JPH09122682A - Method for treating waste water - Google Patents

Method for treating waste water

Info

Publication number
JPH09122682A
JPH09122682A JP28201095A JP28201095A JPH09122682A JP H09122682 A JPH09122682 A JP H09122682A JP 28201095 A JP28201095 A JP 28201095A JP 28201095 A JP28201095 A JP 28201095A JP H09122682 A JPH09122682 A JP H09122682A
Authority
JP
Japan
Prior art keywords
sludge
biological
anaerobic
tank
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28201095A
Other languages
Japanese (ja)
Other versions
JP3172965B2 (en
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP28201095A priority Critical patent/JP3172965B2/en
Publication of JPH09122682A publication Critical patent/JPH09122682A/en
Application granted granted Critical
Publication of JP3172965B2 publication Critical patent/JP3172965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To highly purify waste water such as sewage water and to decrease the amt. of generation of excess sludge by a method wherein after a raw sludge separated before biological treatment or the raw sludge and a biological sludge extracted from a biological treatment process is methane-fermented, it is oxidized with ozone and is returned to an anaerobic part. SOLUTION: At first, solid-liq. separation of sewage water 7 is performed in a sedimentation tank 8 and methane fermentation of the precipitated raw sludge 1 is performed in an anaerobic digestion part 2 to reduce biologically the vol. of the sludge and then, the digested residue 3 is oxidized with ozone in an ozone oxidation part 4. The biological sludge is solubilized by an action destroying the cell walls of a fungi and making org. substances into low mol.wt. to make the cell walls of the fungi and the org. substances into BOD. On the other hand, the SS-removed water in the sedimentation tank at the beginning is made to flow into an anaerobic tank 5, where biological denitrification is performed and a part 13 of nitrification-treated water processed once to an aerobic tank 9 is circulated into the anaerobic tank 5 and after water to be treated in the denitrification tank 5 is made to flow into the aerobic tank 9, the active sludge is separated by sedimentation in the final sedimentation tank 10 to obtain a treated water 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、下水等の汚水を高
度に浄化でき、かつ余剰汚泥発生量が著しく少なくでき
る生物処理技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biological treatment technology capable of highly purifying sewage such as sewage and significantly reducing the amount of excess sludge generated.

【0002】[0002]

【従来の技術】下水等の汚水を活性汚泥法等の生物処理
することにより、生物処理工程から発生する大量の余剰
生物汚泥及び下水等の汚水から分離される生汚泥は共に
ますます増加し、これら余剰生物汚泥及び生汚泥をいか
に処理処分するかが現在生物処理の最大の問題になって
いる。従来これらの汚泥は、ポリマ等の脱水助剤を添加
した後、脱水機で脱水し、焼却処分している。しかしこ
れらの汚泥の大量化にともない、脱水助剤費、脱水助剤
添加費、脱水機の増設や大型化、焼却装置の大規模化等
が大きい負担となってきている。また、汚泥焼却後の灰
の多く、その処分にも苦慮している。
2. Description of the Related Art A large amount of excess biological sludge generated from biological treatment processes and raw sludge separated from wastewater such as sewage are increased by subjecting sewage and other sewage to biological treatment such as activated sludge. How to treat these surplus biological sludge and raw sludge is the biggest problem of biological treatment at present. Conventionally, these sludges are dehydrated by a dehydrator and then incinerated after adding a dehydrating auxiliary such as a polymer. However, with the increase in the amount of these sludges, the cost of the dehydrating aid, the cost of adding the dehydrating aid, the addition and enlargement of the dehydrator, and the large scale of the incinerator are becoming a heavy burden. In addition, much of the ash after incineration of sludge and the disposition of it is difficult.

【0003】従来より、汚泥減量化法として嫌気性消化
法であるメタン発酵法があるが、メタン発酵槽内で長い
滞留を必要とする割りには汚泥減量効果が劣る。また、
生物処理工程からの余剰生物汚泥をオゾン酸化し、可溶
化した後、好気性生物処理槽に供給して減量化する方法
が特開平7−116685号公報に記載されているが、
オゾンコストが高額になり実用性に乏しい。また前記特
開平7−116685号公報には、余剰生物汚泥以上に
発生する生汚泥の減容化方法についてはなんらの開示も
されていない。
Conventionally, there is a methane fermentation method which is an anaerobic digestion method as a sludge weight reduction method, but the sludge weight reduction effect is inferior in comparison with the long retention time required in the methane fermentation tank. Also,
A method of ozone-oxidizing surplus biological sludge from a biological treatment process, solubilizing it, and then supplying it to an aerobic biological treatment tank to reduce the amount is described in JP-A-7-116685.
Ozone cost is high and it is not practical. Further, the above-mentioned Japanese Patent Application Laid-Open No. 7-116685 does not disclose any method for reducing the volume of raw sludge produced in excess of excess biological sludge.

