JP2000070987A - Method and apparatus for removing phosphorus in waste water - Google Patents

Method and apparatus for removing phosphorus in waste water

Info

Publication number
JP2000070987A
JP2000070987A JP10249319A JP24931998A JP2000070987A JP 2000070987 A JP2000070987 A JP 2000070987A JP 10249319 A JP10249319 A JP 10249319A JP 24931998 A JP24931998 A JP 24931998A JP 2000070987 A JP2000070987 A JP 2000070987A
Authority
JP
Japan
Prior art keywords
anaerobic
sedimentation basin
tank
wastewater
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10249319A
Other languages
Japanese (ja)
Inventor
Tatsuo Takechi
辰夫 武智
Toshiaki Tsubone
俊明 局
Jun Miyata
純 宮田
Kei Baba
圭 馬場
Toyoshi Sawada
豊志 沢田
Satoru Udagawa
悟 宇田川
Shinichi Endo
伸一 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10249319A priority Critical patent/JP2000070987A/en
Priority to US09/383,314 priority patent/US6387254B1/en
Priority to CA 2281338 priority patent/CA2281338A1/en
Priority to EP19990116858 priority patent/EP0987224A3/en
Publication of JP2000070987A publication Critical patent/JP2000070987A/en
Priority to US10/073,467 priority patent/US20020104798A1/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To effectively and inexpensively prevent the deterioration of phosphorus removing performance while compensating the shortage of the organic material concentration in the waste water and effectively utilizing a produced organic material by crushing or grinding at least a part of deposits in a sedimentation basin for the waste water to be treated and supplying them to an anaerobic vessel. SOLUTION: The waste water 1 is fed to the anaerobic vessel 3 and an aerobic vessel 4 through solid-liquid separation in an initial sedimentation basin 2 and is separated into treated water 7 and activated sludge in a final sedimentation basin 6. The deposits 9 of the initial sedimentation basin 2 are crushed or ground by a crushing or grinding device 10 and sent to the anaerobic vessel 3 directly or through a flow-out water passage or the like. In the anaerobic vessel 3, phosphate ion accumulated in the activated sludge cells is released in the waste water by utilizing the organic material originating from the initial sedimentation basin deposit 9. In the aerobic vessel 4, the activated sludge assimilates the phosphate ion in the waste water in the activated sludge cells to carry out the oxidation decomposition and the removal of the organic material. Thus the method is effectively and rapidly utilized for the phosphorus releasing and the phosphorus assimilation reaction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、広くは下水・廃水
処理分野に属し、特に廃水からのリン除去方法およびそ
の装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally belongs to the field of sewage and wastewater treatment, and more particularly to a method and an apparatus for removing phosphorus from wastewater.

【0002】[0002]

【従来の技術】廃水中から有機物を除去するための従来
の代表的な処理プロセスとして活性汚泥法プロセスがあ
り、リン酸イオンおよび有機物を同時に除去する従来の
方法としては嫌気好気活性汚泥法プロセスがある。
2. Description of the Related Art There is an activated sludge process as a conventional representative treatment process for removing organic substances from wastewater, and an anaerobic aerobic activated sludge process is a conventional method for simultaneously removing phosphate ions and organic substances. There is.

【0003】嫌気好気活性汚泥法による廃水処理装置の
一例を図6に示す。嫌気好気活性汚泥法による廃水処理
装置は、最初沈殿池2と、生物学的リン放出反応により
活性汚泥が細胞内のリン酸イオンを廃水中に放出する嫌
気槽3と、生物学的リン摂取反応により活性汚泥が廃水
中のリン酸イオンを細胞内に摂取する好気槽4と最終沈
殿池6とから構成される。好気工程での活性汚泥のリン
摂取量は嫌気工程でのリン放出量よりも大であり、この
リン摂取量とリン放出量との差が廃水からのリン除去量
に相当する。
FIG. 6 shows an example of a wastewater treatment apparatus using the anaerobic-aerobic activated sludge method. The wastewater treatment apparatus using the anaerobic and aerobic activated sludge method comprises an initial settling basin 2, an anaerobic tank 3 in which activated sludge releases intracellular phosphate ions into wastewater by a biological phosphorus release reaction, and a biological phosphorus intake. The activated sludge is constituted by an aerobic tank 4 for ingesting phosphate ions in wastewater into cells by a reaction and a final sedimentation basin 6. The phosphorus intake of the activated sludge in the aerobic step is larger than the phosphorus release in the anaerobic step, and the difference between the phosphorus intake and the phosphorus release corresponds to the phosphorus removal from the wastewater.

【0004】最初沈殿池2において廃水1中に含まれる
比較的大きくて重い固形物を除去した後、嫌気工程での
生物学的リン放出反応および好気工程での生物学的リン
摂取反応を経て、排水中のリンは汚泥の構成成分に変化
し、最終的に余剰汚泥として廃水処理装置から排出され
る。また、廃水中の有機物は嫌気工程および好気工程の
双方において除去される。
After first removing relatively large and heavy solids contained in wastewater 1 in a sedimentation basin 2, a biological phosphorus release reaction in an anaerobic process and a biological phosphorus uptake reaction in an aerobic process are performed. The phosphorus in the wastewater is converted into a constituent component of the sludge, and is finally discharged from the wastewater treatment apparatus as surplus sludge. Organic matter in the wastewater is removed in both the anaerobic step and the aerobic step.

【0005】嫌気好気活性汚泥法による廃水処理装置を
用いた廃水からのリン除去においては次のような問題が
ある。すなわち、雨水の流入等により廃水の有機物濃度
が低下する場合、廃水は酸素を供給されつつ希釈される
ため、排水中の有機物は酸化と希釈とを受けた後、嫌気
工程へ供給される。この結果、嫌気工程へ供給される有
機物濃度はリン酸イオン濃度に比してより低下するた
め、嫌気工程でのリン放出反応速度および好気工程での
リン摂取反応速度が低くなり、処理水の水質が悪化す
る。
[0005] There are the following problems in removing phosphorus from wastewater using a wastewater treatment apparatus based on the anaerobic-aerobic activated sludge method. That is, when the organic matter concentration of the wastewater decreases due to the inflow of rainwater or the like, the wastewater is diluted while being supplied with oxygen. Therefore, the organic matter in the wastewater is supplied to the anaerobic process after being oxidized and diluted. As a result, the concentration of organic substances supplied to the anaerobic step is lower than the concentration of phosphate ions, so that the phosphorus release reaction rate in the anaerobic step and the phosphorus intake reaction rate in the aerobic step become lower, and the treated water is reduced. Water quality deteriorates.

【0006】また、最初沈殿池において廃水の固形汚濁
物質が沈降分離されるため、最初沈殿池を経由して嫌気
工程へ供給される排水は溶解性汚濁物質を主体とした構
成となる。従って、嫌気工程へ供給される廃水中の溶解
性汚濁物質の有機物濃度/リン酸イオン濃度比が低い場
合においても、嫌気工程でのリン放出反応速度および好
気工程でのリン摂取反応速度が低くなり、処理水の水質
が悪化する。
Further, since solid pollutants of wastewater are settled and separated in the first sedimentation basin, the wastewater supplied to the anaerobic process via the first sedimentation basin is mainly composed of soluble pollutants. Accordingly, even when the organic matter concentration / phosphate ion concentration ratio of the soluble pollutants in the wastewater supplied to the anaerobic step is low, the phosphorus release reaction rate in the anaerobic step and the phosphorus intake reaction rate in the aerobic step are low. And the quality of the treated water deteriorates.

