WO2014030583A1 - System and method for treating wastewater containing suspended organic substance - Google Patents

System and method for treating wastewater containing suspended organic substance Download PDF

Info

Publication number
WO2014030583A1
WO2014030583A1 PCT/JP2013/071906 JP2013071906W WO2014030583A1 WO 2014030583 A1 WO2014030583 A1 WO 2014030583A1 JP 2013071906 W JP2013071906 W JP 2013071906W WO 2014030583 A1 WO2014030583 A1 WO 2014030583A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
liquid
organic matter
separation
suspended organic
Prior art date
Application number
PCT/JP2013/071906
Other languages
French (fr)
Japanese (ja)
Inventor
智子 松▲崎▼
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to CN201380024713.5A priority Critical patent/CN104271516A/en
Publication of WO2014030583A1 publication Critical patent/WO2014030583A1/en
Priority to PH12014502879A priority patent/PH12014502879A1/en
Priority to IN10992DEN2014 priority patent/IN2014DN10992A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification

Definitions

  • the present invention relates to a treatment system and a treatment method for suspending organic substance-containing wastewater, and particularly to a treatment system and a treatment method suitable for wastewater containing a high concentration of suspending organic matter.
  • the suspended organic matter is first separated and removed from the wastewater, and then the separated solution is treated in a biological treatment process such as nitrification denitrification.
  • a biological treatment process such as nitrification denitrification.
  • the method has been adopted.
  • Suspended organic substances separated and removed from wastewater are dehydrated as they are, or disposed after anaerobic digestion for the purpose of weight reduction and methane gas recovery. And the dehydrated filtrate and digestive juice which generate
  • Patent Document 1 solid-liquid separation means for solid-liquid separation of a target treatment liquid containing SS organic substances and ammonia nitrogen, and anaerobic digestion treatment of the separated sludge separated by the solid-liquid separation means.
  • a denitrification treatment by mixing a digestion tank, a nitritation tank for nitrifying the treatment liquid of the anaerobic digestion tank, and a nitrating liquid of the nitritation tank and a separation liquid of the solid-liquid separation means A biological nitrogen removal system with a nitrogen bath has been proposed.
  • Anaerobic ammonia oxidation treatment is expressed by the following formula using ammonia nitrogen by an autotrophic denitrifying microorganism (autotrophic denitrifying bacteria) as an electron donor and nitrite nitrogen as an electron acceptor under anaerobic conditions.
  • an autotrophic denitrifying microorganism autotrophic denitrifying bacteria
  • 1 equivalent of ammonia nitrogen and 1.32 equivalent of nitrite nitrogen are converted into nitrogen molecules by denitrification reaction.
  • 0.26 equivalent of nitric acid is produced.
  • the object of the present invention is to enable more efficient treatment than the prior art. Furthermore, even wastewater containing a high concentration of suspending organic matter can be more efficiently suspended. It is in the point which provides the processing system and processing method of organic matter containing wastewater.
  • the first characteristic configuration of the treatment system for waste water containing suspended organic matter contains the suspended organic matter as described in claim 1 of the claims.
  • Suspended organic matter separator for separating suspended organic matter from water to be treated, sludge anaerobic digester for anaerobically digesting suspended organic matter separated by the suspended organic matter separator, and sludge anaerobic
  • a nitrifier that oxidizes ammonia contained in the digestive juice of the digester into nitrous acid under aerobic conditions, and ammonia contained in the treatment liquid of the nitrifier by an autotrophic denitrifying microorganism under anaerobic conditions
  • Biological treatment in that it includes a first transport path for supplying the nitrite apparatus.
  • Suspended organic matter separated from the water to be treated by the suspended organic matter separator is anaerobically digested by the sludge anaerobic digester.
  • a digestion solution containing ammonia by anaerobic digestion is introduced into a nitritation device and oxidized to nitrous acid under aerobic conditions, and a treatment solution containing ammonia and nitrite is introduced into an autotrophic denitrification device.
  • the anaerobic ammonia oxidation treatment uses ammonia nitrogen contained in the treatment liquid as an electron donor and nitrite nitrogen as an electron acceptor under anaerobic conditions. Nitrogenized.
  • the separation liquid from which the suspended organic matter is removed by the suspended organic matter separation apparatus or the treatment liquid obtained by biologically treating the separated liquid is transferred to the nitrous acid via the first transfer path.
  • the nitrite concentration (free nitrous acid concentration) in the nitrification solution in the nitrification device is adjusted to a concentration suitable for ammonia nitritation treatment so that the nitrification reaction is promoted. become.
  • the second characteristic configuration includes, in addition to the first characteristic configuration described above, a separation liquid of the suspension organic substance separation device or a treatment liquid obtained by biologically treating the separation liquid. It is in the point provided with the 2nd transfer route which supplies to an autotrophic denitrification apparatus.
  • ammonia contained in the treatment liquid of the nitritation apparatus is oxidized to nitrogen gas by the autotrophic denitrification microorganisms under anaerobic conditions.
  • the nitrous acid concentration (free nitrous acid concentration) of the treatment liquid introduced into the autotrophic denitrification apparatus is increased, the treatment efficiency of the anaerobic ammonia oxidation treatment is lowered.
  • the separation liquid from which the suspending organic matter is removed by the suspending organic matter separation device or the treatment liquid obtained by biologically treating the separation liquid is passed through the second transfer path. Since the nitrous acid concentration (free nitrous acid concentration) of the treatment liquid in the autotrophic denitrification device is a concentration suitable for anaerobic ammonia oxidation treatment, the autotrophic denitrification device The inner treatment liquid is diluted, and efficient anaerobic ammonia oxidation treatment is promoted. Similarly, according to such a configuration, it is not necessary to prepare a separate dilution water supply facility using tap water or the like.
  • the third characteristic configuration is characterized in that the denitrification liquid treated by the autotrophic denitrification device is the autotrophic denitrification as described in claim 3. It is in the point provided with the 3rd transfer route which returns to a nitrogen device.
  • nitric acid contained in the denitrification solution of the autotrophic denitrification apparatus is subjected to anaerobic conditions.
  • a heterotrophic denitrification device that reduces the nitrogen to the nitrogen gas by the heterotrophic denitrification microorganism and a denitrification solution treated by the heterotrophic denitrification device is returned to the autotrophic denitrification device. It is in the point equipped with.
  • the nitric acid is contained in the denitrification liquid that has been subjected to anaerobic ammonia oxidation treatment in the autotrophic denitrification apparatus.
  • the nitric acid contained in the denitrification liquid is reduced to nitrogen gas by the heterotrophic denitrification microorganisms under anaerobic conditions. Since the denitrification liquid processed in the heterotrophic denitrification apparatus is returned to the autotrophic denitrification apparatus via the fourth transfer route, the concentration of nitrous acid in the treatment liquid in the autotrophic denitrification apparatus ( It can be further diluted so that the concentration of free nitrous acid becomes an appropriate value.
  • the first characteristic configuration of the method for treating suspending organic substance-containing wastewater according to the present invention is the suspending property for separating the suspending organic substance from the water to be treated containing the suspending organic substance as described in claim 5.
  • the second characteristic configuration includes a suspending organic matter separation treatment for separating the suspending organic matter from the water to be treated containing the suspending organic matter, and the suspending organic matter separation treatment as described in claim 6.
  • Sludge anaerobic digestion treatment for anaerobically digesting suspended organic matter separated by the above, and nitritation treatment for oxidizing ammonia contained in the digested liquid by the sludge anaerobic digestion treatment to nitrous acid under aerobic conditions;
  • a method of treating wastewater containing suspended organic matter comprising: autotrophic denitrification treatment in which ammonia contained in the treatment solution by the nitritation treatment is oxidized to nitrogen gas by an autotrophic denitrification microorganism under anaerobic conditions.
  • the separation liquid from which the suspended organic substances have been removed by the suspension organic substance separation treatment or the treatment liquid obtained by biologically treating the separation liquid is transferred to the nitritation treatment, and the treatment liquid or the separation liquid and the Both treatment liquids Transferred to serial autotrophic denitrification treatment lies in that mediate the release nitrite concentration at each step.
  • the nitritation step adjusts the free nitrous acid concentration to less than 0.2 ppm.
  • the step of the autotrophic denitrification treatment is to adjust the free nitrous acid concentration to less than 0.08 ppm.
  • the ammonia is efficiently nitrified by adjusting the free nitrous acid concentration to less than 0.2 ppm.
  • the anaerobic ammonia oxidation process can be efficiently performed by adjusting the free nitrous acid concentration to less than 0.08 ppm. That is, nitrogen can be removed efficiently even with wastewater containing a high concentration of suspended organic matter.
  • a wastewater treatment system and treatment method can be provided.
  • FIG. 1 (a) is an explanatory view of the first embodiment of the treatment system according to the present invention
  • FIG. 1 (b) is such that the ammonia nitrogen concentration and nitrite nitrogen concentration of the anaerobic digestion liquid are 1: 1.32. It is explanatory drawing of the free nitrous acid density
  • FIG. 2 is an explanatory diagram of a second embodiment of the processing system according to the present invention.
  • FIG. 3 is an explanatory diagram of a third aspect of the processing system according to the present invention.
  • FIG. 4 is an explanatory diagram of a fourth aspect of the processing system according to the present invention.
  • FIG. 5 is an explanatory diagram of a fifth aspect of the processing system according to the present invention.
  • FIG. 6 is an explanatory diagram of a sixth aspect of the processing system according to the present invention.
  • FIG. 7 is an explanatory diagram of a numerical simulation of the processing system according to the present invention.
  • FIG. 8 is an explanatory diagram of a numerical simulation of the processing system according to the present invention.
  • FIG. 1 (a) shows a treatment system for waste water containing suspended organic substances according to the first embodiment.
  • the said processing system is a system which purifies the to-be-processed water containing suspended organic substance, suspended organic substance separation apparatus 10, sludge anaerobic digester 20, nitritation apparatus 30, and autotrophic desorption.
  • a nitrogen device 40 and a first transfer path R1 are provided.
  • the suspension organic matter separation device 10 In the suspension organic matter separation device 10, the suspension organic matter contained in the water to be treated is separated, and in the sludge anaerobic digestion device 20, the suspension organic matter separated in the suspension organic matter separation device 10 is anaerobic digestion. Is done.
  • ammonia contained in the digestion liquid of the sludge anaerobic digestion apparatus 20 is oxidized to nitrous acid under aerobic conditions.
  • the treatment liquid of the nitritation apparatus 30 is used.
  • the contained ammonia and nitrous acid are converted to nitrogen gas by autotrophic denitrifying microorganisms under anaerobic conditions.
  • the separated liquid from which the suspended organic matter has been removed by the suspended organic matter separation device 10 is supplied to the nitritation device 30 via the first transfer path R1.
  • the suspending organic matter separation device 10 can be configured by any of a precipitation device, a coagulation precipitation device, a flotation separation device, a screen device, a membrane separation device, a cyclone device, and a mechanical separation device such as a screw press or a decanter. Further, these devices can be combined.
  • the suspended organic matter separated from the water to be treated by the suspended organic matter separation device 10 is anaerobically digested by the sludge anaerobic digester 20 to become a digestive liquid containing ammonia nitrogen.
  • the digested liquid containing ammonia nitrogen charged into the nitritation apparatus 30 is subjected to nitritation treatment by nitrite bacteria under aerobic conditions, and a part of the ammonia nitrogen is oxidized to nitrite nitrogen. .
  • the treatment liquid of the nitritation apparatus 30 charged into the autotrophic denitrification apparatus 40 is converted to ammonia nitrogen by the autotrophic denitrification microorganisms under anaerobic conditions. It is denitrified by an anaerobic ammonia oxidation treatment using an electron donor and nitrite nitrogen as an electron acceptor. That is, the autotrophic denitrification device 40 is an anaerobic ammonia oxidation device.
  • the autotrophic denitrifying microorganisms are held in the autotrophic denitrification apparatus 40 in the form of airborne bacteria and fixed by immobilizing the biofilm adhered to the filler or the autotrophic denitrifying microorganisms on the immobilizing material. It can also be held in the autotrophic denitrification apparatus 40 as a nitrifying carrier.
  • the biofilm filling amount into autotrophic denitrification apparatus 40 is preferably 20 to 80% by volume in the case of a fixed bed type.
  • a material such as a nonwoven fabric, a plastic material, a sponge material, or porous ceramics can be used, and various shapes such as a plate shape, a granular shape, and a cylindrical shape can be adopted.
  • a carrier such as a sphere or cylinder
  • a string material, a gel material, or a nonwoven material can be adopted, and a material with many irregularities that easily attach microorganisms is used as a carrier. It is preferable to adopt.
  • microorganisms to be immobilized and monomers or prepolymers as carriers are mixed and then polymerized to entrapped and immobilize microorganisms.
  • the monomer material acrylamide, methylenebisacrylamide, triacryl formal and the like can be preferably used, and as the prepolymer material, polyethylene glycol diacrylate and polyethylene glycol methacrylate can be preferably used. If an immobilizing material with many irregularities is employed in the same manner as the above-described adhesion fixing, the contact efficiency with the water to be treated is good and the denitrification ability is improved.
  • the anaerobic ammonia oxidation process performed in the autotrophic denitrification apparatus 40 is a process of converting 1 equivalent of ammonia nitrogen and 1.32 equivalents of nitrite nitrogen into nitrogen molecules by a denitrification reaction. It is. Therefore, in order to efficiently perform the anaerobic ammonia oxidation treatment, ideally, the nitritation treatment is preferably performed in the nitritation apparatus 30 so that the molar ratio of ammonia to nitrous acid is 1: 1.32. .
  • the digested liquid obtained by digesting the high-concentration suspended organic substance contains high-concentration ammonia nitrogen, the nitrite concentration (free nitrous acid concentration) in the nitritation apparatus 30 tends to increase. is there.
  • the free nitrous acid concentration (FNA) is expressed by the following formula. That is, the free nitrous acid concentration (FNA) is determined by the nitrous acid concentration, temperature, and pH.
  • FIG. 1 (b) shows the calculation of the free nitrous acid concentration based on the above equation when the nitrous acid concentration of the anaerobic digestion solution is 1: 1.32. The value is shown.
  • nitritation is performed so that the concentration of nitrite nitrogen is 570 ppm.
  • the pH is 7.4 and the water temperature is 30 ° C.
  • the concentration of free nitrous acid becomes 0.151 ppm, and nitritation is not hindered.
  • the pH is lowered to 7.2, the concentration of free nitrous acid becomes 0.239 ppm, resulting in a concentration that hinders nitritation.
  • the separation liquid is supplied to the nitritation apparatus 30 via the first transfer path R1.
  • the nitrite nitrogen concentration is about 470 ppm
  • the free nitrite concentration can be brought to a level that does not hinder nitritation.
  • the free nitrous acid concentration becomes 0.224 ppm, but maintaining a good state for nitritation by diluting the nitrite nitrogen concentration to about 500 ppm without increasing the water temperature. Can do.
  • the free nitrous acid concentration becomes 0.302 ppm at a pH of 7.4 and a water temperature of 30 ° C.
  • the concentration of free nitrous acid can be controlled to be less than 0.2 ppm.
  • a large amount of alkaline agent and enormous energy for heating are required.
  • the free nitrite concentration can be brought to a level that does not hinder nitritation.
  • the separation liquid is supplied to the nitritation apparatus 30 via the first transfer path R1 to dilute the digestion liquid in the nitritation apparatus 30 so that the digestion liquid in the nitritation apparatus 30 is diluted.
  • the nitrous acid concentration (free nitrous acid concentration) can be adjusted to a concentration suitable for ammonia nitritation.
  • FIG. 1A an example in which the diluent supplied to the nitritation device 30 via the first transfer path R ⁇ b> 1 is a separation solution from which the suspended organic matter has been removed by the suspended organic matter separation device 10.
  • a biological treatment apparatus for biologically treating the separation liquid using aerobic microorganisms is provided, nitrous acid is used as a dilution liquid instead of the separation liquid. It may be supplied to the conversion apparatus 30. This aspect will be described in detail later.
  • the nitrifying apparatus 30 can efficiently nitrify ammonia without being inhibited by the ammonia oxidizing bacteria, and the nitrifying apparatus 30 can sufficiently nitrify ammonia.
  • the treatment liquid of the nitrite treatment device 30 is efficiently anaerobic ammonia oxidation treatment and denitrification treatment by the autotrophic denitrification device 40. Since the separation liquid or a treatment liquid obtained by biological treatment of the separation liquid is used to adjust the nitrous acid concentration (free nitrous acid concentration) of the digestion liquid, a separate dilution water supply device such as tap water is prepared. There is no need to do. Electricity costs and chemical costs for temperature control and pH control for efficient nitritation reaction can be saved.
  • the suspension organic matter separation treatment for separating the suspension organic matter from the water to be treated containing the suspension organic matter and the suspension organic matter separated by the suspension organic matter separation treatment are anaerobically digested.
  • autotrophic denitrification treatment that oxidizes to nitrogen gas by autotrophic denitrification microorganisms was performed, and the separated organic solution from which suspended organic matter was removed by the suspension organic matter separation treatment or the separated solution was biologically treated
  • the treatment liquid is transferred to nitritation treatment, and a method for treating suspended organic matter-containing wastewater that adjusts the free nitrous acid concentration in the nitritation treatment step is executed.
  • FIG. 2 shows the processing system of the second aspect.
  • the processing system includes a second transfer path R2 that supplies the separation liquid to the autotrophic denitrification apparatus 40.
  • the autotrophic denitrification apparatus 40 As described above, in the autotrophic denitrification apparatus 40, ammonia nitrogen is used as an electron donor by the autotrophic denitrification microorganisms under anaerobic conditions with respect to the treatment liquid of the nitritation apparatus 30, and nitrite nitrogen is converted. Denitrification is performed by anaerobic ammonia oxidation treatment as an electron acceptor. At this time, if the concentration of nitrous acid (free nitrous acid concentration) in the autotrophic denitrification apparatus 40 is high, the efficiency of the anaerobic ammonia oxidation treatment is lowered.
  • the processing liquid in the autotrophic denitrification apparatus 40 is diluted, and the nitrous acid concentration (free nitrous acid concentration) of the processing liquid is It is adjusted to a concentration suitable for anaerobic ammonia oxidation treatment. Accordingly, the autotrophic denitrification apparatus 40 can efficiently perform anaerobic ammonia oxidation treatment. Since it is the structure which adjusts nitrous acid concentration (free nitrous acid concentration) using a separated liquid, it is not necessary to prepare separate dilution water supply facilities, such as tap water.
  • suspended organic matter separation treatment that separates suspended organic matter from water to be treated containing suspended organic matter, and sludge anaerobic that digests suspended organic matter separated by suspended organic matter separation treatment
  • Nitrite treatment that oxidizes ammonia contained in digestion solution by digestion treatment and sludge anaerobic digestion to nitrous acid under aerobic conditions, and anaerobic condition of ammonia and nitrite contained in treatment solution by nitrite treatment
  • the autotrophic denitrification process that converts it to nitrogen gas was performed, and the suspended organic matter was removed by the suspension organic matter separation treatment or the separated solution was biologically treated.
  • a treatment method for wastewater containing suspended organic substances is performed, wherein the treatment liquid is transferred to nitritation treatment and autotrophic denitrification treatment, and the concentration of free nitrous acid in each treatment step is adjusted. .
  • the free nitrous acid concentration is preferably adjusted to less than 0.2 ppm, and the autotrophic denitrification process is preferably adjusted to a free nitrous acid concentration of less than 0.08 ppm. Less than is more preferable.
  • ammonia is efficiently nitrified by adjusting the free nitrous acid concentration to less than 0.2 ppm.
  • the autotrophic denitrification process the anaerobic ammonia oxidation process can be efficiently performed by adjusting the free nitrous acid concentration to less than 0.08 ppm. That is, nitrogen can be removed efficiently even with wastewater containing a high concentration of suspended organic matter.
  • FIG. 3 shows the processing system of the third aspect.
  • the processing system includes a third transfer path R3 that returns the denitrification liquid processed by the autotrophic denitrification device 40 to the autotrophic denitrification device 40. It is characterized by that. Note that the second transfer path R2 is not necessarily provided.
  • the dilution of the processing liquid in the autotrophic denitrification apparatus 40 may not be sufficient only by supplying the separation liquid via the first transfer path R1 and the second transfer path R2. Even in such a case, the denitrification liquid treated by the autotrophic denitrification apparatus 40 is returned to the autotrophic denitrification apparatus 40 through the third transfer route R3, so that the inside of the autotrophic denitrification apparatus 40 The treatment liquid can be further diluted. Therefore, the nitrite concentration (free nitrous acid concentration) of the treatment liquid in the autotrophic denitrification device 40 can be reliably adjusted without supplying dilution water to the autotrophic denitrification device 40 from outside the system. Can be done.
  • nitrous acid and ammonia remain in addition to nitric acid in the denitrification liquid treated by the autotrophic denitrification apparatus 40.
  • a sensor for measuring nitrite ions and ammonia ions is provided in the autotrophic denitrification device 40, and the denitrification liquid discharged from the autotrophic denitrification device 40 to the outside of the system according to the remaining nitrous acid and ammonia. It is preferable to adjust the return amount so as to satisfy the discharge standard.
  • suspended organic matter separation treatment that separates suspended organic matter from water to be treated containing suspended organic matter, and sludge anaerobic that digests suspended organic matter separated by suspended organic matter separation treatment
  • Nitrite treatment that oxidizes ammonia contained in digestion solution by digestion treatment and sludge anaerobic digestion to nitrous acid under aerobic conditions, and anaerobic condition of ammonia and nitrite contained in treatment solution by nitrite treatment
  • autotrophic denitrification treatment that converts to nitrogen gas is performed, and the separated liquid from which suspended organic substances have been removed by the suspension organic matter separation treatment is transferred to nitritation treatment,
  • the treatment liquid or both of the separation liquid and the treatment liquid are transferred to an autotrophic denitrification treatment, and a method for treating suspending organic substance-containing wastewater that adjusts the concentration of free nitrous acid in each treatment step is executed.
  • FIG. 4 shows a processing system according to the fourth aspect.
  • the treatment system reduces nitric acid contained in the denitrification liquid of the autotrophic denitrification apparatus 40 to nitrogen gas by heterotrophic denitrification microorganisms under anaerobic conditions.
  • a heterotrophic denitrification apparatus 50 is provided, and a fourth transfer path R4 for returning the denitrification liquid processed by the heterotrophic denitrification apparatus 50 to the autotrophic denitrification apparatus 40 is provided.
  • route R5 which supplies the separation liquid of the suspension organic substance separation apparatus 10 to the heterotrophic denitrification apparatus 50.
  • the second transfer path R2 is not necessarily provided.
  • heterotrophic denitrification apparatus 50 a denitrification reaction by a heterotrophic denitrification microorganism using nitrate nitrogen generated by anaerobic ammonia oxidation treatment as an electron acceptor and organic matter dissolved in the separation liquid as an electron donor.
  • the amount of nitric acid and organic matter discharged from the autotrophic denitrification apparatus 40 to the outside of the system can be reduced by advancing the process.
  • the nitritation apparatus 30 may be adjusted so that the nitrous acid is larger than the molar ratio of 1.32 with ammonia. In some cases, nitrification may proceed to nitric acid. However, in order to increase the efficiency of denitrification and reduce the amount of oxygen required for nitrification, it is desirable that ammonia: nitrous acid is adjusted to about 1: 1.32 to 1.5 in the nitritation apparatus 30.
  • the treatment liquid in the autotrophic denitrification apparatus 40 is further diluted. can do. Therefore, the nitrite concentration (free nitrous acid concentration) of the treatment liquid in the autotrophic denitrification apparatus 40 can be adjusted reliably.
  • the heterotrophic denitrification apparatus 50 is charged with heterotrophic denitrification microorganisms and is maintained in an anaerobic atmosphere.
  • the retention form of the heterotrophic denitrification microorganisms in the heterotrophic denitrification apparatus 50 is the same retention form as the autotrophic denitrification microorganisms in the autotrophic denitrification apparatus 40 described in the processing system of the first aspect. Can be adopted.
  • the heterotrophic denitrification apparatus 50 is separated into the suspended organic substance separation apparatus 10 via the fifth transfer path R5. By supplying, the lack of organic matter can be compensated.
  • the separation liquid from which the suspended organic matter has been removed by the suspended organic matter separation device 10 is supplied to the nitritation device 30 via the first transfer path R1.
  • the configuration for supplying the anaerobic ammonia oxidation apparatus 40 via the second transfer path R2 has been described, but the diluent supplied via the transfer paths R1, R2 is not limited to the separation liquid, and the separation liquid A treatment solution in which the organic matter concentration is reduced by biological treatment may be used as a diluent.
  • FIG. 5 shows the processing system of the fifth aspect.
  • the treatment system includes a biological treatment device 60 that biologically treats the separated liquid of the suspending organic matter separation device 10, and nitrites the biologically treated treatment solution. It is configured to supply to the device 30. It should be noted that the same configuration can be adopted in the processing system of any of the first, third, and fourth modes.
  • the biological treatment apparatus 60 can illustrate an aeration tank.
  • FIG. 6 shows the processing system of the sixth aspect.
  • liquid organic waste is supplied to the sludge anaerobic digester 20 of the treatment system according to the first aspect described above from a route different from the suspended organic matter supplied from the suspended organic matter separation device 10. It is configured to flow in.
  • the liquid organic waste is preferably food waste, sludge generated by wastewater treatment, livestock manure, and the like.
  • the processing system of the second to fifth aspects can have the same configuration.
  • the liquid organic waste is introduced into the sludge anaerobic digester from outside the system, and ammonia Even if the amount generated is increased, the nitrous acid concentration (free nitrous acid concentration) in the nitrifying device can be adjusted by the separated liquid from which the suspending organic matter has been removed by the suspending organic matter separating device. Efficient nitrogen removal becomes possible by the ammonia oxidation treatment.
  • FIG. 7 shows the result of a numerical simulation performed on the processing system of the second mode described in FIG. 200 m 3 / d treated water flows into the treatment system.
  • the suspending organic matter separation device 10 separates 10 m 3 / d suspending organic matter contained in the water to be treated.
  • the concentration of ammonia nitrogen and nitrite nitrogen in the 190 m 3 / d separation liquid of the suspending organic matter separation apparatus 10 is 0 ppm for convenience.
  • the suspended organic matter separated by the suspended organic matter separation device 10 is anaerobically digested by the sludge anaerobic digester 20.
  • the digestive fluid contains 5000 ppm of ammonia nitrogen.
  • the nitritation apparatus 30 is kept aerobic at a temperature of 30 ° C. and pH 7.4, and ammonia contained in the anaerobic digestion liquid of the sludge anaerobic digestion apparatus 20 has a molar ratio of ammonia to nitrous acid of about 1: 1. Nitrite to 3. Therefore, when nitrifying 5000 ppm of ammonia nitrogen as it is, it becomes 2160 ppm of ammonia nitrogen and 2840 ppm of nitrite nitrogen. At this time, the free ammonia concentration is 53.8 ppm and the free nitrous acid concentration is 0.75 ppm.
  • the concentration of free ammonia is determined by the formula of Anthonisen et al., which is obtained by measuring the ammonium ion concentration of water to be treated by a diaphragm type ion electrode method or the like and calculating from the relationship between temperature and pH as shown in the following formula 2. The method can be adopted.
  • the concentration of free nitrous acid can be reduced to a level of 0.2 ppm or less that does not interfere with nitritation. it can.
  • the ammonia nitrogen contained in the digested liquid after dilution will be 1250 ppm.
  • the digested liquid after this dilution is nitritized by the nitritation apparatus 30, it becomes 543 ppm of ammonia nitrogen and 707 ppm of nitrite nitrogen.
  • the free nitrous acid concentration is 0.19 ppm. That is, it is possible to achieve a free nitrous acid concentration of less than 0.2 ppm by diluting the digestive fluid four times.
  • the digestive fluid of the sludge anaerobic digester 20 is 10 m. 3 / d was diluted 5.5 times with 45 m 3 / d separation.
  • the digestive juice is diluted so that the concentration of free nitrous acid is less than 0.2 ppm, but it is more preferable to dilute so that the concentration of free ammonia is in the range of 0.1 to 10 ppm.
  • the autotrophic denitrification apparatus 40 is kept anaerobic at a temperature of 30 ° C. and pH 7.4, and denitrifies the treatment liquid of the nitritation apparatus 30 by anaerobic ammonia oxidation treatment.
  • the concentration of free nitrous acid in the treatment liquid of the nitritation treatment apparatus 30 is 0.13 ppm. This free nitrous acid concentration of 0.13 ppm exceeds the free nitrous acid concentration, which is a condition for efficient anaerobic ammonia oxidation treatment, by 0.08 ppm. Therefore, the efficiency of the anaerobic ammonia oxidation treatment is lowered as it is.
  • the concentration of free nitrous acid is 0.053 ppm, which is less than 0.08 ppm, which is a condition for efficient anaerobic ammonia oxidation treatment.
  • nitrous acid nitrogen becomes 300 ppm by 1.7 times dilution,
  • free nitrous acid concentration will be 0.079 ppm and will be less than 0.08 ppm, but it will be less than 0.06 ppm which can be processed more efficiently. Diluted.
  • FIG. 8 shows the result of a numerical simulation performed on the processing system of the third aspect described in FIG.
  • the processing system is the processing system of the third aspect described in FIG. 200 m 3 / d treated water flows into the treatment system.
  • the suspending organic matter separation device 10 separates the suspending organic matter 20 m 3 / d contained in the water to be treated.
  • the concentration of ammonia nitrogen and nitrite nitrogen in the 180 m 3 / d separation liquid of the suspending organic matter separation apparatus 10 is 0 ppm for convenience.
  • the suspended organic matter separated by the suspended organic matter separation device 10 is anaerobically digested by the sludge anaerobic digester 20.
  • the digestive fluid contains 5000 ppm of ammonia nitrogen.
  • the nitritation apparatus 30 is kept aerobic at a temperature of 30 ° C. and pH 7.4, and ammonia contained in the anaerobic digestion liquid of the sludge anaerobic digestion apparatus 20 has a molar ratio of ammonia to nitrous acid of about 1: 1. Nitrite to 3. Therefore, when nitrifying 5000 ppm of ammonia nitrogen as it is, it becomes 2160 ppm of ammonia nitrogen and 2840 ppm of nitrite nitrogen. At this time, the free ammonia concentration is 53.8 ppm and the free nitrous acid concentration is 0.75 ppm.
  • the free ammonia concentration is 9.7 ppm
  • the free nitrous acid concentration is 0.13 ppm. In this way, by supplying the separation liquid to the nitritation device 30 via the first transfer path R1, the free nitrous acid concentration can be reduced to less than 0.2 ppm that does not interfere with nitritation.
  • the autotrophic denitrification apparatus 40 is kept anaerobic at a temperature of 30 ° C. and pH 7.4, and denitrifies the treatment liquid of the nitritation apparatus 30 by anaerobic ammonia oxidation treatment.
  • the concentration of free nitrous acid in the treatment liquid of the nitritation treatment apparatus 30 is 0.13 ppm. This free nitrous acid concentration of 0.13 ppm exceeds the free nitrous acid concentration, which is a condition for efficient anaerobic ammonia oxidation treatment, by more than 0.06 ppm, so that the efficiency of the anaerobic ammonia oxidation treatment is lowered as it is.
  • the free nitrous acid concentration at this time becomes 0.053 ppm, which is a condition for efficient anaerobic ammonia oxidation treatment. Less than 0.06 ppm can be achieved.
  • the separation liquid separated by the suspending organic matter separation device 10 is only 90 m 3 / d.
  • the remaining 90 m 3 / d of the separation liquid separated by the suspending organic matter separation device 10 is supplied to the autotrophic denitrification device 40 via the second transfer path R2, and the autotrophic denitrification is also performed.
  • 80 m 3 / d is returned to the autotrophic denitrification apparatus 40 via the third transfer path R3.
  • the 110 m 3 / d treatment liquid of the nitritation apparatus 30 is supplied via the 90 m 3 / d separation liquid supplied via the first transfer path R 1 and the third transfer path R 3. Furthermore, it can be diluted about 2.55 times with a denitrification solution of 80 m 3 / d. Then, the nitrite nitrogen in the treatment liquid of the nitritation treatment apparatus 30 is diluted from 510 ppm to 200 ppm. At this time, the concentration of free nitrous acid is 0.053 ppm, and can be made less than 0.06 ppm, which is a condition for efficient anaerobic ammonia oxidation treatment.
  • the 110 m 3 / d digested liquid of the nitritation apparatus 30 is passed through the 90 m 3 / d separation liquid supplied via the first transfer path R 1 and the third transfer path R 3.
  • the case of diluting about 2.55 times with the supplied 90 m 3 / d denitrification liquid has been described, but the distribution of the separation liquid and denitrification liquid used for dilution of the treatment liquid of the nitritation apparatus 30 is as follows.
  • only 110 m 3 / d denitrification liquid supplied through the third transfer path R 3 without using a separation liquid is used as the 110 m 3 / d treatment liquid of the nitritation apparatus 30. You may comprise so that it may be diluted with.
  • the denitrification liquid of the heterotrophic denitrification device 50 is sublimated. You may use for the dilution of the process liquid of the nitrification apparatus 30.
  • Suspended organic matter separation device 20 Sludge anaerobic digester 30: Nitrite device 40: Autotrophic denitrification device 50: Heterotrophic denitrification device 60: Biological treatment device

Abstract

A system for efficiently treating a wastewater which contains suspended organic substances in a high concentration, the system being equipped with: a suspended-organic-substance separator (10) which separates the suspended organic substances from the water to be treated; an anaerobic sludge digester (20) which anaerobically digests the suspended organic substances separated by the suspended-organic-substance separator (10); a device (30) for conversion into nitrous acid , the device (30) oxidizing the ammonia contained in the digested liquid from the anaerobic sludge digester (20) into nitrous acid under aerobic conditions; an autotrophic denitrification device (40) whereby the ammonia contained in the treated liquid from the device (30) for conversion into nitrous acid is oxidized into nitrogen gas under anaerobic conditions with an autotrophic denitrifying microorganism; and a first transfer route (R1) through which the separated liquid from which the suspended organic substances have been removed in the suspended-organic-substance separator (10) is supplied to the device (30) for conversion into nitrous acid.