【0004】[0004]

【発明が解決しようとする課題】本発明は、下水等の有
機性汚水の処理設備から発生する生汚泥、生物汚泥の両
者を効果的に減容化でき、かつ汚水処理水質を向上させ
ることが可能な新技術を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention can effectively reduce the volume of both raw sludge and biological sludge generated from a facility for treating organic wastewater such as sewage, and improve the quality of treated wastewater. The challenge is to provide possible new technologies.

【0005】[0005]

【課題を解決するための手段】本発明は、生物学的な嫌
気性消化法とオゾン酸化による汚泥の可溶化を新規な態
様で結合し、生汚泥、余剰汚泥の両者を効果的に減容化
可能な新技術を見出し、完成された汚水処理方法であ
る。すなわち、(1)汚水の有機性SSを分離した後、
嫌気好気活性汚泥法により生物処理し、前記生物処理工
程からの活性汚泥を固液分離し生物処理水を得る汚水処
理方法において、前記生物処理前に分離した生汚泥を、
または前記生汚泥と前記生物処理工程から引き抜かれた
生物汚泥とを、メタン発酵せしめた後、オゾン酸化し、
前記生物処理工程の嫌気部に返送することを特徴とする
汚水処理方法。
The present invention combines biological anaerobic digestion method and solubilization of sludge by ozone oxidation in a novel manner to effectively reduce the volume of both raw sludge and excess sludge. It is a completed sewage treatment method by finding a new technology that can be applied. That is, (1) after separating the organic SS of wastewater,
Biological treatment by anaerobic aerobic activated sludge method, in the sewage treatment method of obtaining a biologically treated water solid-liquid separation of the activated sludge from the biological treatment step, the raw sludge separated before the biological treatment,
Alternatively, the raw sludge and the biological sludge withdrawn from the biological treatment step are methane-fermented and then ozone-oxidized,
A sewage treatment method comprising returning to the anaerobic part of the biological treatment step.

【0006】本発明にいう嫌気好気活性汚泥法とは、嫌
気部と好気部の間で活性汚泥を循環させて、汚水を活性
汚泥と接触させる方法を意味する。嫌気部で糸状菌の発
生を抑制し活性汚泥のバルキングを防止する方法、生物
学的硝化脱窒素法または生物脱リン法の3方法がこれに
相当する。ここで、嫌気部とは酸素含有ガスで曝気しな
い嫌気的雰囲気の帯域を意味する。例えば生物学的硝化
脱窒素法における脱窒素部は嫌気部であり、または生物
脱リン法における嫌気的リン吐き出し部が嫌気部に相当
する。なお、以下の説明において、やはり嫌気部である
メタン発酵を行う部分は嫌気性消化部として、生物学的
硝化脱窒素法における脱窒素部や生物脱リン法における
嫌気部と区別する。
The anaerobic / aerobic activated sludge method in the present invention means a method of circulating activated sludge between an anaerobic part and an aerobic part to bring wastewater into contact with the activated sludge. This corresponds to three methods of suppressing the generation of filamentous fungi in the anaerobic part and preventing bulking of activated sludge, the biological nitrification denitrification method or the biological dephosphorization method. Here, the anaerobic part means a zone of an anaerobic atmosphere in which the gas containing oxygen is not aerated. For example, the denitrification part in the biological nitrification denitrification method is the anaerobic part, or the anaerobic phosphorus discharge part in the biological dephosphorization method corresponds to the anaerobic part. In the following description, the portion of the anaerobic part where methane fermentation is performed is an anaerobic digestion part, which is distinguished from the denitrification part in the biological nitrification and denitrification method and the anaerobic part in the biological dephosphorization method.

【0007】[0007]