【0007】このような問題点に対処するために、廃水
と共にメタノール等の有機薬剤を嫌気工程へ供給し、廃
水中の有機物濃度の不足分を補うことにより嫌気工程で
のリン放出反応速度および好気工程でのリン摂取反応速
度の低下を防ぐ、という方法が用いられている。
To cope with such a problem, an organic chemical such as methanol is supplied to the anaerobic step together with the wastewater to compensate for the shortage of the concentration of organic substances in the wastewater, thereby improving the phosphorus release reaction rate and the favorable rate in the anaerobic step. A method of preventing a decrease in the reaction rate of phosphorus intake in the pneumatic process has been used.

【0008】有機薬剤を嫌気工程へ流入させるという従
来技術において、通常、比較的価格の安いメタノールが
用いられてきたが、それでも薬剤費がかかるという点は
運転費に関する大きな問題点である。しかも、メタノー
ルは第4類危険物であるため、安全を考慮した取り扱い
が必要となり、貯蔵設備や受け入れ・供給のための設備
に関する対策も必要で、設備費がかかると共に取り扱い
にくいという問題もある。
[0008] In the prior art in which organic chemicals are introduced into the anaerobic process, methanol, which is relatively inexpensive, is usually used, but the fact that chemicals are still expensive is a major problem with respect to operating costs. In addition, since methanol is a fourth-class hazardous substance, it must be handled in consideration of safety, and measures must be taken for storage facilities and facilities for receiving and supplying.

【0009】嫌気工程におけるリンの放出反応および好
気工程におけるリン摂取反応のいずれにおいても充分な
有機物を必要とすると見られており、嫌気好気活性汚泥
法による廃水からのリン除去処理において、有機物が不
足すると良好なリン除去処理成績が得られないことから
すれば、最初沈殿池へ流入する廃水が含有し、最初沈殿
池で除去される有機物、すなわち固形物を主体とする有
機物を嫌気工程もしくは嫌気工程ならびに好気工程の双
方へ導入することは、リン除去処理成績を向上させるた
めに効果的である。
It is considered that sufficient organic substances are required in both the phosphorus release reaction in the anaerobic step and the phosphorus uptake reaction in the aerobic step, and the removal of organic substances from the wastewater by the anaerobic and aerobic activated sludge method is required. Insufficiently, good phosphorus removal results cannot be obtained, so the wastewater flowing into the sedimentation basin first contains organic matter that is first removed in the sedimentation basin, that is, the organic matter mainly composed of solid matter is subjected to the anaerobic process or The introduction into both the anaerobic step and the aerobic step is effective for improving the phosphorus removal treatment results.

【0010】このような効果を有する従来の設備運転方
法として、複数の処理系列を有する廃水処理設備におけ
る最初沈殿池の使用池数を減少させ最初沈殿池に対する
水面積負荷増加運転を行って、最初沈殿池流出水のSS
を増加させ、もって嫌気工程へ流入する有機物を増加さ
せるという方法がある。
[0010] As a conventional facility operation method having such an effect, the number of ponds used in the first sedimentation basin in the wastewater treatment facility having a plurality of treatment systems is reduced, and the operation of increasing the water area load on the first sedimentation basin is performed. Sedimentation basin effluent SS
And increasing the amount of organic matter flowing into the anaerobic process.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、最初沈
殿池数の変更というデジタルな制御によって、嫌気工程
へ流入する固形有機物を正確に制御することは困難であ
る。
However, it is difficult to accurately control the solid organic matter flowing into the anaerobic step by digital control of changing the number of first settling ponds.

【0012】かかる問題点を解決するために、発明者
は、嫌気槽へ供給する有機物量を増加させることによっ
て良好なリン除去処理をはかることのできる技術とし
て、最初沈殿池の沈殿物の少なくとも一部を嫌気槽へ流
入させることを特徴とする廃水のリン除去方法ならびに
該沈殿物に対して超音波処理を行って嫌気槽へ流入させ
ることを特徴とする廃水のリン除去方法(特願平9−1
33989号)および該沈殿物に対してオゾン処理を行
って嫌気槽へ流入させることを特徴とする廃水のリン除
去方法(特願平9−133988号)を既に出願してい
る。しかしながら、これらの方法は、以下のような問題
点を有している。最初沈殿池の沈殿物をそのまま嫌気槽
へ導入する場合、該沈殿汚泥に含まれる固形物の粒子は
比較的大きく、単位重量当たりの表面積が少ないもので
あるため、嫌気槽などの生物処理反応槽において分解・
処理される速度が比較的小さいという問題がある。ま
た、最初沈殿池の沈殿物に対して超音波処理を施してか
ら嫌気槽へ導入した場合、該沈殿物である固形物には比
較的硬い細胞壁あるいは細胞膜で包まれた微生物やセル
ロース繊維などが含まれており、これらは超音波による
振動処理によっては破壊されにくいため、嫌気槽へ導入
される固形物の粒子径が充分小さくならないという問題
がある。さらに、最初沈殿池の沈殿物に対してオゾン処
理を施してから嫌気槽へ導入する場合、該沈殿物に含ま
れる有機物の一部が酸化されて無機化して有機物として
の有効性を失うと共に、オゾンの発生には約10〜15
kWh/kgO3という比較的多くの電力を消費するた
め運転費が比較的大となるという問題がある。
[0012] In order to solve such a problem, the inventor of the present invention has proposed a technique capable of achieving a good phosphorus removal treatment by increasing the amount of organic substances supplied to an anaerobic tank. For removing phosphorus from wastewater, characterized by flowing the wastewater into an anaerobic tank, and a method for removing phosphorus from wastewater, comprising subjecting the sediment to ultrasonic treatment and flowing into the anaerobic tank (Japanese Patent Application No. Hei 9 (1994) -108). -1
No. 33989) and a method for removing phosphorus from wastewater characterized by subjecting the precipitate to ozone treatment and flowing into an anaerobic tank (Japanese Patent Application No. 9-133988). However, these methods have the following problems. When the sediment of the first sedimentation basin is directly introduced into the anaerobic tank, solid particles contained in the settling sludge are relatively large and have a small surface area per unit weight. Decomposition at
There is a problem that the processing speed is relatively small. In addition, when the precipitate in the sedimentation basin is first subjected to ultrasonic treatment and then introduced into the anaerobic tank, the solid, which is the precipitate, includes microorganisms and cellulose fibers wrapped in relatively hard cell walls or cell membranes. Since these are contained and are not easily destroyed by the vibration treatment using ultrasonic waves, there is a problem that the particle diameter of the solid introduced into the anaerobic tank does not become sufficiently small. Furthermore, when the sediment in the sedimentation basin is first subjected to ozone treatment and then introduced into the anaerobic tank, some of the organic matter contained in the sediment is oxidized and mineralized, losing its effectiveness as an organic matter, About 10-15 for ozone generation
Since a relatively large amount of power of kWh / kgO 3 is consumed, there is a problem that the operation cost is relatively large.

【0013】本発明は、廃水中の有機物濃度、特に溶解
性有機物濃度の不足によって生じる嫌気好気活性汚泥法
廃水処理装置のリン除去性能の悪化という問題を解決す
るためになされたもので、最初沈殿池で発生する、固形
有機物質を含む汚泥を嫌気槽へ供給して嫌気槽へ流入す
る廃水の有機物濃度の不足を補うことにより、廃水処理
施設内で発生する有機物質を有効利用しつつリン除去性
能の悪化を防止する方法を、より効果的かつ経済的に実
施しうる方法および装置を提供することを目的としてい
る。
The present invention has been made to solve the problem of deterioration of the phosphorus removal performance of an anaerobic aerobic activated sludge wastewater treatment apparatus caused by an insufficient concentration of organic substances in wastewater, particularly, a concentration of soluble organic substances. By supplying sludge containing solid organic substances generated in the sedimentation basin to the anaerobic tank and compensating for the lack of organic matter concentration in the wastewater flowing into the anaerobic tank, phosphorus can be effectively used in the wastewater treatment facility while effectively utilizing the organic substances generated in the wastewater treatment facility. It is an object of the present invention to provide a method and an apparatus capable of more effectively and economically performing a method for preventing the deterioration of the removal performance.