Description

懸濁性有機物含有廃水の処理システム及び処理方法Suspended organic matter-containing wastewater treatment system and treatment method
 本発明は、懸濁性有機物含有廃水の処理システム及び処理方法に関し、特に高濃度の懸濁性有機物を含有する廃水に好適な処理システム及び処理方法に関する。 The present invention relates to a treatment system and a treatment method for suspending organic substance-containing wastewater, and particularly to a treatment system and a treatment method suitable for wastewater containing a high concentration of suspending organic matter.
 従来、高濃度の懸濁性有機物を含有する廃水を処理する際には、先ず廃水から懸濁性有機物を分離除去し、その後に分離液を硝化脱窒法等の生物学的処理工程で処理する方法が採用されてきた。廃水から分離除去された懸濁性有機物は、そのまま脱水処理され、或いは減量化やメタンガス回収を目的とした嫌気性消化処理された後に処分される。そして、これらの処理の際に発生する脱水ろ液や消化液は、生物学的処理工程に返流されて、分離液とともに処理される。 Conventionally, when treating wastewater containing a high concentration of suspended organic matter, the suspended organic matter is first separated and removed from the wastewater, and then the separated solution is treated in a biological treatment process such as nitrification denitrification. The method has been adopted. Suspended organic substances separated and removed from wastewater are dehydrated as they are, or disposed after anaerobic digestion for the purpose of weight reduction and methane gas recovery. And the dehydrated filtrate and digestive juice which generate | occur | produce in the case of these processes are returned to a biological treatment process, and are processed with a separated liquid.
 硝化脱窒法は、廃水中のアンモニア態窒素をアンモニア酸化細菌により亜硝酸態窒素に酸化し、更に亜硝酸態窒素を亜硝酸酸化細菌により硝酸態窒素に酸化する硝化工程と、亜硝酸態窒素及び硝酸態窒素を従属栄養性の脱窒菌により窒素分子にまで分解する脱窒工程を経て、廃水中のアンモニア態窒素を窒素分子にまで分解する方法である。 The nitrification denitrification method is a nitrification process in which ammonia nitrogen in wastewater is oxidized to nitrite nitrogen by ammonia oxidizing bacteria, and nitrite nitrogen is oxidized to nitrate nitrogen by nitrite oxidizing bacteria, This is a method of decomposing ammonium nitrogen in waste water into nitrogen molecules through a denitrification step of decomposing nitrate nitrogen into nitrogen molecules by heterotrophic denitrifying bacteria.
 しかし、このような従来の生物学的硝化脱窒法では、硝化工程で大量の酸素が必要となり、曝気のためのブロワファン等に要する電力コストが高騰するという問題、脱窒工程で有機炭素源として大量のメタノール等を添加する必要があり、そのための薬品コストが高騰するという問題、さらに従属栄養性脱窒微生物を用いるために汚泥発生量が多く、余剰汚泥の処理コストが嵩むという問題等、ランニングコストが嵩むという問題があった。 However, in such a conventional biological nitrification denitrification method, a large amount of oxygen is required in the nitrification process, and the power cost required for a blower fan or the like for aeration rises. As a source of organic carbon in the denitrification process It is necessary to add a large amount of methanol, etc., and the cost of chemicals for that purpose increases, and the amount of sludge generated due to the use of heterotrophic denitrifying microorganisms increases the cost of surplus sludge treatment. There was a problem that the cost increased.
 そこで、特許文献1では、SS性有機物及びアンモニア態窒素を含有する対象処理液を固液分離する固液分離手段と、前記固液分離手段で分離された分離汚泥を嫌気性消化処理する嫌気性消化槽と、前記嫌気性消化槽の処理液を亜硝酸化処理する亜硝酸化槽と、前記亜硝酸化槽の硝化液と前記固液分離手段の分離液を混合して脱窒処理する脱窒槽を備えた生物学的窒素除去システムが提案されている。 Therefore, in Patent Document 1, solid-liquid separation means for solid-liquid separation of a target treatment liquid containing SS organic substances and ammonia nitrogen, and anaerobic digestion treatment of the separated sludge separated by the solid-liquid separation means. A denitrification treatment by mixing a digestion tank, a nitritation tank for nitrifying the treatment liquid of the anaerobic digestion tank, and a nitrating liquid of the nitritation tank and a separation liquid of the solid-liquid separation means A biological nitrogen removal system with a nitrogen bath has been proposed.
 当該生物学的窒素除去システムは、SS性有機物及びアンモニア態窒素を含有する対象処理液を固液分離して得られた分離汚泥を嫌気性消化した後、嫌気性消化により得られた処理液を亜硝酸化処理した硝化液と、前記対象処理液を固液分離して得られた分離液とを、嫌気的アンモニア酸化処理により脱窒するシステムである。 The biological nitrogen removal system anaerobically digests the separated sludge obtained by solid-liquid separation of the target treatment liquid containing SS organic matter and ammonia nitrogen, and then treats the treatment liquid obtained by anaerobic digestion. This is a system that denitrifies a nitrifying solution that has been subjected to nitritation treatment and a separation solution obtained by solid-liquid separation of the target treatment solution by anaerobic ammonia oxidation treatment.
特開2003-245689号公報Japanese Patent Laid-Open No. 2003-245687
 嫌気的アンモニア酸化処理とは、嫌気条件下で独立栄養性脱窒微生物(独立栄養性脱窒菌)によるアンモニア態窒素を電子供与体とし、亜硝酸態窒素を電子受容体として、以下の式で表されるように、1当量のアンモニア態窒素と1.32当量の亜硝酸態窒素とを脱窒反応によって窒素分子に変換する処理である。この際、0.26当量の硝酸が生成される。
 NH4 ++1.32NO2 -+0.066HCO3 -+0.13H+
     1.02N2+0.26NO3 -+0.066CH2O0.5N0.15+2.03H2O
Anaerobic ammonia oxidation treatment is expressed by the following formula using ammonia nitrogen by an autotrophic denitrifying microorganism (autotrophic denitrifying bacteria) as an electron donor and nitrite nitrogen as an electron acceptor under anaerobic conditions. As described above, 1 equivalent of ammonia nitrogen and 1.32 equivalent of nitrite nitrogen are converted into nitrogen molecules by denitrification reaction. At this time, 0.26 equivalent of nitric acid is produced.
NH 4 + + 1.32NO 2 - + 0.066HCO 3 - + 0.13H + →
1.02N 2 + 0.26NO 3 - + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O
 高濃度の懸濁性有機物を含有する廃水を、特許文献1に記載された生物学的窒素除去システムで処理すると、沈殿槽で分離された多量の分離汚泥が嫌気性消化処理されて高濃度のアンモニアが発生する。発生したアンモニアは硝化槽で亜硝酸化され、沈殿槽の分離液とともに脱窒槽で嫌気的アンモニア酸化処理されて脱窒される。 When waste water containing high-concentration suspended organic matter is treated with the biological nitrogen removal system described in Patent Document 1, a large amount of separated sludge separated in the settling tank is subjected to anaerobic digestion treatment, resulting in a high concentration. Ammonia is generated. The generated ammonia is nitritized in a nitrification tank, and anaerobic ammonia oxidation treatment is performed in a denitrification tank together with a separation liquid in a precipitation tank, followed by denitrification.
 しかし、当該生物学的窒素除去システムでは、硝化槽内の亜硝酸濃度(遊離亜硝酸濃度)が高くなると、アンモニア酸化細菌の活性が阻害されて亜硝酸化反応の効率が低下する。そして、硝化槽で亜硝酸化されなかった多量のアンモニア態窒素が脱窒槽に流入する結果、脱窒槽では亜硝酸態窒素に対してアンモニア態窒素が過多となり、処理しきれないアンモニアがリークするという問題があった。 However, in the biological nitrogen removal system, when the nitrite concentration (free nitrous acid concentration) in the nitrification tank becomes high, the activity of ammonia oxidizing bacteria is inhibited and the efficiency of the nitrification reaction decreases. And, as a result of a large amount of ammonia nitrogen that has not been nitritized in the nitrification tank flowing into the denitrification tank, the ammonia nitrogen is excessive with respect to the nitrite nitrogen in the denitrification tank, and ammonia that cannot be treated leaks. There was a problem.
 本発明の目的は、上述した問題点に鑑み、従来技術より効率的な処理が可能となり、さらには、高濃度の懸濁性有機物を含有する廃水であっても、より効率的な懸濁性有機物含有廃水の処理システム及び処理方法を提供する点にある。 In view of the above-mentioned problems, the object of the present invention is to enable more efficient treatment than the prior art. Furthermore, even wastewater containing a high concentration of suspending organic matter can be more efficiently suspended. It is in the point which provides the processing system and processing method of organic matter containing wastewater.
 上述の目的を達成するため、本発明による懸濁性有機物含有廃水の処理システムの第一の特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、懸濁性有機物を含有する被処理水から懸濁性有機物を分離する懸濁性有機物分離装置と、前記懸濁性有機物分離装置により分離された懸濁性有機物を嫌気性消化する汚泥嫌気性消化装置と、前記汚泥嫌気性消化装置の消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化装置と、前記亜硝酸化装置の処理液に含まれるアンモニアを嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに酸化する独立栄養性脱窒装置と、を有する懸濁性有機物含有廃水の処理システムであって、前記懸濁性有機物分離装置で懸濁性有機物が除去された分離液または当該分離液を生物処理した処理液を前記亜硝酸化装置に供給する第1移送経路を備えている点にある。 In order to achieve the above-mentioned object, the first characteristic configuration of the treatment system for waste water containing suspended organic matter according to the present invention contains the suspended organic matter as described in claim 1 of the claims. Suspended organic matter separator for separating suspended organic matter from water to be treated, sludge anaerobic digester for anaerobically digesting suspended organic matter separated by the suspended organic matter separator, and sludge anaerobic A nitrifier that oxidizes ammonia contained in the digestive juice of the digester into nitrous acid under aerobic conditions, and ammonia contained in the treatment liquid of the nitrifier by an autotrophic denitrifying microorganism under anaerobic conditions A suspension system containing suspending organic matter-containing wastewater having an autotrophic denitrification device that oxidizes to nitrogen gas, wherein the suspending organic matter is removed by the suspending organic matter separation device or the separation solution Biological treatment The processing solution in that it includes a first transport path for supplying the nitrite apparatus.
 懸濁性有機物分離装置により被処理水から分離された懸濁性有機物が汚泥嫌気性消化装置で嫌気性消化される。嫌気性消化によりアンモニアを含有した消化液は亜硝酸化装置に導入されて好気条件下で亜硝酸に酸化され、アンモニアと亜硝酸を含む処理液が独立栄養性脱窒装置に導入される。独立栄養性脱窒装置では、嫌気条件下で、独立栄養性脱窒微生物によって処理液に含まれるアンモニア態窒素を電子供与体とし亜硝酸態窒素を電子受容体とする嫌気的アンモニア酸化処理により脱窒処理される。亜硝酸化装置でアンモニアが亜硝酸に酸化される際に、亜硝酸濃度(遊離亜硝酸濃度)が所定濃度よりも高くなると、アンモニア酸化細菌の活性が阻害されて亜硝酸化反応の効率が低下し、後段の独立栄養性脱窒装置で脱窒処理の効率が低下する。 Suspended organic matter separated from the water to be treated by the suspended organic matter separator is anaerobically digested by the sludge anaerobic digester. A digestion solution containing ammonia by anaerobic digestion is introduced into a nitritation device and oxidized to nitrous acid under aerobic conditions, and a treatment solution containing ammonia and nitrite is introduced into an autotrophic denitrification device. In the autotrophic denitrification device, the anaerobic ammonia oxidation treatment uses ammonia nitrogen contained in the treatment liquid as an electron donor and nitrite nitrogen as an electron acceptor under anaerobic conditions. Nitrogenized. When ammonia is oxidized to nitrite in the nitrifier, if the nitrous acid concentration (free nitrous acid concentration) is higher than the specified concentration, the activity of ammonia-oxidizing bacteria is inhibited and the efficiency of the nitrification reaction decreases. However, the efficiency of the denitrification process is lowered by the autotrophic denitrification apparatus at the latter stage.
 しかし、そのような状況であっても、第1移送経路を経由して、懸濁性有機物分離装置で懸濁性有機物が除去された分離液または当該分離液を生物処理した処理液が亜硝酸化装置に供給されるので、亜硝酸化装置内の硝化液の亜硝酸濃度(遊離亜硝酸濃度)がアンモニアの亜硝酸化処理に適した濃度に調整され、亜硝酸化反応が促進されるようになる。尚、このような構成によれば、水道水等を用いた別途の希釈水供給設備を準備する必要がなく、特段の温度制御やpH制御をすることなく、亜硝酸化反応を促進することができる。水道水や電力等のエネルギーコストや薬品コストを節約できるようになる。 However, even in such a situation, the separation liquid from which the suspended organic matter is removed by the suspended organic matter separation apparatus or the treatment liquid obtained by biologically treating the separated liquid is transferred to the nitrous acid via the first transfer path. The nitrite concentration (free nitrous acid concentration) in the nitrification solution in the nitrification device is adjusted to a concentration suitable for ammonia nitritation treatment so that the nitrification reaction is promoted. become. In addition, according to such a structure, it is not necessary to prepare the separate dilution water supply equipment using a tap water etc., and it can accelerate | stimulate a nitritation reaction, without performing special temperature control and pH control. it can. Energy costs such as tap water and electricity, and chemical costs can be saved.
 同第二の特徴構成は、同請求項2に記載した通り、上述した第一の特徴構成に加えて、前記懸濁性有機物分離装置の分離液または当該分離液を生物処理した処理液を前記独立栄養性脱窒装置に供給する第2移送経路を備えている点にある。 As described in claim 2, the second characteristic configuration includes, in addition to the first characteristic configuration described above, a separation liquid of the suspension organic substance separation device or a treatment liquid obtained by biologically treating the separation liquid. It is in the point provided with the 2nd transfer route which supplies to an autotrophic denitrification apparatus.
 独立栄養性脱窒装置では、亜硝酸化装置の処理液に含まれるアンモニアが嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに酸化される。しかし、独立栄養性脱窒装置に導入される処理液の亜硝酸濃度(遊離亜硝酸濃度)が高くなると嫌気的アンモニア酸化処理の処理効率が低下する。 In the autotrophic denitrification apparatus, ammonia contained in the treatment liquid of the nitritation apparatus is oxidized to nitrogen gas by the autotrophic denitrification microorganisms under anaerobic conditions. However, when the nitrous acid concentration (free nitrous acid concentration) of the treatment liquid introduced into the autotrophic denitrification apparatus is increased, the treatment efficiency of the anaerobic ammonia oxidation treatment is lowered.
 しかし、そのような状況であっても、第2移送経路を経由して、懸濁性有機物分離装置で懸濁性有機物が除去された分離液または当該分離液を生物処理した処理液が独立栄養性脱窒装置に供給されるので、独立栄養性脱窒装置内の処理液の亜硝酸濃度(遊離亜硝酸濃度)が嫌気的アンモニア酸化処理に適した濃度になるように独立栄養性脱窒装置内の処理液が希釈され、効率的な嫌気的アンモニア酸化処理が促進されるようになる。同様に、このような構成によれば、水道水等を用いた別途の希釈水供給設備を準備する必要がない。 However, even in such a situation, the separation liquid from which the suspending organic matter is removed by the suspending organic matter separation device or the treatment liquid obtained by biologically treating the separation liquid is passed through the second transfer path. Since the nitrous acid concentration (free nitrous acid concentration) of the treatment liquid in the autotrophic denitrification device is a concentration suitable for anaerobic ammonia oxidation treatment, the autotrophic denitrification device The inner treatment liquid is diluted, and efficient anaerobic ammonia oxidation treatment is promoted. Similarly, according to such a configuration, it is not necessary to prepare a separate dilution water supply facility using tap water or the like.
 同第三の特徴構成は、同請求項3に記載した通り、上述した第一または第二の特徴構成に加えて、前記独立栄養性脱窒装置で処理した脱窒液を前記独立栄養性脱窒装置に返送する第3移送経路を備えている点にある。 In addition to the first or second characteristic configuration described above, the third characteristic configuration is characterized in that the denitrification liquid treated by the autotrophic denitrification device is the autotrophic denitrification as described in claim 3. It is in the point provided with the 3rd transfer route which returns to a nitrogen device.