【発明の実施の形態】図1を参照して、下水の嫌気好気
法による生物学的硝化脱窒素法を例に作用原理を説明す
る。図1において、下水7を最初沈殿池8において固液
分離し、沈殿した生汚泥1を嫌気性消化部2において先
ずメタン発酵して汚泥を生物学的に減容化した後、嫌気
性微生物菌体と原汚泥の未消化残渣からなる消化残渣3
をオゾン酸化部4においてオゾン酸化することにより、
菌体の細胞壁を破壊し、有機物を低分子化する等の作用
によって生物汚泥を可溶化し、菌体の細胞壁や有機物を
BOD化する。そして、前記BOD成分を含む可溶化汚
泥は、嫌気部で糸状菌の発生を抑制し活性汚泥のバルキ
ングを防止する活性汚泥法の嫌気部に、あるいは生物学
的硝化脱窒素法における脱窒素部に、あるいはまた生物
処理が生物脱リン法におけるリン吐き出し反応部に供給
するというのが本発明の技術思想である。
BEST MODE FOR CARRYING OUT THE INVENTION The principle of operation will be described with reference to FIG. 1 by taking a biological nitrification and denitrification method by an anaerobic aerobic method of sewage as an example. In FIG. 1, the sewage 7 is first subjected to solid-liquid separation in a settling tank 8 and the precipitated raw sludge 1 is first subjected to methane fermentation in the anaerobic digestion section 2 to biologically reduce the volume of the sludge, and then the anaerobic microbial bacteria. Digestion residue 3 consisting of undigested residue of body and raw sludge
By ozone-oxidizing the
By destroying the cell wall of the microbial cell and lowering the molecular weight of the organic matter, the biological sludge is solubilized, and the cell wall of the microbial cell and the organic matter are converted into BOD. The solubilized sludge containing the BOD component is used in the anaerobic part of the activated sludge method that suppresses the generation of filamentous fungi in the anaerobic part and prevents bulking of the activated sludge, or in the denitrification part of the biological nitrification and denitrification method. Alternatively, it is the technical idea of the present invention that the biological treatment supplies the phosphorus discharge reaction section in the biological dephosphorization method.

【0008】なお、生物処理工程から引き抜かれた生物
汚泥6は生汚泥1と共に嫌気性消化部2において消化さ
れるか、または生物汚泥6は生汚泥の嫌気性消化残渣3
と共にオゾン酸化部4においてオゾン酸化される。な
お、生物汚泥6は生汚泥1に比較し嫌気性消化され難い
ので、生汚泥1の嫌気性消化残渣3と混合してオゾン酸
化4するようにしても良い。
The biological sludge 6 extracted from the biological treatment process is digested together with the raw sludge 1 in the anaerobic digestion section 2, or the biological sludge 6 is the anaerobic digestion residue 3 of the raw sludge.
At the same time, the ozone is oxidized in the ozone oxidation unit 4. Since the biological sludge 6 is less likely to be anaerobically digested than the raw sludge 1, it may be mixed with the anaerobic digestion residue 3 of the raw sludge 1 for ozone oxidation 4.

【0009】下水7は、一方最初沈殿池8においてSS
を沈降させるか、または脱窒素部5の前に粗ろ材充填層
を設けてろ過によりSSを除去した後、SS除去水は嫌
気部5に流入し、生物学的脱窒素される。また一旦好気
部9まで進んだ硝化処理水の一部13も嫌気部5に循環
される。前記脱窒素部5の被処理水は、次に好気部9に
流入し、生物学的に硝化された後最終沈殿池10で活性
汚泥が沈降分離され処理水11が得られる。
On the other hand, the sewage 7 is first SS in the sedimentation tank 8.
Or to remove the SS by filtration by providing a coarse filter medium packed layer before the denitrification section 5, the SS-removed water flows into the anaerobic section 5 and is biologically denitrified. Further, a part 13 of the nitrification-treated water that has once advanced to the aerobic part 9 is also circulated to the anaerobic part 5. The water to be treated in the denitrification section 5 then flows into the aerobic section 9, is biologically nitrified, and then the activated sludge is settled and separated in the final settling tank 10 to obtain treated water 11.

【0010】オゾンは、強力な酸化作用を持っており微
生物菌体の細胞壁を破壊し、また有機性SSを低分子化
し、BOD化する。従って、嫌気性消化部2からオゾン
酸化部4を経る工程からの流出液すなわち嫌気性消化残
渣3は、嫌気性消化された生汚泥及び生物汚泥をオゾン
酸化して可溶化されることによりBOD成分を高濃度に
含む(ただし、可溶化しなかった微生物菌体SSを含ん
だ懸濁液である。)ので生物処理工程の嫌気部5に供給
し、生物学的脱窒素のための水素供与体として脱窒素反
応の促進に利用する。生物処理工程が生物脱リン法であ
る場合には、嫌気性消化残渣は生物脱リンのためのリン
吐き出し反応の促進などに利用される。
Ozone has a strong oxidative effect and destroys the cell wall of microbial cells, lowers the molecular weight of organic SS and turns it into BOD. Therefore, the effluent from the step of passing from the anaerobic digestion section 2 to the ozone oxidation section 4, that is, the anaerobic digestion residue 3, is subjected to ozone oxidation of the anaerobic digested raw sludge and biological sludge to be solubilized, and thus the BOD component. Is contained in a high concentration (however, it is a suspension containing non-solubilized microbial cells SS), so that it is supplied to the anaerobic part 5 of the biological treatment process, and a hydrogen donor for biological denitrification. Is used to accelerate the denitrification reaction. When the biological treatment step is a biological dephosphorization method, the anaerobic digestion residue is used for promoting the phosphorus discharge reaction for biological dephosphorization.