【0014】[0014]

【課題を解決するための手段】かかる本発明は、少なく
とも処理される廃水の沈殿池、嫌気槽および好気槽より
なる装置を用いて廃水のリンを除去する際に、該処理さ
れる廃水の沈殿池の沈殿物の少なくとも一部を破砕また
は磨砕して嫌気槽へ供給することを特徴とする廃水のリ
ン除去方法およびその装置に関するものである。
SUMMARY OF THE INVENTION According to the present invention, at least phosphorus is removed from a wastewater to be treated by using an apparatus consisting of a sedimentation basin, an anaerobic tank and an aerobic tank. The present invention relates to a method and an apparatus for removing phosphorus from wastewater, which comprises crushing or grinding at least a part of the sediment in a sedimentation basin and supplying it to an anaerobic tank.

【0015】本発明に基づく廃水の生物学的リン除去方
法および装置においては、固形有機物を豊富に含む最初
沈殿池の沈殿物の少なくとも一部、すなわち固形有機物
の少なくとも一部を嫌気槽へ送入して、嫌気工程のリン
放出反応に必要な有機物濃度を確保するものであるが、
該固形有機物を微生物がリン放出反応のために効果的か
つ迅速に利用できるように、該最初沈殿池の沈殿物の少
なくとも一部に対して破砕処理もしくは磨砕処理を行う
ことによって、最初沈殿池の沈殿物に含まれる固形有機
物を微細粒子化または可溶化させる。また、廃水の有機
物濃度が低く、嫌気工程においてリン放出反応を行うに
必要な有機物濃度が確保できていない場合には、嫌気工
程における酸化還元電位(ORP)が−100mV以上
になるという本発明者らの実験に基づいた知見に従っ
て、嫌気工程におけるORPを測定し、ORPが−10
0mV以上の値である場合、すなわち嫌気工程において
リン放出反応を行うに必要な有機物濃度が確保されてい
ない場合にのみ最初沈殿池の沈殿物に対して破砕処理も
しくは磨砕処理を施したものを嫌気槽へ流入させ、固形
物由来の有機物を補給することによって、リン放出反応
に必要な有機物濃度を確保する。
In the method and apparatus for removing biological phosphorus from wastewater according to the present invention, at least a part of the sediment of the first sedimentation basin rich in solid organic matter, that is, at least a part of the solid organic matter is fed into the anaerobic tank. In order to secure the concentration of organic substances required for the phosphorus release reaction in the anaerobic process,
Crushing or grinding at least a portion of the sediment in the first sedimentation basin so that the solid organic matter can be effectively and rapidly used by microorganisms for the phosphorus release reaction. The solid organic matter contained in the precipitate is made into fine particles or solubilized. Further, in the case where the organic matter concentration of the wastewater is low and the organic matter concentration required for performing the phosphorus release reaction in the anaerobic step cannot be secured, the present inventors have found that the oxidation-reduction potential (ORP) in the anaerobic step becomes -100 mV or more. According to the findings based on these experiments, the ORP in the anaerobic process was measured, and the ORP was -10.
Only when the value is 0 mV or more, that is, when the organic matter concentration required for performing the phosphorus release reaction in the anaerobic process is not secured, the sediment in the first sedimentation basin is subjected to crushing or grinding treatment. By flowing into an anaerobic tank and replenishing organic matter derived from solid matter, the concentration of organic matter necessary for the phosphorus release reaction is ensured.

【0016】[0016]

【発明の実施の形態】本発明に基づく生物学的リン除去
処理装置の一例を図1に示した。この図を用いて本発明
を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of a biological phosphorus removal treatment apparatus according to the present invention. The present invention will be described in detail with reference to FIG.

【0017】本発明に基づく生物学的リン除去処理装置
は図1に示したように、主として最初沈殿池2、嫌気槽
3、好気槽4および最終沈殿池6から構成される。嫌気
槽3では攪拌のみが行われ、好気槽4では散気装置5に
より酸素供給が行われると共に、散気に伴って生じる水
流により攪拌が行われる。
As shown in FIG. 1, the biological phosphorus removal treatment apparatus according to the present invention mainly comprises a first sedimentation tank 2, an anaerobic tank 3, an aerobic tank 4, and a final sedimentation tank 6. In the anaerobic tank 3, only stirring is performed, and in the aerobic tank 4, oxygen is supplied by the diffusing device 5, and stirring is performed by a water flow generated by the diffusing.

【0018】図1に示した本発明に基づく生物学的リン
除去処理装置において、廃水1は最初沈殿池2での固液
分離を経て嫌気槽3および好気槽4へと順次通水され
る。嫌気槽4を流出し最終沈殿池6へ流入する流出液は
最終沈殿池6で処理水7と活性汚泥とに分離され、最終
沈殿池6で分離、濃縮された活性汚泥の少なくとも一部
は返送汚泥8として嫌気槽3へ送られる。
In the biological phosphorus removal treatment apparatus according to the present invention shown in FIG. 1, waste water 1 is first passed through a sedimentation basin 2 through solid-liquid separation to an anaerobic tank 3 and an aerobic tank 4 sequentially. . The effluent flowing out of the anaerobic tank 4 and flowing into the final sedimentation basin 6 is separated into treated water 7 and activated sludge in the final sedimentation basin 6, and at least a part of the activated sludge separated and concentrated in the final sedimentation basin 6 is returned. The sludge 8 is sent to the anaerobic tank 3.

【0019】最初沈殿池沈殿物9は、破砕処理装置もし
くは磨砕処理装置10によって破砕処理もしくは磨砕処
理を受けた後、破砕処理後もしくは磨砕処理後の最初沈
殿池沈殿物11として直接嫌気槽3へ送るか、最初沈殿
池2の流出水路を経由して嫌気槽3へ送るか、あるいは
最初沈殿池2の流入水路を経由して最初沈殿池2におい
て再び沈殿する部分を除いたものを最初沈殿池2の流出
水路を経由して嫌気槽3へ送る。
The first sedimentation tank sediment 9 is subjected to crushing treatment or grinding treatment by a crushing treatment device or attrition treatment device 10, and then directly anaerobic as the first sedimentation tank sedimentation 11 after the crushing treatment or the grinding treatment. Either sent to tank 3, sent to anaerobic tank 3 via the outflow channel of first settling basin 2, or removed the portion that settles again in first settling tank 2 via the inflow channel of first settling basin 2 First, it is sent to the anaerobic tank 3 via the outflow channel of the sedimentation basin 2.

【0020】嫌気槽3においては活性汚泥が廃水1中の
溶解性成分を主体とする有機物および最初沈殿池沈殿物
9に由来する有機物を利用して、活性汚泥細胞内に蓄積
したリン酸イオンを廃水中に放出(=リン放出反応)す
る。好気槽4においては活性汚泥が廃水中のリン酸イオ
ンを活性汚泥細胞内に摂取する(=リン摂取反応)と共
に、有機物の酸化分解除去を行う。
In the anaerobic tank 3, the activated sludge utilizes the organic matter mainly composed of the soluble component in the wastewater 1 and the organic matter derived from the first sedimentation tank sediment 9 to remove phosphate ions accumulated in the activated sludge cells. Released into wastewater (= phosphorus release reaction). In the aerobic tank 4, the activated sludge ingests phosphate ions in the wastewater into the activated sludge cells (= phosphorus uptake reaction) and performs oxidative decomposition and removal of organic substances.