 上述の分離液または当該分離液を生物処理した処理液の投入により独立栄養性脱窒装置内の処理液の亜硝酸濃度(遊離亜硝酸濃度)を適正な値に希釈できない場合であっても、第3移送経路を経由して、独立栄養性脱窒装置で処理され、亜硝酸濃度が低下した脱窒液が独立栄養性脱窒装置に返送されるので、独立栄養性脱窒装置内の処理液の亜硝酸濃度(遊離亜硝酸濃度)が適正な値になるように、さらに希釈できるようになる。同様に、このような構成によれば、水道水等を用いた別途の希釈水供給設備を準備する必要がない。 Even if it is not possible to dilute the nitrous acid concentration (free nitrous acid concentration) of the treatment liquid in the autotrophic denitrification apparatus to an appropriate value by adding the above-mentioned separation liquid or the treatment liquid obtained by biologically treating the separation liquid, Since the denitrification liquid that has been processed by the autotrophic denitrification device and the concentration of nitrous acid has been reduced is returned to the autotrophic denitrification device via the third transfer route, the processing in the autotrophic denitrification device Further dilution is possible so that the nitrous acid concentration (free nitrous acid concentration) of the liquid becomes an appropriate value. Similarly, according to such a configuration, it is not necessary to prepare a separate dilution water supply facility using tap water or the like.
 同第四の特徴構成は、同請求項4に記載した通り、上述した第一または第二特徴構成に加えて、前記独立栄養性脱窒処理装置の脱窒液に含有する硝酸を嫌気条件下で従属栄養性脱窒微生物によって窒素ガスに還元する従属栄養性脱窒装置を備え、前記従属栄養性脱窒装置で処理した脱窒液を前記独立栄養性脱窒装置に返送する第4移送経路を備えている点にある。 In the fourth feature configuration, as described in claim 4, in addition to the first or second feature configuration described above, nitric acid contained in the denitrification solution of the autotrophic denitrification apparatus is subjected to anaerobic conditions. And a heterotrophic denitrification device that reduces the nitrogen to the nitrogen gas by the heterotrophic denitrification microorganism, and a denitrification solution treated by the heterotrophic denitrification device is returned to the autotrophic denitrification device. It is in the point equipped with.
 独立栄養性脱窒処理装置で嫌気的アンモニア酸化処理された脱窒液には硝酸が含まれる。そのような脱窒液が従属栄養性脱窒装置に導入されることにより、脱窒液に含まれる硝酸が嫌気条件下で従属栄養性脱窒微生物によって窒素ガスに還元されるようになる。第4移送経路を経由して、従属栄養性脱窒装置で処理された脱窒液が独立栄養性脱窒装置に返送されるので、独立栄養性脱窒装置内の処理液の亜硝酸濃度(遊離亜硝酸濃度)が適正な値になるように、さらに希釈できるようになる。 The nitric acid is contained in the denitrification liquid that has been subjected to anaerobic ammonia oxidation treatment in the autotrophic denitrification apparatus. By introducing such a denitrification liquid into the heterotrophic denitrification apparatus, the nitric acid contained in the denitrification liquid is reduced to nitrogen gas by the heterotrophic denitrification microorganisms under anaerobic conditions. Since the denitrification liquid processed in the heterotrophic denitrification apparatus is returned to the autotrophic denitrification apparatus via the fourth transfer route, the concentration of nitrous acid in the treatment liquid in the autotrophic denitrification apparatus ( It can be further diluted so that the concentration of free nitrous acid becomes an appropriate value.
 本発明による懸濁性有機物含有廃水の処理方法の第一の特徴構成は、同請求項5に記載した通り、懸濁性有機物を含有する被処理水から懸濁性有機物を分離する懸濁性有機物分離処理と、前記懸濁性有機物分離処理により分離された懸濁性有機物を嫌気性消化する汚泥嫌気性消化処理と、前記汚泥嫌気性消化処理による消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化処理と、前記亜硝酸化処理による処理液に含まれるアンモニアを嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに酸化する独立栄養性脱窒処理と、を行なう懸濁性有機物含有廃水の処理方法であって、前記懸濁性有機物分離処理で懸濁性有機物が除去された分離液または当該分離液が生物処理された処理液を、前記亜硝酸化処理と前記独立栄養性脱窒処理に移送し、それぞれの処理工程での遊離亜硝酸濃度を調節する点にある。 The first characteristic configuration of the method for treating suspending organic substance-containing wastewater according to the present invention is the suspending property for separating the suspending organic substance from the water to be treated containing the suspending organic substance as described in claim 5. Organic matter separation treatment, sludge anaerobic digestion treatment for anaerobically digesting suspended organic matter separated by the suspension organic matter separation treatment, and ammonia contained in the digested liquid by the sludge anaerobic digestion treatment under aerobic conditions A nitrite treatment that oxidizes to nitrous acid, and an autotrophic denitrification treatment that oxidizes ammonia contained in the treatment solution by the nitrite treatment to nitrogen gas by an autotrophic denitrifying microorganism under anaerobic conditions. A suspending organic matter-containing wastewater treatment method to be performed, wherein the separation liquid from which the suspended organic substances have been removed by the suspension organic substance separation treatment or the treatment liquid in which the separation liquid has been biologically treated is used as the nitritation treatment. And said autotrophic Was transferred to a denitrification process, it lies in regulating the free nitrous acid concentration at each step.
 同第二の特徴構成は、同請求項6に記載した通り、懸濁性有機物を含有する被処理水から懸濁性有機物を分離する懸濁性有機物分離処理と、前記懸濁性有機物分離処理により分離された懸濁性有機物を嫌気性消化する汚泥嫌気性消化処理と、前記汚泥嫌気性消化処理による消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化処理と、前記亜硝酸化処理による処理液に含まれるアンモニアを嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに酸化する独立栄養性脱窒処理と、を行なう懸濁性有機物含有廃水の処理方法であって、前記懸濁性有機物分離処理で懸濁性有機物が除去された分離液または当該分離液が生物処理された処理液を前記亜硝酸化処理に移送し、前記処理液または前記分離液と前記処理液の双方を、前記独立栄養性脱窒処理に移送し、それぞれの処理工程での遊離亜硝酸濃度を調節する点にある。 The second characteristic configuration includes a suspending organic matter separation treatment for separating the suspending organic matter from the water to be treated containing the suspending organic matter, and the suspending organic matter separation treatment as described in claim 6. Sludge anaerobic digestion treatment for anaerobically digesting suspended organic matter separated by the above, and nitritation treatment for oxidizing ammonia contained in the digested liquid by the sludge anaerobic digestion treatment to nitrous acid under aerobic conditions; A method of treating wastewater containing suspended organic matter, comprising: autotrophic denitrification treatment in which ammonia contained in the treatment solution by the nitritation treatment is oxidized to nitrogen gas by an autotrophic denitrification microorganism under anaerobic conditions. Then, the separation liquid from which the suspended organic substances have been removed by the suspension organic substance separation treatment or the treatment liquid obtained by biologically treating the separation liquid is transferred to the nitritation treatment, and the treatment liquid or the separation liquid and the Both treatment liquids Transferred to serial autotrophic denitrification treatment lies in that mediate the release nitrite concentration at each step.
 同第三の特徴構成は、同請求項7に記載した通り、上述した第一または第二の特徴構成に加えて、前記亜硝酸化処理の工程は遊離亜硝酸濃度を0.2ppm未満に調整し、前記独立栄養性脱窒処理の工程は遊離亜硝酸濃度を0.08ppm未満に調節する点にある。 In the third feature configuration, as described in claim 7, in addition to the first or second feature configuration described above, the nitritation step adjusts the free nitrous acid concentration to less than 0.2 ppm. However, the step of the autotrophic denitrification treatment is to adjust the free nitrous acid concentration to less than 0.08 ppm.
 亜硝酸化処理の工程では、遊離亜硝酸濃度を0.2ppm未満に調整して実行することで、アンモニアは効率的に亜硝酸化される。前記独立栄養性脱窒処理の工程では、遊離亜硝酸濃度を0.08ppm未満に調節して実行することで、嫌気的アンモニア酸化処理を効率的に行うことができる。つまり、高濃度の懸濁性有機物を含有する廃水であっても効率的に窒素除去できる。 In the nitritation process, the ammonia is efficiently nitrified by adjusting the free nitrous acid concentration to less than 0.2 ppm. In the autotrophic denitrification process, the anaerobic ammonia oxidation process can be efficiently performed by adjusting the free nitrous acid concentration to less than 0.08 ppm. That is, nitrogen can be removed efficiently even with wastewater containing a high concentration of suspended organic matter.
 以上説明した通り、本発明によれば、従来技術より効率的な処理が可能となり、さらには、高濃度の懸濁性有機物を含有する廃水であっても、より効率的な懸濁性有機物含有廃水の処理システム及び処理方法を提供することができるようになった。 As described above, according to the present invention, more efficient treatment than the prior art is possible, and even wastewater containing a high concentration of suspended organic matter contains more efficient suspended organic matter. A wastewater treatment system and treatment method can be provided.
図1(a)は本発明による処理システムの第一態様の説明図、図1(b)は嫌気性消化液のアンモニア態窒素濃度と亜硝酸態窒素濃度が1:1.32になるように亜硝酸化したときの遊離亜硝酸濃度の説明図である。FIG. 1 (a) is an explanatory view of the first embodiment of the treatment system according to the present invention, and FIG. 1 (b) is such that the ammonia nitrogen concentration and nitrite nitrogen concentration of the anaerobic digestion liquid are 1: 1.32. It is explanatory drawing of the free nitrous acid density | concentration when it nitrites. 図2は、本発明による処理システムの第二態様の説明図である。FIG. 2 is an explanatory diagram of a second embodiment of the processing system according to the present invention. 図3は、本発明による処理システムの第三態様の説明図である。FIG. 3 is an explanatory diagram of a third aspect of the processing system according to the present invention. 図4は、本発明による処理システムの第四態様の説明図である。FIG. 4 is an explanatory diagram of a fourth aspect of the processing system according to the present invention. 図5は、本発明による処理システムの第五態様の説明図である。FIG. 5 is an explanatory diagram of a fifth aspect of the processing system according to the present invention. 図6は、本発明による処理システムの第六態様の説明図である。FIG. 6 is an explanatory diagram of a sixth aspect of the processing system according to the present invention. 図7は、本発明による処理システムの数値シミュレーションの説明図である。FIG. 7 is an explanatory diagram of a numerical simulation of the processing system according to the present invention. 図8は、本発明による処理システムの数値シミュレーションの説明図である。FIG. 8 is an explanatory diagram of a numerical simulation of the processing system according to the present invention.
 以下、本発明による懸濁性有機物含有廃水の処理システム及び処理方法の実施形態を説明する。 Hereinafter, embodiments of a treatment system and a treatment method for suspending organic substance-containing wastewater according to the present invention will be described.
 図1(a)には、第一の態様の懸濁性有機物含有廃水の処理システムが示されている。当該処理システムは、懸濁性有機物を含有する被処理水を浄化するシステムであり、懸濁性有機物分離装置10と、汚泥嫌気性消化装置20と、亜硝酸化装置30と、独立栄養性脱窒装置40と、第1移送経路R1とを備えている。 FIG. 1 (a) shows a treatment system for waste water containing suspended organic substances according to the first embodiment. The said processing system is a system which purifies the to-be-processed water containing suspended organic substance, suspended organic substance separation apparatus 10, sludge anaerobic digester 20, nitritation apparatus 30, and autotrophic desorption. A nitrogen device 40 and a first transfer path R1 are provided.
 懸濁性有機物分離装置10では、被処理水に含まれる懸濁性有機物が分離され、汚泥嫌気性消化装置20では、懸濁性有機物分離装置10で分離された懸濁性有機物が嫌気性消化される。 In the suspension organic matter separation device 10, the suspension organic matter contained in the water to be treated is separated, and in the sludge anaerobic digestion device 20, the suspension organic matter separated in the suspension organic matter separation device 10 is anaerobic digestion. Is done.
 亜硝酸化装置30では、汚泥嫌気性消化装置20の消化液に含まれるアンモニアが好気条件下で亜硝酸に酸化され、独立栄養性脱窒装置40では、亜硝酸化装置30の処理液に含まれるアンモニア及び亜硝酸が嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに変換される。そして、懸濁性有機物分離装置10で懸濁性有機物が除去された分離液が、第1移送経路R1を経由して亜硝酸化装置30に供給される。 In the nitrification apparatus 30, ammonia contained in the digestion liquid of the sludge anaerobic digestion apparatus 20 is oxidized to nitrous acid under aerobic conditions. In the autotrophic denitrification apparatus 40, the treatment liquid of the nitritation apparatus 30 is used. The contained ammonia and nitrous acid are converted to nitrogen gas by autotrophic denitrifying microorganisms under anaerobic conditions. Then, the separated liquid from which the suspended organic matter has been removed by the suspended organic matter separation device 10 is supplied to the nitritation device 30 via the first transfer path R1.
 懸濁性有機物分離装置10は、沈殿装置、凝集沈殿装置、浮上分離装置、スクリーン装置、膜分離装置、サイクロン装置、スクリュープレスやデカンタ等の機械的分離装置の何れかで構成することができる。また、これらの装置を組み合わせて構成することも可能である。 The suspending organic matter separation device 10 can be configured by any of a precipitation device, a coagulation precipitation device, a flotation separation device, a screen device, a membrane separation device, a cyclone device, and a mechanical separation device such as a screw press or a decanter. Further, these devices can be combined.
 懸濁性有機物分離装置10で被処理水から分離された懸濁性有機物は、汚泥嫌気性消化装置20で嫌気性消化されて、アンモニア態窒素を含有する消化液となる。 The suspended organic matter separated from the water to be treated by the suspended organic matter separation device 10 is anaerobically digested by the sludge anaerobic digester 20 to become a digestive liquid containing ammonia nitrogen.
 亜硝酸化装置30に投入されたアンモニア態窒素を含有する消化液は、好気条件下で亜硝酸化菌によって亜硝酸化処理され、アンモニア態窒素の一部が亜硝酸態窒素に酸化される。 The digested liquid containing ammonia nitrogen charged into the nitritation apparatus 30 is subjected to nitritation treatment by nitrite bacteria under aerobic conditions, and a part of the ammonia nitrogen is oxidized to nitrite nitrogen. .
 独立栄養性脱窒装置40に投入された亜硝酸化装置30の処理液、つまりアンモニア態窒素と亜硝酸態窒素を含む処理液は、嫌気条件下で独立栄養性脱窒微生物によってアンモニア態窒素を電子供与体とし、亜硝酸態窒素を電子受容体とする嫌気的アンモニア酸化処理によって脱窒される。つまり、独立栄養性脱窒装置40は嫌気的アンモニア酸化装置である。 The treatment liquid of the nitritation apparatus 30 charged into the autotrophic denitrification apparatus 40, that is, the treatment liquid containing ammonia nitrogen and nitrite nitrogen, is converted to ammonia nitrogen by the autotrophic denitrification microorganisms under anaerobic conditions. It is denitrified by an anaerobic ammonia oxidation treatment using an electron donor and nitrite nitrogen as an electron acceptor. That is, the autotrophic denitrification device 40 is an anaerobic ammonia oxidation device.
 独立栄養性脱窒微生物は、浮遊菌の形で独立栄養性脱窒装置40内に保持され、充填材に付着させた生物膜、或いは独立栄養性脱窒微生物を固定化材に固定化した固定化担体として独立栄養性脱窒装置40内に保持することもできる。 The autotrophic denitrifying microorganisms are held in the autotrophic denitrification apparatus 40 in the form of airborne bacteria and fixed by immobilizing the biofilm adhered to the filler or the autotrophic denitrifying microorganisms on the immobilizing material. It can also be held in the autotrophic denitrification apparatus 40 as a nitrifying carrier.
 独立栄養性脱窒微生物を充填材に付着させた生物膜を採用する場合、独立栄養性脱窒装置40への生物膜の充填量は、固定床式の場合に20~80容積%が好ましい。充填材として、不織布、プラスチック材料、スポンジ材料または多孔質セラミックス等の材質を使用することができ、板状、粒状または筒状等の各種の形状を採用することができる。 When a biofilm in which autotrophic denitrifying microorganisms are adhered to the filler is adopted, the biofilm filling amount into autotrophic denitrification apparatus 40 is preferably 20 to 80% by volume in the case of a fixed bed type. As the filler, a material such as a nonwoven fabric, a plastic material, a sponge material, or porous ceramics can be used, and various shapes such as a plate shape, a granular shape, and a cylindrical shape can be adopted.
 独立栄養性脱窒微生物を固定化材に固定化した固定化担体を採用する場合、固定化材への独立栄養性脱窒微生物固定化には、付着固定化及び包括固定化の2つの方法を採用することができる。 When adopting an immobilization carrier in which autotrophic denitrifying microorganisms are immobilized on an immobilizing material, two methods of adhesion immobilization and entrapping immobilization are used for immobilizing autotrophic denitrifying microorganisms on the immobilizing material. Can be adopted.
