tank, wherein a part of the effluent of the anaerobic digestion tank is biologically nitrified. Nitrification means for treating, solubilization means for solubilizing the nitrification solution of the nitrification means, denitrification means for biologically denitrifying the solubilization solution of the solubilization means, and denitrification means for the denitrification means An anaerobic digestion apparatus provided with a denitrification liquid supply means for supplying a nitric acid to the anaerobic digestion tank.
【請求項2】 嫌気性消化槽と、 有機性排液を含む原水を該嫌気性消化槽に送給する原水
送給手段と、 該嫌気性消化槽の流出液を固液分離する固液分離手段
と、 該固液分離手段で分離された汚泥を嫌気性消化槽に返送
する汚泥返送手段とを備える嫌気性消化装置において、 前記嫌気性消化槽の流出液の一部を生物学的に硝化処理
する硝化手段と、 前記嫌気性消化槽の流出液の他の一部を可溶化処理する
可溶化手段と、 前記硝化手段の硝化液と前記可溶化手段の可溶化液とを
受け入れて生物学的に脱窒処理する脱窒手段と、 該脱窒手段の脱窒液を前記嫌気性消化槽に送給する脱窒
液送給手段とを設けたことを特徴とする嫌気性消化装置
2. An anaerobic digestion tank, raw water feeding means for feeding raw water containing organic wastewater to the anaerobic digestion tank, and solid-liquid separation for solid-liquid separation of the effluent of the anaerobic digestion tank Means, and a sludge return means for returning the sludge separated by the solid-liquid separation means to the anaerobic digestion tank, wherein a part of the effluent of the anaerobic digestion tank is biologically nitrified. Nitrification means for treating, solubilization means for solubilizing another part of the effluent of the anaerobic digestion tank, biology receiving the nitrification solution of the nitrification means and the solubilization solution of the solubilization means An anaerobic digestion apparatus comprising: a denitrification means for performing a denitrification process; and a denitrification liquid supply means for supplying a denitrification liquid from the denitrification means to the anaerobic digestion tank.
JP2001168390A 2001-06-04 2001-06-04 Anaerobic digesting apparatus Pending JP2002361292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001168390A JP2002361292A (en) 2001-06-04 2001-06-04 Anaerobic digesting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001168390A JP2002361292A (en) 2001-06-04 2001-06-04 Anaerobic digesting apparatus

Publications (1)

Publication Number Publication Date
JP2002361292A true JP2002361292A (en) 2002-12-17

Family

ID=19010624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001168390A Pending JP2002361292A (en) 2001-06-04 2001-06-04 Anaerobic digesting apparatus

Country Status (1)

Country Link
JP (1) JP2002361292A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199258A (en) * 2003-12-16 2005-07-28 Kurita Water Ind Ltd Anaerobic digestion treatment apparatus of organic waste solution
JP2006212581A (en) * 2005-02-04 2006-08-17 Mitsubishi Heavy Ind Ltd Method for treating organic waste material
JP2007038166A (en) * 2005-08-04 2007-02-15 Japan Sewage Works Agency Apparatus for treating organic liquid waste
JP2013527023A (en) * 2010-01-29 2013-06-27 ジー・ロバート・ホワイトマン System and method for reducing sludge produced in wastewater treatment facilities
EP2641877A1 (en) * 2012-03-20 2013-09-25 Veolia Water Solutions & Technologies Support Method for treating a waste stream using a bioreactor and a membrane filter
ITRM20130477A1 (en) * 2013-08-14 2015-02-15 Enea Agenzia Naz Per Le Nuo Ve Tecnologie PROCEDURE FOR REMOVAL OF AMMONIACAL AND TOTAL NITROGEN, STABILIZATION AND IMPROVEMENT OF THE FILTRABILITY CHARACTERISTICS OF AN ANAEROBIC DIGESTATE USING THE USE OF OZONE.
JP2016195997A (en) * 2016-05-11 2016-11-24 ジー・ロバート・ホワイトマンG.Robert WHITEMAN System and method for reducing sludge produced by wastewater treatment facility
WO2022007525A1 (en) * 2020-07-10 2022-01-13 珠海九通水务股份有限公司 Multifunctional tank-based sewage treatment process