【0021】最初沈殿池沈殿物9に含まれる固形有機物
は破砕処理装置もしくは磨砕処理装置10によって処理
を受けて、少なくとも一部は微細な粒子となり、また少
なくとも一部は溶解性成分となる。すなわち、破砕処理
もしくは磨砕処理によって、固形物の粒子径が小さくな
ると、同じ重量の固形物においては表面積が増加するこ
とになる。また、最初沈殿池沈殿物9には微生物体や動
植物体などが含まれているが、これらの生物体は細胞膜
あるいは細胞壁で包まれた細胞より構成されており、こ
れらの膜状構造物が破砕処理もしくは磨砕処理によって
破壊されると細胞液が細胞外へ放出されるため、破砕処
理後もしくは磨砕処理後の最初沈殿池沈殿物11の投入
された廃水の溶解性有機物濃度は上昇する結果となる。
The solid organic matter contained in the first sedimentation tank sediment 9 is treated by a crushing treatment device or a grinding treatment device 10 so that at least a part thereof becomes fine particles and at least a part thereof becomes a soluble component. That is, when the particle diameter of the solid is reduced by the crushing or grinding treatment, the surface area of the solid having the same weight increases. In addition, the first sedimentation basin sediment 9 contains microorganisms, animals and plants, etc., and these organisms are composed of cells wrapped in cell membranes or cell walls, and these membrane-like structures are crushed. If the cells are destroyed by the treatment or the grinding treatment, the cell liquid is released out of the cells, so that the concentration of the soluble organic matter in the wastewater into which the first sedimentation basin sediment 11 after the crushing treatment or the grinding treatment is introduced increases. Becomes

【0022】一般的に、微生物が有機物を分解・利用し
て増殖する場合、分子量の大きなものほどその分解・利
用が終了するまでに時間がかかり、分子量の小さなもの
ほど利用し易く反応速度が大である。有機物を固形有機
物と溶解性有機物とに分けて考えると、固形有機物の方
が一般的に分子量が大きいため、固形有機物の方が微生
物にとっては利用しにくい。これは、微生物が、細胞膜
あるいは細胞壁を経由して有機物を微生物体内へ取り込
むにおいては、その有機物は充分に分子量の小さなもの
である必要があり、分子量の大きな有機物を微生物が利
用するにおいては、分子量の大きな有機物をまず分子量
の小さな有機物まで分解するという反応を必要とするた
め、分解・利用に時間がかかると考えられている。分子
量の大きな有機物を分子量の小さな有機物まで分解する
という反応も生物においては主に酵素反応によって行わ
れるが、このような反応においては、酵素の作用する表
面が多いほど、すなわち、同じ重量の固形有機物で比較
した場合には粒子径の小さい場合ほど反応が早く進む。
つまり、本発明方法において、最初沈殿池沈殿物9に対
して破砕処理もしくは磨砕処理を施し、固形物の粒子径
を小さくすることは、微生物による固形有機物の分解・
利用のための酵素反応の進行を助け、固形有機物の分解
・利用速度を高めるのに貢献し、限られた反応槽容積で
もって微生物反応を終了させるために有効である。ま
た、最初沈殿池沈殿物9に対して破砕処理もしくは磨砕
処理を施すことによって生じた溶解性有機物も、嫌気槽
3へ導入されると、嫌気槽3におけるリン放出反応なら
びに脱窒反応と後段の好気槽4におけるリン摂取反応の
ために、効果的かつ迅速に利用されるので、この点につ
いても、最初沈殿池沈殿物9に対して破砕処理もしくは
磨砕処理を施すという操作は、流入廃水1中の固形物に
含まれていた有機物が反応槽における微生物によって分
解・利用される速度を高めるのに貢献し、限られた反応
槽容積でもって微生物反応を終了させるために有効であ
る。
In general, when a microorganism grows by decomposing and utilizing organic substances, it takes a longer time to complete the decomposition and utilization of a substance having a large molecular weight, and a substance having a small molecular weight is easily used and has a high reaction rate. It is. When organic matter is divided into solid organic matter and soluble organic matter, solid organic matter is generally harder to use for microorganisms because solid organic matter generally has a higher molecular weight. This is because when a microorganism takes in an organic substance into a microorganism via a cell membrane or a cell wall, the organic substance needs to have a sufficiently small molecular weight. It is considered that it takes a long time to decompose and use organic compounds, because a reaction of first decomposing organic substances having a large molecular weight into organic substances having a small molecular weight is required. In organisms, the reaction of decomposing high molecular weight organic substances into small molecular weight organic substances is mainly performed by enzymatic reactions.In such reactions, the more surfaces on which the enzyme acts, that is, the same weight of solid organic substances When the particle size is smaller, the reaction proceeds faster.
That is, in the method of the present invention, the crushing or grinding treatment is first performed on the sedimentation tank sediment 9 to reduce the particle diameter of the solid material, which means that the decomposition of the solid organic material by microorganisms
It assists in the progress of the enzymatic reaction for utilization, contributes to increasing the rate of decomposition and utilization of solid organic matter, and is effective for terminating the microbial reaction with a limited reactor volume. In addition, when soluble organic matter generated by subjecting the sedimentation tank sediment 9 to crushing or grinding treatment is also introduced into the anaerobic tank 3, the phosphorus release reaction and the denitrification reaction in the anaerobic tank 3 and the subsequent stage are performed. Is effectively and quickly used for the phosphorus uptake reaction in the aerobic tank 4 of the above-mentioned method. The organic matter contained in the solid matter in the wastewater 1 contributes to increasing the rate of decomposition and utilization by microorganisms in the reaction tank, and is effective for terminating the microbial reaction with a limited reaction tank volume.

【0023】破砕処理または磨砕処理された最初沈殿池
沈殿物の破砕物または磨砕物11を嫌気槽3へ流入させ
るに当たり、該破砕物または磨砕物11を直接該嫌気槽
3へ流入させることも可能であり、該破砕物または磨砕
物11を最初沈殿池2の越流堰から該嫌気槽3に至る排
水の流路のいずれかの地点へ流入させることも可能であ
る。このような方法を用いた場合、最初沈殿池沈殿物の
破砕物または磨砕物11をすべて嫌気槽3へ流入させる
ことができる。また、該破砕物または磨砕物11の供給
地点から該嫌気槽3に至る水路の容量が比較的小さく、
滞留時間が比較的短くなるので、該破砕物または磨砕物
11の供給量を変更して比較的短時間のうちに、該嫌気
槽3での反応に対して影響を及ぼすことができる。破砕
物または磨砕物11を嫌気槽3へ流入させるに当たり、
該破砕物または磨砕物11を直接該嫌気槽3へ流入させ
るか、該破砕物または磨砕物11を最初沈殿池2の越流
堰から該嫌気槽3に至る排水の流路のいずれかの地点へ
流入させるかについては、破砕処理装置もしくは磨砕処
理装置10の設置位置と破砕処理後もしくは磨砕処理後
の破砕物または磨砕物11の供給位置との距離や水頭差
などを考慮して決定することができる。
When the crushed or crushed material of the first sedimentation basin sediment or the crushed material 11 that has been subjected to the crushing or grinding treatment is allowed to flow into the anaerobic tank 3, the crushed or crushed material 11 may be directly flowed into the anaerobic tank 3. It is possible to flow the crushed material or the crushed material 11 from the overflow weir of the sedimentation basin 2 to any point of the drainage flow path from the anaerobic tank 3. When such a method is used, the crushed or crushed material 11 of the sedimentation basin sediment can all flow into the anaerobic tank 3. Further, the capacity of the water channel from the supply point of the crushed material or the crushed material 11 to the anaerobic tank 3 is relatively small,
Since the residence time is relatively short, the supply amount of the crushed material or the crushed material 11 can be changed to influence the reaction in the anaerobic tank 3 in a relatively short time. In flowing the crushed material or the crushed material 11 into the anaerobic tank 3,
Either the crushed material or the crushed material 11 is allowed to flow directly into the anaerobic tank 3 or the crushed material or the crushed material 11 is first transferred to the anaerobic tank 3 from the overflow weir of the sedimentation basin 2. Is determined in consideration of the distance between the installation position of the crushing device or the crushing device 10 and the supply position of the crushed material or the crushed material 11 after the crushing process or the crushing process, the water head difference, and the like. can do.