 付着固定化を採用する場合は、球状や筒状などの担体の他、ひも状材料、ゲル状材料または不織布状材料等を採用することができ、微生物を付着させ易い凹凸の多い材料を担体として採用することが好ましい。 In the case of adopting adhesion fixation, in addition to a carrier such as a sphere or cylinder, a string material, a gel material, or a nonwoven material can be adopted, and a material with many irregularities that easily attach microorganisms is used as a carrier. It is preferable to adopt.
 包括固定化を採用する場合は、固定化の対象となる微生物と担体であるモノマやプレポリマを混合した後に重合させて、微生物を包括固定化させる方法を採用するのが一般的である。 When employing entrapping immobilization, it is common to employ a method in which microorganisms to be immobilized and monomers or prepolymers as carriers are mixed and then polymerized to entrapped and immobilize microorganisms.
 モノマ材料として、アクリルアミド、メチレンビスアクリルアミド、トリアクリルフォルマール等が好ましく利用でき、プレポリマ材料として、ポリエチレングリコールジアクリレートやポリエチレングリコールメタアクリレートが好ましく利用できる。上述した付着固定と同様に凹凸の多い形状の固定化材を採用すれば、被処理水との接触効率がよく、脱窒能が向上する。 As the monomer material, acrylamide, methylenebisacrylamide, triacryl formal and the like can be preferably used, and as the prepolymer material, polyethylene glycol diacrylate and polyethylene glycol methacrylate can be preferably used. If an immobilizing material with many irregularities is employed in the same manner as the above-described adhesion fixing, the contact efficiency with the water to be treated is good and the denitrification ability is improved.
 上述したように、独立栄養性脱窒装置40で行なわれる嫌気的アンモニア酸化処理は、1当量のアンモニア態窒素と1.32当量の亜硝酸態窒素とを脱窒反応によって窒素分子に変換する処理である。従って、効率的に嫌気的アンモニア酸化処理するために、理想的には亜硝酸化装置30でアンモニアと亜硝酸のモル比が1:1.32になるように亜硝酸化処理されることが好ましい。 As described above, the anaerobic ammonia oxidation process performed in the autotrophic denitrification apparatus 40 is a process of converting 1 equivalent of ammonia nitrogen and 1.32 equivalents of nitrite nitrogen into nitrogen molecules by a denitrification reaction. It is. Therefore, in order to efficiently perform the anaerobic ammonia oxidation treatment, ideally, the nitritation treatment is preferably performed in the nitritation apparatus 30 so that the molar ratio of ammonia to nitrous acid is 1: 1.32. .
 つまり、高濃度の懸濁性有機物が消化処理された消化液には高濃度のアンモニア態窒素が含まれるため、亜硝酸化装置30内の亜硝酸濃度(遊離亜硝酸濃度)も高くなる傾向にある。 That is, since the digested liquid obtained by digesting the high-concentration suspended organic substance contains high-concentration ammonia nitrogen, the nitrite concentration (free nitrous acid concentration) in the nitritation apparatus 30 tends to increase. is there.
 硝化においては、遊離亜硝酸濃度(FNA)が0.2ppm以上になると全ての硝化細菌が阻害を受けると言われている。Anthonisenらの計算式によると、遊離亜硝酸濃度(FNA)は次式で表される。つまり、遊離亜硝酸濃度(FNA)は亜硝酸濃度、温度、pHで決まるのである。
Figure JPOXMLDOC01-appb-M000001
In nitrification, it is said that all nitrifying bacteria are inhibited when the free nitrite concentration (FNA) is 0.2 ppm or more. According to the calculation formula of Anthonisen et al., The free nitrous acid concentration (FNA) is expressed by the following formula. That is, the free nitrous acid concentration (FNA) is determined by the nitrous acid concentration, temperature, and pH.
Figure JPOXMLDOC01-appb-M000001
 図1(b)は、嫌気性消化液のアンモニア態窒素濃度と亜硝酸態窒素濃度が1:1.32になるように亜硝酸化したときの遊離亜硝酸濃度を、上式に基づいて算出した値が示されている。 FIG. 1 (b) shows the calculation of the free nitrous acid concentration based on the above equation when the nitrous acid concentration of the anaerobic digestion solution is 1: 1.32. The value is shown.
 嫌気性消化液のアンモニア態窒素濃度が1000ppmのとき、亜硝酸態窒素濃度が570ppmになるように亜硝酸化される。このときにpH7.4、水温30℃であるならば、遊離亜硝酸濃度が0.151ppmとなり、亜硝酸化に支障は生じない。しかし、pHが7.2まで下がると遊離亜硝酸濃度は0.239ppmとなり亜硝酸化に支障が生じる濃度となってしまう。 When the concentration of ammonia nitrogen in the anaerobic digestive liquid is 1000 ppm, nitritation is performed so that the concentration of nitrite nitrogen is 570 ppm. At this time, if the pH is 7.4 and the water temperature is 30 ° C., the concentration of free nitrous acid becomes 0.151 ppm, and nitritation is not hindered. However, when the pH is lowered to 7.2, the concentration of free nitrous acid becomes 0.239 ppm, resulting in a concentration that hinders nitritation.
 従来は、pHを上げるためにアルカリ剤を添加していたが、第一の態様の処理システムによれば、第1移送経路R1を経由して、分離液を亜硝酸化装置30に供給して、亜硝酸態窒素濃度が470ppm程度になるように希釈することで、遊離亜硝酸濃度を亜硝酸化に支障のないレベルにすることができる。 Conventionally, an alkali agent has been added to increase the pH. However, according to the treatment system of the first aspect, the separation liquid is supplied to the nitritation apparatus 30 via the first transfer path R1. By diluting so that the nitrite nitrogen concentration is about 470 ppm, the free nitrite concentration can be brought to a level that does not hinder nitritation.
 水温が15℃になると遊離亜硝酸濃度は0.224ppmになるが、水温を上げずに亜硝酸態窒素濃度500ppm程度になるように希釈することで、亜硝酸化に良好な状態を維持することができる。 When the water temperature reaches 15 ° C, the free nitrous acid concentration becomes 0.224 ppm, but maintaining a good state for nitritation by diluting the nitrite nitrogen concentration to about 500 ppm without increasing the water temperature. Can do.
 嫌気性消化液のアンモニア態窒素濃度が2000ppmになるとpH7.4、水温30℃の状態で遊離亜硝酸濃度が0.302ppmになる。このとき、pHを7.6、或いは水温を48℃に調節すると遊離亜硝酸濃度は0.2ppm未満に制御できるが、そのために大量のアルカリ剤や加温のための莫大なエネルギーが必要となる。しかし、第一の態様の処理システムによれば、亜硝酸態窒素濃度を740ppm程度に希釈することで、遊離亜硝酸濃度を亜硝酸化に支障のないレベルにすることができる。 When the concentration of ammonia nitrogen in the anaerobic digestion solution reaches 2000 ppm, the free nitrous acid concentration becomes 0.302 ppm at a pH of 7.4 and a water temperature of 30 ° C. At this time, if the pH is adjusted to 7.6 or the water temperature is adjusted to 48 ° C., the concentration of free nitrous acid can be controlled to be less than 0.2 ppm. For this purpose, a large amount of alkaline agent and enormous energy for heating are required. . However, according to the treatment system of the first aspect, by diluting the nitrite nitrogen concentration to about 740 ppm, the free nitrite concentration can be brought to a level that does not hinder nitritation.
 このように、第1移送経路R1を介して分離液を亜硝酸化装置30に供給して、亜硝酸化装置30内の消化液を希釈することで、亜硝酸化装置30内の消化液の亜硝酸濃度(遊離亜硝酸濃度)を、アンモニアの亜硝酸化に適した濃度に調整することができる。 In this way, the separation liquid is supplied to the nitritation apparatus 30 via the first transfer path R1 to dilute the digestion liquid in the nitritation apparatus 30 so that the digestion liquid in the nitritation apparatus 30 is diluted. The nitrous acid concentration (free nitrous acid concentration) can be adjusted to a concentration suitable for ammonia nitritation.
 図1(a)では、第1移送経路R1を介して亜硝酸化装置30に供給される希釈液が、懸濁性有機物分離装置10で懸濁性有機物が除去された分離液である例を説明したが、好気性微生物を用いて当該分離液を生物処理する生物処理装置を備えている場合には、当該分離液に替えて、当該分離液を生物処理した処理液を希釈液として亜硝酸化装置30に供給してもよい。この態様については、後に詳述する。 In FIG. 1A, an example in which the diluent supplied to the nitritation device 30 via the first transfer path R <b> 1 is a separation solution from which the suspended organic matter has been removed by the suspended organic matter separation device 10. As described above, when a biological treatment apparatus for biologically treating the separation liquid using aerobic microorganisms is provided, nitrous acid is used as a dilution liquid instead of the separation liquid. It may be supplied to the conversion apparatus 30. This aspect will be described in detail later.
 亜硝酸化装置30でアンモニア酸化細菌は阻害を受けることなくアンモニアの亜硝酸化を効率的に行なうことができ、亜硝酸化装置30でアンモニアが十分に亜硝酸化することができる。 The nitrifying apparatus 30 can efficiently nitrify ammonia without being inhibited by the ammonia oxidizing bacteria, and the nitrifying apparatus 30 can sufficiently nitrify ammonia.
 亜硝酸化処装置30の処理液は独立栄養性脱窒装置40で効率的に嫌気的アンモニア酸化処理され脱窒処理される。前記消化液の亜硝酸濃度(遊離亜硝酸濃度)の調整に、前記分離液または前記分離液を生物処理した処理液を用いる構成であるので、水道水等の別途の希釈水の供給装置を準備する必要がない。効率的な亜硝酸化反応のための温度制御やpH制御のための電力コストや薬品コストを節約できるようになる。 The treatment liquid of the nitrite treatment device 30 is efficiently anaerobic ammonia oxidation treatment and denitrification treatment by the autotrophic denitrification device 40. Since the separation liquid or a treatment liquid obtained by biological treatment of the separation liquid is used to adjust the nitrous acid concentration (free nitrous acid concentration) of the digestion liquid, a separate dilution water supply device such as tap water is prepared. There is no need to do. Electricity costs and chemical costs for temperature control and pH control for efficient nitritation reaction can be saved.
 上述の構成により、懸濁性有機物を含有する被処理水から懸濁性有機物を分離する懸濁性有機物分離処理と、懸濁性有機物分離処理により分離された懸濁性有機物を嫌気性消化する汚泥嫌気性消化処理と、汚泥嫌気性消化処理による消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化処理と、亜硝酸化処理による処理液に含まれるアンモニアを嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに酸化する独立栄養性脱窒処理とを行ない、懸濁性有機物分離処理で懸濁性有機物が除去された分離液または当該分離液が生物処理された処理液を、亜硝酸化処理に移送し、亜硝酸化処理工程での遊離亜硝酸濃度を調節する懸濁性有機物含有廃水の処理方法が実行される。 With the above-described configuration, the suspension organic matter separation treatment for separating the suspension organic matter from the water to be treated containing the suspension organic matter and the suspension organic matter separated by the suspension organic matter separation treatment are anaerobically digested. Sludge anaerobic digestion treatment, nitritation treatment that oxidizes ammonia contained in digestion fluid by sludge anaerobic digestion treatment to nitrous acid under aerobic conditions, and ammonia contained in treatment solution by nitritation treatment under anaerobic conditions Under the condition, autotrophic denitrification treatment that oxidizes to nitrogen gas by autotrophic denitrification microorganisms was performed, and the separated organic solution from which suspended organic matter was removed by the suspension organic matter separation treatment or the separated solution was biologically treated The treatment liquid is transferred to nitritation treatment, and a method for treating suspended organic matter-containing wastewater that adjusts the free nitrous acid concentration in the nitritation treatment step is executed.
 図2には、第二の態様の処理システムが示されている。当該処理システムは、上述した第一の態様の処理システムに加え、前記分離液を独立栄養性脱窒装置40に供給する第2移送経路R2を備えていることを特徴とする。 FIG. 2 shows the processing system of the second aspect. In addition to the processing system of the first aspect described above, the processing system includes a second transfer path R2 that supplies the separation liquid to the autotrophic denitrification apparatus 40.
 上述したように、独立栄養性脱窒装置40では、亜硝酸化装置30の処理液に対し、嫌気条件下で独立栄養性脱窒微生物によってアンモニア態窒素を電子供与体とし、亜硝酸態窒素を電子受容体とする嫌気的アンモニア酸化処理による脱窒が行なわれる。このとき、独立栄養性脱窒装置40内の亜硝酸濃度(遊離亜硝酸濃度)が高いと、嫌気的アンモニア酸化処理の効率が低下してしまう。 As described above, in the autotrophic denitrification apparatus 40, ammonia nitrogen is used as an electron donor by the autotrophic denitrification microorganisms under anaerobic conditions with respect to the treatment liquid of the nitritation apparatus 30, and nitrite nitrogen is converted. Denitrification is performed by anaerobic ammonia oxidation treatment as an electron acceptor. At this time, if the concentration of nitrous acid (free nitrous acid concentration) in the autotrophic denitrification apparatus 40 is high, the efficiency of the anaerobic ammonia oxidation treatment is lowered.
 第2移送経路R2により分離液を独立栄養性脱窒装置40に供給することで、独立栄養性脱窒装置40内の処理液は希釈され、処理液の亜硝酸濃度(遊離亜硝酸濃度)は、嫌気的アンモニア酸化処理に適した濃度に調整される。従って、独立栄養性脱窒装置40では効率的な嫌気的アンモニア酸化処理が可能となる。分離液を用いて、亜硝酸濃度(遊離亜硝酸濃度)の調整を行う構成であるため、水道水等の別途の希釈水供給設備を準備する必要がない。 By supplying the separation liquid to the autotrophic denitrification apparatus 40 through the second transfer path R2, the processing liquid in the autotrophic denitrification apparatus 40 is diluted, and the nitrous acid concentration (free nitrous acid concentration) of the processing liquid is It is adjusted to a concentration suitable for anaerobic ammonia oxidation treatment. Accordingly, the autotrophic denitrification apparatus 40 can efficiently perform anaerobic ammonia oxidation treatment. Since it is the structure which adjusts nitrous acid concentration (free nitrous acid concentration) using a separated liquid, it is not necessary to prepare separate dilution water supply facilities, such as tap water.
 つまり、懸濁性有機物を含有する被処理水から懸濁性有機物を分離する懸濁性有機物分離処理と、懸濁性有機物分離処理により分離された懸濁性有機物を嫌気性消化する汚泥嫌気性消化処理と、汚泥嫌気性消化処理による消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化処理と、亜硝酸化処理による処理液に含まれるアンモニア及び亜硝酸を嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに変換する独立栄養性脱窒処理とを行ない、懸濁性有機物分離処理で懸濁性有機物が除去された分離液または当該分離液が生物処理された処理液を、亜硝酸化処理と独立栄養性脱窒処理に移送し、それぞれの処理工程での遊離亜硝酸濃度を調節することを特徴とする懸濁性有機物含有廃水の処理方法が実行される。 In other words, suspended organic matter separation treatment that separates suspended organic matter from water to be treated containing suspended organic matter, and sludge anaerobic that digests suspended organic matter separated by suspended organic matter separation treatment Nitrite treatment that oxidizes ammonia contained in digestion solution by digestion treatment and sludge anaerobic digestion to nitrous acid under aerobic conditions, and anaerobic condition of ammonia and nitrite contained in treatment solution by nitrite treatment Under the autotrophic denitrification microorganism, the autotrophic denitrification process that converts it to nitrogen gas was performed, and the suspended organic matter was removed by the suspension organic matter separation treatment or the separated solution was biologically treated. A treatment method for wastewater containing suspended organic substances is performed, wherein the treatment liquid is transferred to nitritation treatment and autotrophic denitrification treatment, and the concentration of free nitrous acid in each treatment step is adjusted. .
 尚、亜硝酸化処理の工程は遊離亜硝酸濃度を0.2ppm未満に調整し、独立栄養性脱窒処理の工程は遊離亜硝酸濃度を0.08ppm未満に調節することが好ましく、0.06ppm未満がより好ましい。亜硝酸化処理の工程では、遊離亜硝酸濃度を0.2ppm未満に調整して実行することで、アンモニアは効率的に亜硝酸化される。独立栄養性脱窒処理の工程では、遊離亜硝酸濃度を0.08ppm未満に調節して実行することで、嫌気的アンモニア酸化処理を効率的に行うことができる。つまり、高濃度の懸濁性有機物を含有する廃水であっても効率的に窒素除去できる。 In the nitrification process, the free nitrous acid concentration is preferably adjusted to less than 0.2 ppm, and the autotrophic denitrification process is preferably adjusted to a free nitrous acid concentration of less than 0.08 ppm. Less than is more preferable. In the nitritation process, ammonia is efficiently nitrified by adjusting the free nitrous acid concentration to less than 0.2 ppm. In the autotrophic denitrification process, the anaerobic ammonia oxidation process can be efficiently performed by adjusting the free nitrous acid concentration to less than 0.08 ppm. That is, nitrogen can be removed efficiently even with wastewater containing a high concentration of suspended organic matter.