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199258A (en) * 2003-12-16 2005-07-28 Kurita Water Ind Ltd Anaerobic digestion treatment apparatus of organic waste solution
JP4507712B2 (en) * 2003-12-16 2010-07-21 栗田工業株式会社 Anaerobic digester for organic waste liquid
JP2006212581A (en) * 2005-02-04 2006-08-17 Mitsubishi Heavy Ind Ltd Method for treating organic waste material
JP4667890B2 (en) * 2005-02-04 2011-04-13 三菱重工環境・化学エンジニアリング株式会社 Organic waste treatment methods
JP2007038166A (en) * 2005-08-04 2007-02-15 Japan Sewage Works Agency Apparatus for treating organic liquid waste
JP2013527023A (en) * 2010-01-29 2013-06-27 ジー・ロバート・ホワイトマン System and method for reducing sludge produced in wastewater treatment facilities
EP2641877A1 (en) * 2012-03-20 2013-09-25 Veolia Water Solutions & Technologies Support Method for treating a waste stream using a bioreactor and a membrane filter
WO2013139823A1 (en) * 2012-03-20 2013-09-26 Veolia Water Solutions & Technologies Support Method for treating a waste stream using a bioreactor and a membrane filter
US9656895B2 (en) 2012-03-20 2017-05-23 Veolia Water Solutions & Technologies Support Method for treating a waste stream using a bioreactor and a membrane filter
ITRM20130477A1 (en) * 2013-08-14 2015-02-15 Enea Agenzia Naz Per Le Nuo Ve Tecnologie PROCEDURE FOR REMOVAL OF AMMONIACAL AND TOTAL NITROGEN, STABILIZATION AND IMPROVEMENT OF THE FILTRABILITY CHARACTERISTICS OF AN ANAEROBIC DIGESTATE USING THE USE OF OZONE.
WO2015022716A1 (en) * 2013-08-14 2015-02-19 Enea - Agenzia Nazionale Per Le Nuove Tecnologie, L'energia E Lo Sviluppo Economico Sostenibile Lungotevere G.A. Method for the removal of ammoniacal and total nitrogen and for the stabilisation and improvement of the characteristics of filterability of an anaerobical digestate through the use of ozone
JP2016195997A (en) * 2016-05-11 2016-11-24 ジー・ロバート・ホワイトマンG.Robert WHITEMAN System and method for reducing sludge produced by wastewater treatment facility
WO2022007525A1 (en) * 2020-07-10 2022-01-13 珠海九通水务股份有限公司 Multifunctional tank-based sewage treatment process

Similar Documents

Publication Publication Date Title
US8864993B2 (en) Process for removing ammonium from a wastewater stream
JP3821011B2 (en) Wastewater treatment method and treatment apparatus
EP2740713A1 (en) Method for starting up and controlling a biological process for ammonium removal by the action of autotrophic bacteria in wastewater
US7404897B2 (en) Method for nitrogen removal and treatment of digester reject water in wastewater using bioaugmentation
JP2007105631A (en) Method and device for treating organic waste water
CN107108293A (en) The denitrogenation method and nitrogen rejection facility of nitrogenous effluent
JP3575312B2 (en) Organic wastewater treatment method
CN210595460U (en) Combined device of denitrification-nitrosation-anaerobic ammonia oxidation
JP2006088092A (en) Method and apparatus for treating nitrogen-containing liquid
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
CN108862840A (en) A kind of modified form A2The sewage disposal system of O technique
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP4426105B2 (en) Treatment process of wastewater containing specific components such as ammonia
JP2002361291A (en) Anaerobic digesting apparatus
CN108585199A (en) One kind is by introducing AMX(Anammox)Bacterium strengthens the integrated apparatus and method of A/O technique deep denitrifications
JP2005066381A (en) Method and apparatus for treating organic waste water
JP2002361292A (en) Anaerobic digesting apparatus
CN212712945U (en) High ammonia-nitrogen concentration effluent disposal system
CN103857632A (en) Processing system and processing method for nitrogen-containing organic waste water
KR20060004524A (en) Method and apparatus for treatment of high-strength organic and nitrogenous wastewater
JP2002136989A (en) Method and apparatus for treating organic waste liquid
KR100460851B1 (en) Sewage and wastewater treatment apparatus which is no need internal recycle
JP4581174B2 (en) Biological treatment method
JPS6222678B2 (en)
JP3198674B2 (en) Method and apparatus for treating wastewater containing organic nitrogen