【0011】本発明者の実験によれば、嫌気性消化残渣
またはこれと生物汚泥の混合物をオゾン酸化するとオゾ
ン酸化槽において激しく発泡し、汚泥が槽外に溢れてし
まうことが認められた。この激しい発泡を防止するには
汚泥に粉末活性炭を共存させ、オゾン酸化することによ
り効果的に防止できることが判明した。粉末活性炭を嫌
気性消化槽流入汚泥に添加すると、嫌気性消化の阻害物
質を活性炭が吸着し、嫌気性消化効果が向上するので、
二重の効果が発揮され好ましい。しかも粉末活性炭が共
存したオゾン処理工程流出液は、生物処理工程に流入す
るので、汚水中の難生物分解性CODを粉末活性炭が吸
着し、処理水CODを低下できる効果がある。
According to the experiments conducted by the present inventor, it was found that when the anaerobic digestion residue or a mixture of the anaerobic digestion residue and the biological sludge is subjected to ozone oxidation, the sludge overflows violently in the ozone oxidation tank to overflow the tank. In order to prevent this vigorous foaming, it has been found that it can be effectively prevented by making powdered activated carbon coexist in sludge and oxidizing it with ozone. When powdered activated carbon is added to the sludge flowing into the anaerobic digestion tank, the activated carbon adsorbs the anaerobic digestion inhibitor and the anaerobic digestion effect is improved.
A double effect is exhibited, which is preferable. Moreover, since the effluent of the ozone treatment process coexisting with the powdered activated carbon flows into the biological treatment process, the powdered activated carbon adsorbs the hardly biodegradable COD in the sewage, and the treated water COD can be reduced.

【0012】オゾン酸化工程からの流出水中のSSはオ
ゾンの作用により生物分解性が高まっているので、嫌気
部5に返送し 嫌気部5→好気部9→沈殿槽10→嫌気部5 の順序で循環させると、この過程でSSが生物学的に炭
酸ガスと水に分解する。この結果、生汚泥および生物汚
泥の発生量を大幅に減少でき、条件によってはほぼゼロ
にすることができる。図1において、12は砂、シルト
等の無機性SS及び分解し切れずに残った少量の汚泥の
排出管である。
Since the biodegradability of SS in the effluent water from the ozone oxidation step is enhanced by the action of ozone, it is returned to the anaerobic section 5, and the order of anaerobic section 5 → aerobic section 9 → precipitation tank 10 → anaerobic section 5 is given. When it is circulated, the SS biologically decomposes into carbon dioxide and water in this process. As a result, the amount of raw sludge and biological sludge generated can be significantly reduced, and can be reduced to almost zero depending on the conditions. In FIG. 1, reference numeral 12 is a discharge pipe for inorganic SS such as sand and silt and a small amount of sludge left undecomposed.

【0013】本発明は生汚泥および生物汚泥を直接オゾ
ン酸化するのではなく、汚泥を嫌気性消化し、嫌気性微
生物(メタン発酵菌、硫酸還元菌等)に資化される汚泥
は、メタン、水素、炭酸ガス、水に分解し、汚泥の大部
分(70%程度)を予め生物学的に分解減容化した後、
オゾン酸化するのでオゾンの添加量が大幅に削減でき
る。本発明において、嫌気性消化工程で増殖した嫌気性
微生物はオゾン酸化によって可溶化し、BOD化するこ
とが見出された。従来、嫌気性微生物をオゾン酸化した
研究例はなく、嫌気性微生物がオゾン酸化によって可溶
化されBOD化することは新しい知見である。汚泥可溶
化を効果的に生起させるためのオゾン添加所要量は固形
物重量あたり10〜30%が適当であるが、正確には実
験により決定する。
The present invention does not directly oxidize raw sludge and biological sludge by ozonolysis, but anaerobically digests sludge, and the sludge assimilated by anaerobic microorganisms (methane fermenting bacteria, sulfate reducing bacteria, etc.) is methane, After decomposing it into hydrogen, carbon dioxide, and water and biologically decomposing and reducing most of the sludge (about 70%),
Since ozone is oxidized, the amount of ozone added can be greatly reduced. In the present invention, it was found that the anaerobic microorganisms grown in the anaerobic digestion step are solubilized by ozone oxidation and converted into BOD. Heretofore, there has been no research example of ozone oxidation of anaerobic microorganisms, and it is a new finding that the anaerobic microorganisms are solubilized by ozone oxidation and become BOD. The required amount of ozone added for effectively causing sludge solubilization is 10 to 30% based on the weight of solid matter, but it is determined experimentally to be exact.