 図3には、第三の態様の処理システムが示されている。当該処理システムは、上述の第二の態様の処理システムに加え、独立栄養性脱窒装置40で処理した脱窒液を独立栄養性脱窒装置40に返送する第3移送経路R3を備えていることを特徴とする。尚、第2移送経路R2は必ずしも備える必要はない。 FIG. 3 shows the processing system of the third aspect. In addition to the processing system of the second aspect described above, the processing system includes a third transfer path R3 that returns the denitrification liquid processed by the autotrophic denitrification device 40 to the autotrophic denitrification device 40. It is characterized by that. Note that the second transfer path R2 is not necessarily provided.
 第1移送経路R1及び第2移送経路R2を介した前記分離液の供給だけでは、独立栄養性脱窒装置40内の処理液の希釈が十分でない場合がある。このような場合であっても、第3移送経路R3により独立栄養性脱窒装置40で処理した脱窒液を独立栄養性脱窒装置40に返送することで、独立栄養性脱窒装置40内の処理液をさらに希釈することができる。従って、希釈のための水を系外から独立栄養性脱窒装置40に供給しなくても、独立栄養性脱窒装置40内の処理液の亜硝酸濃度(遊離亜硝酸濃度)の調整を確実に行うことができる。 The dilution of the processing liquid in the autotrophic denitrification apparatus 40 may not be sufficient only by supplying the separation liquid via the first transfer path R1 and the second transfer path R2. Even in such a case, the denitrification liquid treated by the autotrophic denitrification apparatus 40 is returned to the autotrophic denitrification apparatus 40 through the third transfer route R3, so that the inside of the autotrophic denitrification apparatus 40 The treatment liquid can be further diluted. Therefore, the nitrite concentration (free nitrous acid concentration) of the treatment liquid in the autotrophic denitrification device 40 can be reliably adjusted without supplying dilution water to the autotrophic denitrification device 40 from outside the system. Can be done.
 尚、独立栄養性脱窒装置40で処理した脱窒液には、硝酸に加えて、未処理の亜硝酸やアンモニアが残留している。独立栄養性脱窒装置40に亜硝酸イオンやアンモニアイオンを測定するセンサを備えて、残留する亜硝酸やアンモニアに応じて、独立栄養性脱窒装置40から系外に放流される脱窒液の放流基準を満たすように、返送量を調整することが好ましい。 In addition, untreated nitrous acid and ammonia remain in addition to nitric acid in the denitrification liquid treated by the autotrophic denitrification apparatus 40. A sensor for measuring nitrite ions and ammonia ions is provided in the autotrophic denitrification device 40, and the denitrification liquid discharged from the autotrophic denitrification device 40 to the outside of the system according to the remaining nitrous acid and ammonia. It is preferable to adjust the return amount so as to satisfy the discharge standard.
 つまり、懸濁性有機物を含有する被処理水から懸濁性有機物を分離する懸濁性有機物分離処理と、懸濁性有機物分離処理により分離された懸濁性有機物を嫌気性消化する汚泥嫌気性消化処理と、汚泥嫌気性消化処理による消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化処理と、亜硝酸化処理による処理液に含まれるアンモニア及び亜硝酸を嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに変換する独立栄養性脱窒処理とを行ない、懸濁性有機物分離処理で懸濁性有機物が除去された分離液を亜硝酸化処理に移送し、前記処理液または前記分離液と前記処理液の双方を、独立栄養性脱窒処理に移送し、それぞれの処理工程での遊離亜硝酸濃度を調節する懸濁性有機物含有廃水の処理方法が実行される。 In other words, suspended organic matter separation treatment that separates suspended organic matter from water to be treated containing suspended organic matter, and sludge anaerobic that digests suspended organic matter separated by suspended organic matter separation treatment Nitrite treatment that oxidizes ammonia contained in digestion solution by digestion treatment and sludge anaerobic digestion to nitrous acid under aerobic conditions, and anaerobic condition of ammonia and nitrite contained in treatment solution by nitrite treatment Under the autotrophic denitrification microorganisms, autotrophic denitrification treatment that converts to nitrogen gas is performed, and the separated liquid from which suspended organic substances have been removed by the suspension organic matter separation treatment is transferred to nitritation treatment, The treatment liquid or both of the separation liquid and the treatment liquid are transferred to an autotrophic denitrification treatment, and a method for treating suspending organic substance-containing wastewater that adjusts the concentration of free nitrous acid in each treatment step is executed. The
 図4には、第四の態様の処理システムが示されている。当該処理システムは、上述した第二の態様の処理システムに加え、独立栄養性脱窒処理装置40の脱窒液に含有する硝酸を嫌気条件下で従属栄養性脱窒微生物によって窒素ガスに還元する従属栄養性脱窒装置50を備え、従属栄養性脱窒装置50で処理した脱窒液を独立栄養性脱窒装置40に返送する第4移送経路R4を備えている。尚、懸濁性有機物分離装置10の分離液を従属栄養性脱窒装置50に供給する第5移送経路R5を備えてもよい。また、第2移送経路R2は必ずしも備える必要はない。 FIG. 4 shows a processing system according to the fourth aspect. In addition to the treatment system of the second aspect described above, the treatment system reduces nitric acid contained in the denitrification liquid of the autotrophic denitrification apparatus 40 to nitrogen gas by heterotrophic denitrification microorganisms under anaerobic conditions. A heterotrophic denitrification apparatus 50 is provided, and a fourth transfer path R4 for returning the denitrification liquid processed by the heterotrophic denitrification apparatus 50 to the autotrophic denitrification apparatus 40 is provided. In addition, you may provide 5th transfer path | route R5 which supplies the separation liquid of the suspension organic substance separation apparatus 10 to the heterotrophic denitrification apparatus 50. FIG. Further, the second transfer path R2 is not necessarily provided.
 従属栄養性脱窒装置50では、嫌気的アンモニア酸化処理にて発生した硝酸態窒素を電子受容体とし、分離液に溶解する有機物等を電子供与体とした従属栄養性脱窒微生物による脱窒反応を進行させることで、独立栄養性脱窒装置40から系外に排出される硝酸量や有機物量を低減できるようになる。 In the heterotrophic denitrification apparatus 50, a denitrification reaction by a heterotrophic denitrification microorganism using nitrate nitrogen generated by anaerobic ammonia oxidation treatment as an electron acceptor and organic matter dissolved in the separation liquid as an electron donor. The amount of nitric acid and organic matter discharged from the autotrophic denitrification apparatus 40 to the outside of the system can be reduced by advancing the process.
 ここで、亜硝酸化装置30ではアンモニアと亜硝酸のモル比が1:1.32になるように調節されることが理想であるが、後段の従属栄養性脱窒装置50で嫌気的アンモニア酸化反応で余った亜硝酸を従属栄養性脱窒微生物で脱窒処理することができるので、亜硝酸化装置30では亜硝酸がアンモニアとのモル比1.32より大きくなるように調節すればよい。場合によっては硝酸まで硝化が進行してもよい。ただし、脱窒の効率化や硝化に要する酸素量を低減するために、亜硝酸化装置30ではアンモニア:亜硝酸が1:1.32~1.5程度に調節するのが望ましい。 Here, it is ideal that the molar ratio of ammonia and nitrous acid is adjusted to 1: 1.32 in the nitritation apparatus 30, but anaerobic ammonia oxidation is performed in the heterotrophic denitrification apparatus 50 in the subsequent stage. Since the nitrite remaining in the reaction can be denitrified by the heterotrophic denitrifying microorganism, the nitritation apparatus 30 may be adjusted so that the nitrous acid is larger than the molar ratio of 1.32 with ammonia. In some cases, nitrification may proceed to nitric acid. However, in order to increase the efficiency of denitrification and reduce the amount of oxygen required for nitrification, it is desirable that ammonia: nitrous acid is adjusted to about 1: 1.32 to 1.5 in the nitritation apparatus 30.
 第4移送経路R4により従属栄養性脱窒装置50で脱窒処理された脱窒液を独立栄養性脱窒装置40に返送することで、独立栄養性脱窒装置40内の処理液をさらに希釈することができる。従って、独立栄養性脱窒装置40内の処理液の亜硝酸濃度(遊離亜硝酸濃度)の調整を確実に行うことができる。 By returning the denitrification liquid denitrified by the heterotrophic denitrification apparatus 50 through the fourth transfer route R4 to the autotrophic denitrification apparatus 40, the treatment liquid in the autotrophic denitrification apparatus 40 is further diluted. can do. Therefore, the nitrite concentration (free nitrous acid concentration) of the treatment liquid in the autotrophic denitrification apparatus 40 can be adjusted reliably.
 尚、従属栄養性脱窒装置50には、従属栄養性脱窒微生物が投入されており、嫌気性雰囲気に保持される。従属栄養性脱窒装置50内における従属栄養性脱窒微生物の保持形態は、第一の態様の処理システムにおいて説明した独立栄養性脱窒装置40内における独立栄養性脱窒微生物と同様の保持形態を採用することができる。独立栄養性脱窒装置40で処理した脱窒液に含まれる有機物が不足する場合は、従属栄養性脱窒装置50に、第5移送経路R5を介して懸濁性有機物分離装置10の分離液を供給することで、不足する有機物を補うことができる。 The heterotrophic denitrification apparatus 50 is charged with heterotrophic denitrification microorganisms and is maintained in an anaerobic atmosphere. The retention form of the heterotrophic denitrification microorganisms in the heterotrophic denitrification apparatus 50 is the same retention form as the autotrophic denitrification microorganisms in the autotrophic denitrification apparatus 40 described in the processing system of the first aspect. Can be adopted. When the organic substance contained in the denitrification liquid processed by the autotrophic denitrification apparatus 40 is insufficient, the heterotrophic denitrification apparatus 50 is separated into the suspended organic substance separation apparatus 10 via the fifth transfer path R5. By supplying, the lack of organic matter can be compensated.
 上述した第一から第四の態様の処理システムでは、懸濁性有機物分離装置10で懸濁性有機物が除去された分離液を、第1移送経路R1を介して亜硝酸化装置30に供給し、または第2移送経路R2を介して嫌気的アンモニア酸化装置40に供給する構成を説明したが、各移送経路R1,R2を介して供給される希釈液は当該分離液に限られず、当該分離液を生物処理して有機物濃度を低減した処理液を希釈液としてもよい。 In the processing systems of the first to fourth aspects described above, the separation liquid from which the suspended organic matter has been removed by the suspended organic matter separation device 10 is supplied to the nitritation device 30 via the first transfer path R1. Alternatively, the configuration for supplying the anaerobic ammonia oxidation apparatus 40 via the second transfer path R2 has been described, but the diluent supplied via the transfer paths R1, R2 is not limited to the separation liquid, and the separation liquid A treatment solution in which the organic matter concentration is reduced by biological treatment may be used as a diluent.
 図5には、第五の態様の処理システムが示されている。当該処理システムは、上述した第二の態様の処理システムに加え、懸濁性有機物分離装置10の分離液を生物処理する生物処理装置60を備えて、当該生物処理された処理液を亜硝酸化装置30に供給する構成となっている。尚、第一、第三または第四の何れの態様の処理システムでも同様の構成を採用することができる。 FIG. 5 shows the processing system of the fifth aspect. In addition to the treatment system of the second aspect described above, the treatment system includes a biological treatment device 60 that biologically treats the separated liquid of the suspending organic matter separation device 10, and nitrites the biologically treated treatment solution. It is configured to supply to the device 30. It should be noted that the same configuration can be adopted in the processing system of any of the first, third, and fourth modes.
 懸濁性有機物分離装置10の分離液に含まれるBOD成分が多いと、亜硝酸化装置30や独立栄養性脱窒装置40内で従属栄養性細菌が優勢となってしまい、亜硝酸化や嫌気的アンモニア酸化処理の効率が低下する虞がある。生物処理装置60で分離液に含まれるBODを適当に除去することで、この問題を解決することができる。尚、生物処理装置60は曝気槽が例示できる。 If the BOD component contained in the separation liquid of the suspending organic matter separation device 10 is large, heterotrophic bacteria predominate in the nitritation device 30 and the autotrophic denitrification device 40, resulting in nitritation and anaerobic conditions. There is a risk that the efficiency of the active ammonia oxidation treatment will decrease. This problem can be solved by appropriately removing BOD contained in the separation liquid by the biological treatment apparatus 60. In addition, the biological treatment apparatus 60 can illustrate an aeration tank.
 図6には、第六の態様の処理システムが示されている。当該処理システムは、上述した第一の態様の処理システムの汚泥嫌気性消化装置20に、さらに懸濁性有機物分離装置10から供給される懸濁性有機物とは異なるルートから液状有機性廃棄物が流入するように構成されている。当該液状有機性廃棄物は、食品廃棄物、排水処理で生じる汚泥、家畜糞尿等が好適である。第二から第五の態様の処理システムでも同様の構成とすることができる。 FIG. 6 shows the processing system of the sixth aspect. In the treatment system, liquid organic waste is supplied to the sludge anaerobic digester 20 of the treatment system according to the first aspect described above from a route different from the suspended organic matter supplied from the suspended organic matter separation device 10. It is configured to flow in. The liquid organic waste is preferably food waste, sludge generated by wastewater treatment, livestock manure, and the like. The processing system of the second to fifth aspects can have the same configuration.
 上述の第一から第五の態様として示すような本発明による懸濁性有機物含有廃水の処理システム及び処理方法によると、系外から液状有機性廃棄物を汚泥嫌気消化装置に投入して、アンモニア発生量が増加しても、懸濁性有機物分離装置で懸濁性有機物が除去された分離液により亜硝酸化装置内の亜硝酸濃度(遊離亜硝酸濃度)が調整できるので、後段の嫌気性アンモニア酸化処理により効率的な窒素除去が可能となる。 According to the processing system and the processing method for suspending organic substance-containing wastewater according to the present invention as shown in the first to fifth aspects described above, the liquid organic waste is introduced into the sludge anaerobic digester from outside the system, and ammonia Even if the amount generated is increased, the nitrous acid concentration (free nitrous acid concentration) in the nitrifying device can be adjusted by the separated liquid from which the suspending organic matter has been removed by the suspending organic matter separating device. Efficient nitrogen removal becomes possible by the ammonia oxidation treatment.
 以下に、本発明による処理システムに対して数値シミュレーションを行った結果を説明する。 Hereinafter, the results of numerical simulation performed on the processing system according to the present invention will be described.
 図7には、図2で説明した第二の態様の処理システムに対して数値シミュレーションを行った結果が示されている。当該処理システムには、200m/dの被処理水が流入する。懸濁性有機物分離装置10は、被処理水に含まれる10m/dの懸濁性有機物を分離する。尚、懸濁性有機物分離装置10の190m/dの分離液のアンモニア態窒素及び亜硝酸態窒素の濃度は便宜上夫々0ppmとする。 FIG. 7 shows the result of a numerical simulation performed on the processing system of the second mode described in FIG. 200 m 3 / d treated water flows into the treatment system. The suspending organic matter separation device 10 separates 10 m 3 / d suspending organic matter contained in the water to be treated. The concentration of ammonia nitrogen and nitrite nitrogen in the 190 m 3 / d separation liquid of the suspending organic matter separation apparatus 10 is 0 ppm for convenience.
 懸濁性有機物分離装置10で分離された懸濁性有機物は、汚泥嫌気性消化装置20で嫌気性消化される。その消化液には、5000ppmのアンモニア態窒素が含まれる。 The suspended organic matter separated by the suspended organic matter separation device 10 is anaerobically digested by the sludge anaerobic digester 20. The digestive fluid contains 5000 ppm of ammonia nitrogen.
 亜硝酸化装置30は、温度30℃、pH7.4で好気性に保たれ、汚泥嫌気性消化装置20の嫌気性消化液に含まれるアンモニアを、アンモニアと亜硝酸のモル比が約1:1.3になるように亜硝酸化する。従って、5000ppmのアンモニア態窒素をそのまま亜硝酸化すると、2160ppmのアンモニア態窒素と、2840ppmの亜硝酸態窒素となる。このとき、遊離アンモニア濃度は、53.8ppmであり、遊離亜硝酸濃度は0.75ppmとなる。 The nitritation apparatus 30 is kept aerobic at a temperature of 30 ° C. and pH 7.4, and ammonia contained in the anaerobic digestion liquid of the sludge anaerobic digestion apparatus 20 has a molar ratio of ammonia to nitrous acid of about 1: 1. Nitrite to 3. Therefore, when nitrifying 5000 ppm of ammonia nitrogen as it is, it becomes 2160 ppm of ammonia nitrogen and 2840 ppm of nitrite nitrogen. At this time, the free ammonia concentration is 53.8 ppm and the free nitrous acid concentration is 0.75 ppm.