【0024】該破砕物または磨砕物11を該最初沈殿池
2の流入水路のいずれかの地点へ流入させて再び該最初
沈殿池2で沈殿する固形物を分離除去してから該破砕物
または磨砕物11のうちの沈降しない成分を該最初沈殿
池2の越流水と共に該嫌気槽3へ流入させることも可能
である。このような方法を用いた場合、破砕処理後もし
くは磨砕処理後の最初沈殿池沈殿物11をすべて嫌気槽
3へ流入させることはできないが、該破砕物または磨砕
物11の供給地点から嫌気槽3に至る水路の容量が大き
く、滞留時間が長くなるので、比較的安定した濃度でも
って、該破砕物または磨砕物11に由来する、沈降し易
い固形物をのぞく成分を、嫌気槽3へ流入させることが
できる。
The crushed material or the crushed material 11 is caused to flow into any point of the inflow channel of the first sedimentation basin 2 to separate and remove solids precipitated in the first sedimentation basin 2 again. It is also possible to allow the non-settling component of the crushed material 11 to flow into the anaerobic tank 3 together with the overflow water of the first settling tank 2. When such a method is used, all of the first sedimentation basin sediment 11 after the crushing treatment or the grinding treatment cannot flow into the anaerobic tank 3, but the anaerobic tank is supplied from the supply point of the crushed or crushed material 11. Since the capacity of the water channel leading to No. 3 is large and the residence time is long, components having a relatively stable concentration and excluding solids that easily settle and originate from the crushed material or the crushed material 11 flow into the anaerobic tank 3. Can be done.

【0025】最初沈殿池2による沈殿処理後の廃水に含
まれるリン濃度や嫌気槽3および好気槽4の滞留時間等
の条件によっては、リン放出反応に比べてリン摂取反応
をより促進する必要があるため、このような場合には嫌
気槽3と共に好気槽4への破砕物または磨砕物11を導
入することができる。
Depending on conditions such as the concentration of phosphorus contained in the wastewater after the precipitation treatment by the first sedimentation basin 2 and the residence time in the anaerobic tank 3 and the aerobic tank 4, it is necessary to promote the phosphorus uptake reaction more than the phosphorus release reaction. Therefore, in such a case, the crushed material or the crushed material 11 can be introduced into the aerobic tank 4 together with the anaerobic tank 3.

【0026】最初沈殿池2からの沈殿物9の抜き出しは
最初沈殿池2の下部または底部に設けた排出口を開口す
ることによって行うことができる。これは最初沈殿池2
の位置に応じて自然流出させあるいは送液ポンプを利用
すればよい。
The removal of the sediment 9 from the first sedimentation basin 2 can be performed by opening a discharge port provided at the lower part or the bottom of the first sedimentation basin 2. This is the first sedimentation basin 2
May be spontaneously discharged or a liquid feed pump may be used depending on the position of the liquid.

【0027】破砕処理装置または磨砕処理装置で処理す
る沈殿物は廃水中に懸濁ないしスラリー状態のものであ
り、濃度は3000〜12000mg/l程度、通常5
000〜10000mg/l程度のものである。
The sediment to be treated by the crusher or the attritor is suspended or slurry in the wastewater, and has a concentration of about 3000 to 12000 mg / l, usually about 5 mg / l.
It is about 000 to 10000 mg / l.

【0028】破砕物または磨砕物の添加時期は、例えば
嫌気槽の酸化還元電位を測定することによって知ること
ができ、それが−100mV以上になったときに添加を
行う。また、廃水1の溶解性汚濁物質の有機物濃度/リ
ン酸イオン濃度比がほぼ常に低いような場合には、破砕
物または磨砕物を常時添加運転することが実際的であ
る。
The addition time of the crushed material or the crushed material can be known, for example, by measuring the oxidation-reduction potential of an anaerobic tank, and the addition is performed when the potential becomes -100 mV or more. Further, when the ratio of the concentration of the organic matter to the concentration of the phosphate ion of the soluble pollutant in the wastewater 1 is almost always low, it is practical to always add the crushed material or the crushed material.

【0029】最初沈殿池沈殿物9の引き抜きに用いられ
るポンプは、通常、目詰りの起こりにくいスラリーポン
プであるため、該沈殿物を破砕または磨砕する効果はほ
とんどない。したがって、該沈殿物を破砕または磨砕す
るためには破砕装置または磨砕装置を備えることが必要
である。破砕処理装置または磨砕処理装置10は、ギヤ
型、多軸円盤型等、様々なタイプのものを使用すること
ができる。破砕度もしくは磨砕度を制御するためには、
破砕後もしくは磨砕後に通過させるスクリーンの目巾を
選定することが有効であるが、その目巾が小さ過ぎると
目詰りしやすく、大き過ぎると粒径の大きな固形物が出
て行き易いため、スクリーンの目巾を1〜5mm程度と
することが好ましい。また、破砕処理装置もしくは磨砕
処理装置10をインライン設置もしくは開水路設置とす
ることができるが、最初沈殿池沈殿物9が悪臭の発生源
となることを考慮すれば、インライン設置とすることが
好ましい。かかる破砕処理装置もしくは磨砕処理装置1
1として市販の汎用品を適用することが可能であるため
設備費は比較的安価であり、モーターの動力費を主体と
する運転費も比較的安価で、かつ固形物の粒子径低減効
果も比較的大きい。
The pump used for pulling out the sediment 9 in the first sedimentation basin is usually a slurry pump in which clogging does not easily occur, and thus has little effect of crushing or grinding the sediment. Therefore, in order to crush or grind the precipitate, it is necessary to provide a crushing device or a grinding device. As the crushing device or the grinding device 10, various types such as a gear type and a multi-shaft disk type can be used. To control the degree of crushing or grinding,
It is effective to select the screen width of the screen to be passed after crushing or grinding, but if the screen width is too small, it is easy to clog, and if it is too large, solids with a large particle size tend to come out, The screen width of the screen is preferably about 1 to 5 mm. Further, the crushing device or the grinding device 10 can be installed in-line or in an open channel. However, considering that the sedimentation basin sediment 9 becomes a source of offensive odor, the in-line installation can be adopted. preferable. Such a crushing device or grinding device 1
The equipment cost is relatively inexpensive because a general-purpose commercial product can be applied as 1, and the operating cost, mainly the power cost of the motor, is relatively inexpensive, and the effect of reducing the particle size of solids is also compared. Big.

【0030】破砕物または磨砕物の添加量は廃水1の容
量に対して0.1〜1.5%程度、通常0.5〜1.0
%程度が適当である。添加は連続的であってもよく、間
欠的であってもよい。
The added amount of the crushed material or the crushed material is about 0.1 to 1.5% with respect to the volume of the wastewater 1, usually 0.5 to 1.0%.
% Is appropriate. The addition may be continuous or intermittent.