【0014】なお、生汚泥および生物汚泥を嫌気性消化
すると、嫌気的条件下で汚泥からリンが溶出するという
問題が生じる。従って、嫌気性消化汚泥にマグネシウム
化合物、石灰、塩化第2鉄、PAC等のリン除去剤を添
加して脱リンを行うことが好ましい。例えば、マグネシ
ウムイオンを添加するとリン酸マグネシウムアンモニウ
ム(MAPと略す。)の結晶性沈殿物が生成しリンを除
去できると同時にリンを純度の高い有価物として回収で
きる。また、石灰を添加するとリン酸カルシウム沈殿が
生成し、リンが除去される。この結果、汚泥をほぼ完全
に減容化しても汚泥から溶出したリンに起因する処理水
のリン濃度の増加を防止できる。また、汚泥の減容化に
ともなうリンの溶出の問題を解決する他の方法として
は、下水に鉄またはアルミニウム系凝集剤を添加し、生
成フロックを分離した後、生物処理する方法および生物
処理工程または最終沈殿池の前に鉄またはアルミニウム
系凝集剤を添加する方法が推奨できる。
Anaerobic digestion of raw sludge and biological sludge causes a problem that phosphorus is eluted from the sludge under anaerobic conditions. Therefore, it is preferable to add phosphorus compounds such as magnesium compounds, lime, ferric chloride and PAC to the anaerobic digested sludge for dephosphorization. For example, when magnesium ions are added, a crystalline precipitate of magnesium ammonium phosphate (abbreviated as MAP) is generated, whereby phosphorus can be removed and at the same time phosphorus can be recovered as a valuable resource with high purity. In addition, when lime is added, a calcium phosphate precipitate is generated and phosphorus is removed. As a result, even if the sludge volume is almost completely reduced, it is possible to prevent the phosphorus concentration of the treated water from increasing due to the phosphorus eluted from the sludge. Further, as another method for solving the problem of elution of phosphorus due to the reduction of sludge volume, a method of biological treatment after adding iron or aluminum coagulant to sewage and separating generated flocs and a biological treatment step Alternatively, a method of adding an iron- or aluminum-based coagulant before the final settling tank is recommended.

【0015】[0015]

【実施例】【Example】

実施例1 図1の工程に基づき、下水を対象として、嫌気性消化残
渣またはこれと生物汚泥の混合物をオゾン酸化する汚泥
減容化バイパス工程を併設した生物学的硝化脱窒素法に
よる本発明の汚水の処理を行った。処理に使用した下水
の水質を第1表に示す。
Example 1 Based on the process of FIG. 1, according to the present invention by a biological nitrification denitrification method provided with a sludge volume reduction bypass step for ozone-oxidizing an anaerobic digestion residue or a mixture of this and a biological sludge for sewage. Sewage was treated. Table 1 shows the water quality of the sewage used for the treatment.

【0016】[0016]

【表1】 [Table 1]

【0017】本発明における、生物学的硝化脱窒素法の
処理条件を第2表に示す。
Table 2 shows the treatment conditions of the biological nitrification and denitrification method in the present invention.

【0018】[0018]

【表2】 [Table 2]

【0019】また、嫌気性消化残渣またはこれと生物汚
泥の混合物の汚泥減容化バイパス工程の処理条件を第3
表に示す。ここで、生物汚泥のオゾン酸化量は、好気槽
9(硝化槽)中のMLSSの量が3000〜3500m
g/リットルの条件を満たすように好気槽9からの生物
汚泥の引き抜き量を制御しながら決定する。なおここで
は、オゾン酸化する際にオゾン酸化槽における激しい発
泡を防止するため粉末活性炭を添加する条件で試験を行
った。汚泥減容化バイパス工程の処理条件を第3表に示
す。
Also, the treatment conditions of the sludge volume reduction bypass step of the anaerobic digestion residue or the mixture of the anaerobic digestion residue and the biological sludge are set forth in the third.
It is shown in the table. Here, regarding the amount of ozone oxidation of biological sludge, the amount of MLSS in the aerobic tank 9 (nitrification tank) is 3000 to 3500 m.
The amount of biological sludge drawn from the aerobic tank 9 is controlled and determined so as to satisfy the condition of g / liter. Here, the test was conducted under the condition that powdered activated carbon was added to prevent vigorous foaming in the ozone oxidation tank during ozone oxidation. Table 3 shows the treatment conditions for the sludge volume reduction bypass process.

【0020】[0020]

【表3】 [Table 3]

【0021】以上の条件で1年間処理を行った結果、処
理水の平均水質は第4表の通りである。
As a result of treatment for one year under the above conditions, the average water quality of the treated water is as shown in Table 4.

【0022】[0022]

【表4】 [Table 4]

【0023】また、系外に排出される余剰汚泥発生量は
1ヵ月間あたり約6〜7g・ssと極めてすくなかっ
た。
The amount of surplus sludge discharged outside the system was about 6 to 7 g · ss per month, which was extremely small.