 尚、遊離アンモニア濃度は、被処理水のアンモニウムイオン濃度を隔膜式イオン電極法等によって測定し、下記の数式2に示すように、温度、pHとの関係から算出するAnthonisenらの計算式で求める方法を採用することができる。 The concentration of free ammonia is determined by the formula of Anthonisen et al., Which is obtained by measuring the ammonium ion concentration of water to be treated by a diaphragm type ion electrode method or the like and calculating from the relationship between temperature and pH as shown in the following formula 2. The method can be adopted.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 この遊離亜硝酸濃度の0.75ppmという値は、上述したように全ての硝化細菌が阻害を受けると言われている遊離亜硝酸濃度の0.2ppmを上回り、アンモニアの亜硝酸化に支障のある濃度となってしまう。 This free nitrous acid concentration of 0.75 ppm exceeds the free nitrous acid concentration of 0.2 ppm, which is said to inhibit all nitrifying bacteria, as described above, and hinders the nitritation of ammonia. It becomes concentration.
 そこで、懸濁性有機物分離装置10で分離された190m/dの分離液のうち45m/dを第1移送経路R1を経由して、亜硝酸化装置30に供給する。つまり、汚泥嫌気性消化装置20の消化液10m/dを、45m/dの分離液で5.5倍に希釈する。すると、アンモニア態窒素が5000ppmもあった汚泥嫌気性消化装置20の消化液は、そのアンモニア態窒素が900ppmまで希釈される。 Therefore, the 45 m 3 / d of the separated liquid separated 190 m 3 / d in suspension organic material separating device 10 via the first transfer path R1, and supplies the nitrous acid apparatus 30. That is, the digestive liquid 10 m 3 / d of the sludge anaerobic digester 20 is diluted 5.5 times with a 45 m 3 / d separation liquid. Then, the digestive liquid of the sludge anaerobic digester 20 having 5000 ppm of ammonia nitrogen is diluted to 900 ppm.
 希釈後消化液に含まれる900ppmのアンモニア態窒素は、亜硝酸化装置30で亜硝酸化され、390ppmのアンモニア態窒素と、510ppmの亜硝酸態窒素となる。このとき、遊離アンモニア濃度は、9.7ppmであり、遊離亜硝酸濃度は0.13ppmとなる。このように、第1移送経路R1を経由して、分離液を亜硝酸化装置30に供給することで、遊離亜硝酸濃度を亜硝酸化に支障のない0.2ppm以下のレベルにすることができる。 900 ppm of ammonia nitrogen contained in the digested liquid after dilution is nitritized by the nitritation apparatus 30 to become 390 ppm of ammonia nitrogen and 510 ppm of nitrite nitrogen. At this time, the free ammonia concentration is 9.7 ppm, and the free nitrous acid concentration is 0.13 ppm. Thus, by supplying the separation liquid to the nitritation device 30 via the first transfer path R1, the concentration of free nitrous acid can be reduced to a level of 0.2 ppm or less that does not interfere with nitritation. it can.
 尚、汚泥嫌気性消化装置20の消化液10m/dを、30m/dの分離液で4倍に希釈すると、希釈後消化液に含まれるアンモニア態窒素は1250ppmとなる。この希釈後消化液を亜硝酸化装置30で亜硝酸化すると、543ppmのアンモニア態窒素と、707ppmの亜硝酸態窒素となる。このとき、遊離亜硝酸濃度は0.19ppmとなる。つまり、消化液を4倍希釈で遊離亜硝酸濃度の0.2ppm未満を達成できる。 In addition, if 10 m < 3 > / d of the digestion liquid of the sludge anaerobic digester 20 is diluted 4 times with the separation liquid of 30 m < 3 > / d, the ammonia nitrogen contained in the digested liquid after dilution will be 1250 ppm. When the digested liquid after this dilution is nitritized by the nitritation apparatus 30, it becomes 543 ppm of ammonia nitrogen and 707 ppm of nitrite nitrogen. At this time, the free nitrous acid concentration is 0.19 ppm. That is, it is possible to achieve a free nitrous acid concentration of less than 0.2 ppm by diluting the digestive fluid four times.
 しかし、遊離アンモニア濃度が13.5ppmであるので、硝酸菌が選択的に阻害を受けるといわれている遊離アンモニア濃度0.1~10ppmを達成するために、汚泥嫌気性消化装置20の消化液10m/dを、45m/dの分離液で5.5倍に希釈した。このように、消化液の希釈は、遊離亜硝酸濃度が0.2ppm未満となるように行うが、さらに遊離アンモニア濃度が0.1~10ppmの範囲になるように希釈するのが、より好ましい。 However, since the free ammonia concentration is 13.5 ppm, in order to achieve a free ammonia concentration of 0.1 to 10 ppm, which is said to be selectively inhibited by nitric acid bacteria, the digestive fluid of the sludge anaerobic digester 20 is 10 m. 3 / d was diluted 5.5 times with 45 m 3 / d separation. Thus, the digestive juice is diluted so that the concentration of free nitrous acid is less than 0.2 ppm, but it is more preferable to dilute so that the concentration of free ammonia is in the range of 0.1 to 10 ppm.
 独立栄養性脱窒装置40は、温度30℃、pH7.4で嫌気性に保たれ、亜硝酸化装置30の処理液を嫌気的アンモニア酸化処理によって脱窒する。上述したように、亜硝酸化処理装置30の処理液の遊離亜硝酸濃度は0.13ppmである。この0.13ppmという遊離亜硝酸濃度は、効率的な嫌気的アンモニア酸化処理の条件である遊離亜硝酸濃度を0.08ppmを上回るため、このままでは嫌気的アンモニア酸化処理の効率が低下してしまう。 The autotrophic denitrification apparatus 40 is kept anaerobic at a temperature of 30 ° C. and pH 7.4, and denitrifies the treatment liquid of the nitritation apparatus 30 by anaerobic ammonia oxidation treatment. As described above, the concentration of free nitrous acid in the treatment liquid of the nitritation treatment apparatus 30 is 0.13 ppm. This free nitrous acid concentration of 0.13 ppm exceeds the free nitrous acid concentration, which is a condition for efficient anaerobic ammonia oxidation treatment, by 0.08 ppm. Therefore, the efficiency of the anaerobic ammonia oxidation treatment is lowered as it is.
 そこで、懸濁性有機物分離装置10で分離された分離液の残りの135m/dうち85m/dを第2移送経路R2を経由して、独立栄養性脱窒装置40に供給する。つまり、亜硝酸化装置30の55m/dの消化液を、85m/dの分離液で約2.55倍に希釈する。すると、亜硝酸態窒素が510ppmもあった亜硝酸化処理装置30の処理液は、その亜硝酸態窒素が200ppmまで希釈される。このとき遊離亜硝酸濃度は、0.053ppmとなり、効率的な嫌気的アンモニア酸化処理の条件である0.08ppm未満となる。尚、1.7倍希釈で亜硝酸態窒素が300ppmとなって、このとき遊離亜硝酸濃度は0.079ppmとなり、0.08ppm未満となるが、より効率的に処理できる0.06ppm未満となるように希釈した。 Therefore, the remaining 135m 3 / d of which 85 m 3 / d of separating liquid separated in suspension organic material separating device 10 via the second transfer path R2, and supplies the autotrophic denitrification device 40. That is, the 55 m 3 / d digested liquid of the nitritation apparatus 30 is diluted about 2.55 times with the 85 m 3 / d separated liquid. Then, the nitrite nitrogen is diluted to 200 ppm in the treatment liquid of the nitrite treatment apparatus 30 having 510 ppm of nitrite nitrogen. At this time, the concentration of free nitrous acid is 0.053 ppm, which is less than 0.08 ppm, which is a condition for efficient anaerobic ammonia oxidation treatment. In addition, nitrous acid nitrogen becomes 300 ppm by 1.7 times dilution, At this time, free nitrous acid concentration will be 0.079 ppm and will be less than 0.08 ppm, but it will be less than 0.06 ppm which can be processed more efficiently. Diluted.
 図8には、図3で説明した第三の態様の処理システムに対して数値シミュレーションを行った結果が示されている。当該処理システムは、図3で説明した第三の態様の処理システムである。当該処理システムには、200m/dの被処理水が流入する。懸濁性有機物分離装置10は、被処理水に含まれる懸濁性有機物20m/dを分離する。尚、懸濁性有機物分離装置10の180m/dの分離液のアンモニア態窒素及び亜硝酸態窒素の濃度は便宜上夫々0ppmとする。 FIG. 8 shows the result of a numerical simulation performed on the processing system of the third aspect described in FIG. The processing system is the processing system of the third aspect described in FIG. 200 m 3 / d treated water flows into the treatment system. The suspending organic matter separation device 10 separates the suspending organic matter 20 m 3 / d contained in the water to be treated. The concentration of ammonia nitrogen and nitrite nitrogen in the 180 m 3 / d separation liquid of the suspending organic matter separation apparatus 10 is 0 ppm for convenience.
 懸濁性有機物分離装置10で分離された懸濁性有機物は、汚泥嫌気性消化装置20で嫌気性消化される。その消化液には、5000ppmのアンモニア態窒素が含まれる。 The suspended organic matter separated by the suspended organic matter separation device 10 is anaerobically digested by the sludge anaerobic digester 20. The digestive fluid contains 5000 ppm of ammonia nitrogen.
 亜硝酸化装置30は、温度30℃、pH7.4で好気性に保たれ、汚泥嫌気性消化装置20の嫌気性消化液に含まれるアンモニアを、アンモニアと亜硝酸のモル比が約1:1.3になるように亜硝酸化する。従って、5000ppmのアンモニア態窒素をそのまま亜硝酸化すると、2160ppmのアンモニア態窒素と、2840ppmの亜硝酸態窒素となる。このとき、遊離アンモニア濃度は、53.8ppmであり、遊離亜硝酸濃度は0.75ppmとなる。 The nitritation apparatus 30 is kept aerobic at a temperature of 30 ° C. and pH 7.4, and ammonia contained in the anaerobic digestion liquid of the sludge anaerobic digestion apparatus 20 has a molar ratio of ammonia to nitrous acid of about 1: 1. Nitrite to 3. Therefore, when nitrifying 5000 ppm of ammonia nitrogen as it is, it becomes 2160 ppm of ammonia nitrogen and 2840 ppm of nitrite nitrogen. At this time, the free ammonia concentration is 53.8 ppm and the free nitrous acid concentration is 0.75 ppm.
 この遊離亜硝酸濃度の0.75ppmという値は、上述したように全ての硝化細菌が阻害を受けると言われている遊離亜硝酸濃度の0.2ppmを上回り、アンモニアの亜硝酸化に支障のある濃度となってしまう。 This free nitrous acid concentration of 0.75 ppm exceeds the free nitrous acid concentration of 0.2 ppm, which is said to inhibit all nitrifying bacteria, as described above, and hinders the nitritation of ammonia. It becomes concentration.
 そこで、懸濁性有機物分離装置10で分離された180m/dの分離液のうち90m/dを第1移送経路R1を経由して、亜硝酸化装置30に供給する。つまり、汚泥嫌気性消化装置20の消化液20m/dを、90m/dの分離液で5.5倍に希釈する。すると、汚泥嫌気性消化装置20の消化液のアンモニア態窒素は5000ppmから900ppmまで希釈される。 Accordingly, the 90m 3 / d of the separated liquid separated 180 m 3 / d in suspension organic material separating device 10 via the first transfer path R1, and supplies the nitrous acid apparatus 30. That is, the digestive liquid 20m 3 / d of the sludge anaerobic digester 20 is diluted 5.5 times with a 90 m 3 / d separation liquid. Then, the ammonia nitrogen in the digestive liquid of the sludge anaerobic digester 20 is diluted from 5000 ppm to 900 ppm.
 希釈後消化液に含まれる900ppmのアンモニア態窒素は、亜硝酸化装置30で亜硝酸化され、390ppmのアンモニア態窒素と、510ppmの亜硝酸態窒素となる。このとき、遊離アンモニア濃度は、9.7ppmであり、遊離亜硝酸濃度は0.13ppmとなる。このように、第1移送経路R1を経由して、分離液を亜硝酸化装置30に供給することで、遊離亜硝酸濃度を亜硝酸化に支障のない0.2ppm未満にすることができる。 900 ppm of ammonia nitrogen contained in the digested liquid after dilution is nitritized by the nitritation apparatus 30 to become 390 ppm of ammonia nitrogen and 510 ppm of nitrite nitrogen. At this time, the free ammonia concentration is 9.7 ppm, and the free nitrous acid concentration is 0.13 ppm. In this way, by supplying the separation liquid to the nitritation device 30 via the first transfer path R1, the free nitrous acid concentration can be reduced to less than 0.2 ppm that does not interfere with nitritation.
 独立栄養性脱窒装置40は、温度30℃、pH7.4で嫌気性に保たれ、亜硝酸化装置30の処理液を嫌気的アンモニア酸化処理によって脱窒する。上述したように、亜硝酸化処理装置30の処理液の遊離亜硝酸濃度は0.13ppmである。この0.13ppmという遊離亜硝酸濃度は、効率的な嫌気的アンモニア酸化処理の条件である遊離亜硝酸濃度を0.06ppmを上回るため、このままでは嫌気的アンモニア酸化処理の効率が低下してしまう。 The autotrophic denitrification apparatus 40 is kept anaerobic at a temperature of 30 ° C. and pH 7.4, and denitrifies the treatment liquid of the nitritation apparatus 30 by anaerobic ammonia oxidation treatment. As described above, the concentration of free nitrous acid in the treatment liquid of the nitritation treatment apparatus 30 is 0.13 ppm. This free nitrous acid concentration of 0.13 ppm exceeds the free nitrous acid concentration, which is a condition for efficient anaerobic ammonia oxidation treatment, by more than 0.06 ppm, so that the efficiency of the anaerobic ammonia oxidation treatment is lowered as it is.
 亜硝酸化処理装置30の処理液は、亜硝酸態窒素が510ppmから200ppmとなるまで希釈すると、このとき遊離亜硝酸濃度は、0.053ppmとなり、効率的な嫌気的アンモニア酸化処理の条件である0.06ppm未満を達成できる。そのためには、亜硝酸化装置30の処理液110m/dを、約2.55倍に希釈する必要がある。従って、処理液の希釈のために170m/dの分離液が必要である。しかし、懸濁性有機物分離装置10で分離された分離液は90m/dしかない。 When the treatment liquid of the nitritation treatment apparatus 30 is diluted until nitrite nitrogen is reduced from 510 ppm to 200 ppm, the free nitrous acid concentration at this time becomes 0.053 ppm, which is a condition for efficient anaerobic ammonia oxidation treatment. Less than 0.06 ppm can be achieved. For this purpose, it is necessary to dilute the treatment liquid 110 m 3 / d of the nitritation apparatus 30 about 2.55 times. Therefore, a separation liquid of 170 m 3 / d is necessary for dilution of the treatment liquid. However, the separation liquid separated by the suspending organic matter separation device 10 is only 90 m 3 / d.
 そこで、懸濁性有機物分離装置10で分離された分離液の残りの90m/dを第2移送経路R2を経由して、独立栄養性脱窒装置40に供給するとともに、独立栄養性脱窒装置40の脱窒液のうち80m/dを第3移送経路R3を経由して、独立栄養性脱窒処理装置40に返送する。 Therefore, the remaining 90 m 3 / d of the separation liquid separated by the suspending organic matter separation device 10 is supplied to the autotrophic denitrification device 40 via the second transfer path R2, and the autotrophic denitrification is also performed. Of the denitrification liquid in the apparatus 40, 80 m 3 / d is returned to the autotrophic denitrification apparatus 40 via the third transfer path R3.
 これによって、亜硝酸化装置30の110m/dの処理液を、第1移送経路R1を経由して供給された90m/dの分離液と、第3移送経路R3を経由して供給された80m/dの脱窒液とで、約2.55倍に希釈することができる。すると、亜硝酸化処理装置30の処理液の亜硝酸態窒素は510ppmから200ppmまで希釈される。このとき遊離亜硝酸濃度は、0.053ppmとなり、効率的な嫌気的アンモニア酸化処理の条件である0.06ppm未満にすることができる。 As a result, the 110 m 3 / d treatment liquid of the nitritation apparatus 30 is supplied via the 90 m 3 / d separation liquid supplied via the first transfer path R 1 and the third transfer path R 3. Furthermore, it can be diluted about 2.55 times with a denitrification solution of 80 m 3 / d. Then, the nitrite nitrogen in the treatment liquid of the nitritation treatment apparatus 30 is diluted from 510 ppm to 200 ppm. At this time, the concentration of free nitrous acid is 0.053 ppm, and can be made less than 0.06 ppm, which is a condition for efficient anaerobic ammonia oxidation treatment.
 尚、ここでは、亜硝酸化装置30の110m/dの消化液を、第1移送経路R1を経由して供給された90m/dの分離液と、第3移送経路R3を経由して供給された90m/dの脱窒液とで、約2.55倍に希釈する場合について説明したが、亜硝酸化装置30の処理液の希釈に使用する分離液及び脱窒液の配分は、任意であり、例えば、亜硝酸化装置30の110m/dの処理液を、分離液を用いずに、第3移送経路R3を経由して供給された170m/dの脱窒液のみで希釈するように構成してもよい。また、第四の態様の処理システムのように、独立栄養性脱窒装置40の後段に従属栄養性脱窒装置50を備える処理システムでは、従属栄養性脱窒装置50の脱窒液を、亜硝酸化装置30の処理液の希釈に用いてもよい。 Here, the 110 m 3 / d digested liquid of the nitritation apparatus 30 is passed through the 90 m 3 / d separation liquid supplied via the first transfer path R 1 and the third transfer path R 3. The case of diluting about 2.55 times with the supplied 90 m 3 / d denitrification liquid has been described, but the distribution of the separation liquid and denitrification liquid used for dilution of the treatment liquid of the nitritation apparatus 30 is as follows. For example, only 110 m 3 / d denitrification liquid supplied through the third transfer path R 3 without using a separation liquid is used as the 110 m 3 / d treatment liquid of the nitritation apparatus 30. You may comprise so that it may be diluted with. Further, in the treatment system including the heterotrophic denitrification device 50 in the subsequent stage of the autotrophic denitrification device 40 as in the treatment system of the fourth aspect, the denitrification liquid of the heterotrophic denitrification device 50 is sublimated. You may use for the dilution of the process liquid of the nitrification apparatus 30. FIG.
 上述した実施形態は、何れも本発明の一例であり、該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜設計可能であることはいうまでもない。 Each of the above-described embodiments is an example of the present invention, and the present invention is not limited by the description. The specific configuration of each part can be appropriately designed within the range where the effects of the present invention are exhibited. Needless to say.
10:懸濁性有機物分離装置
20:汚泥嫌気性消化装置
30:亜硝酸化装置
40:独立栄養性脱窒装置
50:従属栄養性脱窒装置
60:生物処理装置
R1:第1移送経路
R2:第2移送経路
R3:第3移送経路
R4:第4移送経路
R5:第5移送経路
10: Suspended organic matter separation device 20: Sludge anaerobic digester 30: Nitrite device 40: Autotrophic denitrification device 50: Heterotrophic denitrification device 60: Biological treatment device R1: First transfer route R2: Second transfer route R3: Third transfer route R4: Fourth transfer route R5: Fifth transfer route