【0031】添加の終了は酸化還元電位が−150〜−
250mV程度に達したところが適当であり、その結
果、常時添加を続けることも有効である。
When the addition is completed, the oxidation-reduction potential becomes -150 to-
It is appropriate that the temperature reaches about 250 mV. As a result, it is also effective to continue the addition at all times.

【0032】図2に本発明に基づく生物学的リン除去処
理装置の他の一例を示す。図6に示した従来技術に基づ
く生物学的リン除去処理装置において、発明者の実験的
知見によれば、廃水1の溶解性有機物濃度が高く、嫌気
槽3でのリン放出反応に必要な有機物濃度が得られてい
る場合には、嫌気槽3内のORPが−100mV以下と
なり、廃水1の有機物濃度が低く、嫌気槽3でのリン放
出反応に必要な濃度の有機物が供給されていない場合に
は、嫌気槽3内のORPが−100mV以上となる。こ
れらの知見を基に、図2の本発明に基づく生物学的リン
除去処理装置においては、嫌気槽3に設置されたORP
計12の測定値が−150〜−250mV程度以下の場
合には破砕処理後もしくは磨砕処理後の最初沈殿池沈殿
物11の嫌気槽3への流入を停止するかあるいは破砕処
理装置もしくは磨砕処理装置10の運転を停止するなど
の運転操作を行い、該測定値が−100mV以上の場合
には破砕処理後もしくは磨砕処理後の最初沈殿池沈殿物
11の嫌気槽3への流入を行うよう装置の運転を制御す
る。これらの制御を制御装置13によって行う。
FIG. 2 shows another example of the biological phosphorus removal treatment apparatus according to the present invention. In the biological phosphorus removal treatment apparatus based on the prior art shown in FIG. 6, according to the experimental findings of the inventor, the dissolved organic matter concentration of the wastewater 1 is high, and the organic matter necessary for the phosphorus release reaction in the anaerobic tank 3. When the concentration is obtained, the ORP in the anaerobic tank 3 becomes -100 mV or less, the organic matter concentration of the wastewater 1 is low, and the organic matter of the concentration required for the phosphorus release reaction in the anaerobic tank 3 is not supplied. , The ORP in the anaerobic tank 3 becomes -100 mV or more. Based on these findings, in the biological phosphorus removal treatment apparatus according to the present invention shown in FIG.
When the measured value of the total 12 is about -150 to -250 mV or less, the flow of the first sedimentation tank sediment 11 into the anaerobic tank 3 after the crushing treatment or the grinding treatment is stopped, or a crushing treatment device or a grinding treatment is performed. An operation such as stopping the operation of the treatment apparatus 10 is performed, and when the measured value is −100 mV or more, the first sedimentation tank sediment 11 after the crushing treatment or the grinding treatment flows into the anaerobic tank 3. Control the operation of the device. These controls are performed by the control device 13.

【0033】嫌気工程および好気工程から成る廃水処理
装置の他、嫌気工程、脱窒工程(無酸素工程)および硝
化工程(好気工程)から成る廃水処理装置においても本
発明に基づくリン除去方法を適用することが出来る。
The phosphorus removal method according to the present invention is applied not only to a wastewater treatment apparatus comprising an anaerobic step and an aerobic step but also to a wastewater treatment apparatus comprising an anaerobic step, a denitrification step (anoxic step) and a nitrification step (aerobic step). Can be applied.

【0034】図3に本発明に基づく生物学的リン除去処
理装置の別の一例を示す。図3に示した本発明に基づく
生物学的リン除去処理装置は、図1に示した本発明に基
づく生物学的リン除去処理装置に脱窒槽14を新たにつ
け加えたものであり、主として最初沈殿池2、嫌気槽
3、脱窒槽14、好気槽4および最終沈殿池6から構成
される。
FIG. 3 shows another example of the biological phosphorus removal treatment apparatus according to the present invention. The biological phosphorus removal treatment device according to the present invention shown in FIG. 3 is obtained by adding a denitrification tank 14 to the biological phosphorus removal treatment device according to the present invention shown in FIG. It comprises a pond 2, an anaerobic tank 3, a denitrification tank 14, an aerobic tank 4, and a final sedimentation tank 6.

【0035】図3に示した本発明に基づく生物学的リン
除去処理装置において、脱窒槽14は攪拌のみが行われ
る槽であり、本槽へは嫌気槽3を流出し脱窒槽14に流
入する流出液と硝化循環液15とが送られる。脱窒槽1
4においては廃水中の有機物を利用して、硝化循環液1
5に含まれる硝酸性窒素または亜硝酸性窒素を窒素ガス
にまで還元(=脱窒反応)し、脱窒処理する。
In the biological phosphorus removal treatment apparatus according to the present invention shown in FIG. 3, the denitrification tank 14 is a tank in which only stirring is performed, and flows out of the anaerobic tank 3 into this tank and flows into the denitrification tank 14. The effluent and the nitrification circulating fluid 15 are sent. Denitrification tank 1
In No. 4, the nitrification circulating liquid 1 is utilized by utilizing the organic matter in the wastewater.
The nitrate nitrogen or nitrite nitrogen contained in 5 is reduced to nitrogen gas (= denitrification reaction) and denitrification treatment is performed.

【0036】尚、図3に示した本発明に基づく生物学的
リン除去処理装置においては、最初沈殿池沈殿物11の
破砕物または磨砕物の一部を脱窒槽14へ流入させても
良い。
In the biological phosphorus removal treatment apparatus according to the present invention shown in FIG. 3, a part of the crushed or ground material of the sedimentation basin sediment 11 may be flowed into the denitrification tank 14.

【0037】[0037]

【実施例】本発明に基づく生物学的リン除去方法の1実
施例を以下に示す。図4に実施装置を示す。本実施例で
は、図6に示すフローから成る廃水処理装置から採取し
た返送汚泥、廃水および最初沈殿池沈殿物の混合液を試
料として図4に示す装置に投入し、嫌気槽条件下におけ
る活性汚泥のリン放出反応の特性を調査した。表1に試
料の組成を示す。図6に示すフローから成る廃水処理装
置から採取した廃水のBOD濃度は42mg/Lであ
り、返送汚泥のMLSS濃度は4200mg/Lであっ
た。図1に示すフローから成る廃水処理装置が有効に機
能するかどうかを調べるために、図6のフローによる廃
水処理設備の最初沈殿池から採取したMLSS濃度32
00mg/Lの最初沈殿池沈殿物に対して、容量10m
lのポッター型ガラスホモジナイザーで3分間磨砕処理
を施したものが有機物源として有効かどうかについて実
験検討を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the method for removing biological phosphorus according to the present invention will be described below. FIG. 4 shows an implementation device. In the present embodiment, a mixed solution of returned sludge, wastewater, and first sedimentation tank sediment collected from the wastewater treatment apparatus having the flow shown in FIG. 6 was put into the apparatus shown in FIG. 4 as a sample, and activated sludge under anaerobic tank conditions was used. The characteristics of the phosphorus release reaction of sucrose were investigated. Table 1 shows the composition of the sample. The BOD concentration of the wastewater collected from the wastewater treatment device having the flow shown in FIG. 6 was 42 mg / L, and the MLSS concentration of the returned sludge was 4200 mg / L. In order to check whether the wastewater treatment apparatus comprising the flow shown in FIG. 1 works effectively, the MLSS concentration 32 collected from the first sedimentation basin of the wastewater treatment facility according to the flow of FIG.
10m capacity for the first settling tank sediment of 00mg / L
An experimental study was conducted to determine whether a material subjected to a grinding treatment for 3 minutes with a 1 potter-type glass homogenizer was effective as an organic matter source.