【0024】比較例1 図1の工程から嫌気性消化槽及びオゾン酸化槽からなる
汚泥減容化バイパス工程を省略した以外は同じとし、処
理条件も第2表及び第3表の条件同じにして比較試験を
行った。その結果、汚泥発生量は、生汚泥が約50g/
月、余剰生物汚泥が約20g/月、合計約70g/月と
多量であった。これは本発明の汚泥発生量の10倍に相
当する。活性汚泥のSVIは、190〜250高くバル
キング状態であった。また、処理水の平均水質は第5表
の通りである。
Comparative Example 1 The same conditions were used except that the sludge volume reduction bypass step consisting of the anaerobic digestion tank and the ozone oxidation tank was omitted from the step of FIG. 1, and the treatment conditions were the same as those in Tables 2 and 3. A comparative test was conducted. As a result, the amount of sludge generated was approximately 50 g / g for raw sludge.
The amount of surplus biological sludge was about 20 g / month, which was a large amount of about 70 g / month in total. This corresponds to 10 times the sludge generation amount of the present invention. The SVI of the activated sludge was 190 to 250 high, which was in a bulking state. The average water quality of the treated water is shown in Table 5.

【0025】[0025]

【表5】 [Table 5]

【0026】比較例2 図1の工程から嫌気性消化槽を省略して生汚泥、生物汚
泥を直接オゾン酸化したところオゾン所要量が本発明の
3〜4倍必要であり、ランニングコスト的に実用的でな
かった。
Comparative Example 2 When the raw anaerobic digestion tank was omitted from the process of FIG. 1 and the raw sludge and the biological sludge were directly ozone-oxidized, the required ozone amount was 3 to 4 times that of the present invention, and the running cost was practically used. It was not the target.

【0027】[0027]

【発明の効果】本発明により下水などからの生汚泥及び
生物汚泥をメタン発酵した後、オゾン酸化するので、 (1)少量のオゾンによって両汚泥を効果的に可溶化
後、生物学的に減容化でき、従来の汚泥脱水工程が不要
になるか、もしくは著しく小規模化できる。 (2)従来の汚泥焼却工程が不要になるか、もしくは著
しく小規模化できる。 (3)汚泥焼却灰がほとんど発生しない、条件によって
は全く発生しなくできる。 (4)前記両汚泥の可溶化によって生成するBODを生
物学的硝化脱窒素工程の嫌気部に添加して、脱窒素工程
の効果を高めることができる。 (5)前記BODを汚泥処理の嫌気好気活性汚泥法の嫌
気部に添加して、生物脱リン効果を促進できる。 (6)嫌気性消化槽流入汚泥に粉末活性炭を添加する本
発明の方法によって、オゾン酸化工程の激しい発泡を解
決できる。 (7)スフェロチルス等の糸状菌は、液のBODが高い
状態で嫌気的に滞留すると、増殖が抑制されるため、増
殖の早い通常の活性汚泥菌(ズーゲレア等)によって淘
汰される。従ってバルキング等の事故が生ぜず、良好な
生物処理が安定して進行する。 (8)本発明の方法によって、オゾンによる汚泥可溶化
に起因する処理水リン濃度の悪化を防止できる。
According to the present invention, raw sludge and biological sludge from sewage and the like are subjected to methane fermentation and then ozone-oxidized. (1) Both sludges are effectively solubilized by a small amount of ozone, and then biologically reduced. It can be installed and the conventional sludge dewatering process becomes unnecessary or can be remarkably reduced in scale. (2) The conventional sludge incineration process becomes unnecessary or can be remarkably reduced in size. (3) Almost no sludge incineration ash is generated, and depending on conditions, it can be completely eliminated. (4) The effect of the denitrification step can be enhanced by adding BOD generated by the solubilization of both sludges to the anaerobic part of the biological nitrification and denitrification step. (5) The biological dephosphorization effect can be promoted by adding the BOD to the anaerobic part of the anaerobic aerobic activated sludge method for sludge treatment. (6) The vigorous foaming in the ozone oxidation step can be solved by the method of the present invention in which the activated carbon powder is added to the sludge flowing into the anaerobic digester. (7) When filamentous fungi such as spherocillus are anaerobically retained in a state where the BOD of the liquid is high, their growth is suppressed, and thus they are culled by normal activated sludge fungi (Zugeraea, etc.) that grow fast. Therefore, no accident such as bulking will occur, and good biological treatment will proceed steadily. (8) By the method of the present invention, it is possible to prevent deterioration of the phosphorus concentration of the treated water due to the sludge solubilization by ozone.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機性汚水の硝化脱窒素法のフローの
1例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a flow of a nitrification denitrification method of organic wastewater of the present invention.