Claims (7)

  1.  懸濁性有機物を含有する被処理水から懸濁性有機物を分離する懸濁性有機物分離装置と、前記懸濁性有機物分離装置により分離された懸濁性有機物を嫌気性消化する汚泥嫌気性消化装置と、前記汚泥嫌気性消化装置の消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化装置と、前記亜硝酸化装置の処理液に含まれるアンモニアを嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに酸化する独立栄養性脱窒装置と、を有する懸濁性有機物含有廃水の処理システムであって、
     前記懸濁性有機物分離装置で懸濁性有機物が除去された分離液または当該分離液を生物処理した処理液を前記亜硝酸化装置に供給する第1移送経路を備えていることを特徴とする懸濁性有機物含有廃水の処理システム。
    Suspended organic matter separation device for separating suspended organic matter from water to be treated containing suspended organic matter, and sludge anaerobic digestion for anaerobic digestion of suspended organic matter separated by the suspended organic matter separation device Apparatus, nitritation apparatus that oxidizes ammonia contained in digestion liquid of sludge anaerobic digestion apparatus to nitrous acid under aerobic conditions, and ammonia contained in treatment liquid of nitritation apparatus under anaerobic conditions An autotrophic denitrification device that oxidizes to nitrogen gas by autotrophic denitrifying microorganisms, and a wastewater-containing wastewater treatment system comprising:
    It is provided with the 1st transfer path which supplies the separation liquid from which suspended organic matter was removed with the suspension organic substance separation device, or the processing liquid which carried out the biological treatment of the separation liquid to the nitritation device. Suspended organic matter-containing wastewater treatment system.
  2.  前記懸濁性有機物分離装置の分離液または当該分離液を生物処理した処理液を前記独立栄養性脱窒装置に供給する第2移送経路を備えていることを特徴とする請求項1記載の懸濁性有機物含有廃水の処理システム。 2. The suspension according to claim 1, further comprising a second transfer path for supplying a separation liquid of the suspending organic matter separation apparatus or a treatment liquid obtained by biological treatment of the separation liquid to the autotrophic denitrification apparatus. Wastewater treatment system containing turbid organic substances.
  3.  前記独立栄養性脱窒装置で処理した脱窒液を前記独立栄養性脱窒装置に返送する第3移送経路を備えていることを特徴とする請求項1または2記載の懸濁性有機物含有廃水の処理システム。 The wastewater containing suspended organic matter according to claim 1 or 2, further comprising a third transfer path for returning the denitrification liquid treated by the autotrophic denitrification apparatus to the autotrophic denitrification apparatus. Processing system.
  4.  前記独立栄養性脱窒処理装置の脱窒液に含有する硝酸を嫌気条件下で従属栄養性脱窒微生物によって窒素ガスに還元する従属栄養性脱窒装置を備え、前記従属栄養性脱窒装置で処理した脱窒液を前記独立栄養性脱窒装置に返送する第4移送経路を備えていることを特徴とする請求項1または2記載の懸濁性有機物含有廃水の処理システム。 A heterotrophic denitrification device for reducing nitric acid contained in the denitrification solution of the autotrophic denitrification treatment device to nitrogen gas by heterotrophic denitrification microorganisms under anaerobic conditions; The suspension system for suspended organic matter-containing wastewater according to claim 1 or 2, further comprising a fourth transfer path for returning the treated denitrification liquid to the autotrophic denitrification apparatus.
  5.  懸濁性有機物を含有する被処理水から懸濁性有機物を分離する懸濁性有機物分離処理と、前記懸濁性有機物分離処理により分離された懸濁性有機物を嫌気性消化する汚泥嫌気性消化処理と、前記汚泥嫌気性消化処理による消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化処理と、前記亜硝酸化処理による処理液に含まれるアンモニアを嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに酸化する独立栄養性脱窒処理と、を行なう懸濁性有機物含有廃水の処理方法であって、
     前記懸濁性有機物分離処理で懸濁性有機物が除去された分離液または当該分離液が生物処理された処理液を、前記亜硝酸化処理と前記独立栄養性脱窒処理に移送し、それぞれの処理工程での遊離亜硝酸濃度を調節することを特徴とする懸濁性有機物含有廃水の処理方法。
    Suspended organic matter separation treatment for separating suspended organic matter from water to be treated containing suspended organic matter, and sludge anaerobic digestion for anaerobically digesting suspended organic matter separated by the suspended organic matter separation treatment Nitrification treatment that oxidizes ammonia contained in the digestion liquid by the sludge anaerobic digestion treatment to nitrous acid under aerobic conditions, and ammonia contained in the treatment liquid by the nitritation treatment under anaerobic conditions A method of treating wastewater containing suspended organic matter, comprising: an autotrophic denitrification treatment that oxidizes to nitrogen gas by an autotrophic denitrifying microorganism,
    The separation liquid from which the suspended organic substances have been removed by the suspension organic substance separation treatment or the treatment liquid in which the separation liquid has been biologically treated is transferred to the nitritation treatment and the autotrophic denitrification treatment, A method for treating wastewater containing suspended organic matter, characterized by adjusting the concentration of free nitrous acid in the treatment step.
  6.  懸濁性有機物を含有する被処理水から懸濁性有機物を分離する懸濁性有機物分離処理と、前記懸濁性有機物分離処理により分離された懸濁性有機物を嫌気性消化する汚泥嫌気性消化処理と、前記汚泥嫌気性消化処理による消化液に含まれるアンモニアを好気条件下で亜硝酸に酸化する亜硝酸化処理と、前記亜硝酸化処理による処理液に含まれるアンモニアを嫌気条件下で独立栄養性脱窒微生物によって窒素ガスに酸化する独立栄養性脱窒処理と、を行なう懸濁性有機物含有廃水の処理方法であって、
     前記懸濁性有機物分離処理で懸濁性有機物が除去された分離液または当該分離液が生物処理された処理液を前記亜硝酸化処理に移送し、前記処理液または前記分離液と前記処理液の双方を、前記独立栄養性脱窒処理に移送し、それぞれの処理工程での遊離亜硝酸濃度を調節することを特徴とする懸濁性有機物含有廃水の処理方法。
    Suspended organic matter separation treatment for separating suspended organic matter from water to be treated containing suspended organic matter, and sludge anaerobic digestion for anaerobically digesting suspended organic matter separated by the suspended organic matter separation treatment Nitrification treatment that oxidizes ammonia contained in the digestion liquid by the sludge anaerobic digestion treatment to nitrous acid under aerobic conditions, and ammonia contained in the treatment liquid by the nitritation treatment under anaerobic conditions A method of treating wastewater containing suspended organic matter, comprising: an autotrophic denitrification treatment that oxidizes to nitrogen gas by an autotrophic denitrifying microorganism,
    The separation liquid from which suspended organic substances have been removed by the suspension organic substance separation treatment or the treatment liquid obtained by biologically treating the separation liquid is transferred to the nitritation treatment, and the treatment liquid or the separation liquid and the treatment liquid are transferred to the nitritation treatment. Both of these are transferred to the autotrophic denitrification treatment, and the concentration of free nitrous acid in each treatment step is adjusted.
  7.  前記亜硝酸化処理の工程は遊離亜硝酸濃度を0.2ppm未満に調整し、前記独立栄養性脱窒処理の工程は遊離亜硝酸濃度を0.08ppm未満に調節することを特徴とする請求項5または6記載の懸濁性有機物含有廃水の処理方法。 The nitrite treatment step adjusts the free nitrous acid concentration to less than 0.2 ppm, and the autotrophic denitrification treatment step adjusts the free nitrous acid concentration to less than 0.08 ppm. 7. A method for treating wastewater containing suspended organic substances according to 5 or 6.
PCT/JP2013/071906 2012-08-24 2013-08-14 System and method for treating wastewater containing suspended organic substance WO2014030583A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380024713.5A CN104271516A (en) 2012-08-24 2013-08-14 System and method for treating wastewater containing suspended organic substance
PH12014502879A PH12014502879A1 (en) 2012-08-24 2014-12-23 System and method for treating wastewater containing suspended organic substances
IN10992DEN2014 IN2014DN10992A (en) 2012-08-24 2014-12-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012184808A JP5968723B2 (en) 2012-08-24 2012-08-24 Suspended organic matter-containing wastewater treatment system and treatment method
JP2012-184808 2012-08-24