【0038】[0038]

【表1】 [Table 1]

【0039】図5に試料排水中のリン酸イオン濃度の経
時変化を示す。この結果から、磨砕処理した最初沈殿池
沈殿物を加えた条件でリン放出反応を行った際の試料A
と、磨砕処理した最初沈殿池沈殿物を加えていない条件
でリン放出反応を行った際の試料Bとの比較からすれ
ば、最初沈殿池沈殿物に対して磨砕処理を施した沈殿物
を加えてリン放出反応を行った場合には排水中のリン酸
イオンの増加速度が大であった。すなわち、最初沈殿池
沈殿物に対して磨砕処理を施して、固形物の粒子径の低
減と、一部の有機物の可溶化をはかった後、試料排水に
加えることにより、嫌気工程でのリン放出反応速度が大
となることが判明した。
FIG. 5 shows the change over time in the phosphate ion concentration in the sample wastewater. From these results, it was found that the sample A obtained when the phosphorus release reaction was performed under the condition where the first sedimentation tank sediment subjected to the grinding treatment was added.
And the sample B when the phosphorus release reaction was performed under the condition that the first sedimentation basin sediment was not added, the sedimentation of the first sedimentation basin sediment was subjected to the grinding treatment. When the phosphorus release reaction was carried out by adding, the rate of increase of phosphate ions in the wastewater was large. That is, the first sedimentation tank sediment is subjected to a grinding treatment to reduce the particle diameter of the solid matter and to solubilize some organic matter, and then is added to the sample wastewater, thereby adding phosphorus to the sample in the anaerobic step. The release reaction rate was found to be high.

【0040】破砕処理も磨砕処理に近いものであり、最
初沈殿池沈殿物中の固形物の粒子径の低減と、一部の有
機物の可溶化をはかるのに有効であると見られる。
The crushing process is also similar to the crushing process, and is considered to be effective in reducing the particle size of the solids in the sedimentation tank sediment and solubilizing some organic substances.

【0041】[0041]

【発明の効果】本発明においては、嫌気工程と場合によ
っては無酸素工程および好気工程を有する生物学的リン
除去装置の嫌気工程へ破砕処理後もしくは磨砕処理後の
最初沈殿池沈殿物を流入させ、嫌気工程でのリン放出反
応に必要な有機物濃度を確保する構成とした。
According to the present invention, the first sedimentation basin sediment after crushing or grinding is subjected to an anaerobic step and, if necessary, to an anaerobic step of a biological phosphorus removing apparatus having an anoxic step and an aerobic step. It was made to flow in and to secure the organic matter concentration necessary for the phosphorus release reaction in the anaerobic step.

【0042】これにより、雨水の流入等の場合の如く、
嫌気工程へ供給される有機物濃度がリン酸イオン濃度の
低下する程度以上に低下することによって嫌気工程での
リン放出反応速度が低くなり処理水の水質が悪化する場
合においても、また、最初沈殿池で固液分離処理を受け
た後嫌気工程へ流入する排水中の溶解性汚濁物質の有機
物濃度/リン酸イオン濃度比が低いため嫌気工程でのリ
ン放出反応速度が低くなり処理水の水質が悪化する場合
においても、リン放出反応を行うに必要な有機物の供給
が確保されるため、嫌気工程でのリン放出反応速度の低
下を防止することが可能となり、後段の好気工程でのリ
ン放出反応速度を高めるためにも有効である。
Thus, as in the case of rainwater inflow,
Even when the concentration of organic substances supplied to the anaerobic process is reduced to a level lower than the concentration of phosphate ions, the phosphorus release reaction rate in the anaerobic process is reduced and the quality of the treated water is deteriorated. The ratio of dissolved organic matter / phosphate concentration in the wastewater that flows into the anaerobic process after being subjected to solid-liquid separation in the anaerobic process is low, so the phosphorus release reaction rate in the anaerobic process is low and the quality of the treated water deteriorates In this case, since the supply of organic substances necessary for performing the phosphorus release reaction is ensured, it is possible to prevent a decrease in the rate of the phosphorus release reaction in the anaerobic step, and to perform the phosphorus release reaction in the subsequent aerobic step. It is also effective to increase speed.

【0043】また、嫌気工程のORPを測定し、ORP
が−100mV以上の場合のみに嫌気工程へ破砕処理後
もしくは磨砕処理後の最初沈殿池沈殿物を流入させる構
成とすることによって、廃水の有機物濃度が低下し嫌気
工程でリン放出反応を行うに必要な有機物濃度が確保さ
れていないときにのみ有機物を補給することが可能であ
る。こうした制御により、最初沈殿池沈殿物に対して破
砕処理もしくは磨砕処理を施すために必要な動力費およ
び破砕処理後もしくは磨砕処理後の最初沈殿池沈殿物を
嫌気工程へ移送するために必要な動力費を最小とするこ
とが出来、また、嫌気工程および好気工程への有機物負
荷を最小とすることが出来る。
Further, the ORP in the anaerobic step was measured, and the ORP was measured.
When the first sedimentation tank sediment after the crushing treatment or the attrition treatment is flowed into the anaerobic step only when the pressure is -100 mV or more, the organic matter concentration of the wastewater is reduced, and the phosphorus release reaction is performed in the anaerobic step. Organic substances can be replenished only when the necessary organic substance concentration is not ensured. With such a control, the power cost required to perform the crushing or grinding treatment on the first sedimentation tank sediment and the necessary cost to transfer the first sedimentation tank sediment after the crushing treatment or the grinding treatment to the anaerobic process Power costs can be minimized, and organic loads on the anaerobic and aerobic processes can be minimized.

【0044】最初沈殿池沈殿物に対して破砕処理もしく
は磨砕処理を施して、最初沈殿池沈殿物に含まれる有機
性固形物の粒子径を小さくすると共に、一部可溶化をは
かり、その後嫌気工程へ、場合によってはさらに好気工
程あるいは脱窒工程へ導入することによって、リン放出
反応やリン摂取反応を主体とする微生物反応において迅
速かつ効果的に利用することができる。
The first sedimentation tank sediment is subjected to crushing or grinding treatment to reduce the particle size of the organic solids contained in the first sedimentation tank sediment and to partially solubilize it. By introducing it into the process, and in some cases further into the aerobic process or the denitrification process, it can be used quickly and effectively in a microbial reaction mainly comprising a phosphorus release reaction or a phosphorus uptake reaction.

【0045】また、この破砕処理もしくは磨砕処理に用
いる装置として汎用品が適用できるため設備費は経済的
であり、モーターの動力費を主体とする該装置の運転費
も比較的経済的で、大型固形物の破壊効果も大きい。
Further, since a general-purpose product can be applied as an apparatus used for the crushing or grinding treatment, the equipment cost is economical, and the operation cost of the apparatus mainly including the power cost of the motor is relatively economical. The effect of breaking large solids is also great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は本発明の1実施例による生物学的リン
除去処理装置の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a biological phosphorus removal treatment apparatus according to one embodiment of the present invention.

【図2】 図2は本発明の別の1実施例による生物学的
リン除去処理装置の構成を示す図である。
FIG. 2 is a view showing a configuration of a biological phosphorus removal treatment apparatus according to another embodiment of the present invention.

【図3】 図3は本発明のさらに別の1実施例による生
物学的リン除去処理装置の構成を示す図である。
FIG. 3 is a view showing a configuration of a biological phosphorus removal treatment apparatus according to still another embodiment of the present invention.