【符号の説明】[Explanation of symbols]

1 生汚泥 2 嫌気性消化槽 3 消化残渣 4 オゾン酸化槽 5 嫌気槽 6 生物汚泥 7 下水 8 最初沈殿池 9 好気槽 10 最終沈殿池 11 処理水 12 汚泥の排出管 13 硝化処理水 1 Raw sludge 2 Anaerobic digester 3 Digestion residue 4 Ozone oxidation tank 5 Anaerobic tank 6 Biological sludge 7 Sewage 8 First settling tank 9 Aerobic tank 10 Final settling tank 11 Treated water 12 Sludge discharge pipe 13 Nitrified water

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 汚水の有機性SSを分離した後、嫌気好
気活性汚泥法により生物処理し、前記生物処理工程から
の活性汚泥を固液分離し生物処理水を得る汚水処理方法
において、前記生物処理前に分離した生汚泥を、または
前記生汚泥と前記生物処理工程から引き抜かれた生物汚
泥とを、メタン発酵せしめた後、オゾン酸化し、前記生
物処理工程の嫌気部に返送することを特徴とする汚水処
理方法。
1. A sewage treatment method for obtaining biologically treated water by subjecting biologically treated anaerobic and aerobic activated sludge method to biological treatment after separating organic SS of the sewage, to obtain biologically treated water by solid-liquid separation. The raw sludge separated before biological treatment, or the biological sludge and the biological sludge extracted from the biological treatment step, after methane fermentation, ozone oxidation, to return to the anaerobic part of the biological treatment step. Characteristic sewage treatment method.
JP28201095A 1995-10-30 1995-10-30 Sewage treatment method Expired - Fee Related JP3172965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28201095A JP3172965B2 (en) 1995-10-30 1995-10-30 Sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28201095A JP3172965B2 (en) 1995-10-30 1995-10-30 Sewage treatment method

Publications (2)

Publication Number Publication Date
JPH09122682A true JPH09122682A (en) 1997-05-13
JP3172965B2 JP3172965B2 (en) 2001-06-04

Family

ID=17646977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28201095A Expired - Fee Related JP3172965B2 (en) 1995-10-30 1995-10-30 Sewage treatment method

Country Status (1)

Country Link
JP (1) JP3172965B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323687A (en) * 1997-05-23 1998-12-08 Nkk Corp Method for removing phosphorus in waste water
JP2000070989A (en) * 1998-09-03 2000-03-07 Nkk Corp Method and apparatus removing nitrogen in waste water
JP2000070987A (en) * 1998-09-03 2000-03-07 Nkk Corp Method and apparatus for removing phosphorus in waste water
JP2001121183A (en) * 1999-10-28 2001-05-08 Mitsubishi Heavy Ind Ltd Method for treating organic waste liquid
JP2002028688A (en) * 2000-07-18 2002-01-29 Maezawa Ind Inc Apparatus for treating wastewater
JP2002136989A (en) * 2000-08-24 2002-05-14 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for treating organic waste liquid
EP1254865A1 (en) * 2001-04-27 2002-11-06 VA TECH WABAG GmbH Disintegration of Anaerobically digested sewage sludge
KR100462943B1 (en) * 2002-10-07 2004-12-23 주식회사 아이이아이 The Waste disposal system
JPWO2004054935A1 (en) * 2002-12-05 2006-04-20 保藏 酒井 Wastewater treatment equipment
JP2006212581A (en) * 2005-02-04 2006-08-17 Mitsubishi Heavy Ind Ltd Method for treating organic waste material
JP2006239625A (en) * 2005-03-04 2006-09-14 Mitsubishi Heavy Ind Ltd Method and equipment for treating organic waste
JP2007038166A (en) * 2005-08-04 2007-02-15 Japan Sewage Works Agency Apparatus for treating organic liquid waste
JPWO2005049511A1 (en) * 2003-11-21 2007-06-07 株式会社荏原製作所 Method and apparatus for producing / recovering magnesium ammonium phosphate
JP2008029903A (en) * 2006-07-26 2008-02-14 Maezawa Ind Inc Treatment apparatus of drainage and waste material
CN102531313A (en) * 2012-01-16 2012-07-04 宁波工程学院 Method for treating sludge and promoting reduction of sludge by using ferrate
CN102583937A (en) * 2012-01-16 2012-07-18 宁波工程学院 Novel sewage treatment process utilizing ferrate oxidization to reduce sludge quantity
WO2012133386A1 (en) * 2011-03-30 2012-10-04 株式会社クボタ Wastewater treatment method and wastewater treatment system
WO2019200775A1 (en) * 2018-04-20 2019-10-24 李思琦 Wastewater circulating cleaning treatment method capable of reducing sludge amount
JP2020142168A (en) * 2019-03-04 2020-09-10 水ing株式会社 Treatment method of organic wastewater and treatment apparatus of organic wastewater