Publications (1)

Publication Number Publication Date
WO2014030583A1 true WO2014030583A1 (en) 2014-02-27

Family

ID=50149892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071906 WO2014030583A1 (en) 2012-08-24 2013-08-14 System and method for treating wastewater containing suspended organic substance

Country Status (5)

Country Link
JP (1) JP5968723B2 (en)
CN (1) CN104271516A (en)
IN (1) IN2014DN10992A (en)
PH (1) PH12014502879A1 (en)
WO (1) WO2014030583A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077954A (en) * 2014-10-15 2016-05-16 新日鐵住金株式会社 Biological nitrogen removal method
CN109628309A (en) * 2018-12-28 2019-04-16 江苏大学 A kind of separation method of saline-alkali tolerant denitrifying microorganism bacterial strain

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105366889B (en) * 2015-11-26 2018-02-06 中国市政工程华北设计研究总院有限公司 A kind of town sewage high standard denitrification dephosphorization system without additional carbon
JP6872743B2 (en) * 2016-07-13 2021-05-19 西松建設株式会社 Methane gas production method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117594A (en) * 2001-10-12 2003-04-22 Ebara Corp Treating method and treating equipment for organic sewage
JP2003245689A (en) * 2002-02-21 2003-09-02 Kurita Water Ind Ltd Method and apparatus for treating wastewater
JP2010005554A (en) * 2008-06-27 2010-01-14 Ebara Corp Removal apparatus of ammoniacal nitrogen
JP2012024707A (en) * 2010-07-23 2012-02-09 Swing Corp Denitrification method and denitrification device for ammoniacal nitrogen waste liquid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101244883B (en) * 2008-03-21 2011-01-12 北京工业大学 High-efficiency low-consumption retexture method for urban sewage
CN101967030B (en) * 2010-09-26 2012-01-04 山东大学 Integrated filler ammoxidation internal circulation short-distance denitrification process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117594A (en) * 2001-10-12 2003-04-22 Ebara Corp Treating method and treating equipment for organic sewage
JP2003245689A (en) * 2002-02-21 2003-09-02 Kurita Water Ind Ltd Method and apparatus for treating wastewater
JP2010005554A (en) * 2008-06-27 2010-01-14 Ebara Corp Removal apparatus of ammoniacal nitrogen
JP2012024707A (en) * 2010-07-23 2012-02-09 Swing Corp Denitrification method and denitrification device for ammoniacal nitrogen waste liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077954A (en) * 2014-10-15 2016-05-16 新日鐵住金株式会社 Biological nitrogen removal method
CN109628309A (en) * 2018-12-28 2019-04-16 江苏大学 A kind of separation method of saline-alkali tolerant denitrifying microorganism bacterial strain

Also Published As

Publication number Publication date
IN2014DN10992A (en) 2015-09-25
JP5968723B2 (en) 2016-08-10
JP2014042857A (en) 2014-03-13
CN104271516A (en) 2015-01-07
PH12014502879A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
KR100327154B1 (en) High Concentrated Organic Wastewater Treatment Process Using Bio-maker
CN107108293B (en) Method and apparatus for removing nitrogen from nitrogen-containing wastewater
WO2010150691A1 (en) Method for treating wastewater containing ammonia nitrogen
WO2013084973A1 (en) Processing system and processing method for nitrogen-containing organic waste water
JP4632135B2 (en) Method and apparatus for treating ammonia-containing liquid
JP4872171B2 (en) Biological denitrification equipment
JP6445855B2 (en) Nitrogen treatment method and nitrogen treatment apparatus
WO2014030583A1 (en) System and method for treating wastewater containing suspended organic substance
CN104108834A (en) Method for carrying out nitrogen and phosphorus removal on municipal sewage
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP5858769B2 (en) Suspended organic matter-containing wastewater treatment system and treatment method
KR20140063454A (en) Apparatus and method for treatment wastewater
JP5858763B2 (en) Nitrogen-containing organic wastewater treatment system and treatment method
JP4618419B2 (en) Method for oxidizing nitrous acid-containing liquid
JP4835906B2 (en) Treatment equipment for ammonia-containing liquid
CN105016467B (en) A kind of device for landfill leachate treatment
JP4618420B2 (en) Method for oxidizing nitrous acid-containing liquid
JP2005329399A (en) Method and apparatus for removing nitrogen
JP3858271B2 (en) Wastewater treatment method and apparatus
KR20160024011A (en) Apparatus for Wastewater treatment Having Returning Device of Fluidized Carrier
Elektorowicz et al. Novel anammox membrane electro-bioreactor
JP6651298B2 (en) Wastewater treatment method and wastewater treatment device for wastewater containing high salt concentration
KR100202066B1 (en) Wastewater treatment method using biological 3 step digestion process in one reactor
JP2001170681A (en) Method for treating ammonia and phosphorus-containing waste water and device for the same
KR101236693B1 (en) Apparatus for sewage and wastewater treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831629

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201408070

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831629

Country of ref document: EP

Kind code of ref document: A1