【図4】 図4は本発明の実施例で使用されたリン放出
反応実験装置の側面図である。
FIG. 4 is a side view of a phosphorus release reaction experiment apparatus used in an example of the present invention.

【図5】 図4の装置を用い、最初沈殿池の沈殿物の磨
砕物を添加した場合としなかった場合のリン酸イオン濃
度の経時変化を示すグラフである。
FIG. 5 is a graph showing the change over time of the phosphate ion concentration with and without the addition of the ground material of the sediment in the first settling basin using the apparatus of FIG.

【図6】 図6は従来の生物学的リン除去処理装置の構
成を示す側面図である。
FIG. 6 is a side view showing a configuration of a conventional biological phosphorus removal treatment apparatus.

【符号の説明】[Explanation of symbols]

1.廃水 2.最初沈殿池 3.嫌気槽 4.好気槽 5.散気装置 6.最終沈殿池 7.処理水 8.返送汚泥 9.最初沈殿池沈殿物 10.破砕処理装置または磨砕処理装置 11.最初沈殿池沈殿物の破砕物または磨砕物 12.ORP計 13.制御装置 14.脱窒槽 15.硝化循環液 16.攪拌装置 17.ビーカー 18.試料 1. Wastewater 2. First sedimentation basin 3. Anaerobic tank 4. Aerobic tank 5. Air diffuser 6. Final sedimentation basin 7. Treated water 8. Return sludge 9. First sedimentation tank sediment 10. 10. Crushing device or grinding device Crushed or ground material of the first sedimentation tank sediment ORP meter 13. Control device 14. Denitrification tank 15. Nitrification circulating fluid 16. Stirrer 17. Beaker 18. sample

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮田 純 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 馬場 圭 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 沢田 豊志 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 宇田川 悟 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 遠藤 伸一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4D040 BB05 BB32 BB57 BB72 BB92 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Jun Miyata 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan Inside the Kokan Kogyo Co., Ltd. (72) Inventor Kei Kei Bamba 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun (72) Inventor Toshishi Sawada 1-1-2 Marunouchi, Chiyoda-ku, Tokyo, Japan Nihon Kokan Co., Ltd. (72) Inventor Shinichi Endo 1-2-1, Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 4D040 BB05 BB32 BB57 BB72 BB92

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも処理される廃水の沈殿池、嫌
気槽および好気槽よりなる装置を用いて廃水のリンを除
去する際に、該処理される廃水の沈殿池の沈殿物の少な
くとも一部を破砕または磨砕して嫌気槽へ供給すること
を特徴とする廃水のリン除去方法
At least a part of the sediment in the sedimentation basin of the treated wastewater when removing phosphorus from the wastewater using an apparatus comprising at least a sedimentation basin, an anaerobic tank and an aerobic tank for the wastewater to be treated For removing phosphorus from wastewater, comprising crushing or grinding and supplying the anaerobic tank
【請求項2】 少なくとも処理される廃水の沈殿池、嫌
気槽および好気槽よりなる装置において、該沈殿池の沈
殿物を抜き出すラインと、この抜き出された沈殿物を破
砕または磨砕する装置と、該破砕物または磨砕物を嫌気
槽に供給するラインを設けたことを特徴とする廃水のリ
ン除去装置
2. An apparatus comprising at least a sedimentation basin, an anaerobic tank, and an aerobic tank for a wastewater to be treated, and a line for extracting sediment from the sedimentation tank, and an apparatus for crushing or grinding the extracted sediment. And a line for supplying the crushed material or the crushed material to an anaerobic tank.
JP10249319A 1998-09-03 1998-09-03 Method and apparatus for removing phosphorus in waste water Pending JP2000070987A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10249319A JP2000070987A (en) 1998-09-03 1998-09-03 Method and apparatus for removing phosphorus in waste water
US09/383,314 US6387254B1 (en) 1998-09-03 1999-08-25 Apparatus for wastewater treatment
CA 2281338 CA2281338A1 (en) 1998-09-03 1999-09-02 Method and apparatus for wastewater treatment
EP19990116858 EP0987224A3 (en) 1998-09-03 1999-09-03 Method and apparatus for removing phosphorus and nitrogen from wastewater
US10/073,467 US20020104798A1 (en) 1998-09-03 2002-02-11 Method and apparatus for wastewater treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10249319A JP2000070987A (en) 1998-09-03 1998-09-03 Method and apparatus for removing phosphorus in waste water

Publications (1)

Publication Number Publication Date
JP2000070987A true JP2000070987A (en) 2000-03-07

Family

ID=17191239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10249319A Pending JP2000070987A (en) 1998-09-03 1998-09-03 Method and apparatus for removing phosphorus in waste water

Country Status (1)

Country Link
JP (1) JP2000070987A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305536A (en) * 2005-03-29 2006-11-09 Maezawa Ind Inc Waste water treatment apparatus
JP2009131854A (en) * 2009-03-23 2009-06-18 Maezawa Ind Inc Sewage treatment apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211299A (en) * 1988-09-16 1990-08-22 Fujita Corp Anaerobic digestion of sludge
JPH09122682A (en) * 1995-10-30 1997-05-13 Ebara Corp Method for treating waste water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211299A (en) * 1988-09-16 1990-08-22 Fujita Corp Anaerobic digestion of sludge
JPH09122682A (en) * 1995-10-30 1997-05-13 Ebara Corp Method for treating waste water

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
第33回下水道研究発表会講演集平成8年度, JPNX006045634, 14 June 1996 (1996-06-14), pages 495 - 497, ISSN: 0000777624 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305536A (en) * 2005-03-29 2006-11-09 Maezawa Ind Inc Waste water treatment apparatus
JP2009131854A (en) * 2009-03-23 2009-06-18 Maezawa Ind Inc Sewage treatment apparatus

Similar Documents

Publication Publication Date Title
US20070119763A1 (en) Floating sequencing batch reactor and method for wastewater treatment
US6387254B1 (en) Apparatus for wastewater treatment
CN101723552B (en) Treatment method of garbage leachate
CN106830536A (en) A kind of advanced treatment process of ferment antibiotics waste water
EP3403996A1 (en) Granule-forming method and waste water treatment method
CN101391853A (en) Chemical wastewater recovery processing technique and apparatus
JP5119200B2 (en) Operation method of sewage treatment facility
EP2049443B1 (en) A method and apparatus for simultaneous clarification and endogenous post denitrification
JP2007021285A (en) Method and apparatus for reducing volume of excess sludge
JP2000070989A (en) Method and apparatus removing nitrogen in waste water
JP2001009498A (en) Treatment of waste water and treating device therefor
JP2007275846A (en) Wastewater treatment system and wastewater treatment method
JPH09220592A (en) Unaerobic treatment apparatus
KR20130043745A (en) Sludge treatment facility combining swirl flow type inorganic sludge selective discharge device and bioreactor
JP2000070987A (en) Method and apparatus for removing phosphorus in waste water
JP5270247B2 (en) Wastewater treatment facility at food processing plant
JP2004275820A (en) Wastewater treatment apparatus
KR20020075046A (en) The treating method of high concentration organic waste water
JP2007222830A (en) Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it
KR100457698B1 (en) Livestock wastewater treatment method and equipment using STP waste excess sludge
CN214457492U (en) Demulsification technical system for treating wastewater containing emulsified oil agent
JP4864258B2 (en) Organic wastewater treatment equipment
JPWO2018021169A1 (en) Method and apparatus for treating organic wastewater
JPS6048196A (en) Method for removing phosphorus from organic waste liquid
JP2000051883A (en) Method for treating activated sludge of drainage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070207