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323687A (en) * 1997-05-23 1998-12-08 Nkk Corp Method for removing phosphorus in waste water
JP2000070989A (en) * 1998-09-03 2000-03-07 Nkk Corp Method and apparatus removing nitrogen in waste water
JP2000070987A (en) * 1998-09-03 2000-03-07 Nkk Corp Method and apparatus for removing phosphorus in waste water
JP2001121183A (en) * 1999-10-28 2001-05-08 Mitsubishi Heavy Ind Ltd Method for treating organic waste liquid
JP2002028688A (en) * 2000-07-18 2002-01-29 Maezawa Ind Inc Apparatus for treating wastewater
JP2002136989A (en) * 2000-08-24 2002-05-14 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for treating organic waste liquid
EP1254865A1 (en) * 2001-04-27 2002-11-06 VA TECH WABAG GmbH Disintegration of Anaerobically digested sewage sludge
WO2002088034A1 (en) * 2001-04-27 2002-11-07 Va Tech Wabag Gmbh Disintegration of anaerobically digested sewage sludge
KR100462943B1 (en) * 2002-10-07 2004-12-23 주식회사 아이이아이 The Waste disposal system
JPWO2004054935A1 (en) * 2002-12-05 2006-04-20 保藏 酒井 Wastewater treatment equipment
JP4516025B2 (en) * 2003-11-21 2010-08-04 荏原エンジニアリングサービス株式会社 Method and apparatus for producing / recovering magnesium ammonium phosphate
JPWO2005049511A1 (en) * 2003-11-21 2007-06-07 株式会社荏原製作所 Method and apparatus for producing / recovering magnesium ammonium phosphate
JP2006212581A (en) * 2005-02-04 2006-08-17 Mitsubishi Heavy Ind Ltd Method for treating organic waste material
JP4667890B2 (en) * 2005-02-04 2011-04-13 三菱重工環境・化学エンジニアリング株式会社 Organic waste treatment methods
JP2006239625A (en) * 2005-03-04 2006-09-14 Mitsubishi Heavy Ind Ltd Method and equipment for treating organic waste
JP2007038166A (en) * 2005-08-04 2007-02-15 Japan Sewage Works Agency Apparatus for treating organic liquid waste
JP2008029903A (en) * 2006-07-26 2008-02-14 Maezawa Ind Inc Treatment apparatus of drainage and waste material
WO2012133386A1 (en) * 2011-03-30 2012-10-04 株式会社クボタ Wastewater treatment method and wastewater treatment system
CN102531313A (en) * 2012-01-16 2012-07-04 宁波工程学院 Method for treating sludge and promoting reduction of sludge by using ferrate
CN102583937A (en) * 2012-01-16 2012-07-18 宁波工程学院 Novel sewage treatment process utilizing ferrate oxidization to reduce sludge quantity
WO2019200775A1 (en) * 2018-04-20 2019-10-24 李思琦 Wastewater circulating cleaning treatment method capable of reducing sludge amount
JP2020142168A (en) * 2019-03-04 2020-09-10 水ing株式会社 Treatment method of organic wastewater and treatment apparatus of organic wastewater

Also Published As

Publication number Publication date
JP3172965B2 (en) 2001-06-04

Similar Documents

Publication Publication Date Title
JP3172965B2 (en) Sewage treatment method
US20030217968A1 (en) Biological method of phosphorus removal and biological phosphorus-removing apparatus
AU2007238520A1 (en) Method and system for nitrifying and denitrifying wastewater
JP3575312B2 (en) Organic wastewater treatment method
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
KR20020079029A (en) A zero-sludge -discharging membrane bioreactor(Z-MBR) activated sludge process
JP3442204B2 (en) Organic wastewater phosphorus removal and recovery method
JP3449868B2 (en) How to reduce organic sludge
JPH08318292A (en) Waste water treatment method and apparatus
JP3645513B2 (en) Organic wastewater treatment method and apparatus
JPH10137780A (en) Method of reducing weight of organic sludge
HU205330B (en) Process for purifying sewage containing organic material, by increased removal of phosphorus and nitrogen
JPH1052697A (en) Method for reduction of organic sludge
JP3355121B2 (en) Organic wastewater treatment method
JP3449864B2 (en) Method and apparatus for reducing organic sludge
JP3843540B2 (en) Biological treatment method of effluent containing organic solids
JPH1015589A (en) High-degree purification of organic sewage
JP3308788B2 (en) Organic wastewater treatment method
JPH09174091A (en) Method for treating organic waste water and apparatus therefor
JP3369915B2 (en) Night soil treatment equipment
JP3326084B2 (en) How to reduce organic sludge
JP3916697B2 (en) Wastewater treatment method
JPH09122679A (en) Method for processing organic waste water and its apparatus
JPH10249376A (en) Treatment of organic waste water such as sewage
JP3392295B2 (en) Method and apparatus for treating organic sewage

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees